Implementation of coupled CFD&DEM model for heat and mass transfer analysis in adsorption fluidized reactors
•Adsorption cooling technology offers a sustainable alternative to traditional cooling systems.•CFD & DEM: A breakthrough in modeling adsorption systems.•Disc-shaped fluidized sorption reactor enhances adsorption efficiency.•Granulation impacts heat transfer in adsorption beds.•CFD & DEM app...
Saved in:
Published in | Applied thermal engineering Vol. 278; p. 127301 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.11.2025
|
Subjects | |
Online Access | Get full text |
ISSN | 1359-4311 |
DOI | 10.1016/j.applthermaleng.2025.127301 |
Cover
Abstract | •Adsorption cooling technology offers a sustainable alternative to traditional cooling systems.•CFD & DEM: A breakthrough in modeling adsorption systems.•Disc-shaped fluidized sorption reactor enhances adsorption efficiency.•Granulation impacts heat transfer in adsorption beds.•CFD & DEM approach holds potential for reactor optimization.
Adsorption refrigeration and desalination systems operate by exploiting the thermal effects accompanied by the alternating adsorption and desorption processes of the refrigerant in a porous material bed. Sorption systems are an important part of the green transition, as they can be powered by renewable energy sources, including solar energy and industrial waste heat. The adsorption bed consisting of a heat exchanger covered with a granular adsorbent is the subject of analysis and experiments focused on improving the heat and mass transfer conditions, limited by the low adsorbent conductivity and adsorption bed porosity. Fluidization at low-pressure conditions is considered one of the means of heat transfer intensification in adsorption reactors. Particle shape expressed by sphericity and size distribution are important factors that could influence the thermal and physical properties of the adsorption fluidized bed. Moreover, the detailed knowledge of particle–fluid interactions at low-pressure regimes is fundamental in fluidization processes. Knowledge about these complex processes is difficult to obtain empirically, therefore experimental studies aiming to characterize the effect of adsorbent particle size distribution on heat and mass transfer in adsorption reactors were supported in this work by the implementation of the new approach to modeling the adsorption reactor, including the particle–fluid interaction at low-pressure regimes using two-way coupled Computational Fluid Dynamics (CFD) and Discrete Element Modelling (DEM). The developed comprehensive model incorporating CFD&DEM techniques is validated against the experimental test of sorption cycles carried out for adsorbent granulation in the range of 100 to 500 µm. The results of the presented research indicate that the coupled CFD&DEM modeling approach is a powerful and cost-effective research tool capable of effectively analyzing complicated physical phenomena occurring in low-pressure regimes. |
---|---|
AbstractList | •Adsorption cooling technology offers a sustainable alternative to traditional cooling systems.•CFD & DEM: A breakthrough in modeling adsorption systems.•Disc-shaped fluidized sorption reactor enhances adsorption efficiency.•Granulation impacts heat transfer in adsorption beds.•CFD & DEM approach holds potential for reactor optimization.
Adsorption refrigeration and desalination systems operate by exploiting the thermal effects accompanied by the alternating adsorption and desorption processes of the refrigerant in a porous material bed. Sorption systems are an important part of the green transition, as they can be powered by renewable energy sources, including solar energy and industrial waste heat. The adsorption bed consisting of a heat exchanger covered with a granular adsorbent is the subject of analysis and experiments focused on improving the heat and mass transfer conditions, limited by the low adsorbent conductivity and adsorption bed porosity. Fluidization at low-pressure conditions is considered one of the means of heat transfer intensification in adsorption reactors. Particle shape expressed by sphericity and size distribution are important factors that could influence the thermal and physical properties of the adsorption fluidized bed. Moreover, the detailed knowledge of particle–fluid interactions at low-pressure regimes is fundamental in fluidization processes. Knowledge about these complex processes is difficult to obtain empirically, therefore experimental studies aiming to characterize the effect of adsorbent particle size distribution on heat and mass transfer in adsorption reactors were supported in this work by the implementation of the new approach to modeling the adsorption reactor, including the particle–fluid interaction at low-pressure regimes using two-way coupled Computational Fluid Dynamics (CFD) and Discrete Element Modelling (DEM). The developed comprehensive model incorporating CFD&DEM techniques is validated against the experimental test of sorption cycles carried out for adsorbent granulation in the range of 100 to 500 µm. The results of the presented research indicate that the coupled CFD&DEM modeling approach is a powerful and cost-effective research tool capable of effectively analyzing complicated physical phenomena occurring in low-pressure regimes. |
ArticleNumber | 127301 |
Author | Grabowska, Karolina Krzywanski, Jaroslaw Zylka, Anna Skrobek, Dorian Sosnowski, Marcin Kulakowska, Anna |
Author_xml | – sequence: 1 givenname: Karolina orcidid: 0000-0002-8323-8094 surname: Grabowska fullname: Grabowska, Karolina – sequence: 2 givenname: Marcin orcidid: 0000-0002-1906-9476 surname: Sosnowski fullname: Sosnowski, Marcin email: m.sosnowski@ujd.edu.pl – sequence: 3 givenname: Jaroslaw orcidid: 0000-0002-6364-7894 surname: Krzywanski fullname: Krzywanski, Jaroslaw – sequence: 4 givenname: Anna orcidid: 0000-0001-6241-0863 surname: Zylka fullname: Zylka, Anna – sequence: 5 givenname: Anna surname: Kulakowska fullname: Kulakowska, Anna – sequence: 6 givenname: Dorian orcidid: 0000-0003-0214-4836 surname: Skrobek fullname: Skrobek, Dorian |
BookMark | eNqNkE1LAzEURbOoYFv9D1mIu6lJZtp0wI30Q4WKG12H1-TFpmSSIZkK9dc7tW7cubpw4R4uZ0QGIQYk5IazCWd8drefQNv6boepAY_hYyKYmE64kCXjAzLk5bQuqpLzSzLKec8YF3NZDYl_blqPDYYOOhcDjZbqeOgrQxfr5e1y9UKbaNBTGxPdIXQUgqEN5Ey7BCFbTH0D_phdpi5QMDmm9gdl_cEZ99WTEoLuYspX5MKCz3j9m2Pyvl69LZ6Kzevj8-JhU-hSyK6YC2NnUEkhKgnGGmZqM6-grsV0ixpqhtrYmpWVkAakrpkxXIKu6m0JFmxZjsn9matTzDmhVW1yDaSj4kydbKm9-mtLnWyps61-vj7Psf_46TCprB0GjcYl1J0y0f0P9A3sWYLZ |
Cites_doi | 10.1016/j.applthermaleng.2023.120200 10.1016/j.ijrefrig.2015.10.028 10.3390/en14133871 10.1016/j.enconman.2017.05.011 10.5004/dwt.2020.24846 10.1252/jcej.28.535 10.1016/j.enconman.2022.116346 10.1016/j.energy.2018.09.041 10.3390/pr11071912 10.1016/j.apenergy.2012.11.042 10.1002/cjce.25455 10.1007/s11831-023-10001-6 10.1016/j.rser.2021.111808 10.1016/j.enconman.2023.117453 10.1016/j.energy.2020.119123 10.1016/j.apenergy.2015.06.041 10.52202/069564-0042 10.1016/j.applthermaleng.2023.121396 10.1016/j.icheatmasstransfer.2021.105594 10.3390/en13246601 10.1016/j.rser.2018.10.004 10.3390/pr11102977 10.1016/j.applthermaleng.2022.118724 10.3390/pr11082417 10.3390/en17020379 10.1016/j.apenergy.2018.09.003 10.3390/en12244660 10.3390/ma14133520 10.1016/j.powtec.2019.10.021 10.1016/j.rser.2013.09.023 10.1007/s11831-021-09568-9 10.3390/en14154707 |
ContentType | Journal Article |
Copyright | 2025 The Author(s) |
Copyright_xml | – notice: 2025 The Author(s) |
DBID | 6I. AAFTH AAYXX CITATION |
DOI | 10.1016/j.applthermaleng.2025.127301 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
ExternalDocumentID | 10_1016_j_applthermaleng_2025_127301 S1359431125018939 |
GroupedDBID | --K --M .~1 0R~ 1B1 1RT 1~. 1~5 23M 4.4 457 4G. 5GY 5VS 6I. 7-5 71M 8P~ AABNK AAEDT AAEDW AAFTH AAHCO AAIKJ AAKOC AALRI AAOAW AAQFI AARJD AATTM AAXKI AAXUO AAYWO ABFNM ABJNI ABMAC ABNUV ACDAQ ACGFS ACIWK ACRLP ACVFH ADBBV ADCNI ADEWK ADEZE ADTZH AEBSH AECPX AEIPS AEKER AENEX AEUPX AFJKZ AFPUW AFTJW AGCQF AGHFR AGUBO AGYEJ AHIDL AHJVU AHPOS AIEXJ AIGII AIIUN AIKHN AITUG AKBMS AKRWK AKURH AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU APXCP AXJTR BELTK BJAXD BKOJK BLXMC CS3 EBS EFJIC EFKBS EFLBG ENUVR EO8 EO9 EP2 EP3 FDB FEDTE FIRID FNPLU FYGXN G-Q GBLVA HVGLF IHE J1W JARJE JJJVA KOM M41 MO0 MS~ N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SDF SDG SDP SES SEW SPC SPCBC SSG SSR SST SSZ T5K TN5 ~G- ~HD AAQXK AAYXX ABWVN ABXDB ACNNM ACRPL ADMUD ADNMO AGQPQ ASPBG AVWKF AZFZN CITATION EJD FGOYB HZ~ R2- |
ID | FETCH-LOGICAL-c327t-82df6a472247adfd0d9d84a9925beca90ecdf903427da7c90dd17ac49b3afaf33 |
IEDL.DBID | AIKHN |
ISSN | 1359-4311 |
IngestDate | Wed Sep 10 05:10:05 EDT 2025 Sat Sep 20 17:14:38 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Fluidization Adsorption chillers CFD&DEM coupling Computational fluid dynamics Heat and mass transfer |
Language | English |
License | This is an open access article under the CC BY license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c327t-82df6a472247adfd0d9d84a9925beca90ecdf903427da7c90dd17ac49b3afaf33 |
ORCID | 0000-0002-1906-9476 0000-0003-0214-4836 0000-0002-8323-8094 0000-0001-6241-0863 0000-0002-6364-7894 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S1359431125018939 |
ParticipantIDs | crossref_primary_10_1016_j_applthermaleng_2025_127301 elsevier_sciencedirect_doi_10_1016_j_applthermaleng_2025_127301 |
PublicationCentury | 2000 |
PublicationDate | 2025-11-01 2025-11-00 |
PublicationDateYYYYMMDD | 2025-11-01 |
PublicationDate_xml | – month: 11 year: 2025 text: 2025-11-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Applied thermal engineering |
PublicationYear | 2025 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Wu, Li (b0135) 2023; 11 Kim, Chang, Lee (b0080) 2018; 164 Hassan, El-Sharkawy, Amin, Harby (b0020) 2023; 235 Win, Nowak, Hitoki, Matsuda, Hasatani, Bis, Krzywanski, Gajewski (b0195) 1995; 28 El-Emam, Zhou, Shi, Han, Bai, Agarwal (b0145) 2021; 28 Azmir, Hou, Yu (b0150) 2020; 360 Mitra, Kumar, Srinivasan, Dutta (b0060) 2016; 67 Alahmer, Ajib, Wang (b0065) 2019; 99 Chen, Ma, Wu, Chiang, Chen (b0100) 2015; 155 Chauhan, Kaushik, Tyagi (b0155) 2022; 154 Li, Zhao, Long, Liu, Liu (b0105) 2022; 213 Naseem, Son, Lee (b0025) 2023; 293 Wu, Li, Zuo (b0130) 2023; 11 Riaz, Sultan, Miyazaki, Shahzad, Farooq, Sajjad, Niaz (b0010) 2021; 128 Chen, Hasanien, Chua (b0050) 2022; 271 Chen, Hasanien, Chua (b0040) 2022; 271 J. Krzywanski, K. Grabowska, M. Sosnowski, A. Zylka, A. Kulakowska, T. Czakiert, K. Sztekler, M. Wesolowska, W. Nowak, Heat transfer in adsorption chillers with fluidized beds of silica gel, zeolite, and carbon nanotubes, Heat Transfer Eng. Sachdev, Gaba, Tiwari (b0045) 2020; 174 Wang, Zhang, Tian, Liu, Sumathy (b0035) 2014; 30 Hinze, Ranft, Druminer, Schwieger (b0070) 2017; 145 Krzywanski, Skrobek, Zylka, Grabowska, Kulakowska, Sosnowski, Nowak, Blanco-Marigorta (b0190) 2023; 225 Grabowska, Zylka, Kulakowska, Skrobek, Krzywanski, Sosnowski, Ciesielska, Nowak (b0165) 2021; 14 Sosnowski, Krzywanski, Grabowska, Zylka, Kulakowska, Skrobek, Dyner, Ashraf, Ščurek (b0180) 2023 Grabowska, Krzywanski, Zylka, Kulakowska, Skrobek, Sosnowski, Scurek, Nowak, Czakiert (b0015) 2024; 17 Alsarayreh, Al-Maaitah, Attarakih, Bart (b0055) 2021; 14 Tang, Li, Huang, Yang (b0140) 2025; 103 Kulakowska, Zylka, Krzywanski, Skrobek, Grabowska, Sosnowski, Nowak (b0170) 2023; 11 Zhang, Liu, Zhuang, Meng, Chen (b0120) 2014; 12 Sosnowski (b0175) 2019; 12 Ramírez, de Munck, Liu, Rieder, Baltussen, Buist, Kuipers (b0115) 2023; 62 Liang, Hsu, Hung, Chiang, Chen (b0090) 2018; 230 Krzywanski, Dorian, Ashraf, Grabowska, Zylka, Kulakowska, Nowak, Shahzad, Wakil (b0085) 2024; 152 Zhao, Zhou, Bai, Wang, Agarwal (b0110) 2024; 31 Wang, Wang, Wu (b0030) 2014 Finn, Galvin, Hornbostel (b0125) 2020; X Skrobek, Krzywanski, Sosnowski, Kulakowska, Zylka, Grabowska, Ciesielska, Nowak (b0185) 2020; 13 Choudhury, Saha, Chatterjee, Sarkar (b0005) 2013; 104 Grabowska, Sztekler, Krzywanski, Sosnowski, Stefanski, Nowak (b0075) 2021; 215 Boruta, Bujok, Sztekler (b0160) 2021; 14 Grabowska (10.1016/j.applthermaleng.2025.127301_b0165) 2021; 14 Sosnowski (10.1016/j.applthermaleng.2025.127301_b0180) 2023 Li (10.1016/j.applthermaleng.2025.127301_b0105) 2022; 213 Alahmer (10.1016/j.applthermaleng.2025.127301_b0065) 2019; 99 Sosnowski (10.1016/j.applthermaleng.2025.127301_b0175) 2019; 12 Zhang (10.1016/j.applthermaleng.2025.127301_b0120) 2014; 12 Ramírez (10.1016/j.applthermaleng.2025.127301_b0115) 2023; 62 Kulakowska (10.1016/j.applthermaleng.2025.127301_b0170) 2023; 11 Chauhan (10.1016/j.applthermaleng.2025.127301_b0155) 2022; 154 Choudhury (10.1016/j.applthermaleng.2025.127301_b0005) 2013; 104 Sachdev (10.1016/j.applthermaleng.2025.127301_b0045) 2020; 174 Mitra (10.1016/j.applthermaleng.2025.127301_b0060) 2016; 67 Grabowska (10.1016/j.applthermaleng.2025.127301_b0015) 2024; 17 Chen (10.1016/j.applthermaleng.2025.127301_b0050) 2022; 271 Chen (10.1016/j.applthermaleng.2025.127301_b0040) 2022; 271 Grabowska (10.1016/j.applthermaleng.2025.127301_b0075) 2021; 215 Win (10.1016/j.applthermaleng.2025.127301_b0195) 1995; 28 Riaz (10.1016/j.applthermaleng.2025.127301_b0010) 2021; 128 Liang (10.1016/j.applthermaleng.2025.127301_b0090) 2018; 230 Naseem (10.1016/j.applthermaleng.2025.127301_b0025) 2023; 293 Kim (10.1016/j.applthermaleng.2025.127301_b0080) 2018; 164 Skrobek (10.1016/j.applthermaleng.2025.127301_b0185) 2020; 13 Krzywanski (10.1016/j.applthermaleng.2025.127301_b0190) 2023; 225 Zhao (10.1016/j.applthermaleng.2025.127301_b0110) 2024; 31 Azmir (10.1016/j.applthermaleng.2025.127301_b0150) 2020; 360 Chen (10.1016/j.applthermaleng.2025.127301_b0100) 2015; 155 El-Emam (10.1016/j.applthermaleng.2025.127301_b0145) 2021; 28 Boruta (10.1016/j.applthermaleng.2025.127301_b0160) 2021; 14 Alsarayreh (10.1016/j.applthermaleng.2025.127301_b0055) 2021; 14 Krzywanski (10.1016/j.applthermaleng.2025.127301_b0085) 2024; 152 10.1016/j.applthermaleng.2025.127301_b0095 Wu (10.1016/j.applthermaleng.2025.127301_b0135) 2023; 11 Hinze (10.1016/j.applthermaleng.2025.127301_b0070) 2017; 145 Wu (10.1016/j.applthermaleng.2025.127301_b0130) 2023; 11 Wang (10.1016/j.applthermaleng.2025.127301_b0035) 2014; 30 Hassan (10.1016/j.applthermaleng.2025.127301_b0020) 2023; 235 Tang (10.1016/j.applthermaleng.2025.127301_b0140) 2025; 103 Finn (10.1016/j.applthermaleng.2025.127301_b0125) 2020; X Wang (10.1016/j.applthermaleng.2025.127301_b0030) 2014 |
References_xml | – volume: 215 year: 2021 ident: b0075 article-title: Construction of an innovative adsorbent bed configuration in the adsorption chiller part 2. Experimental research of coated bed samples publication-title: Energy – volume: 13 year: 2020 ident: b0185 article-title: Prediction of sorption processes using the deep learning methods (long short-term memory) publication-title: Energies – volume: 225 year: 2023 ident: b0190 article-title: Heat and mass transfer prediction in fluidized beds of cooling and desalination systems by AI approach publication-title: Appl. Therm. Eng. – start-page: 460 year: 2023 end-page: 669 ident: b0180 article-title: Heat and mass transfer analysis within a disc-shaped fluidized sorption reactor publication-title: International Conference on Efficiency, Cost, Optimization, Simulation and Environmental Impact of Energy Systems, ECOS – volume: 230 start-page: 784 year: 2018 end-page: 793 ident: b0090 article-title: Geometrical parameters analysis of improved circulating inclined fluidized beds for general HVAC duct systems publication-title: Appl. Energy – volume: 235 year: 2023 ident: b0020 article-title: Numerical simulation of cascaded absorption-two-stage 4-bed adsorption cooling cycles for efficient low-grade heat utilization publication-title: Appl. Therm. Eng. – volume: 128 year: 2021 ident: b0010 article-title: A review of recent advances in adsorption desalination technologies publication-title: Int. Commun. Heat Mass Transfer – volume: 30 start-page: 85 year: 2014 end-page: 104 ident: b0035 article-title: Progress in silica gel-water adsorption refrigeration technology publication-title: Renew. Sustain. Energy Rev. – volume: 12 year: 2014 ident: b0120 article-title: CFD-DEM modeling of CO2 capture using alkali metal-based sorbents in a bubbling fluidized bed publication-title: Int. J. Chem. React. Eng. – volume: 12 start-page: 4660 year: 2019 ident: b0175 article-title: Evaluation of heat transfer performance of a multi-disc sorption bed dedicated for adsorption cooling technology publication-title: Energies – volume: 271 year: 2022 ident: b0040 article-title: Towards a digital twin approach - experimental analysis and energy optimization of a multi-bed adsorption system publication-title: Energ. Conver. Manage. – volume: 14 year: 2021 ident: b0055 article-title: Performance analysis of variable mode adsorption chiller at different recooling water temperatures publication-title: Energies – volume: 360 start-page: 33 year: 2020 end-page: 42 ident: b0150 article-title: CFD-DEM study of the effects of food grain properties on drying and shrinkage in a fluidised bed publication-title: Powder Technol. – volume: 28 start-page: 535 year: 1995 end-page: 540 ident: b0195 article-title: Transport velocity of coarse particles in multi-solid fluidized bed publication-title: J. Chem. Eng. Jpn. – volume: 11 year: 2023 ident: b0135 article-title: CFD-DEM simulation of slugging and non-slugging fast fluidization of fine particles in a micro riser publication-title: Processes – volume: 103 start-page: 1917 year: 2025 end-page: 1936 ident: b0140 article-title: Numerical study of gas-solid flow characteristics of cylindrical fluidized beds based on coarse-grained CFD-DEM method publication-title: Can. J. Chem. Eng. – volume: 145 start-page: 378 year: 2017 end-page: 385 ident: b0070 article-title: Reduction of the heat capacity in low-temperature adsorption chillers using thermally conductive polymers as heat exchangers material publication-title: Energ. Conver. Manage. – volume: 14 year: 2021 ident: b0165 article-title: Experimental investigation of an intensified heat transfer adsorption bed (IHTAB) reactor prototype publication-title: Materials – volume: 174 start-page: 1 year: 2020 end-page: 10 ident: b0045 article-title: Solar desalination system integrated to use waste heat of air conditioners for continuous output: suitable for coastal areas publication-title: Desalin. Water Treat. – volume: 293 year: 2023 ident: b0025 article-title: Dynamic simulation and exergy analysis of adsorption chiller powered by low-grade waste heat from a fuel-cell system: effect of multibed configuration and time constant publication-title: Energ. Conver. Manage. – volume: 14 year: 2021 ident: b0160 article-title: Adsorbents, working pairs and coated beds for natural refrigerants in adsorption chillers-state of the art publication-title: Energies – volume: 213 year: 2022 ident: b0105 article-title: Computational fluid dynamic study on the adsorption-based desalination and cooling system publication-title: Appl. Therm. Eng. – volume: 271 year: 2022 ident: b0050 article-title: Towards a digital twin approach - Experimental analysis and energy optimization of a multi-bed adsorption system publication-title: Energ. Conver. Manag. – volume: 164 start-page: 1044 year: 2018 end-page: 1061 ident: b0080 article-title: Modelling of an adsorption chiller with adsorbent-coated heat exchangers: feasibility of a polymer-water adsorption chiller publication-title: Energy – volume: 67 start-page: 174 year: 2016 end-page: 189 ident: b0060 article-title: Development and performance studies of an air cooled two-stage multi-bed silica-gel plus water adsorption system publication-title: Int. J. Refri.-Revue Internationale Du Froid – reference: J. Krzywanski, K. Grabowska, M. Sosnowski, A. Zylka, A. Kulakowska, T. Czakiert, K. Sztekler, M. Wesolowska, W. Nowak, Heat transfer in adsorption chillers with fluidized beds of silica gel, zeolite, and carbon nanotubes, Heat Transfer Eng. – volume: 11 year: 2023 ident: b0170 article-title: Influence of the adsorption bed composition on the low-pressure fluidization publication-title: Processes – volume: 17 year: 2024 ident: b0015 article-title: Implementation of fluidized bed concept to improve heat transfer in ecological adsorption cooling and desalination systems publication-title: Energies – volume: 11 year: 2023 ident: b0130 article-title: CFD-DEM simulation of fast fluidization of fine particles in a micro riser publication-title: Processes – volume: X start-page: 6 year: 2020 ident: b0125 article-title: CFD investigation of CO2 absorption/desorption by a fluidized bed of micro-encapsulated solvents publication-title: Chem. Eng. Sci. – start-page: 1 year: 2014 end-page: 494 ident: b0030 article-title: Adsorption refrigeration technology: theory and application publication-title: Adsorp. Refrig. Technol.: Theory Appl. – volume: 99 start-page: 138 year: 2019 end-page: 158 ident: b0065 article-title: Comprehensive strategies for performance improvement of adsorption air conditioning systems: a review publication-title: Renew. Sustain. Energy Rev. – volume: 155 start-page: 708 year: 2015 end-page: 718 ident: b0100 article-title: Adsorption and desorption of silica gel circulating fluidized beds for air conditioning systems publication-title: Appl. Energy – volume: 62 start-page: 18960 year: 2023 end-page: 18972 ident: b0115 article-title: CFD-DEM evaluation of the clustering behavior in a riser-the effect of the drag force model publication-title: Ind. Eng. Chem. Res. – volume: 152 year: 2024 ident: b0085 article-title: Towards enhanced heat and mass exchange in adsorption systems: the role of AutoML and fluidized bed innovations publication-title: Int. Commun. Heat Mass Transfer – volume: 28 start-page: 4979 year: 2021 end-page: 5020 ident: b0145 article-title: Theories and applications of CFD-DEM coupling approach for granular flow: a review publication-title: Arch. Comput. Meth. Eng. – volume: 154 year: 2022 ident: b0155 article-title: Current status and technological advancements in adsorption refrigeration systems: a review publication-title: Renew. Sustain. Energy Rev. – volume: 104 start-page: 554 year: 2013 end-page: 567 ident: b0005 article-title: An overview of developments in adsorption refrigeration systems towards a sustainable way of cooling publication-title: Appl. Energy – volume: 31 start-page: 871 year: 2024 end-page: 918 ident: b0110 article-title: Recent advances and perspectives of CFD-DEM simulation in fluidized bed publication-title: Arch. Comput. Meth. Eng. – volume: 225 year: 2023 ident: 10.1016/j.applthermaleng.2025.127301_b0190 article-title: Heat and mass transfer prediction in fluidized beds of cooling and desalination systems by AI approach publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2023.120200 – volume: 67 start-page: 174 year: 2016 ident: 10.1016/j.applthermaleng.2025.127301_b0060 article-title: Development and performance studies of an air cooled two-stage multi-bed silica-gel plus water adsorption system publication-title: Int. J. Refri.-Revue Internationale Du Froid doi: 10.1016/j.ijrefrig.2015.10.028 – volume: 14 issue: 13 year: 2021 ident: 10.1016/j.applthermaleng.2025.127301_b0055 article-title: Performance analysis of variable mode adsorption chiller at different recooling water temperatures publication-title: Energies doi: 10.3390/en14133871 – volume: 145 start-page: 378 year: 2017 ident: 10.1016/j.applthermaleng.2025.127301_b0070 article-title: Reduction of the heat capacity in low-temperature adsorption chillers using thermally conductive polymers as heat exchangers material publication-title: Energ. Conver. Manage. doi: 10.1016/j.enconman.2017.05.011 – volume: 174 start-page: 1 year: 2020 ident: 10.1016/j.applthermaleng.2025.127301_b0045 article-title: Solar desalination system integrated to use waste heat of air conditioners for continuous output: suitable for coastal areas publication-title: Desalin. Water Treat. doi: 10.5004/dwt.2020.24846 – volume: 28 start-page: 535 issue: 5 year: 1995 ident: 10.1016/j.applthermaleng.2025.127301_b0195 article-title: Transport velocity of coarse particles in multi-solid fluidized bed publication-title: J. Chem. Eng. Jpn. doi: 10.1252/jcej.28.535 – volume: 271 year: 2022 ident: 10.1016/j.applthermaleng.2025.127301_b0050 article-title: Towards a digital twin approach - Experimental analysis and energy optimization of a multi-bed adsorption system publication-title: Energ. Conver. Manag. doi: 10.1016/j.enconman.2022.116346 – volume: 164 start-page: 1044 year: 2018 ident: 10.1016/j.applthermaleng.2025.127301_b0080 article-title: Modelling of an adsorption chiller with adsorbent-coated heat exchangers: feasibility of a polymer-water adsorption chiller publication-title: Energy doi: 10.1016/j.energy.2018.09.041 – volume: 11 issue: 7 year: 2023 ident: 10.1016/j.applthermaleng.2025.127301_b0170 article-title: Influence of the adsorption bed composition on the low-pressure fluidization publication-title: Processes doi: 10.3390/pr11071912 – volume: 104 start-page: 554 year: 2013 ident: 10.1016/j.applthermaleng.2025.127301_b0005 article-title: An overview of developments in adsorption refrigeration systems towards a sustainable way of cooling publication-title: Appl. Energy doi: 10.1016/j.apenergy.2012.11.042 – volume: 103 start-page: 1917 issue: 4 year: 2025 ident: 10.1016/j.applthermaleng.2025.127301_b0140 article-title: Numerical study of gas-solid flow characteristics of cylindrical fluidized beds based on coarse-grained CFD-DEM method publication-title: Can. J. Chem. Eng. doi: 10.1002/cjce.25455 – ident: 10.1016/j.applthermaleng.2025.127301_b0095 – volume: 31 start-page: 871 issue: 2 year: 2024 ident: 10.1016/j.applthermaleng.2025.127301_b0110 article-title: Recent advances and perspectives of CFD-DEM simulation in fluidized bed publication-title: Arch. Comput. Meth. Eng. doi: 10.1007/s11831-023-10001-6 – volume: 154 year: 2022 ident: 10.1016/j.applthermaleng.2025.127301_b0155 article-title: Current status and technological advancements in adsorption refrigeration systems: a review publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2021.111808 – volume: 293 year: 2023 ident: 10.1016/j.applthermaleng.2025.127301_b0025 article-title: Dynamic simulation and exergy analysis of adsorption chiller powered by low-grade waste heat from a fuel-cell system: effect of multibed configuration and time constant publication-title: Energ. Conver. Manage. doi: 10.1016/j.enconman.2023.117453 – volume: 215 year: 2021 ident: 10.1016/j.applthermaleng.2025.127301_b0075 article-title: Construction of an innovative adsorbent bed configuration in the adsorption chiller part 2. Experimental research of coated bed samples publication-title: Energy doi: 10.1016/j.energy.2020.119123 – volume: 152 issue: 107262 year: 2024 ident: 10.1016/j.applthermaleng.2025.127301_b0085 article-title: Towards enhanced heat and mass exchange in adsorption systems: the role of AutoML and fluidized bed innovations publication-title: Int. Commun. Heat Mass Transfer – volume: 155 start-page: 708 year: 2015 ident: 10.1016/j.applthermaleng.2025.127301_b0100 article-title: Adsorption and desorption of silica gel circulating fluidized beds for air conditioning systems publication-title: Appl. Energy doi: 10.1016/j.apenergy.2015.06.041 – start-page: 460 year: 2023 ident: 10.1016/j.applthermaleng.2025.127301_b0180 article-title: Heat and mass transfer analysis within a disc-shaped fluidized sorption reactor publication-title: International Conference on Efficiency, Cost, Optimization, Simulation and Environmental Impact of Energy Systems, ECOS doi: 10.52202/069564-0042 – volume: 62 start-page: 18960 issue: 45 year: 2023 ident: 10.1016/j.applthermaleng.2025.127301_b0115 article-title: CFD-DEM evaluation of the clustering behavior in a riser-the effect of the drag force model publication-title: Ind. Eng. Chem. Res. – volume: 235 year: 2023 ident: 10.1016/j.applthermaleng.2025.127301_b0020 article-title: Numerical simulation of cascaded absorption-two-stage 4-bed adsorption cooling cycles for efficient low-grade heat utilization publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2023.121396 – volume: 271 year: 2022 ident: 10.1016/j.applthermaleng.2025.127301_b0040 article-title: Towards a digital twin approach - experimental analysis and energy optimization of a multi-bed adsorption system publication-title: Energ. Conver. Manage. doi: 10.1016/j.enconman.2022.116346 – volume: 128 year: 2021 ident: 10.1016/j.applthermaleng.2025.127301_b0010 article-title: A review of recent advances in adsorption desalination technologies publication-title: Int. Commun. Heat Mass Transfer doi: 10.1016/j.icheatmasstransfer.2021.105594 – volume: 13 issue: 24 year: 2020 ident: 10.1016/j.applthermaleng.2025.127301_b0185 article-title: Prediction of sorption processes using the deep learning methods (long short-term memory) publication-title: Energies doi: 10.3390/en13246601 – volume: 99 start-page: 138 year: 2019 ident: 10.1016/j.applthermaleng.2025.127301_b0065 article-title: Comprehensive strategies for performance improvement of adsorption air conditioning systems: a review publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2018.10.004 – start-page: 1 year: 2014 ident: 10.1016/j.applthermaleng.2025.127301_b0030 article-title: Adsorption refrigeration technology: theory and application publication-title: Adsorp. Refrig. Technol.: Theory Appl. – volume: 12 issue: 1 year: 2014 ident: 10.1016/j.applthermaleng.2025.127301_b0120 article-title: CFD-DEM modeling of CO2 capture using alkali metal-based sorbents in a bubbling fluidized bed publication-title: Int. J. Chem. React. Eng. – volume: 11 issue: 10 year: 2023 ident: 10.1016/j.applthermaleng.2025.127301_b0135 article-title: CFD-DEM simulation of slugging and non-slugging fast fluidization of fine particles in a micro riser publication-title: Processes doi: 10.3390/pr11102977 – volume: 213 year: 2022 ident: 10.1016/j.applthermaleng.2025.127301_b0105 article-title: Computational fluid dynamic study on the adsorption-based desalination and cooling system publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2022.118724 – volume: 11 issue: 8 year: 2023 ident: 10.1016/j.applthermaleng.2025.127301_b0130 article-title: CFD-DEM simulation of fast fluidization of fine particles in a micro riser publication-title: Processes doi: 10.3390/pr11082417 – volume: 17 issue: 2 year: 2024 ident: 10.1016/j.applthermaleng.2025.127301_b0015 article-title: Implementation of fluidized bed concept to improve heat transfer in ecological adsorption cooling and desalination systems publication-title: Energies doi: 10.3390/en17020379 – volume: 230 start-page: 784 year: 2018 ident: 10.1016/j.applthermaleng.2025.127301_b0090 article-title: Geometrical parameters analysis of improved circulating inclined fluidized beds for general HVAC duct systems publication-title: Appl. Energy doi: 10.1016/j.apenergy.2018.09.003 – volume: 12 start-page: 4660 issue: 24 year: 2019 ident: 10.1016/j.applthermaleng.2025.127301_b0175 article-title: Evaluation of heat transfer performance of a multi-disc sorption bed dedicated for adsorption cooling technology publication-title: Energies doi: 10.3390/en12244660 – volume: 14 issue: 13 year: 2021 ident: 10.1016/j.applthermaleng.2025.127301_b0165 article-title: Experimental investigation of an intensified heat transfer adsorption bed (IHTAB) reactor prototype publication-title: Materials doi: 10.3390/ma14133520 – volume: 360 start-page: 33 year: 2020 ident: 10.1016/j.applthermaleng.2025.127301_b0150 article-title: CFD-DEM study of the effects of food grain properties on drying and shrinkage in a fluidised bed publication-title: Powder Technol. doi: 10.1016/j.powtec.2019.10.021 – volume: 30 start-page: 85 year: 2014 ident: 10.1016/j.applthermaleng.2025.127301_b0035 article-title: Progress in silica gel-water adsorption refrigeration technology publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2013.09.023 – volume: X start-page: 6 year: 2020 ident: 10.1016/j.applthermaleng.2025.127301_b0125 article-title: CFD investigation of CO2 absorption/desorption by a fluidized bed of micro-encapsulated solvents publication-title: Chem. Eng. Sci. – volume: 28 start-page: 4979 issue: 7 year: 2021 ident: 10.1016/j.applthermaleng.2025.127301_b0145 article-title: Theories and applications of CFD-DEM coupling approach for granular flow: a review publication-title: Arch. Comput. Meth. Eng. doi: 10.1007/s11831-021-09568-9 – volume: 14 issue: 15 year: 2021 ident: 10.1016/j.applthermaleng.2025.127301_b0160 article-title: Adsorbents, working pairs and coated beds for natural refrigerants in adsorption chillers-state of the art publication-title: Energies doi: 10.3390/en14154707 |
SSID | ssj0012874 |
Score | 2.4752195 |
Snippet | •Adsorption cooling technology offers a sustainable alternative to traditional cooling systems.•CFD & DEM: A breakthrough in modeling adsorption... |
SourceID | crossref elsevier |
SourceType | Index Database Publisher |
StartPage | 127301 |
SubjectTerms | Adsorption chillers CFD&DEM coupling Computational fluid dynamics Fluidization Heat and mass transfer |
Title | Implementation of coupled CFD&DEM model for heat and mass transfer analysis in adsorption fluidized reactors |
URI | https://dx.doi.org/10.1016/j.applthermaleng.2025.127301 |
Volume | 278 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NS8NAEB20BdGD-ImfZQ_FW9pms5tkTyLVUhV70UJvYT-yEGnTUtuLB3-7s0mqFjwIHjOQJbws896wO28AmkYGPvNj7Smllcciaz3JmfYokp9CimJKuUbhp0HYH7KHER9tQHfVC-OuVVa5v8zpRbauIu0KzfYsy9rPfsAF0h8ydMdH1hWbUKfI9nEN6jf3j_3B12GCs3Qv6i4uPPfCFjS_r3m5c2IntSbSTS7BgpHylk_dvv-dqX6wT28PdivZSG7KL9uHjTQ_gJ0fZoKHMC6MfidVL1FOppbo6RJDhnR7t1cIOCnG3hCUqcSlYCJzQyYonsmiUK_pHCOlRQnJciLN23ReJBRix8vMZO-4EkrMYj7PEQx7dy_dvlfNUvB0QKOFF1NjQ-mcIVkkjTUdI0zMpBCU41-UopNqY4XzA4yMjLToGONHUjOhAmmlDYJjqOXTPD0BIn0VYp2UckkDxmwQSxamYWi5oBG3VJ8CX-GWzErLjGR1l-w1Wcc7cXgnJd6ncL0COVnbAglm9z-tcPbvFc5h2z2VzYYXUFvMl-klqo6FasBm68NvVHvrE17d26o |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB60BR8H8Yn1uYfiLbbZ7Cbdk0i11FcvttBb2EcWIm1aanvx1zubpGrBg-B1Q5bwZZnvG3bmG4C6kYHP_Jb2lNLKY5G1nuRMexTJTyFFMaVco_BLL-wO2OOQD9egveyFcWWVZewvYnoercuVRolmY5qmjVc_4ALpDxm66SPrinWoMjfUugLV24enbu_rMsFZuud5Fxeee2ED6t9lXu6e2EmtsXSTSzBhpPzap-7c_85UP9insws7pWwkt8WX7cFaku3D9g8zwQMY5Ua_47KXKCMTS_RkgUuGtDt3Vwg4ycfeEJSpxIVgIjNDxiieyTxXr8kMVwqLEpJmRJr3ySwPKMSOFqlJP3AnlJj5fJ5DGHTu--2uV85S8HRAo7nXosaG0jlDskgaa5pGmBaTQlCOf1GKZqKNFc4PMDIy0qJpjB9JzYQKpJU2CI6gkk2y5BiI9FWIeVLCJQ0Ys0FLsjAJQ8sFjbilugZ8iVs8LSwz4mUt2Vu8infs8I4LvGtwswQ5XjkCMUb3P-1w8u8dLmGz2395jp8fek-nsOWeFI2HZ1CZzxbJOSqQubooT9gnj6jdkA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Implementation+of+coupled+CFD%26DEM+model+for+heat+and+mass+transfer+analysis+in+adsorption+fluidized+reactors&rft.jtitle=Applied+thermal+engineering&rft.au=Grabowska%2C+Karolina&rft.au=Sosnowski%2C+Marcin&rft.au=Krzywanski%2C+Jaroslaw&rft.au=Zylka%2C+Anna&rft.date=2025-11-01&rft.pub=Elsevier+Ltd&rft.issn=1359-4311&rft.volume=278&rft_id=info:doi/10.1016%2Fj.applthermaleng.2025.127301&rft.externalDocID=S1359431125018939 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1359-4311&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1359-4311&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1359-4311&client=summon |