Denoising natural images based on a modified sparse coding algorithm
This paper proposes a novel image reconstruction method for natural images using a modified sparse coding (SC) algorithm proposed by us. This SC algorithm exploited the maximum Kurtosis as the maximizing sparse measure criterion at one time, a fixed variance term of sparse coefficients is used to yi...
Saved in:
| Published in | Applied mathematics and computation Vol. 205; no. 2; pp. 883 - 889 |
|---|---|
| Main Author | |
| Format | Journal Article Conference Proceeding |
| Language | English |
| Published |
Amsterdam
Elsevier Inc
15.11.2008
Elsevier |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0096-3003 1873-5649 |
| DOI | 10.1016/j.amc.2008.05.018 |
Cover
| Abstract | This paper proposes a novel image reconstruction method for natural images using a modified sparse coding (SC) algorithm proposed by us. This SC algorithm exploited the maximum Kurtosis as the maximizing sparse measure criterion at one time, a fixed variance term of sparse coefficients is used to yield a fixed information capacity. On the other hand, in order to improve the convergence speed, we use a determinative basis function, which is obtained by a fast fixed-point independent component analysis (FastICA) algorithm, as the initialization feature basis function of our sparse coding algorithm instead of using a random initialization matrix. The experimental results show that by using our SC algorithm, the feature basis vectors of natural images can be successfully extracted. Then, exploiting these features, the original images can be reconstructed easily. Furthermore, compared with the standard ICA method, the experimental results show that our SC algorithm is indeed efficient and effective in performing image reconstruction task. |
|---|---|
| AbstractList | This paper proposes a novel image reconstruction method for natural images using a modified sparse coding (SC) algorithm proposed by us. This SC algorithm exploited the maximum Kurtosis as the maximizing sparse measure criterion at one time, a fixed variance term of sparse coefficients is used to yield a fixed information capacity. On the other hand, in order to improve the convergence speed, we use a determinative basis function, which is obtained by a fast fixed-point independent component analysis (FastICA) algorithm, as the initialization feature basis function of our sparse coding algorithm instead of using a random initialization matrix. The experimental results show that by using our SC algorithm, the feature basis vectors of natural images can be successfully extracted. Then, exploiting these features, the original images can be reconstructed easily. Furthermore, compared with the standard ICA method, the experimental results show that our SC algorithm is indeed efficient and effective in performing image reconstruction task. |
| Author | Shang, Li |
| Author_xml | – sequence: 1 givenname: Li surname: Shang fullname: Shang, Li email: sl0930@jssvc.edu.cn, shangli0930@126.com organization: Department of Electronic Information Engineering, Suzhou Vocational University, Jiangsu 215104, China |
| BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=21205203$$DView record in Pascal Francis |
| BookMark | eNp9kE1LAzEQhoNUsK3-AG978bjrZJP9wpO0fkHBi57DbD5qym5SklXw35tS8eChp-GF9xlmngWZOe80IdcUCgq0vt0VOMqiBGgLqAqg7RmZ07ZheVXzbkbmAF2dMwB2QRYx7gCgqSmfk_VaO2-jddvM4fQZcMjsiFsdsx6jVpl3GWajV9bYlOIeQ9SZTDkBOGx9sNPHeEnODQ5RX_3OJXl_fHhbPeeb16eX1f0ml6xsprylPVW6002tFZq6K7lB5H3LZdUz1RvoW2SIgNSUEhXFrlcNNMC5VlTxmi3JzXHvHqPEwQR00kaxD-nk8C1KWkJVAks9euzJ4GMM2vxVKIiDLrETSZc46BJQiaQrMc0_RtoJJ-vdFNAOJ8m7I6nT619WBxGl1U5qZYOWk1DenqB_ABsAh68 |
| CODEN | AMHCBQ |
| CitedBy_id | crossref_primary_10_1016_j_amc_2013_07_024 crossref_primary_10_1016_j_neucom_2016_09_090 crossref_primary_10_1007_s10044_011_0230_1 crossref_primary_10_1016_j_neucom_2014_12_051 crossref_primary_10_1049_sil2_12088 crossref_primary_10_4236_cs_2016_79235 crossref_primary_10_1016_j_neucom_2011_11_003 crossref_primary_10_1109_TIP_2015_2447735 |
| Cites_doi | 10.1162/0899766054026639 10.1109/TIP.2006.873449 10.1016/j.conb.2004.07.007 10.1162/089976699300016214 10.1162/neco.1997.9.7.1483 10.1109/TMI.2004.824234 10.1511/2000.3.238 10.1364/JOSAA.24.000922 10.1109/83.862633 10.1038/381607a0 |
| ContentType | Journal Article Conference Proceeding |
| Copyright | 2008 Elsevier Inc. 2009 INIST-CNRS |
| Copyright_xml | – notice: 2008 Elsevier Inc. – notice: 2009 INIST-CNRS |
| DBID | AAYXX CITATION IQODW |
| DOI | 10.1016/j.amc.2008.05.018 |
| DatabaseName | CrossRef Pascal-Francis |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Mathematics |
| EISSN | 1873-5649 |
| EndPage | 889 |
| ExternalDocumentID | 21205203 10_1016_j_amc_2008_05_018 S0096300308003676 |
| GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1RT 1~. 1~5 23M 4.4 457 4G. 5GY 5VS 6J9 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABAOU ABEFU ABFNM ABFRF ABJNI ABMAC ABXDB ABYKQ ACAZW ACDAQ ACGFO ACGFS ACRLP ADBBV ADEZE ADGUI ADIYS ADMUD AEBSH AEFWE AEKER AENEX AFFNX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AI. AIEXJ AIGVJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ARUGR ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLZ HMJ HVGLF HZ~ IHE J1W KOM LG9 M26 M41 MHUIS MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ RXW SBC SDF SDG SES SEW SME SPC SPCBC SSW SSZ T5K TAE TN5 VH1 VOH WH7 WUQ X6Y XPP ZMT ~02 ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD AFXIZ AGCQF AGRNS BNPGV IQODW SSH |
| ID | FETCH-LOGICAL-c327t-81b1de9e76edaf6924faa4b84c5b3dbf0b8a3aa0a1f2cad1a9bd707044ed1d463 |
| IEDL.DBID | AIKHN |
| ISSN | 0096-3003 |
| IngestDate | Mon Jul 21 09:14:10 EDT 2025 Thu Apr 24 22:50:49 EDT 2025 Wed Oct 01 04:43:14 EDT 2025 Fri Feb 23 02:18:48 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Keywords | Fixed variance Kurtosis Sparse coding Image feature extraction Image reconstruction Algorithm Variance Convergence speed Denoising Experimental result Numerical analysis Fix point Coding Applied mathematics Algorithm analysis |
| Language | English |
| License | https://www.elsevier.com/tdm/userlicense/1.0 CC BY 4.0 |
| LinkModel | DirectLink |
| MeetingName | Special Issue on Advanced Intelligent Computing Theory and Methodology in Applied Mathematics and Computation |
| MergedId | FETCHMERGED-LOGICAL-c327t-81b1de9e76edaf6924faa4b84c5b3dbf0b8a3aa0a1f2cad1a9bd707044ed1d463 |
| PageCount | 7 |
| ParticipantIDs | pascalfrancis_primary_21205203 crossref_primary_10_1016_j_amc_2008_05_018 crossref_citationtrail_10_1016_j_amc_2008_05_018 elsevier_sciencedirect_doi_10_1016_j_amc_2008_05_018 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2008-11-15 |
| PublicationDateYYYYMMDD | 2008-11-15 |
| PublicationDate_xml | – month: 11 year: 2008 text: 2008-11-15 day: 15 |
| PublicationDecade | 2000 |
| PublicationPlace | Amsterdam |
| PublicationPlace_xml | – name: Amsterdam |
| PublicationTitle | Applied mathematics and computation |
| PublicationYear | 2008 |
| Publisher | Elsevier Inc Elsevier |
| Publisher_xml | – name: Elsevier Inc – name: Elsevier |
| References | Grace, Chang, Vattereli (bib3) 2000; 9 Hyvärinen (bib5) 1997; 11 Chandler, Field (bib10) 2007; 24 Hyvärinen, Hoyer, Oja (bib15) 2001 Olshausen, Field (bib8) 1996; 381 Buades, Morel (bib17) 2005; 2 Grgić, Grgić, Mrak (bib16) 2004; 55 Olshausen, Field (bib9) 2000; 88 Vaswani, Chellappa (bib4) 2006; 15 Hyvärinen, Oja (bib6) 1997; 9 Hoyer, Hyvärinen, Oja (bib7) 1998; 2 Hyvärinen, Oja (bib13) 1997; 9 Hyvärinen, Karhunen, Oja (bib14) 2001 Alan, Bovik (bib2) 2000 Olshausen, Field (bib11) 2004; 14 Olshausen, Field (bib12) 2005; 17 Wink, Roerdink (bib18) 2004; 23 Chan, Shen (bib1) 2000; 61 Olshausen (10.1016/j.amc.2008.05.018_bib11) 2004; 14 Hyvärinen (10.1016/j.amc.2008.05.018_bib6) 1997; 9 Vaswani (10.1016/j.amc.2008.05.018_bib4) 2006; 15 Olshausen (10.1016/j.amc.2008.05.018_bib8) 1996; 381 Hyvärinen (10.1016/j.amc.2008.05.018_bib5) 1997; 11 Wink (10.1016/j.amc.2008.05.018_bib18) 2004; 23 Olshausen (10.1016/j.amc.2008.05.018_bib12) 2005; 17 Hyvärinen (10.1016/j.amc.2008.05.018_bib15) 2001 Buades (10.1016/j.amc.2008.05.018_bib17) 2005; 2 Grace (10.1016/j.amc.2008.05.018_bib3) 2000; 9 Olshausen (10.1016/j.amc.2008.05.018_bib9) 2000; 88 Chan (10.1016/j.amc.2008.05.018_bib1) 2000; 61 Alan (10.1016/j.amc.2008.05.018_bib2) 2000 Grgić (10.1016/j.amc.2008.05.018_bib16) 2004; 55 Hyvärinen (10.1016/j.amc.2008.05.018_bib13) 1997; 9 Hoyer (10.1016/j.amc.2008.05.018_bib7) 1998; 2 Chandler (10.1016/j.amc.2008.05.018_bib10) 2007; 24 Hyvärinen (10.1016/j.amc.2008.05.018_bib14) 2001 |
| References_xml | – volume: 2 start-page: 859 year: 1998 end-page: 864 ident: bib7 article-title: Sparse coding shrinkage for image denoising, in neural networks proceedings publication-title: IEEE World Congress on Computational Intelligence – volume: 23 start-page: 374 year: 2004 end-page: 387 ident: bib18 article-title: Denoising functional MR images: a comparison of wavelet denoising and Gaussian smoothing publication-title: IEEE Transactions on Medical Imaging – start-page: 554 year: 2001 end-page: 568 ident: bib15 article-title: Image denoising by sparse code shrinkage publication-title: Intelligent Signal Processing – volume: 381 start-page: 607 year: 1996 end-page: 609 ident: bib8 article-title: Emergence of simple-cell receptive field properties by learning a sparse code for natural images publication-title: Nature – volume: 24 start-page: 922 year: 2007 end-page: 941 ident: bib10 article-title: Estimates of the Information content and dimensionality of natural scenes from proximity distributions publication-title: Journal of the Optical Society of America A – volume: 88 start-page: 224 year: 2000 end-page: 238 ident: bib9 article-title: Vision and the coding of natural images publication-title: American Scientist – volume: 9 start-page: 1532 year: 2000 end-page: 1546 ident: bib3 article-title: Wavelet thresholding for image denoising and compression publication-title: IEEE Transactions on image Processing – volume: 9 start-page: 1483 year: 1997 end-page: 1492 ident: bib6 article-title: A fast fixed-point algorithm for independent component analysis publication-title: Neural Computation – volume: 11 start-page: 1739 year: 1997 end-page: 1768 ident: bib5 article-title: Sparse coding shrinkage: denoising of nongaussian data by maximum likelihood estimation publication-title: Neural Computation – volume: 61 start-page: 1338 year: 2000 end-page: 1461 ident: bib1 article-title: Variational restoration of non-flat image features: models and algorithms publication-title: Applied Mathematics – year: 2000 ident: bib2 article-title: Handbook of Image and Video Processing – volume: 2 start-page: 60 year: 2005 end-page: 65 ident: bib17 article-title: A non-local algorithm for image denoising publication-title: IEEE Computer Society Conference on Computer Vision and Pattern Recognition – year: 2001 ident: bib14 article-title: Independent Component Analysis – volume: 55 start-page: 3 year: 2004 end-page: 10 ident: bib16 article-title: Reliability of objective picture quality measures publication-title: Journal of Electrical Engineering – volume: 14 start-page: 481 year: 2004 end-page: 487 ident: bib11 article-title: Sparse coding of sensory inputs publication-title: Current Opinion in Neurobiology – volume: 15 start-page: 1816 year: 2006 end-page: 1830 ident: bib4 article-title: Principal components null space analysis for image and video classification publication-title: IEEE Transactions on Image Processing – volume: 17 start-page: 665 year: 2005 end-page: 1699 ident: bib12 article-title: How close are we to understanding V1? publication-title: Neural Computation – volume: 9 start-page: 1483 year: 1997 end-page: 1492 ident: bib13 article-title: A fast fixed-point algorithm for independent component analysis publication-title: Neural Computation – volume: 17 start-page: 665 year: 2005 ident: 10.1016/j.amc.2008.05.018_bib12 article-title: How close are we to understanding V1? publication-title: Neural Computation doi: 10.1162/0899766054026639 – volume: 15 start-page: 1816 issue: 7 year: 2006 ident: 10.1016/j.amc.2008.05.018_bib4 article-title: Principal components null space analysis for image and video classification publication-title: IEEE Transactions on Image Processing doi: 10.1109/TIP.2006.873449 – volume: 2 start-page: 859 year: 1998 ident: 10.1016/j.amc.2008.05.018_bib7 article-title: Sparse coding shrinkage for image denoising, in neural networks proceedings publication-title: IEEE World Congress on Computational Intelligence – year: 2001 ident: 10.1016/j.amc.2008.05.018_bib14 – volume: 14 start-page: 481 year: 2004 ident: 10.1016/j.amc.2008.05.018_bib11 article-title: Sparse coding of sensory inputs publication-title: Current Opinion in Neurobiology doi: 10.1016/j.conb.2004.07.007 – volume: 2 start-page: 60 year: 2005 ident: 10.1016/j.amc.2008.05.018_bib17 article-title: A non-local algorithm for image denoising publication-title: IEEE Computer Society Conference on Computer Vision and Pattern Recognition – volume: 55 start-page: 3 year: 2004 ident: 10.1016/j.amc.2008.05.018_bib16 article-title: Reliability of objective picture quality measures publication-title: Journal of Electrical Engineering – volume: 11 start-page: 1739 year: 1997 ident: 10.1016/j.amc.2008.05.018_bib5 article-title: Sparse coding shrinkage: denoising of nongaussian data by maximum likelihood estimation publication-title: Neural Computation doi: 10.1162/089976699300016214 – volume: 9 start-page: 1483 year: 1997 ident: 10.1016/j.amc.2008.05.018_bib6 article-title: A fast fixed-point algorithm for independent component analysis publication-title: Neural Computation doi: 10.1162/neco.1997.9.7.1483 – volume: 61 start-page: 1338 issue: 4 year: 2000 ident: 10.1016/j.amc.2008.05.018_bib1 article-title: Variational restoration of non-flat image features: models and algorithms publication-title: Applied Mathematics – volume: 23 start-page: 374 issue: 3 year: 2004 ident: 10.1016/j.amc.2008.05.018_bib18 article-title: Denoising functional MR images: a comparison of wavelet denoising and Gaussian smoothing publication-title: IEEE Transactions on Medical Imaging doi: 10.1109/TMI.2004.824234 – volume: 88 start-page: 224 year: 2000 ident: 10.1016/j.amc.2008.05.018_bib9 article-title: Vision and the coding of natural images publication-title: American Scientist doi: 10.1511/2000.3.238 – volume: 24 start-page: 922 issue: 4 year: 2007 ident: 10.1016/j.amc.2008.05.018_bib10 article-title: Estimates of the Information content and dimensionality of natural scenes from proximity distributions publication-title: Journal of the Optical Society of America A doi: 10.1364/JOSAA.24.000922 – volume: 9 start-page: 1483 issue: 7 year: 1997 ident: 10.1016/j.amc.2008.05.018_bib13 article-title: A fast fixed-point algorithm for independent component analysis publication-title: Neural Computation doi: 10.1162/neco.1997.9.7.1483 – year: 2000 ident: 10.1016/j.amc.2008.05.018_bib2 – volume: 9 start-page: 1532 year: 2000 ident: 10.1016/j.amc.2008.05.018_bib3 article-title: Wavelet thresholding for image denoising and compression publication-title: IEEE Transactions on image Processing doi: 10.1109/83.862633 – start-page: 554 year: 2001 ident: 10.1016/j.amc.2008.05.018_bib15 article-title: Image denoising by sparse code shrinkage – volume: 381 start-page: 607 year: 1996 ident: 10.1016/j.amc.2008.05.018_bib8 article-title: Emergence of simple-cell receptive field properties by learning a sparse code for natural images publication-title: Nature doi: 10.1038/381607a0 |
| SSID | ssj0007614 |
| Score | 1.9451159 |
| Snippet | This paper proposes a novel image reconstruction method for natural images using a modified sparse coding (SC) algorithm proposed by us. This SC algorithm... |
| SourceID | pascalfrancis crossref elsevier |
| SourceType | Index Database Enrichment Source Publisher |
| StartPage | 883 |
| SubjectTerms | Algebra Exact sciences and technology Fixed variance Global analysis, analysis on manifolds Image feature extraction Image reconstruction Kurtosis Linear and multilinear algebra, matrix theory Mathematical analysis Mathematics Numerical analysis Numerical analysis. Scientific computation Sciences and techniques of general use Sparse coding Topology. Manifolds and cell complexes. Global analysis and analysis on manifolds |
| Title | Denoising natural images based on a modified sparse coding algorithm |
| URI | https://dx.doi.org/10.1016/j.amc.2008.05.018 |
| Volume | 205 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier Science Direct Freedom Collection customDbUrl: eissn: 1873-5649 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0007614 issn: 0096-3003 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1873-5649 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0007614 issn: 0096-3003 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect (Elsevier) customDbUrl: eissn: 1873-5649 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0007614 issn: 0096-3003 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1873-5649 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0007614 issn: 0096-3003 databaseCode: AKRWK dateStart: 19930101 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED6VdgEhxFM8Kw9MSIHEcdJ4RDxUQDCBxBZd_IAgmlRtWfntnBunggEG1shOorPzfWflu-8AjlWhYy4pczMywUBwNIFEJQOeRZFKrU4Nd8XJ9w_p8EncPifPHbhoa2GcrNJjf4Ppc7T2V858NM_GZelqfKXzi4pdzuN8x5agR_yTZV3ond_cDR8WgEwn9caMWTqZVxi3PzfnMi8cKa-odP6d2W_0tDrGKQXNNt0uvlHQ9Tqs-dyRnTevtwEdU23Cyv3CeHW6BZeXpqpLd_5nc8tOGl6OCDKmzNGVZnXFkI1qXVpKPRmhyWRqmKodgTF8f6kn5ex1tA1P11ePF8PAN0oIVMwHs4BSz0gbaQap0WhTOlJZRFFkQiVFrAsbFhnGiCFGlivUEcpCD-hbF8LoSIs03oFuVVdmF5iV6JpUJZZoXyAPpQolR81di2oRZeEehG18cuVdxF0zi_e8lYu95RRS390yySmke3CymDJuLDT-GizaoOc_9kFOEP_XtP6PBVo8iJjZKX3i_f_d9wCW5wIRp_tLDqE7m3yYI8pCZkUflk4_o77fa1_9WNtS |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV05T8MwGLVKGQAhxCnKUTwwIQUSx0njEbWgcpSpSGzRFx8Q1CZVW1Z-O_5yFDrAwBrZSfTsfIfy_B4h5zJRPhO2ctMiAIcz0I4AKRwWeZ4MjQo1w8PJg6ew_8zvX4KXBunWZ2GQVlnF_jKmF9G6unJVoXk1SVM84ytQL8rHmgd1x1bIKg9YBzuwy89vnoft00spZoEkL9evf20WJC8Yy4pPieqd0W_JaXMCMwuZKb0ufiSg222yVVWO9Lp8uR3S0Nku2RgsZFdne6TX01meYvdPC8FOOzwd24Axo5isFM0zCnScq9TYwpPaWDKdaSpzTF8URq_5NJ2_jffJ8-3NsNt3KpsER_qsM3ds4ekpLXQn1ApMaBsqA8CTiMsg8VVi3CQCH8AFzzAJygORqI790jnXylM89A9IM8szfUioEYAWVYGxSZ8Dc4V0BQPF0KCae5HbIm6NTywrDXG0shjFNVnsPbaQVt6WQWwhbZGLxZRJKaDx12Begx4v7YLYBvi_prWXFmjxIJuXkefjH_3vvmdkrT8cPMaPd08Px2S9oIogAzA4Ic359EOf2npknrSL_fYFy2rcGg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=Applied+mathematics+and+computation&rft.atitle=Denoising+natural+images+based+on+a+modified+sparse+coding+algorithm&rft.au=LI+SHANG&rft.date=2008-11-15&rft.pub=Elsevier&rft.issn=0096-3003&rft.volume=205&rft.issue=2&rft.spage=883&rft.epage=889&rft_id=info:doi/10.1016%2Fj.amc.2008.05.018&rft.externalDBID=n%2Fa&rft.externalDocID=21205203 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0096-3003&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0096-3003&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0096-3003&client=summon |