Dual Probability Learning Based Local Search for the Task Assignment Problem
The task assignment problem (TAP) is concerned with assigning a set of tasks to a set of agents subject to the limited processing and memory capacities of each agent. The objective to be minimized is the total assignment cost and total communication cost. TAP is a relevant model for many practical a...
Saved in:
Published in | IEEE transactions on automation science and engineering Vol. 19; no. 1; pp. 332 - 347 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.01.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Institute of Electrical and Electronics Engineers |
Subjects | |
Online Access | Get full text |
ISSN | 1545-5955 1558-3783 |
DOI | 10.1109/TASE.2020.3030397 |
Cover
Abstract | The task assignment problem (TAP) is concerned with assigning a set of tasks to a set of agents subject to the limited processing and memory capacities of each agent. The objective to be minimized is the total assignment cost and total communication cost. TAP is a relevant model for many practical applications, yet solving the problem is computationally challenging. Most of the current metaheuristic algorithms for TAP adopt population-based search frameworks, whose search behaviors are usually difficult to analyze and understand due to their complex features. In this work, unlike previous population-based solution methods, we concentrate on a single trajectory stochastic local search model to solve TAP. Especially, we consider TAP from the perspective of a grouping problem and introduce the first probability learning-based local search algorithm for the problem. The proposed algorithm relies on a dual probability learning procedure to discover promising search regions and a gain-based neighborhood search procedure to intensively exploit a given search region. We perform extensive computational experiments on a set of 180 benchmark instances with the proposed algorithm and the general mixed integer programming solver CPLEX. We assess the composing ingredients of the proposed algorithm to shed light on their impacts on the performance of the algorithm. Note to Practitioners -This work is motivated by the problem of program modules designing and task allocation in parallel and distribution systems. It can also be applied to deal with job (task) grouping problems in practical industrial applications. This article presents a novel and effective learning-based local search algorithm to obtain high-quality solutions for the considered problem. The results of numerical experiments and comparisons show that our algorithm can achieve good search performances on problem instances of different scales and difficulties. Afterward, we use the proposed solution method to solve a real-life open-order slab assignment problem, which is derived from the production planning of silicon steel for an iron and steel company. The learning techniques of the proposed algorithm are of general interest and can be used in search algorithms for solving other real-life optimization problems with grouping features. For future research, we will design solution methods based on these learning techniques to address other practical optimization problems. |
---|---|
AbstractList | The task assignment problem (TAP) is concerned with assigning a set of tasks to a set of agents subject to the limited processing and memory capacities of each agent. The objective to be minimized is the total assignment cost and total communication cost. TAP is a relevant model for many practical applications, yet solving the problem is computationally challenging. Most of the current metaheuristic algorithms for TAP adopt population-based search frameworks, whose search behaviors are usually difficult to analyze and understand due to their complex features. In this work, unlike previous population-based solution methods, we concentrate on a single trajectory stochastic local search model to solve TAP. Especially, we consider TAP from the perspective of a grouping problem and introduce the first probability learning-based local search algorithm for the problem. The proposed algorithm relies on a dual probability learning procedure to discover promising search regions and a gain-based neighborhood search procedure to intensively exploit a given search region. We perform extensive computational experiments on a set of 180 benchmark instances with the proposed algorithm and the general mixed integer programming solver CPLEX. We assess the composing ingredients of the proposed algorithm to shed light on their impacts on the performance of the algorithm. Note to Practitioners —This work is motivated by the problem of program modules designing and task allocation in parallel and distribution systems. It can also be applied to deal with job (task) grouping problems in practical industrial applications. This article presents a novel and effective learning-based local search algorithm to obtain high-quality solutions for the considered problem. The results of numerical experiments and comparisons show that our algorithm can achieve good search performances on problem instances of different scales and difficulties. Afterward, we use the proposed solution method to solve a real-life open-order slab assignment problem, which is derived from the production planning of silicon steel for an iron and steel company. The learning techniques of the proposed algorithm are of general interest and can be used in search algorithms for solving other real-life optimization problems with grouping features. For future research, we will design solution methods based on these learning techniques to address other practical optimization problems. |
Author | Hao, Jin-Kao Li, Zuocheng Tang, Lixin |
Author_xml | – sequence: 1 givenname: Zuocheng orcidid: 0000-0001-6061-3106 surname: Li fullname: Li, Zuocheng email: zuocheng_li@163.com organization: Ministry of Education, Key Laboratory of Data Analytics and Optimization for Smart Industry (Northeastern University), Shenyang, China – sequence: 2 givenname: Lixin orcidid: 0000-0002-9950-5169 surname: Tang fullname: Tang, Lixin email: lixintang@mail.neu.edu.cn organization: Institute of Industrial and Systems Engineering, Northeastern University, Shenyang, China – sequence: 3 givenname: Jin-Kao surname: Hao fullname: Hao, Jin-Kao email: jin-kao.hao@univ-angers.fr organization: Department of Computer Science, LERIA, Université d'Angers, Angers, France |
BackLink | https://hal.science/hal-03586829$$DView record in HAL |
BookMark | eNp9kctKxDAUhoMoeH0AcVNw5aJjLk2aLMe7UFCYcR2S9tSJdhpNOoJvb-qMLlxIFgk_3xcO_9lH273vAaFjgieEYHU-n86uJxRTPGE4HVVuoT3CucxZKdn2-C54zhXnu2g_xheMaSEV3kPV1cp02WPw1ljXueEzq8CE3vXP2YWJ0GSVrxMwS2G9yFofsmEB2dzE12wao3vul9AP334Hy0O005ouwtHmPkBPN9fzy7u8eri9v5xWec1oOeRlUzCQwipGlCqsoW0tLWGcG8WlrcFSWzMrZcsaUwIRkhdgWCNSqEoBDTtAZ-t_F6bTb8EtTfjU3jh9N630mGHGpZBUfZDEnq7Zt-DfVxAH_eJXoU_jaSqIKCnDgiWqXFN18DEGaHXtBjM43w_BuE4TrMea9VizHmvWm5qTSf6YPwP955ysHQcAv7yihRBpW189dIjX |
CODEN | ITASC7 |
CitedBy_id | crossref_primary_10_1016_j_eswa_2025_127006 crossref_primary_10_1109_ACCESS_2024_3458808 crossref_primary_10_1016_j_future_2024_107494 |
Cites_doi | 10.1007/s42524-020-0126-0 10.1145/937503.937505 10.1016/j.jpdc.2006.06.006 10.1109/TEVC.2014.2360890 10.1109/TPDS.2015.2407900 10.1109/TCYB.2013.2289327 10.1002/nav.20474 10.1016/b978-1-55860-872-6.x5016-1 10.1109/TC.1979.1675348 10.1109/TAC.2010.2089653 10.1109/TCYB.2018.2849343 10.1007/BF02125421 10.1016/S0377-2217(99)00251-9 10.1287/inte.9.4.12 10.1016/j.ejor.2005.01.066 10.1007/bf00226291 10.1287/ijoc.1120.0527 10.1016/j.eswa.2016.07.047 10.1016/j.engappai.2010.12.002 10.1016/j.amc.2012.10.106 10.1016/j.asoc.2018.01.027 10.1142/S012962640900033X 10.1109/12.8704 10.1057/palgrave.jors.2602413 10.1109/TASE.2014.2361334 10.1080/10798587.2013.771438 10.1016/j.disopt.2009.04.004 10.1016/j.jss.2010.04.070 10.1109/TEVC.2013.2250977 10.1109/TPDS.2006.178 10.1287/mnsc.1060.0578 10.1023/A:1013500812258 10.1109/TSE.2009.58 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 – notice: Distributed under a Creative Commons Attribution 4.0 International License |
DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 7TB 8FD FR3 JQ2 L7M L~C L~D 1XC |
DOI | 10.1109/TASE.2020.3030397 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Hyper Article en Ligne (HAL) |
DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Technology Research Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Computer Science |
EISSN | 1558-3783 |
EndPage | 347 |
ExternalDocumentID | oai_HAL_hal_03586829v1 10_1109_TASE_2020_3030397 9246678 |
Genre | orig-research |
GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 71602025 funderid: 10.13039/501100001809 – fundername: Major International Joint Research Project of the National Natural Science Foundation of China grantid: 71520107004 funderid: 10.13039/501100001809 – fundername: Major Program of the National Natural Science Foundation of China grantid: 71790614 funderid: 10.13039/501100001809 – fundername: Higher Education Discipline Innovation Project; 111 Project grantid: B16009 funderid: 10.13039/501100013314 – fundername: Fund for Innovative Research Groups of the National Natural Science Foundation of China grantid: 71621061 funderid: 10.13039/501100001809 |
GroupedDBID | -~X 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK AENEX AETIX AGQYO AGSQL AHBIQ AIBXA AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ H~9 IFIPE IPLJI JAVBF LAI M43 O9- OCL PQQKQ RIA RIE RNS AAYXX CITATION RIG 7SC 7SP 7TB 8FD FR3 JQ2 L7M L~C L~D 1XC |
ID | FETCH-LOGICAL-c327t-7d43e86b931994ba2fc8b1355a958bceb2bc3b88f3da7e16854ea3d6c3b976ed3 |
IEDL.DBID | RIE |
ISSN | 1545-5955 |
IngestDate | Fri Sep 12 12:42:30 EDT 2025 Mon Jun 30 07:10:28 EDT 2025 Tue Jul 01 02:56:31 EDT 2025 Thu Apr 24 23:05:02 EDT 2025 Wed Aug 27 03:03:36 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 1 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c327t-7d43e86b931994ba2fc8b1355a958bceb2bc3b88f3da7e16854ea3d6c3b976ed3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-9950-5169 0000-0001-6061-3106 0000-0001-8813-4377 |
PQID | 2616723063 |
PQPubID | 27623 |
PageCount | 16 |
ParticipantIDs | hal_primary_oai_HAL_hal_03586829v1 crossref_citationtrail_10_1109_TASE_2020_3030397 proquest_journals_2616723063 crossref_primary_10_1109_TASE_2020_3030397 ieee_primary_9246678 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-Jan. 2022-1-00 20220101 2022-01 |
PublicationDateYYYYMMDD | 2022-01-01 |
PublicationDate_xml | – month: 01 year: 2022 text: 2022-Jan. |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE transactions on automation science and engineering |
PublicationTitleAbbrev | TASE |
PublicationYear | 2022 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Institute of Electrical and Electronics Engineers |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) – name: Institute of Electrical and Electronics Engineers |
References | ref13 ref12 Pelikan (ref22) 2002; 21 ref34 ref15 ref31 ref30 ref11 ref33 ref10 ref32 ref2 ref1 ref17 ref16 ref19 ref18 Baram (ref35) 2004; 5 Angeline (ref14) 1993 ref24 ref23 ref26 ref25 ref20 ref21 ref28 ref27 ref29 ref8 ref7 ref9 ref4 ref3 ref6 ref5 |
References_xml | – ident: ref20 doi: 10.1007/s42524-020-0126-0 – ident: ref11 doi: 10.1145/937503.937505 – ident: ref33 doi: 10.1016/j.jpdc.2006.06.006 – ident: ref13 doi: 10.1109/TEVC.2014.2360890 – volume: 5 start-page: 255 year: 2004 ident: ref35 article-title: Online choice of active learning algorithms publication-title: J. Mach. Learn. Res. – ident: ref31 doi: 10.1109/TPDS.2015.2407900 – ident: ref6 doi: 10.1109/TCYB.2013.2289327 – ident: ref8 doi: 10.1002/nav.20474 – ident: ref16 doi: 10.1016/b978-1-55860-872-6.x5016-1 – ident: ref10 doi: 10.1109/TC.1979.1675348 – ident: ref34 doi: 10.1109/TAC.2010.2089653 – ident: ref12 doi: 10.1109/TCYB.2018.2849343 – ident: ref21 doi: 10.1007/BF02125421 – ident: ref5 doi: 10.1016/S0377-2217(99)00251-9 – ident: ref1 doi: 10.1287/inte.9.4.12 – ident: ref18 doi: 10.1016/j.ejor.2005.01.066 – ident: ref25 doi: 10.1007/bf00226291 – year: 1993 ident: ref14 article-title: Evolutionary algorithms and emergent intelligence – ident: ref27 doi: 10.1287/ijoc.1120.0527 – ident: ref23 doi: 10.1016/j.eswa.2016.07.047 – ident: ref4 doi: 10.1016/j.engappai.2010.12.002 – ident: ref17 doi: 10.1016/j.amc.2012.10.106 – ident: ref24 doi: 10.1016/j.asoc.2018.01.027 – ident: ref30 doi: 10.1142/S012962640900033X – ident: ref28 doi: 10.1109/12.8704 – ident: ref29 doi: 10.1057/palgrave.jors.2602413 – ident: ref7 doi: 10.1109/TASE.2014.2361334 – ident: ref2 doi: 10.1080/10798587.2013.771438 – ident: ref19 doi: 10.1016/j.disopt.2009.04.004 – ident: ref3 doi: 10.1016/j.jss.2010.04.070 – ident: ref15 doi: 10.1109/TEVC.2013.2250977 – ident: ref26 doi: 10.1109/TPDS.2006.178 – ident: ref9 doi: 10.1287/mnsc.1060.0578 – volume: 21 start-page: 5 issue: 1 year: 2002 ident: ref22 article-title: A survey of optimization by building and using probabilistic models publication-title: Comput. Optim. Appl. doi: 10.1023/A:1013500812258 – ident: ref32 doi: 10.1109/TSE.2009.58 |
SSID | ssj0024890 |
Score | 2.3125641 |
Snippet | The task assignment problem (TAP) is concerned with assigning a set of tasks to a set of agents subject to the limited processing and memory capacities of each... |
SourceID | hal proquest crossref ieee |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 332 |
SubjectTerms | Algorithms Assignment problem Computer Science Corporate learning Heuristic methods Industrial applications Integer programming Learning based search Machine learning Mixed integer neighborhood search Operations research Optimization Probability distribution Production planning Search algorithms Search problems Silicon steels Slabs Steel Steel making Task analysis task assignment |
Title | Dual Probability Learning Based Local Search for the Task Assignment Problem |
URI | https://ieeexplore.ieee.org/document/9246678 https://www.proquest.com/docview/2616723063 https://hal.science/hal-03586829 |
Volume | 19 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEB6sJz34FuuLIJ7Erbub3Wz2WB-lSBXBCr0teaqordRW0F_vJLutoiLelpBA2G-SmS-Z-QKwbwQTyBJ0YGOugiSPbCBsLgMVWa-_l0jlqpEvLln7Jjnvpb0ZOJzWwhhjfPKZabhPf5evB2rsjsqOkCsw3FxrUEMzK2u1PnX1uD9PcRFBkOZpWt1gRmF-1G1enyETjJGgoklTp-_0xQfV7lwGpH9a5cd-7J1MaxEuJtMrc0seGuORbKj3b8qN_53_EixU0SZpluaxDDOmvwLzXzQIV6FzOsYeV0Nc1z5P9o1Ukqu35Bg9nCYd5-1ImZZMMMQlGDKSrnh5IAjt_a3PJvDjH83TGty0zron7aB6YiFQNM5GQaYTajiTOXUawVLEVnEZYQwi8pRLhbRbKio5t1SLzESMp4kRVDNsxDjGaLoOs_1B32wAwb0DkZYxy5hNQim5zqzNbGgwRBHaiDqEk59eqEp_3D2D8Vh4HhLmhcOpcDgVFU51OJgOeS7FN_7qvIdITvs52ex2s1O4tpCmnPE4f43qsOpgmfaqEKnD9gT4olrDLwVyS5Y5hkY3fx-1BXOxK4bwBzLbMDsajs0Ohigjuett8wMMyeEg |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB7xONAeeJSiLq9aqKeqWZI4cZzj8tK2ZBESi8TN8hMQdKlgFwl-PWMnuyBAqLfIGktJPtsznz3zGeCHlUwiSzCRS7mOsjJxkXSlinTigv5eprSvRu4dse5p9ucsP5uCX5NaGGttSD6zbf8YzvLNjR75rbJt5AoMF9dpmM2RVfC6WutZWY-HHRUfE0R5mefNGWYSl9v9zsk-csEUKSoOauoVnl54oekLnwMZLld5syIHN3OwAL3xC9bZJVft0VC19eMr7cb__YJFmG_iTdKpB8gSTNnBF_j8QoVwGaq9EVoc3-LMDpmyD6QRXT0nO-jjDKm8vyN1YjLBIJdg0Ej68u6KILiX5yGfIPS_tn-_wunBfn-3GzWXLESapsUwKkxGLWeqpF4lWMnUaa4SjEJkmXOlkXgrTRXnjhpZ2ITxPLOSGoaNGMlYQ1dgZnAzsN-A4OqBWKuUFcxlsVLcFM4VLrYYpEhjZQvi8U8XulEg9xdhXIvAROJSeJyEx0k0OLXg56TLv1p-4yPjLURyYueFs7udSvi2mOac8bS8T1qw7GGZWDWItGB9DLxoZvGdQHbJCs_R6Or7vb7DXLffq0T1--hwDT6lvjQibM-sw8zwdmQ3MGAZqs0wTp8AEIbkcw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dual+Probability+Learning+Based+Local+Search+for+the+Task+Assignment+Problem&rft.jtitle=IEEE+transactions+on+automation+science+and+engineering&rft.au=Li%2C+Zuocheng&rft.au=Tang%2C+Lixin&rft.au=Jin-Kao%2C+Hao&rft.date=2022-01-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1545-5955&rft.eissn=1558-3783&rft.volume=19&rft.issue=1&rft.spage=332&rft_id=info:doi/10.1109%2FTASE.2020.3030397&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1545-5955&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1545-5955&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1545-5955&client=summon |