Dual Probability Learning Based Local Search for the Task Assignment Problem

The task assignment problem (TAP) is concerned with assigning a set of tasks to a set of agents subject to the limited processing and memory capacities of each agent. The objective to be minimized is the total assignment cost and total communication cost. TAP is a relevant model for many practical a...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on automation science and engineering Vol. 19; no. 1; pp. 332 - 347
Main Authors Li, Zuocheng, Tang, Lixin, Hao, Jin-Kao
Format Journal Article
LanguageEnglish
Published New York IEEE 01.01.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Institute of Electrical and Electronics Engineers
Subjects
Online AccessGet full text
ISSN1545-5955
1558-3783
DOI10.1109/TASE.2020.3030397

Cover

Abstract The task assignment problem (TAP) is concerned with assigning a set of tasks to a set of agents subject to the limited processing and memory capacities of each agent. The objective to be minimized is the total assignment cost and total communication cost. TAP is a relevant model for many practical applications, yet solving the problem is computationally challenging. Most of the current metaheuristic algorithms for TAP adopt population-based search frameworks, whose search behaviors are usually difficult to analyze and understand due to their complex features. In this work, unlike previous population-based solution methods, we concentrate on a single trajectory stochastic local search model to solve TAP. Especially, we consider TAP from the perspective of a grouping problem and introduce the first probability learning-based local search algorithm for the problem. The proposed algorithm relies on a dual probability learning procedure to discover promising search regions and a gain-based neighborhood search procedure to intensively exploit a given search region. We perform extensive computational experiments on a set of 180 benchmark instances with the proposed algorithm and the general mixed integer programming solver CPLEX. We assess the composing ingredients of the proposed algorithm to shed light on their impacts on the performance of the algorithm. Note to Practitioners -This work is motivated by the problem of program modules designing and task allocation in parallel and distribution systems. It can also be applied to deal with job (task) grouping problems in practical industrial applications. This article presents a novel and effective learning-based local search algorithm to obtain high-quality solutions for the considered problem. The results of numerical experiments and comparisons show that our algorithm can achieve good search performances on problem instances of different scales and difficulties. Afterward, we use the proposed solution method to solve a real-life open-order slab assignment problem, which is derived from the production planning of silicon steel for an iron and steel company. The learning techniques of the proposed algorithm are of general interest and can be used in search algorithms for solving other real-life optimization problems with grouping features. For future research, we will design solution methods based on these learning techniques to address other practical optimization problems.
AbstractList The task assignment problem (TAP) is concerned with assigning a set of tasks to a set of agents subject to the limited processing and memory capacities of each agent. The objective to be minimized is the total assignment cost and total communication cost. TAP is a relevant model for many practical applications, yet solving the problem is computationally challenging. Most of the current metaheuristic algorithms for TAP adopt population-based search frameworks, whose search behaviors are usually difficult to analyze and understand due to their complex features. In this work, unlike previous population-based solution methods, we concentrate on a single trajectory stochastic local search model to solve TAP. Especially, we consider TAP from the perspective of a grouping problem and introduce the first probability learning-based local search algorithm for the problem. The proposed algorithm relies on a dual probability learning procedure to discover promising search regions and a gain-based neighborhood search procedure to intensively exploit a given search region. We perform extensive computational experiments on a set of 180 benchmark instances with the proposed algorithm and the general mixed integer programming solver CPLEX. We assess the composing ingredients of the proposed algorithm to shed light on their impacts on the performance of the algorithm. Note to Practitioners —This work is motivated by the problem of program modules designing and task allocation in parallel and distribution systems. It can also be applied to deal with job (task) grouping problems in practical industrial applications. This article presents a novel and effective learning-based local search algorithm to obtain high-quality solutions for the considered problem. The results of numerical experiments and comparisons show that our algorithm can achieve good search performances on problem instances of different scales and difficulties. Afterward, we use the proposed solution method to solve a real-life open-order slab assignment problem, which is derived from the production planning of silicon steel for an iron and steel company. The learning techniques of the proposed algorithm are of general interest and can be used in search algorithms for solving other real-life optimization problems with grouping features. For future research, we will design solution methods based on these learning techniques to address other practical optimization problems.
Author Hao, Jin-Kao
Li, Zuocheng
Tang, Lixin
Author_xml – sequence: 1
  givenname: Zuocheng
  orcidid: 0000-0001-6061-3106
  surname: Li
  fullname: Li, Zuocheng
  email: zuocheng_li@163.com
  organization: Ministry of Education, Key Laboratory of Data Analytics and Optimization for Smart Industry (Northeastern University), Shenyang, China
– sequence: 2
  givenname: Lixin
  orcidid: 0000-0002-9950-5169
  surname: Tang
  fullname: Tang, Lixin
  email: lixintang@mail.neu.edu.cn
  organization: Institute of Industrial and Systems Engineering, Northeastern University, Shenyang, China
– sequence: 3
  givenname: Jin-Kao
  surname: Hao
  fullname: Hao, Jin-Kao
  email: jin-kao.hao@univ-angers.fr
  organization: Department of Computer Science, LERIA, Université d'Angers, Angers, France
BackLink https://hal.science/hal-03586829$$DView record in HAL
BookMark eNp9kctKxDAUhoMoeH0AcVNw5aJjLk2aLMe7UFCYcR2S9tSJdhpNOoJvb-qMLlxIFgk_3xcO_9lH273vAaFjgieEYHU-n86uJxRTPGE4HVVuoT3CucxZKdn2-C54zhXnu2g_xheMaSEV3kPV1cp02WPw1ljXueEzq8CE3vXP2YWJ0GSVrxMwS2G9yFofsmEB2dzE12wao3vul9AP334Hy0O005ouwtHmPkBPN9fzy7u8eri9v5xWec1oOeRlUzCQwipGlCqsoW0tLWGcG8WlrcFSWzMrZcsaUwIRkhdgWCNSqEoBDTtAZ-t_F6bTb8EtTfjU3jh9N630mGHGpZBUfZDEnq7Zt-DfVxAH_eJXoU_jaSqIKCnDgiWqXFN18DEGaHXtBjM43w_BuE4TrMea9VizHmvWm5qTSf6YPwP955ysHQcAv7yihRBpW189dIjX
CODEN ITASC7
CitedBy_id crossref_primary_10_1016_j_eswa_2025_127006
crossref_primary_10_1109_ACCESS_2024_3458808
crossref_primary_10_1016_j_future_2024_107494
Cites_doi 10.1007/s42524-020-0126-0
10.1145/937503.937505
10.1016/j.jpdc.2006.06.006
10.1109/TEVC.2014.2360890
10.1109/TPDS.2015.2407900
10.1109/TCYB.2013.2289327
10.1002/nav.20474
10.1016/b978-1-55860-872-6.x5016-1
10.1109/TC.1979.1675348
10.1109/TAC.2010.2089653
10.1109/TCYB.2018.2849343
10.1007/BF02125421
10.1016/S0377-2217(99)00251-9
10.1287/inte.9.4.12
10.1016/j.ejor.2005.01.066
10.1007/bf00226291
10.1287/ijoc.1120.0527
10.1016/j.eswa.2016.07.047
10.1016/j.engappai.2010.12.002
10.1016/j.amc.2012.10.106
10.1016/j.asoc.2018.01.027
10.1142/S012962640900033X
10.1109/12.8704
10.1057/palgrave.jors.2602413
10.1109/TASE.2014.2361334
10.1080/10798587.2013.771438
10.1016/j.disopt.2009.04.004
10.1016/j.jss.2010.04.070
10.1109/TEVC.2013.2250977
10.1109/TPDS.2006.178
10.1287/mnsc.1060.0578
10.1023/A:1013500812258
10.1109/TSE.2009.58
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
7TB
8FD
FR3
JQ2
L7M
L~C
L~D
1XC
DOI 10.1109/TASE.2020.3030397
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Hyper Article en Ligne (HAL)
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1558-3783
EndPage 347
ExternalDocumentID oai_HAL_hal_03586829v1
10_1109_TASE_2020_3030397
9246678
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 71602025
  funderid: 10.13039/501100001809
– fundername: Major International Joint Research Project of the National Natural Science Foundation of China
  grantid: 71520107004
  funderid: 10.13039/501100001809
– fundername: Major Program of the National Natural Science Foundation of China
  grantid: 71790614
  funderid: 10.13039/501100001809
– fundername: Higher Education Discipline Innovation Project; 111 Project
  grantid: B16009
  funderid: 10.13039/501100013314
– fundername: Fund for Innovative Research Groups of the National Natural Science Foundation of China
  grantid: 71621061
  funderid: 10.13039/501100001809
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AIBXA
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
PQQKQ
RIA
RIE
RNS
AAYXX
CITATION
RIG
7SC
7SP
7TB
8FD
FR3
JQ2
L7M
L~C
L~D
1XC
ID FETCH-LOGICAL-c327t-7d43e86b931994ba2fc8b1355a958bceb2bc3b88f3da7e16854ea3d6c3b976ed3
IEDL.DBID RIE
ISSN 1545-5955
IngestDate Fri Sep 12 12:42:30 EDT 2025
Mon Jun 30 07:10:28 EDT 2025
Tue Jul 01 02:56:31 EDT 2025
Thu Apr 24 23:05:02 EDT 2025
Wed Aug 27 03:03:36 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 1
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c327t-7d43e86b931994ba2fc8b1355a958bceb2bc3b88f3da7e16854ea3d6c3b976ed3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-9950-5169
0000-0001-6061-3106
0000-0001-8813-4377
PQID 2616723063
PQPubID 27623
PageCount 16
ParticipantIDs hal_primary_oai_HAL_hal_03586829v1
crossref_citationtrail_10_1109_TASE_2020_3030397
proquest_journals_2616723063
crossref_primary_10_1109_TASE_2020_3030397
ieee_primary_9246678
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-Jan.
2022-1-00
20220101
2022-01
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – month: 01
  year: 2022
  text: 2022-Jan.
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on automation science and engineering
PublicationTitleAbbrev TASE
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Institute of Electrical and Electronics Engineers
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
– name: Institute of Electrical and Electronics Engineers
References ref13
ref12
Pelikan (ref22) 2002; 21
ref34
ref15
ref31
ref30
ref11
ref33
ref10
ref32
ref2
ref1
ref17
ref16
ref19
ref18
Baram (ref35) 2004; 5
Angeline (ref14) 1993
ref24
ref23
ref26
ref25
ref20
ref21
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
References_xml – ident: ref20
  doi: 10.1007/s42524-020-0126-0
– ident: ref11
  doi: 10.1145/937503.937505
– ident: ref33
  doi: 10.1016/j.jpdc.2006.06.006
– ident: ref13
  doi: 10.1109/TEVC.2014.2360890
– volume: 5
  start-page: 255
  year: 2004
  ident: ref35
  article-title: Online choice of active learning algorithms
  publication-title: J. Mach. Learn. Res.
– ident: ref31
  doi: 10.1109/TPDS.2015.2407900
– ident: ref6
  doi: 10.1109/TCYB.2013.2289327
– ident: ref8
  doi: 10.1002/nav.20474
– ident: ref16
  doi: 10.1016/b978-1-55860-872-6.x5016-1
– ident: ref10
  doi: 10.1109/TC.1979.1675348
– ident: ref34
  doi: 10.1109/TAC.2010.2089653
– ident: ref12
  doi: 10.1109/TCYB.2018.2849343
– ident: ref21
  doi: 10.1007/BF02125421
– ident: ref5
  doi: 10.1016/S0377-2217(99)00251-9
– ident: ref1
  doi: 10.1287/inte.9.4.12
– ident: ref18
  doi: 10.1016/j.ejor.2005.01.066
– ident: ref25
  doi: 10.1007/bf00226291
– year: 1993
  ident: ref14
  article-title: Evolutionary algorithms and emergent intelligence
– ident: ref27
  doi: 10.1287/ijoc.1120.0527
– ident: ref23
  doi: 10.1016/j.eswa.2016.07.047
– ident: ref4
  doi: 10.1016/j.engappai.2010.12.002
– ident: ref17
  doi: 10.1016/j.amc.2012.10.106
– ident: ref24
  doi: 10.1016/j.asoc.2018.01.027
– ident: ref30
  doi: 10.1142/S012962640900033X
– ident: ref28
  doi: 10.1109/12.8704
– ident: ref29
  doi: 10.1057/palgrave.jors.2602413
– ident: ref7
  doi: 10.1109/TASE.2014.2361334
– ident: ref2
  doi: 10.1080/10798587.2013.771438
– ident: ref19
  doi: 10.1016/j.disopt.2009.04.004
– ident: ref3
  doi: 10.1016/j.jss.2010.04.070
– ident: ref15
  doi: 10.1109/TEVC.2013.2250977
– ident: ref26
  doi: 10.1109/TPDS.2006.178
– ident: ref9
  doi: 10.1287/mnsc.1060.0578
– volume: 21
  start-page: 5
  issue: 1
  year: 2002
  ident: ref22
  article-title: A survey of optimization by building and using probabilistic models
  publication-title: Comput. Optim. Appl.
  doi: 10.1023/A:1013500812258
– ident: ref32
  doi: 10.1109/TSE.2009.58
SSID ssj0024890
Score 2.3125641
Snippet The task assignment problem (TAP) is concerned with assigning a set of tasks to a set of agents subject to the limited processing and memory capacities of each...
SourceID hal
proquest
crossref
ieee
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 332
SubjectTerms Algorithms
Assignment problem
Computer Science
Corporate learning
Heuristic methods
Industrial applications
Integer programming
Learning based search
Machine learning
Mixed integer
neighborhood search
Operations research
Optimization
Probability distribution
Production planning
Search algorithms
Search problems
Silicon steels
Slabs
Steel
Steel making
Task analysis
task assignment
Title Dual Probability Learning Based Local Search for the Task Assignment Problem
URI https://ieeexplore.ieee.org/document/9246678
https://www.proquest.com/docview/2616723063
https://hal.science/hal-03586829
Volume 19
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEB6sJz34FuuLIJ7Erbub3Wz2WB-lSBXBCr0teaqordRW0F_vJLutoiLelpBA2G-SmS-Z-QKwbwQTyBJ0YGOugiSPbCBsLgMVWa-_l0jlqpEvLln7Jjnvpb0ZOJzWwhhjfPKZabhPf5evB2rsjsqOkCsw3FxrUEMzK2u1PnX1uD9PcRFBkOZpWt1gRmF-1G1enyETjJGgoklTp-_0xQfV7lwGpH9a5cd-7J1MaxEuJtMrc0seGuORbKj3b8qN_53_EixU0SZpluaxDDOmvwLzXzQIV6FzOsYeV0Nc1z5P9o1Ukqu35Bg9nCYd5-1ImZZMMMQlGDKSrnh5IAjt_a3PJvDjH83TGty0zron7aB6YiFQNM5GQaYTajiTOXUawVLEVnEZYQwi8pRLhbRbKio5t1SLzESMp4kRVDNsxDjGaLoOs_1B32wAwb0DkZYxy5hNQim5zqzNbGgwRBHaiDqEk59eqEp_3D2D8Vh4HhLmhcOpcDgVFU51OJgOeS7FN_7qvIdITvs52ex2s1O4tpCmnPE4f43qsOpgmfaqEKnD9gT4olrDLwVyS5Y5hkY3fx-1BXOxK4bwBzLbMDsajs0Ohigjuett8wMMyeEg
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB7xONAeeJSiLq9aqKeqWZI4cZzj8tK2ZBESi8TN8hMQdKlgFwl-PWMnuyBAqLfIGktJPtsznz3zGeCHlUwiSzCRS7mOsjJxkXSlinTigv5eprSvRu4dse5p9ucsP5uCX5NaGGttSD6zbf8YzvLNjR75rbJt5AoMF9dpmM2RVfC6WutZWY-HHRUfE0R5mefNGWYSl9v9zsk-csEUKSoOauoVnl54oekLnwMZLld5syIHN3OwAL3xC9bZJVft0VC19eMr7cb__YJFmG_iTdKpB8gSTNnBF_j8QoVwGaq9EVoc3-LMDpmyD6QRXT0nO-jjDKm8vyN1YjLBIJdg0Ej68u6KILiX5yGfIPS_tn-_wunBfn-3GzWXLESapsUwKkxGLWeqpF4lWMnUaa4SjEJkmXOlkXgrTRXnjhpZ2ITxPLOSGoaNGMlYQ1dgZnAzsN-A4OqBWKuUFcxlsVLcFM4VLrYYpEhjZQvi8U8XulEg9xdhXIvAROJSeJyEx0k0OLXg56TLv1p-4yPjLURyYueFs7udSvi2mOac8bS8T1qw7GGZWDWItGB9DLxoZvGdQHbJCs_R6Or7vb7DXLffq0T1--hwDT6lvjQibM-sw8zwdmQ3MGAZqs0wTp8AEIbkcw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dual+Probability+Learning+Based+Local+Search+for+the+Task+Assignment+Problem&rft.jtitle=IEEE+transactions+on+automation+science+and+engineering&rft.au=Li%2C+Zuocheng&rft.au=Tang%2C+Lixin&rft.au=Jin-Kao%2C+Hao&rft.date=2022-01-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1545-5955&rft.eissn=1558-3783&rft.volume=19&rft.issue=1&rft.spage=332&rft_id=info:doi/10.1109%2FTASE.2020.3030397&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1545-5955&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1545-5955&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1545-5955&client=summon