Implementation of coupled CFD&DEM model for heat and mass transfer analysis in adsorption fluidized reactors

•Adsorption cooling technology offers a sustainable alternative to traditional cooling systems.•CFD & DEM: A breakthrough in modeling adsorption systems.•Disc-shaped fluidized sorption reactor enhances adsorption efficiency.•Granulation impacts heat transfer in adsorption beds.•CFD & DEM app...

Full description

Saved in:
Bibliographic Details
Published inApplied thermal engineering Vol. 278; p. 127301
Main Authors Grabowska, Karolina, Sosnowski, Marcin, Krzywanski, Jaroslaw, Zylka, Anna, Kulakowska, Anna, Skrobek, Dorian
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.11.2025
Subjects
Online AccessGet full text
ISSN1359-4311
DOI10.1016/j.applthermaleng.2025.127301

Cover

Abstract •Adsorption cooling technology offers a sustainable alternative to traditional cooling systems.•CFD & DEM: A breakthrough in modeling adsorption systems.•Disc-shaped fluidized sorption reactor enhances adsorption efficiency.•Granulation impacts heat transfer in adsorption beds.•CFD & DEM approach holds potential for reactor optimization. Adsorption refrigeration and desalination systems operate by exploiting the thermal effects accompanied by the alternating adsorption and desorption processes of the refrigerant in a porous material bed. Sorption systems are an important part of the green transition, as they can be powered by renewable energy sources, including solar energy and industrial waste heat. The adsorption bed consisting of a heat exchanger covered with a granular adsorbent is the subject of analysis and experiments focused on improving the heat and mass transfer conditions, limited by the low adsorbent conductivity and adsorption bed porosity. Fluidization at low-pressure conditions is considered one of the means of heat transfer intensification in adsorption reactors. Particle shape expressed by sphericity and size distribution are important factors that could influence the thermal and physical properties of the adsorption fluidized bed. Moreover, the detailed knowledge of particle–fluid interactions at low-pressure regimes is fundamental in fluidization processes. Knowledge about these complex processes is difficult to obtain empirically, therefore experimental studies aiming to characterize the effect of adsorbent particle size distribution on heat and mass transfer in adsorption reactors were supported in this work by the implementation of the new approach to modeling the adsorption reactor, including the particle–fluid interaction at low-pressure regimes using two-way coupled Computational Fluid Dynamics (CFD) and Discrete Element Modelling (DEM). The developed comprehensive model incorporating CFD&DEM techniques is validated against the experimental test of sorption cycles carried out for adsorbent granulation in the range of 100 to 500 µm. The results of the presented research indicate that the coupled CFD&DEM modeling approach is a powerful and cost-effective research tool capable of effectively analyzing complicated physical phenomena occurring in low-pressure regimes.
AbstractList •Adsorption cooling technology offers a sustainable alternative to traditional cooling systems.•CFD & DEM: A breakthrough in modeling adsorption systems.•Disc-shaped fluidized sorption reactor enhances adsorption efficiency.•Granulation impacts heat transfer in adsorption beds.•CFD & DEM approach holds potential for reactor optimization. Adsorption refrigeration and desalination systems operate by exploiting the thermal effects accompanied by the alternating adsorption and desorption processes of the refrigerant in a porous material bed. Sorption systems are an important part of the green transition, as they can be powered by renewable energy sources, including solar energy and industrial waste heat. The adsorption bed consisting of a heat exchanger covered with a granular adsorbent is the subject of analysis and experiments focused on improving the heat and mass transfer conditions, limited by the low adsorbent conductivity and adsorption bed porosity. Fluidization at low-pressure conditions is considered one of the means of heat transfer intensification in adsorption reactors. Particle shape expressed by sphericity and size distribution are important factors that could influence the thermal and physical properties of the adsorption fluidized bed. Moreover, the detailed knowledge of particle–fluid interactions at low-pressure regimes is fundamental in fluidization processes. Knowledge about these complex processes is difficult to obtain empirically, therefore experimental studies aiming to characterize the effect of adsorbent particle size distribution on heat and mass transfer in adsorption reactors were supported in this work by the implementation of the new approach to modeling the adsorption reactor, including the particle–fluid interaction at low-pressure regimes using two-way coupled Computational Fluid Dynamics (CFD) and Discrete Element Modelling (DEM). The developed comprehensive model incorporating CFD&DEM techniques is validated against the experimental test of sorption cycles carried out for adsorbent granulation in the range of 100 to 500 µm. The results of the presented research indicate that the coupled CFD&DEM modeling approach is a powerful and cost-effective research tool capable of effectively analyzing complicated physical phenomena occurring in low-pressure regimes.
ArticleNumber 127301
Author Grabowska, Karolina
Krzywanski, Jaroslaw
Zylka, Anna
Skrobek, Dorian
Sosnowski, Marcin
Kulakowska, Anna
Author_xml – sequence: 1
  givenname: Karolina
  orcidid: 0000-0002-8323-8094
  surname: Grabowska
  fullname: Grabowska, Karolina
– sequence: 2
  givenname: Marcin
  orcidid: 0000-0002-1906-9476
  surname: Sosnowski
  fullname: Sosnowski, Marcin
  email: m.sosnowski@ujd.edu.pl
– sequence: 3
  givenname: Jaroslaw
  orcidid: 0000-0002-6364-7894
  surname: Krzywanski
  fullname: Krzywanski, Jaroslaw
– sequence: 4
  givenname: Anna
  orcidid: 0000-0001-6241-0863
  surname: Zylka
  fullname: Zylka, Anna
– sequence: 5
  givenname: Anna
  surname: Kulakowska
  fullname: Kulakowska, Anna
– sequence: 6
  givenname: Dorian
  orcidid: 0000-0003-0214-4836
  surname: Skrobek
  fullname: Skrobek, Dorian
BookMark eNqNkE1LAzEURbOoYFv9D1mIu6lJZtp0wI30Q4WKG12H1-TFpmSSIZkK9dc7tW7cubpw4R4uZ0QGIQYk5IazCWd8drefQNv6boepAY_hYyKYmE64kCXjAzLk5bQuqpLzSzLKec8YF3NZDYl_blqPDYYOOhcDjZbqeOgrQxfr5e1y9UKbaNBTGxPdIXQUgqEN5Ey7BCFbTH0D_phdpi5QMDmm9gdl_cEZ99WTEoLuYspX5MKCz3j9m2Pyvl69LZ6Kzevj8-JhU-hSyK6YC2NnUEkhKgnGGmZqM6-grsV0ixpqhtrYmpWVkAakrpkxXIKu6m0JFmxZjsn9matTzDmhVW1yDaSj4kydbKm9-mtLnWyps61-vj7Psf_46TCprB0GjcYl1J0y0f0P9A3sWYLZ
Cites_doi 10.1016/j.applthermaleng.2023.120200
10.1016/j.ijrefrig.2015.10.028
10.3390/en14133871
10.1016/j.enconman.2017.05.011
10.5004/dwt.2020.24846
10.1252/jcej.28.535
10.1016/j.enconman.2022.116346
10.1016/j.energy.2018.09.041
10.3390/pr11071912
10.1016/j.apenergy.2012.11.042
10.1002/cjce.25455
10.1007/s11831-023-10001-6
10.1016/j.rser.2021.111808
10.1016/j.enconman.2023.117453
10.1016/j.energy.2020.119123
10.1016/j.apenergy.2015.06.041
10.52202/069564-0042
10.1016/j.applthermaleng.2023.121396
10.1016/j.icheatmasstransfer.2021.105594
10.3390/en13246601
10.1016/j.rser.2018.10.004
10.3390/pr11102977
10.1016/j.applthermaleng.2022.118724
10.3390/pr11082417
10.3390/en17020379
10.1016/j.apenergy.2018.09.003
10.3390/en12244660
10.3390/ma14133520
10.1016/j.powtec.2019.10.021
10.1016/j.rser.2013.09.023
10.1007/s11831-021-09568-9
10.3390/en14154707
ContentType Journal Article
Copyright 2025 The Author(s)
Copyright_xml – notice: 2025 The Author(s)
DBID 6I.
AAFTH
AAYXX
CITATION
DOI 10.1016/j.applthermaleng.2025.127301
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
ExternalDocumentID 10_1016_j_applthermaleng_2025_127301
S1359431125018939
GroupedDBID --K
--M
.~1
0R~
1B1
1RT
1~.
1~5
23M
4.4
457
4G.
5GY
5VS
6I.
7-5
71M
8P~
AABNK
AAEDT
AAEDW
AAFTH
AAHCO
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARJD
AATTM
AAXKI
AAXUO
AAYWO
ABFNM
ABJNI
ABMAC
ABNUV
ACDAQ
ACGFS
ACIWK
ACRLP
ACVFH
ADBBV
ADCNI
ADEWK
ADEZE
ADTZH
AEBSH
AECPX
AEIPS
AEKER
AENEX
AEUPX
AFJKZ
AFPUW
AFTJW
AGCQF
AGHFR
AGUBO
AGYEJ
AHIDL
AHJVU
AHPOS
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AKBMS
AKRWK
AKURH
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
APXCP
AXJTR
BELTK
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFKBS
EFLBG
ENUVR
EO8
EO9
EP2
EP3
FDB
FEDTE
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HVGLF
IHE
J1W
JARJE
JJJVA
KOM
M41
MO0
MS~
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSG
SSR
SST
SSZ
T5K
TN5
~G-
~HD
AAQXK
AAYXX
ABWVN
ABXDB
ACNNM
ACRPL
ADMUD
ADNMO
AGQPQ
ASPBG
AVWKF
AZFZN
CITATION
EJD
FGOYB
HZ~
R2-
ID FETCH-LOGICAL-c327t-82df6a472247adfd0d9d84a9925beca90ecdf903427da7c90dd17ac49b3afaf33
IEDL.DBID AIKHN
ISSN 1359-4311
IngestDate Wed Sep 10 05:10:05 EDT 2025
Sat Sep 20 17:14:38 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Fluidization
Adsorption chillers
CFD&DEM coupling
Computational fluid dynamics
Heat and mass transfer
Language English
License This is an open access article under the CC BY license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c327t-82df6a472247adfd0d9d84a9925beca90ecdf903427da7c90dd17ac49b3afaf33
ORCID 0000-0002-1906-9476
0000-0003-0214-4836
0000-0002-8323-8094
0000-0001-6241-0863
0000-0002-6364-7894
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S1359431125018939
ParticipantIDs crossref_primary_10_1016_j_applthermaleng_2025_127301
elsevier_sciencedirect_doi_10_1016_j_applthermaleng_2025_127301
PublicationCentury 2000
PublicationDate 2025-11-01
2025-11-00
PublicationDateYYYYMMDD 2025-11-01
PublicationDate_xml – month: 11
  year: 2025
  text: 2025-11-01
  day: 01
PublicationDecade 2020
PublicationTitle Applied thermal engineering
PublicationYear 2025
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Wu, Li (b0135) 2023; 11
Kim, Chang, Lee (b0080) 2018; 164
Hassan, El-Sharkawy, Amin, Harby (b0020) 2023; 235
Win, Nowak, Hitoki, Matsuda, Hasatani, Bis, Krzywanski, Gajewski (b0195) 1995; 28
El-Emam, Zhou, Shi, Han, Bai, Agarwal (b0145) 2021; 28
Azmir, Hou, Yu (b0150) 2020; 360
Mitra, Kumar, Srinivasan, Dutta (b0060) 2016; 67
Alahmer, Ajib, Wang (b0065) 2019; 99
Chen, Ma, Wu, Chiang, Chen (b0100) 2015; 155
Chauhan, Kaushik, Tyagi (b0155) 2022; 154
Li, Zhao, Long, Liu, Liu (b0105) 2022; 213
Naseem, Son, Lee (b0025) 2023; 293
Wu, Li, Zuo (b0130) 2023; 11
Riaz, Sultan, Miyazaki, Shahzad, Farooq, Sajjad, Niaz (b0010) 2021; 128
Chen, Hasanien, Chua (b0050) 2022; 271
Chen, Hasanien, Chua (b0040) 2022; 271
J. Krzywanski, K. Grabowska, M. Sosnowski, A. Zylka, A. Kulakowska, T. Czakiert, K. Sztekler, M. Wesolowska, W. Nowak, Heat transfer in adsorption chillers with fluidized beds of silica gel, zeolite, and carbon nanotubes, Heat Transfer Eng.
Sachdev, Gaba, Tiwari (b0045) 2020; 174
Wang, Zhang, Tian, Liu, Sumathy (b0035) 2014; 30
Hinze, Ranft, Druminer, Schwieger (b0070) 2017; 145
Krzywanski, Skrobek, Zylka, Grabowska, Kulakowska, Sosnowski, Nowak, Blanco-Marigorta (b0190) 2023; 225
Grabowska, Zylka, Kulakowska, Skrobek, Krzywanski, Sosnowski, Ciesielska, Nowak (b0165) 2021; 14
Sosnowski, Krzywanski, Grabowska, Zylka, Kulakowska, Skrobek, Dyner, Ashraf, Ščurek (b0180) 2023
Grabowska, Krzywanski, Zylka, Kulakowska, Skrobek, Sosnowski, Scurek, Nowak, Czakiert (b0015) 2024; 17
Alsarayreh, Al-Maaitah, Attarakih, Bart (b0055) 2021; 14
Tang, Li, Huang, Yang (b0140) 2025; 103
Kulakowska, Zylka, Krzywanski, Skrobek, Grabowska, Sosnowski, Nowak (b0170) 2023; 11
Zhang, Liu, Zhuang, Meng, Chen (b0120) 2014; 12
Sosnowski (b0175) 2019; 12
Ramírez, de Munck, Liu, Rieder, Baltussen, Buist, Kuipers (b0115) 2023; 62
Liang, Hsu, Hung, Chiang, Chen (b0090) 2018; 230
Krzywanski, Dorian, Ashraf, Grabowska, Zylka, Kulakowska, Nowak, Shahzad, Wakil (b0085) 2024; 152
Zhao, Zhou, Bai, Wang, Agarwal (b0110) 2024; 31
Wang, Wang, Wu (b0030) 2014
Finn, Galvin, Hornbostel (b0125) 2020; X
Skrobek, Krzywanski, Sosnowski, Kulakowska, Zylka, Grabowska, Ciesielska, Nowak (b0185) 2020; 13
Choudhury, Saha, Chatterjee, Sarkar (b0005) 2013; 104
Grabowska, Sztekler, Krzywanski, Sosnowski, Stefanski, Nowak (b0075) 2021; 215
Boruta, Bujok, Sztekler (b0160) 2021; 14
Grabowska (10.1016/j.applthermaleng.2025.127301_b0165) 2021; 14
Sosnowski (10.1016/j.applthermaleng.2025.127301_b0180) 2023
Li (10.1016/j.applthermaleng.2025.127301_b0105) 2022; 213
Alahmer (10.1016/j.applthermaleng.2025.127301_b0065) 2019; 99
Sosnowski (10.1016/j.applthermaleng.2025.127301_b0175) 2019; 12
Zhang (10.1016/j.applthermaleng.2025.127301_b0120) 2014; 12
Ramírez (10.1016/j.applthermaleng.2025.127301_b0115) 2023; 62
Kulakowska (10.1016/j.applthermaleng.2025.127301_b0170) 2023; 11
Chauhan (10.1016/j.applthermaleng.2025.127301_b0155) 2022; 154
Choudhury (10.1016/j.applthermaleng.2025.127301_b0005) 2013; 104
Sachdev (10.1016/j.applthermaleng.2025.127301_b0045) 2020; 174
Mitra (10.1016/j.applthermaleng.2025.127301_b0060) 2016; 67
Grabowska (10.1016/j.applthermaleng.2025.127301_b0015) 2024; 17
Chen (10.1016/j.applthermaleng.2025.127301_b0050) 2022; 271
Chen (10.1016/j.applthermaleng.2025.127301_b0040) 2022; 271
Grabowska (10.1016/j.applthermaleng.2025.127301_b0075) 2021; 215
Win (10.1016/j.applthermaleng.2025.127301_b0195) 1995; 28
Riaz (10.1016/j.applthermaleng.2025.127301_b0010) 2021; 128
Liang (10.1016/j.applthermaleng.2025.127301_b0090) 2018; 230
Naseem (10.1016/j.applthermaleng.2025.127301_b0025) 2023; 293
Kim (10.1016/j.applthermaleng.2025.127301_b0080) 2018; 164
Skrobek (10.1016/j.applthermaleng.2025.127301_b0185) 2020; 13
Krzywanski (10.1016/j.applthermaleng.2025.127301_b0190) 2023; 225
Zhao (10.1016/j.applthermaleng.2025.127301_b0110) 2024; 31
Azmir (10.1016/j.applthermaleng.2025.127301_b0150) 2020; 360
Chen (10.1016/j.applthermaleng.2025.127301_b0100) 2015; 155
El-Emam (10.1016/j.applthermaleng.2025.127301_b0145) 2021; 28
Boruta (10.1016/j.applthermaleng.2025.127301_b0160) 2021; 14
Alsarayreh (10.1016/j.applthermaleng.2025.127301_b0055) 2021; 14
Krzywanski (10.1016/j.applthermaleng.2025.127301_b0085) 2024; 152
10.1016/j.applthermaleng.2025.127301_b0095
Wu (10.1016/j.applthermaleng.2025.127301_b0135) 2023; 11
Hinze (10.1016/j.applthermaleng.2025.127301_b0070) 2017; 145
Wu (10.1016/j.applthermaleng.2025.127301_b0130) 2023; 11
Wang (10.1016/j.applthermaleng.2025.127301_b0035) 2014; 30
Hassan (10.1016/j.applthermaleng.2025.127301_b0020) 2023; 235
Tang (10.1016/j.applthermaleng.2025.127301_b0140) 2025; 103
Finn (10.1016/j.applthermaleng.2025.127301_b0125) 2020; X
Wang (10.1016/j.applthermaleng.2025.127301_b0030) 2014
References_xml – volume: 215
  year: 2021
  ident: b0075
  article-title: Construction of an innovative adsorbent bed configuration in the adsorption chiller part 2. Experimental research of coated bed samples
  publication-title: Energy
– volume: 13
  year: 2020
  ident: b0185
  article-title: Prediction of sorption processes using the deep learning methods (long short-term memory)
  publication-title: Energies
– volume: 225
  year: 2023
  ident: b0190
  article-title: Heat and mass transfer prediction in fluidized beds of cooling and desalination systems by AI approach
  publication-title: Appl. Therm. Eng.
– start-page: 460
  year: 2023
  end-page: 669
  ident: b0180
  article-title: Heat and mass transfer analysis within a disc-shaped fluidized sorption reactor
  publication-title: International Conference on Efficiency, Cost, Optimization, Simulation and Environmental Impact of Energy Systems, ECOS
– volume: 230
  start-page: 784
  year: 2018
  end-page: 793
  ident: b0090
  article-title: Geometrical parameters analysis of improved circulating inclined fluidized beds for general HVAC duct systems
  publication-title: Appl. Energy
– volume: 235
  year: 2023
  ident: b0020
  article-title: Numerical simulation of cascaded absorption-two-stage 4-bed adsorption cooling cycles for efficient low-grade heat utilization
  publication-title: Appl. Therm. Eng.
– volume: 128
  year: 2021
  ident: b0010
  article-title: A review of recent advances in adsorption desalination technologies
  publication-title: Int. Commun. Heat Mass Transfer
– volume: 30
  start-page: 85
  year: 2014
  end-page: 104
  ident: b0035
  article-title: Progress in silica gel-water adsorption refrigeration technology
  publication-title: Renew. Sustain. Energy Rev.
– volume: 12
  year: 2014
  ident: b0120
  article-title: CFD-DEM modeling of CO2 capture using alkali metal-based sorbents in a bubbling fluidized bed
  publication-title: Int. J. Chem. React. Eng.
– volume: 12
  start-page: 4660
  year: 2019
  ident: b0175
  article-title: Evaluation of heat transfer performance of a multi-disc sorption bed dedicated for adsorption cooling technology
  publication-title: Energies
– volume: 271
  year: 2022
  ident: b0040
  article-title: Towards a digital twin approach - experimental analysis and energy optimization of a multi-bed adsorption system
  publication-title: Energ. Conver. Manage.
– volume: 14
  year: 2021
  ident: b0055
  article-title: Performance analysis of variable mode adsorption chiller at different recooling water temperatures
  publication-title: Energies
– volume: 360
  start-page: 33
  year: 2020
  end-page: 42
  ident: b0150
  article-title: CFD-DEM study of the effects of food grain properties on drying and shrinkage in a fluidised bed
  publication-title: Powder Technol.
– volume: 28
  start-page: 535
  year: 1995
  end-page: 540
  ident: b0195
  article-title: Transport velocity of coarse particles in multi-solid fluidized bed
  publication-title: J. Chem. Eng. Jpn.
– volume: 11
  year: 2023
  ident: b0135
  article-title: CFD-DEM simulation of slugging and non-slugging fast fluidization of fine particles in a micro riser
  publication-title: Processes
– volume: 103
  start-page: 1917
  year: 2025
  end-page: 1936
  ident: b0140
  article-title: Numerical study of gas-solid flow characteristics of cylindrical fluidized beds based on coarse-grained CFD-DEM method
  publication-title: Can. J. Chem. Eng.
– volume: 145
  start-page: 378
  year: 2017
  end-page: 385
  ident: b0070
  article-title: Reduction of the heat capacity in low-temperature adsorption chillers using thermally conductive polymers as heat exchangers material
  publication-title: Energ. Conver. Manage.
– volume: 14
  year: 2021
  ident: b0165
  article-title: Experimental investigation of an intensified heat transfer adsorption bed (IHTAB) reactor prototype
  publication-title: Materials
– volume: 174
  start-page: 1
  year: 2020
  end-page: 10
  ident: b0045
  article-title: Solar desalination system integrated to use waste heat of air conditioners for continuous output: suitable for coastal areas
  publication-title: Desalin. Water Treat.
– volume: 293
  year: 2023
  ident: b0025
  article-title: Dynamic simulation and exergy analysis of adsorption chiller powered by low-grade waste heat from a fuel-cell system: effect of multibed configuration and time constant
  publication-title: Energ. Conver. Manage.
– volume: 14
  year: 2021
  ident: b0160
  article-title: Adsorbents, working pairs and coated beds for natural refrigerants in adsorption chillers-state of the art
  publication-title: Energies
– volume: 213
  year: 2022
  ident: b0105
  article-title: Computational fluid dynamic study on the adsorption-based desalination and cooling system
  publication-title: Appl. Therm. Eng.
– volume: 271
  year: 2022
  ident: b0050
  article-title: Towards a digital twin approach - Experimental analysis and energy optimization of a multi-bed adsorption system
  publication-title: Energ. Conver. Manag.
– volume: 164
  start-page: 1044
  year: 2018
  end-page: 1061
  ident: b0080
  article-title: Modelling of an adsorption chiller with adsorbent-coated heat exchangers: feasibility of a polymer-water adsorption chiller
  publication-title: Energy
– volume: 67
  start-page: 174
  year: 2016
  end-page: 189
  ident: b0060
  article-title: Development and performance studies of an air cooled two-stage multi-bed silica-gel plus water adsorption system
  publication-title: Int. J. Refri.-Revue Internationale Du Froid
– reference: J. Krzywanski, K. Grabowska, M. Sosnowski, A. Zylka, A. Kulakowska, T. Czakiert, K. Sztekler, M. Wesolowska, W. Nowak, Heat transfer in adsorption chillers with fluidized beds of silica gel, zeolite, and carbon nanotubes, Heat Transfer Eng.
– volume: 11
  year: 2023
  ident: b0170
  article-title: Influence of the adsorption bed composition on the low-pressure fluidization
  publication-title: Processes
– volume: 17
  year: 2024
  ident: b0015
  article-title: Implementation of fluidized bed concept to improve heat transfer in ecological adsorption cooling and desalination systems
  publication-title: Energies
– volume: 11
  year: 2023
  ident: b0130
  article-title: CFD-DEM simulation of fast fluidization of fine particles in a micro riser
  publication-title: Processes
– volume: X
  start-page: 6
  year: 2020
  ident: b0125
  article-title: CFD investigation of CO2 absorption/desorption by a fluidized bed of micro-encapsulated solvents
  publication-title: Chem. Eng. Sci.
– start-page: 1
  year: 2014
  end-page: 494
  ident: b0030
  article-title: Adsorption refrigeration technology: theory and application
  publication-title: Adsorp. Refrig. Technol.: Theory Appl.
– volume: 99
  start-page: 138
  year: 2019
  end-page: 158
  ident: b0065
  article-title: Comprehensive strategies for performance improvement of adsorption air conditioning systems: a review
  publication-title: Renew. Sustain. Energy Rev.
– volume: 155
  start-page: 708
  year: 2015
  end-page: 718
  ident: b0100
  article-title: Adsorption and desorption of silica gel circulating fluidized beds for air conditioning systems
  publication-title: Appl. Energy
– volume: 62
  start-page: 18960
  year: 2023
  end-page: 18972
  ident: b0115
  article-title: CFD-DEM evaluation of the clustering behavior in a riser-the effect of the drag force model
  publication-title: Ind. Eng. Chem. Res.
– volume: 152
  year: 2024
  ident: b0085
  article-title: Towards enhanced heat and mass exchange in adsorption systems: the role of AutoML and fluidized bed innovations
  publication-title: Int. Commun. Heat Mass Transfer
– volume: 28
  start-page: 4979
  year: 2021
  end-page: 5020
  ident: b0145
  article-title: Theories and applications of CFD-DEM coupling approach for granular flow: a review
  publication-title: Arch. Comput. Meth. Eng.
– volume: 154
  year: 2022
  ident: b0155
  article-title: Current status and technological advancements in adsorption refrigeration systems: a review
  publication-title: Renew. Sustain. Energy Rev.
– volume: 104
  start-page: 554
  year: 2013
  end-page: 567
  ident: b0005
  article-title: An overview of developments in adsorption refrigeration systems towards a sustainable way of cooling
  publication-title: Appl. Energy
– volume: 31
  start-page: 871
  year: 2024
  end-page: 918
  ident: b0110
  article-title: Recent advances and perspectives of CFD-DEM simulation in fluidized bed
  publication-title: Arch. Comput. Meth. Eng.
– volume: 225
  year: 2023
  ident: 10.1016/j.applthermaleng.2025.127301_b0190
  article-title: Heat and mass transfer prediction in fluidized beds of cooling and desalination systems by AI approach
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2023.120200
– volume: 67
  start-page: 174
  year: 2016
  ident: 10.1016/j.applthermaleng.2025.127301_b0060
  article-title: Development and performance studies of an air cooled two-stage multi-bed silica-gel plus water adsorption system
  publication-title: Int. J. Refri.-Revue Internationale Du Froid
  doi: 10.1016/j.ijrefrig.2015.10.028
– volume: 14
  issue: 13
  year: 2021
  ident: 10.1016/j.applthermaleng.2025.127301_b0055
  article-title: Performance analysis of variable mode adsorption chiller at different recooling water temperatures
  publication-title: Energies
  doi: 10.3390/en14133871
– volume: 145
  start-page: 378
  year: 2017
  ident: 10.1016/j.applthermaleng.2025.127301_b0070
  article-title: Reduction of the heat capacity in low-temperature adsorption chillers using thermally conductive polymers as heat exchangers material
  publication-title: Energ. Conver. Manage.
  doi: 10.1016/j.enconman.2017.05.011
– volume: 174
  start-page: 1
  year: 2020
  ident: 10.1016/j.applthermaleng.2025.127301_b0045
  article-title: Solar desalination system integrated to use waste heat of air conditioners for continuous output: suitable for coastal areas
  publication-title: Desalin. Water Treat.
  doi: 10.5004/dwt.2020.24846
– volume: 28
  start-page: 535
  issue: 5
  year: 1995
  ident: 10.1016/j.applthermaleng.2025.127301_b0195
  article-title: Transport velocity of coarse particles in multi-solid fluidized bed
  publication-title: J. Chem. Eng. Jpn.
  doi: 10.1252/jcej.28.535
– volume: 271
  year: 2022
  ident: 10.1016/j.applthermaleng.2025.127301_b0050
  article-title: Towards a digital twin approach - Experimental analysis and energy optimization of a multi-bed adsorption system
  publication-title: Energ. Conver. Manag.
  doi: 10.1016/j.enconman.2022.116346
– volume: 164
  start-page: 1044
  year: 2018
  ident: 10.1016/j.applthermaleng.2025.127301_b0080
  article-title: Modelling of an adsorption chiller with adsorbent-coated heat exchangers: feasibility of a polymer-water adsorption chiller
  publication-title: Energy
  doi: 10.1016/j.energy.2018.09.041
– volume: 11
  issue: 7
  year: 2023
  ident: 10.1016/j.applthermaleng.2025.127301_b0170
  article-title: Influence of the adsorption bed composition on the low-pressure fluidization
  publication-title: Processes
  doi: 10.3390/pr11071912
– volume: 104
  start-page: 554
  year: 2013
  ident: 10.1016/j.applthermaleng.2025.127301_b0005
  article-title: An overview of developments in adsorption refrigeration systems towards a sustainable way of cooling
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2012.11.042
– volume: 103
  start-page: 1917
  issue: 4
  year: 2025
  ident: 10.1016/j.applthermaleng.2025.127301_b0140
  article-title: Numerical study of gas-solid flow characteristics of cylindrical fluidized beds based on coarse-grained CFD-DEM method
  publication-title: Can. J. Chem. Eng.
  doi: 10.1002/cjce.25455
– ident: 10.1016/j.applthermaleng.2025.127301_b0095
– volume: 31
  start-page: 871
  issue: 2
  year: 2024
  ident: 10.1016/j.applthermaleng.2025.127301_b0110
  article-title: Recent advances and perspectives of CFD-DEM simulation in fluidized bed
  publication-title: Arch. Comput. Meth. Eng.
  doi: 10.1007/s11831-023-10001-6
– volume: 154
  year: 2022
  ident: 10.1016/j.applthermaleng.2025.127301_b0155
  article-title: Current status and technological advancements in adsorption refrigeration systems: a review
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2021.111808
– volume: 293
  year: 2023
  ident: 10.1016/j.applthermaleng.2025.127301_b0025
  article-title: Dynamic simulation and exergy analysis of adsorption chiller powered by low-grade waste heat from a fuel-cell system: effect of multibed configuration and time constant
  publication-title: Energ. Conver. Manage.
  doi: 10.1016/j.enconman.2023.117453
– volume: 215
  year: 2021
  ident: 10.1016/j.applthermaleng.2025.127301_b0075
  article-title: Construction of an innovative adsorbent bed configuration in the adsorption chiller part 2. Experimental research of coated bed samples
  publication-title: Energy
  doi: 10.1016/j.energy.2020.119123
– volume: 152
  issue: 107262
  year: 2024
  ident: 10.1016/j.applthermaleng.2025.127301_b0085
  article-title: Towards enhanced heat and mass exchange in adsorption systems: the role of AutoML and fluidized bed innovations
  publication-title: Int. Commun. Heat Mass Transfer
– volume: 155
  start-page: 708
  year: 2015
  ident: 10.1016/j.applthermaleng.2025.127301_b0100
  article-title: Adsorption and desorption of silica gel circulating fluidized beds for air conditioning systems
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2015.06.041
– start-page: 460
  year: 2023
  ident: 10.1016/j.applthermaleng.2025.127301_b0180
  article-title: Heat and mass transfer analysis within a disc-shaped fluidized sorption reactor
  publication-title: International Conference on Efficiency, Cost, Optimization, Simulation and Environmental Impact of Energy Systems, ECOS
  doi: 10.52202/069564-0042
– volume: 62
  start-page: 18960
  issue: 45
  year: 2023
  ident: 10.1016/j.applthermaleng.2025.127301_b0115
  article-title: CFD-DEM evaluation of the clustering behavior in a riser-the effect of the drag force model
  publication-title: Ind. Eng. Chem. Res.
– volume: 235
  year: 2023
  ident: 10.1016/j.applthermaleng.2025.127301_b0020
  article-title: Numerical simulation of cascaded absorption-two-stage 4-bed adsorption cooling cycles for efficient low-grade heat utilization
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2023.121396
– volume: 271
  year: 2022
  ident: 10.1016/j.applthermaleng.2025.127301_b0040
  article-title: Towards a digital twin approach - experimental analysis and energy optimization of a multi-bed adsorption system
  publication-title: Energ. Conver. Manage.
  doi: 10.1016/j.enconman.2022.116346
– volume: 128
  year: 2021
  ident: 10.1016/j.applthermaleng.2025.127301_b0010
  article-title: A review of recent advances in adsorption desalination technologies
  publication-title: Int. Commun. Heat Mass Transfer
  doi: 10.1016/j.icheatmasstransfer.2021.105594
– volume: 13
  issue: 24
  year: 2020
  ident: 10.1016/j.applthermaleng.2025.127301_b0185
  article-title: Prediction of sorption processes using the deep learning methods (long short-term memory)
  publication-title: Energies
  doi: 10.3390/en13246601
– volume: 99
  start-page: 138
  year: 2019
  ident: 10.1016/j.applthermaleng.2025.127301_b0065
  article-title: Comprehensive strategies for performance improvement of adsorption air conditioning systems: a review
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2018.10.004
– start-page: 1
  year: 2014
  ident: 10.1016/j.applthermaleng.2025.127301_b0030
  article-title: Adsorption refrigeration technology: theory and application
  publication-title: Adsorp. Refrig. Technol.: Theory Appl.
– volume: 12
  issue: 1
  year: 2014
  ident: 10.1016/j.applthermaleng.2025.127301_b0120
  article-title: CFD-DEM modeling of CO2 capture using alkali metal-based sorbents in a bubbling fluidized bed
  publication-title: Int. J. Chem. React. Eng.
– volume: 11
  issue: 10
  year: 2023
  ident: 10.1016/j.applthermaleng.2025.127301_b0135
  article-title: CFD-DEM simulation of slugging and non-slugging fast fluidization of fine particles in a micro riser
  publication-title: Processes
  doi: 10.3390/pr11102977
– volume: 213
  year: 2022
  ident: 10.1016/j.applthermaleng.2025.127301_b0105
  article-title: Computational fluid dynamic study on the adsorption-based desalination and cooling system
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2022.118724
– volume: 11
  issue: 8
  year: 2023
  ident: 10.1016/j.applthermaleng.2025.127301_b0130
  article-title: CFD-DEM simulation of fast fluidization of fine particles in a micro riser
  publication-title: Processes
  doi: 10.3390/pr11082417
– volume: 17
  issue: 2
  year: 2024
  ident: 10.1016/j.applthermaleng.2025.127301_b0015
  article-title: Implementation of fluidized bed concept to improve heat transfer in ecological adsorption cooling and desalination systems
  publication-title: Energies
  doi: 10.3390/en17020379
– volume: 230
  start-page: 784
  year: 2018
  ident: 10.1016/j.applthermaleng.2025.127301_b0090
  article-title: Geometrical parameters analysis of improved circulating inclined fluidized beds for general HVAC duct systems
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2018.09.003
– volume: 12
  start-page: 4660
  issue: 24
  year: 2019
  ident: 10.1016/j.applthermaleng.2025.127301_b0175
  article-title: Evaluation of heat transfer performance of a multi-disc sorption bed dedicated for adsorption cooling technology
  publication-title: Energies
  doi: 10.3390/en12244660
– volume: 14
  issue: 13
  year: 2021
  ident: 10.1016/j.applthermaleng.2025.127301_b0165
  article-title: Experimental investigation of an intensified heat transfer adsorption bed (IHTAB) reactor prototype
  publication-title: Materials
  doi: 10.3390/ma14133520
– volume: 360
  start-page: 33
  year: 2020
  ident: 10.1016/j.applthermaleng.2025.127301_b0150
  article-title: CFD-DEM study of the effects of food grain properties on drying and shrinkage in a fluidised bed
  publication-title: Powder Technol.
  doi: 10.1016/j.powtec.2019.10.021
– volume: 30
  start-page: 85
  year: 2014
  ident: 10.1016/j.applthermaleng.2025.127301_b0035
  article-title: Progress in silica gel-water adsorption refrigeration technology
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2013.09.023
– volume: X
  start-page: 6
  year: 2020
  ident: 10.1016/j.applthermaleng.2025.127301_b0125
  article-title: CFD investigation of CO2 absorption/desorption by a fluidized bed of micro-encapsulated solvents
  publication-title: Chem. Eng. Sci.
– volume: 28
  start-page: 4979
  issue: 7
  year: 2021
  ident: 10.1016/j.applthermaleng.2025.127301_b0145
  article-title: Theories and applications of CFD-DEM coupling approach for granular flow: a review
  publication-title: Arch. Comput. Meth. Eng.
  doi: 10.1007/s11831-021-09568-9
– volume: 14
  issue: 15
  year: 2021
  ident: 10.1016/j.applthermaleng.2025.127301_b0160
  article-title: Adsorbents, working pairs and coated beds for natural refrigerants in adsorption chillers-state of the art
  publication-title: Energies
  doi: 10.3390/en14154707
SSID ssj0012874
Score 2.4752195
Snippet •Adsorption cooling technology offers a sustainable alternative to traditional cooling systems.•CFD & DEM: A breakthrough in modeling adsorption...
SourceID crossref
elsevier
SourceType Index Database
Publisher
StartPage 127301
SubjectTerms Adsorption chillers
CFD&DEM coupling
Computational fluid dynamics
Fluidization
Heat and mass transfer
Title Implementation of coupled CFD&DEM model for heat and mass transfer analysis in adsorption fluidized reactors
URI https://dx.doi.org/10.1016/j.applthermaleng.2025.127301
Volume 278
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NS8NAEB20BdGD-ImfZQ_FW9pms5tkTyLVUhV70UJvYT-yEGnTUtuLB3-7s0mqFjwIHjOQJbws896wO28AmkYGPvNj7Smllcciaz3JmfYokp9CimJKuUbhp0HYH7KHER9tQHfVC-OuVVa5v8zpRbauIu0KzfYsy9rPfsAF0h8ydMdH1hWbUKfI9nEN6jf3j_3B12GCs3Qv6i4uPPfCFjS_r3m5c2IntSbSTS7BgpHylk_dvv-dqX6wT28PdivZSG7KL9uHjTQ_gJ0fZoKHMC6MfidVL1FOppbo6RJDhnR7t1cIOCnG3hCUqcSlYCJzQyYonsmiUK_pHCOlRQnJciLN23ReJBRix8vMZO-4EkrMYj7PEQx7dy_dvlfNUvB0QKOFF1NjQ-mcIVkkjTUdI0zMpBCU41-UopNqY4XzA4yMjLToGONHUjOhAmmlDYJjqOXTPD0BIn0VYp2UckkDxmwQSxamYWi5oBG3VJ8CX-GWzErLjGR1l-w1Wcc7cXgnJd6ncL0COVnbAglm9z-tcPbvFc5h2z2VzYYXUFvMl-klqo6FasBm68NvVHvrE17d26o
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB60BR8H8Yn1uYfiLbbZ7Cbdk0i11FcvttBb2EcWIm1aanvx1zubpGrBg-B1Q5bwZZnvG3bmG4C6kYHP_Jb2lNLKY5G1nuRMexTJTyFFMaVco_BLL-wO2OOQD9egveyFcWWVZewvYnoercuVRolmY5qmjVc_4ALpDxm66SPrinWoMjfUugLV24enbu_rMsFZuud5Fxeee2ED6t9lXu6e2EmtsXSTSzBhpPzap-7c_85UP9insws7pWwkt8WX7cFaku3D9g8zwQMY5Ua_47KXKCMTS_RkgUuGtDt3Vwg4ycfeEJSpxIVgIjNDxiieyTxXr8kMVwqLEpJmRJr3ySwPKMSOFqlJP3AnlJj5fJ5DGHTu--2uV85S8HRAo7nXosaG0jlDskgaa5pGmBaTQlCOf1GKZqKNFc4PMDIy0qJpjB9JzYQKpJU2CI6gkk2y5BiI9FWIeVLCJQ0Ys0FLsjAJQ8sFjbilugZ8iVs8LSwz4mUt2Vu8infs8I4LvGtwswQ5XjkCMUb3P-1w8u8dLmGz2395jp8fek-nsOWeFI2HZ1CZzxbJOSqQubooT9gnj6jdkA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Implementation+of+coupled+CFD%26DEM+model+for+heat+and+mass+transfer+analysis+in+adsorption+fluidized+reactors&rft.jtitle=Applied+thermal+engineering&rft.au=Grabowska%2C+Karolina&rft.au=Sosnowski%2C+Marcin&rft.au=Krzywanski%2C+Jaroslaw&rft.au=Zylka%2C+Anna&rft.date=2025-11-01&rft.pub=Elsevier+Ltd&rft.issn=1359-4311&rft.volume=278&rft_id=info:doi/10.1016%2Fj.applthermaleng.2025.127301&rft.externalDocID=S1359431125018939
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1359-4311&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1359-4311&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1359-4311&client=summon