ST_AGCNT: Traffic Speed Forecasting Based on Spatial–Temporal Adaptive Graph Convolutional Network with Transformer
Traffic speed prediction is difficult because of the complicated dynamic spatiotemporal correlations. Recent studies in spatiotemporal models have achieved impressive outcomes for traffic speed prediction. But many studies use graphs in graph convolutional networks to learn spatial features that are...
Saved in:
| Published in | Sustainability Vol. 17; no. 5; p. 1829 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
Basel
MDPI AG
01.03.2025
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 2071-1050 2071-1050 |
| DOI | 10.3390/su17051829 |
Cover
| Abstract | Traffic speed prediction is difficult because of the complicated dynamic spatiotemporal correlations. Recent studies in spatiotemporal models have achieved impressive outcomes for traffic speed prediction. But many studies use graphs in graph convolutional networks to learn spatial features that are often static. Additionally, effectively modeling long-range temporal features is crucial for prediction accuracy. In order to overcome these challenges, a Spatial–Temporal Adaptive Graph Convolutional Network with Transformer (ST_AGCNT) is designed in this paper. Specifically, an adaptive graph convolution network (AGCN) is designed to extract spatial dependency. An adaptive graph that fuses predefined matrices and learnable matrix is proposed to learn the correlations between nodes. The predefined matrices provide the model with richer prior information, while the learnable matrix can extract the dynamic nature of the nodes. And a temporal transformer (TT) is proposed to extract the long-range temporal dependency. In addition, to learn more information to achieve better results, different historical segments are modeled. Experiments conducted on a real-world traffic dataset confirm the effectiveness of the proposed model when compared to other baseline models. This model demonstrated excellent performance in prediction tasks across different time steps, effectively accomplishing traffic speed forecasting. It provides data support for improving traffic efficiency and reducing resource waste, contributing to the sustainable development of traffic management. |
|---|---|
| AbstractList | Traffic speed prediction is difficult because of the complicated dynamic spatiotemporal correlations. Recent studies in spatiotemporal models have achieved impressive outcomes for traffic speed prediction. But many studies use graphs in graph convolutional networks to learn spatial features that are often static. Additionally, effectively modeling long-range temporal features is crucial for prediction accuracy. In order to overcome these challenges, a Spatial–Temporal Adaptive Graph Convolutional Network with Transformer (ST_AGCNT) is designed in this paper. Specifically, an adaptive graph convolution network (AGCN) is designed to extract spatial dependency. An adaptive graph that fuses predefined matrices and learnable matrix is proposed to learn the correlations between nodes. The predefined matrices provide the model with richer prior information, while the learnable matrix can extract the dynamic nature of the nodes. And a temporal transformer (TT) is proposed to extract the long-range temporal dependency. In addition, to learn more information to achieve better results, different historical segments are modeled. Experiments conducted on a real-world traffic dataset confirm the effectiveness of the proposed model when compared to other baseline models. This model demonstrated excellent performance in prediction tasks across different time steps, effectively accomplishing traffic speed forecasting. It provides data support for improving traffic efficiency and reducing resource waste, contributing to the sustainable development of traffic management. |
| Audience | Academic |
| Author | Liu, Mengxia Cheng, Rongjun Xu, Yuanzi |
| Author_xml | – sequence: 1 givenname: Rongjun surname: Cheng fullname: Cheng, Rongjun – sequence: 2 givenname: Mengxia surname: Liu fullname: Liu, Mengxia – sequence: 3 givenname: Yuanzi surname: Xu fullname: Xu, Yuanzi |
| BookMark | eNp9kc1uEzEQgC1UJErphSdYiROgFP-tvcstjWhaqSoSWc7WxGunLht7sb0NvfEOvCFPUldBor105jCjmW9G8_MaHfjgDUJvCT5hrMWf0kQkrklD2xfokGJJZgTX-OCR_wodp3SDizBGWiIO0bTq1Hy5uOo-V10Ea52uVqMxfXUWotGQsvOb6hRSiQRfUpAdDH9__-nMdgwRhmrew5jdramWEcbrahH8bRim7IIvySuTdyH-qHYuXz_098mGuDXxDXppYUjm-J89Qt_PvnSL89nl1-XFYn4504zKPKs1E7WEnnLbGmD1umaUNZILJgTXsm9oQ63kZZG14KTnWli-JtxIYWsrqGRH6OO-7-RHuNvBMKgxui3EO0Wwejia-n-0Qr_b02MMPyeTsroJUyx7JMWIFExiKnGhTvbUBgajnLchR9BFe7N1unzEuhKfN4ywlvG2KQXvnxQUJptfeQNTSupi9e0p-2HP6hhSisY-N-89Vs2Y2Q |
| Cites_doi | 10.5085/0898-5510-19.2.139 10.1016/j.engappai.2023.106044 10.1609/aaai.v35i12.17325 10.1016/j.knosys.2023.110995 10.1016/j.comcom.2022.08.008 10.1016/j.neucom.2018.12.016 10.1061/(ASCE)TE.1943-5436.0000816 10.1088/1742-6596/2203/1/012033 10.1109/BigData59044.2023.10386250 10.1016/j.knosys.2023.110591 10.24963/ijcai.2019/264 10.1609/aaai.v35i5.16542 10.1016/j.knosys.2024.111406 10.24963/ijcai.2018/505 10.1109/TIT.1967.1053964 10.3233/FAIA230446 10.1109/TKDE.2023.3284156 10.1007/s10994-014-5453-0 10.1016/j.simpat.2019.102025 10.1109/TITS.2020.3019497 10.1109/TITS.2024.3362145 10.1016/j.trc.2024.104695 10.1631/jzus.A2300026 10.1109/TKDE.2021.3056502 10.1109/MSP.2012.2235192 10.1109/TITS.2020.2983763 10.1016/S0968-090X(97)82903-8 10.1145/3394486.3403118 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2025 MDPI AG 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: COPYRIGHT 2025 MDPI AG – notice: 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION ISR 4U- ABUWG AFKRA AZQEC BENPR CCPQU DWQXO PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS ADTOC UNPAY |
| DOI | 10.3390/su17051829 |
| DatabaseName | CrossRef Gale In Context: Science University Readers ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One ProQuest Central ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef Publicly Available Content Database University Readers ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | CrossRef Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 2 dbid: BENPR name: ProQuest Central (New) url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Economics Environmental Sciences |
| EISSN | 2071-1050 |
| ExternalDocumentID | 10.3390/su17051829 A831393498 10_3390_su17051829 |
| GeographicLocations | China |
| GeographicLocations_xml | – name: China |
| GroupedDBID | 29Q 2WC 2XV 4P2 5VS 7XC 8FE 8FH A8Z AAHBH AAYXX ACHQT ADBBV ADMLS AENEX AFKRA AFMMW ALMA_UNASSIGNED_HOLDINGS BCNDV BENPR CCPQU CITATION E3Z ECGQY ESTFP FRS GX1 IAO IEP ISR ITC KQ8 ML. MODMG M~E OK1 P2P PHGZM PHGZT PIMPY PROAC TR2 4U- ABUWG AZQEC DWQXO PKEHL PQEST PQQKQ PQUKI PRINS ADTOC C1A IPNFZ PUEGO RIG UNPAY |
| ID | FETCH-LOGICAL-c327t-5c3657ad24f9ea35b532387463664c7d8282f74916b641d4c6f4b14e76f5f6273 |
| IEDL.DBID | BENPR |
| ISSN | 2071-1050 |
| IngestDate | Sun Sep 07 10:48:13 EDT 2025 Mon Jun 30 12:11:26 EDT 2025 Mon Oct 20 16:54:29 EDT 2025 Thu Oct 16 15:39:30 EDT 2025 Thu Oct 16 04:25:51 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 5 |
| Language | English |
| License | cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c327t-5c3657ad24f9ea35b532387463664c7d8282f74916b641d4c6f4b14e76f5f6273 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| OpenAccessLink | https://www.proquest.com/docview/3176370270?pq-origsite=%requestingapplication%&accountid=15518 |
| PQID | 3176370270 |
| PQPubID | 2032327 |
| ParticipantIDs | unpaywall_primary_10_3390_su17051829 proquest_journals_3176370270 gale_infotracacademiconefile_A831393498 gale_incontextgauss_ISR_A831393498 crossref_primary_10_3390_su17051829 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-03-01 |
| PublicationDateYYYYMMDD | 2025-03-01 |
| PublicationDate_xml | – month: 03 year: 2025 text: 2025-03-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | Sustainability |
| PublicationYear | 2025 |
| Publisher | MDPI AG |
| Publisher_xml | – name: MDPI AG |
| References | Guo (ref_39) 2021; 34 Dougherty (ref_4) 1996; 4 ref_36 ref_13 ref_34 ref_33 ref_31 Zhang (ref_16) 2022; 2203 Liu (ref_19) 2024; 25 ref_18 ref_17 Shuman (ref_37) 2013; 30 Liu (ref_24) 2024; 165 Huang (ref_11) 2020; 7 Lv (ref_28) 2020; 22 Cushing (ref_1) 2006; 19 Zheng (ref_32) 2023; 36 Guo (ref_15) 2020; 23 Qu (ref_30) 2023; 272 ref_25 Johansson (ref_6) 2014; 97 Ji (ref_3) 2023; 24 ref_22 ref_21 Emami (ref_5) 2019; 102 ref_20 Gao (ref_27) 2023; 280 Li (ref_38) 2017; 7 Wu (ref_35) 2021; 34 ref_29 Chen (ref_12) 2022; 194 ref_26 ref_9 Yang (ref_14) 2018; 332 Yu (ref_8) 2016; 142 Bao (ref_23) 2023; 121 Cover (ref_7) 1967; 13 Ahmed (ref_2) 1979; 722 Alhaek (ref_10) 2024; 286 |
| References_xml | – volume: 19 start-page: 139 year: 2006 ident: ref_1 article-title: Historical averages, units roots and future net discount rates: A comprehensive estimator publication-title: J. Forensic Econ. doi: 10.5085/0898-5510-19.2.139 – ident: ref_9 – volume: 121 start-page: 106044 year: 2023 ident: ref_23 article-title: Spatial–temporal complex graph convolution network for traffic flow prediction publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2023.106044 – ident: ref_34 doi: 10.1609/aaai.v35i12.17325 – volume: 280 start-page: 110995 year: 2023 ident: ref_27 article-title: Dynamic spatiotemporal interactive graph neural network for multivariate time series forecasting publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2023.110995 – volume: 194 start-page: 446 year: 2022 ident: ref_12 article-title: Traffic flow prediction using multi-view graph convolution and masked attention mechanism publication-title: Comput. Commun. doi: 10.1016/j.comcom.2022.08.008 – volume: 332 start-page: 320 year: 2018 ident: ref_14 article-title: Traffic flow prediction using LSTM with feature enhancement publication-title: Neurocomputing doi: 10.1016/j.neucom.2018.12.016 – ident: ref_26 – volume: 142 start-page: 04016018 year: 2016 ident: ref_8 article-title: k-Nearest neighbor model for multiple-time-step prediction of short-term traffic condition publication-title: J. Transp. Eng. doi: 10.1061/(ASCE)TE.1943-5436.0000816 – volume: 7 start-page: 2355 year: 2020 ident: ref_11 article-title: LSGCN: Long short-term traffic prediction with graph convolutional networks publication-title: IJCAI – volume: 2203 start-page: 012033 year: 2022 ident: ref_16 article-title: Spatial-Temporal Semantic neural network for time series forecasting publication-title: J. Phys. Conf. Ser. doi: 10.1088/1742-6596/2203/1/012033 – ident: ref_18 doi: 10.1109/BigData59044.2023.10386250 – volume: 272 start-page: 110591 year: 2023 ident: ref_30 article-title: ST-A-PGCL: Spatiotemporal adaptive periodical graph contrastive learning for traffic prediction under real scenarios publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2023.110591 – ident: ref_22 doi: 10.24963/ijcai.2019/264 – ident: ref_31 doi: 10.1609/aaai.v35i5.16542 – volume: 286 start-page: 111406 year: 2024 ident: ref_10 article-title: Learning spatial patterns and temporal dependencies for traffic accident severity prediction: A deep learning approach publication-title: Knowl. Based Syst. doi: 10.1016/j.knosys.2024.111406 – ident: ref_20 doi: 10.24963/ijcai.2018/505 – ident: ref_21 – volume: 13 start-page: 21 year: 1967 ident: ref_7 article-title: Nearest neighbor pattern classification publication-title: IEEE Trans. Inf. Theory doi: 10.1109/TIT.1967.1053964 – ident: ref_13 doi: 10.3233/FAIA230446 – volume: 7 start-page: 107 year: 2017 ident: ref_38 article-title: Building sparse models for traffic flow prediction: An empirical comparison between statistical heuristics and geometric heuristics for Bayesian network approaches publication-title: Transp. B Transp. Dyn. – volume: 36 start-page: 372 year: 2023 ident: ref_32 article-title: Spatio-temporal joint graph convolutional networks for traffic forecasting publication-title: IEEE Trans. Knowl. Data Eng. doi: 10.1109/TKDE.2023.3284156 – volume: 97 start-page: 155 year: 2014 ident: ref_6 article-title: Regression conformal prediction with random forests publication-title: Mach. Learn. doi: 10.1007/s10994-014-5453-0 – ident: ref_29 – ident: ref_33 – volume: 102 start-page: 102025 year: 2019 ident: ref_5 article-title: Short-term traffic flow prediction based on faded memory Kalman Filter fusing data from connected vehicles and Bluetooth sensors publication-title: Simul. Model. Pract. Theory doi: 10.1016/j.simpat.2019.102025 – volume: 34 start-page: 22419 year: 2021 ident: ref_35 article-title: Autoformer: Decomposition transformers with auto-correlation for long-term series forecasting publication-title: Adv. Neural Inf. Process. Syst. – volume: 23 start-page: 1009 year: 2020 ident: ref_15 article-title: Dynamic graph convolution network for traffic forecasting based on latent network of Laplace matrix estimation publication-title: IEEE Trans. Intell. Transp. Syst. doi: 10.1109/TITS.2020.3019497 – volume: 25 start-page: 7645 year: 2024 ident: ref_19 article-title: Spatial–Temporal Dynamic Graph Convolutional Network with Interactive Learning for Traffic Forecasting publication-title: IEEE Trans. Intell. Transp. Syst. doi: 10.1109/TITS.2024.3362145 – volume: 165 start-page: 104695 year: 2024 ident: ref_24 article-title: End-to-end heterogeneous graph neural networks for traffic assignment publication-title: Transp. Res. Part C Emerg. Technol. doi: 10.1016/j.trc.2024.104695 – volume: 24 start-page: 828 year: 2023 ident: ref_3 article-title: Bifurcation control of solid angle car-following model through a time-delay feedback method publication-title: J. Zhejiang Univ.-Sci. A doi: 10.1631/jzus.A2300026 – volume: 34 start-page: 5415 year: 2021 ident: ref_39 article-title: Learning dynamics and heterogeneity of spatial-temporal graph data for traffic forecasting publication-title: IEEE Trans. Knowl. Data Eng. doi: 10.1109/TKDE.2021.3056502 – volume: 30 start-page: 83 year: 2013 ident: ref_37 article-title: The emerging field of signal processing on graphs: Extending high-dimensional data analysis to networks and other irregular domains publication-title: IEEE Signal Process. Mag. doi: 10.1109/MSP.2012.2235192 – ident: ref_17 – volume: 722 start-page: 1 year: 1979 ident: ref_2 article-title: Analysis of freeway traffic time-series data by using Box-Jenkins techniques publication-title: Transp. Res. Rec. J. Transp. Res. Board – ident: ref_25 doi: 10.1016/j.trc.2024.104695 – volume: 22 start-page: 3337 year: 2020 ident: ref_28 article-title: Temporal multi-graph convolutional network for traffic flow prediction publication-title: IEEE Trans. Intell. Transp. Syst. doi: 10.1109/TITS.2020.2983763 – volume: 4 start-page: 307 year: 1996 ident: ref_4 article-title: Combining Kohonen maps with ARIMA time series models to forecast traffic flow publication-title: Transp. Res. Part C Emerg. Technol. doi: 10.1016/S0968-090X(97)82903-8 – ident: ref_36 doi: 10.1145/3394486.3403118 |
| SSID | ssj0000331916 |
| Score | 2.3679898 |
| Snippet | Traffic speed prediction is difficult because of the complicated dynamic spatiotemporal correlations. Recent studies in spatiotemporal models have achieved... |
| SourceID | unpaywall proquest gale crossref |
| SourceType | Open Access Repository Aggregation Database Index Database |
| StartPage | 1829 |
| SubjectTerms | Convolutional codes Deep learning Forecasts and trends Graph theory Neural networks Speed Speed limits Statistical methods Time series Traffic flow |
| SummonAdditionalLinks | – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NbtRADLbK9lA4UChULBQ0KpU4pdpmJjMJt-2qPyCxQmxWKqfRzGSmB6rsapOA4MQ78IY8CTZJaLuHinMcxYo99ufE_gxwoDx3Aiu2SARjImFHGAeFz6ICsYF0aWyUpNnhD1N5PhfvL5KLDdjvZ2Fu_L_nWI6jOYjvBUFwdg82ZYJ4ewCb8-nH8WfaGof5EeNIMmp5R9duuJVp1uPtA9hqyqX5_s1cXd1IKKfbMOlVaftIvhw2tT10P9ZYGu_W9RE87PAkG7cO8Bg2fLkDW_24cbUDuyfXo2wo2J3l6gk0s1yPzybT_C3DhEVMEmy2xFzGaFunMxX1Q7NjTHIFW5SMVhejq_7--StvyazwmYVZUrBkZ0R6zSaL8mvnx3hx2raXM_rOy_IeHfvVU5ifnuST86hbwhA5Hqs6ShyXiTJFLELmDU9swjHLK-IZk8KpAiu2OCiBKNNKcVQIJ4OwR8IrGZIgERztwqBclP4ZMOM42s86lyonMm7TQgY_cnHgheUYaYbwujeYXrZcGxprFHq3-vrdDmGfbKmJvKKk7phL01SVfjf7pMcpR0DLRZYO4U0nFBb1yjjTDRugIsR3dUtyr_cJ3R3fSiOoklxhxY46HfzzkzuUev5_Yi_gfkz7g__2sO3BoF41_iWCmtq-6rz6D02j8-0 priority: 102 providerName: Unpaywall |
| Title | ST_AGCNT: Traffic Speed Forecasting Based on Spatial–Temporal Adaptive Graph Convolutional Network with Transformer |
| URI | https://www.proquest.com/docview/3176370270 https://doi.org/10.3390/su17051829 |
| UnpaywallVersion | publishedVersion |
| Volume | 17 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2071-1050 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000331916 issn: 2071-1050 databaseCode: KQ8 dateStart: 20090101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVEBS databaseName: EBSCOhost Food Science Source customDbUrl: eissn: 2071-1050 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331916 issn: 2071-1050 databaseCode: A8Z dateStart: 20091201 isFulltext: true titleUrlDefault: https://search.ebscohost.com/login.aspx?authtype=ip,uid&profile=ehost&defaultdb=fsr providerName: EBSCOhost – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 2071-1050 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331916 issn: 2071-1050 databaseCode: ADMLS dateStart: 20091201 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 2071-1050 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000331916 issn: 2071-1050 databaseCode: GX1 dateStart: 20090101 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2071-1050 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000331916 issn: 2071-1050 databaseCode: M~E dateStart: 20090101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: ProQuest Central (New) customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 2071-1050 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000331916 issn: 2071-1050 databaseCode: BENPR dateStart: 20090301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Pb9MwFH_ausPggGAwrTAmCyZximhjx06QEOqqrgOJaFpTqZwix064TElo2k3c-A58Qz4J7zXOyjjsGMVKLP-e3x_7vd8DOFU5NwIjNk8UWnsiG6AeFHnkWfQNpAl9rSTVDn-N5cVcfFkEix2Iu1oYSqvsdOJGUdvK0Bn5e7RzkisMogaf6h8edY2i29WuhYZ2rRXsxw3F2C7s-cSM1YO9s0l8eXV36jLgKHJD2fKUcoz3EW8ilEEvO7pnmf7Xz49hf13W-uetvr7-xwCdP4UnznNkoxbqZ7CTlwew3xUWNwdwONkWreFAt2ub57CeJeloOo6TDwxNE3FGsFmNVotRX06jG8p8ZmdoziyrSkZNilEo__z6nbS0VfhPq2tSi2xK9NZsXJU3TmLxZdwmkjM60WVJ5wfnyxcwP58k4wvPtVvwDPfVygsMl4HS1hdFlGseZAFHe66IUUwKoyzGZn6hBC5fJsXQCiMLkQ1FrmQRFBLdoEPolVWZHwHThmNklBkTKiMinoVWFvnA-AW3GUed0oe33VKndcuqkWI0QoCkW0D68IZQSImmoqQ8mO963TTp59lVOgo5uq5cRGEf3rlBRbVaaqNdWQFOhJit7o087tBM3UZt0q1Y9eH0DuEHJvXy4a-8gkc-dQjeZKkdQ2-1XOev0W1ZZSdOFk9gd7oY4tM8vhx9-wskNPDV |
| linkProvider | ProQuest |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3BbtQwEB2V9rBwQFCoWChgQRGniGzs2AlShbbLtru0XaFuKvXmOrbDpUrCZpeqN_6B_-Fj-BLGm6RLOfTWcyzb8oznzTgzbwB2hKWaYcTmsUwpj6U-2kFmY8-gb8B1FCjBXe3w8YSPTtmXs_BsDX63tTAurbK1iUtDbQrt3sg_IM5xKjCI8j-V3z3XNcr9XW1baKimtYLZXVKMNYUdh_bqEkO4anf8GeX9Lgj2h8lg5DVdBjxNAzH3Qk15KJQJWBZbRcM0pAhjwhFpcaaFwZAkyARDNyrlrGeY5hlLe8wKnoUZR_THee_BBqMsxuBvY284-Xpy_crjU1TxHq95USmNfdQvR2CDXn18Awn_x4MH0Fnkpbq6VBcX_wDe_iN42HiqpF-r1mNYs_kmdNpC5moTtoarIjkc2FiJ6gksponsHwwmyUeCUOg4Ksi0RJQkrg-oVpXLtCZ7CJ-GFDlxTZHxEvz5-SupabJwTaNKZ4bJgaPTJoMi_9HcEPw4qRPXiXtBJknrd9vZUzi9k4PfgvW8yO0zIEpTjMRSrSOhWUzTyPDM-jrIqEkp2rAuvG2PWpY1i4fE6McJRK4E0oU3TgrS0WLkLu_mm1pUlRxPT2Q_ougqo4ijLrxvBmXFfKa0asoYcCOOSevGyO1WmrIxDJVcqXEXdq4lfMumnt8-y2vojJLjI3k0nhy-gPuB6068zJDbhvX5bGFfoss0T181ekng_K6vwl_oryj_ |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3BbtQwEB2VVqJwQFCoWChgQRGnqNnYcRKkCm23u-1SiKruVuotdRyHS5WEzS5Vb_wDf8Vn8CXMbJwu5dBbz7EcyzN-M2PPvAHYDgzXAiM2R-RKOSJ1EQeFiZwMfQOpQ08FkmqHv8by8FR8PvPPVuB3WwtDaZUtJi6AOis13ZHvoJ2TPMAgyt3JbVrE8f7wU_XdoQ5S9NLattNQts1CtrugG7NFHkfm6hLDuXp3tI-yf-95w8Gkf-jYjgOO5l4wc3zNpR-ozBN5ZBT3U5-jSQuIVEsKHWQYnnh5INClSqXoZkLLXKRdYQKZ-7lETwDnvQdr9PiFILG2N4iPT65vfFyO6t6VDUcq55GLukZkNujhRzes4v-24SGsz4tKXV2qi4t_jN_wMTyyXivrNWr2BFZMsQHrbVFzvQGbg2XBHA60iFE_hfl4kvQO-vHkI0OzSHwVbFyhxWTUE1SrmrKu2R6a0oyVBaMGyXgg_vz8NWkos_CfmaoIktkBUWuzfln8sKcFP8ZNEjuj22Q2aX1wM30Gp3ey8ZuwWpSFeQ5MaY5RWap1GGgR8TTMZG5c7eU8SzniWQfetVudVA2jR4KREAkkWQqkA29JCglRZBSkbN_UvK6T0fgk6YUc3WYuorADH-ygvJxNlVa2pAEXQqxaN0ZutdJMLEjUyVKlO7B9LeFbFvXi9lnewH08EsmXUXz0Eh541Kh4kSy3Bauz6dy8Qu9plr62asng_K5Pwl-MwC0u |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NbtRADLbK9lA4UChULBQ0KpU4pdpmJjMJt-2qPyCxQmxWKqfRzGSmB6rsapOA4MQ78IY8CTZJaLuHinMcxYo99ufE_gxwoDx3Aiu2SARjImFHGAeFz6ICsYF0aWyUpNnhD1N5PhfvL5KLDdjvZ2Fu_L_nWI6jOYjvBUFwdg82ZYJ4ewCb8-nH8WfaGof5EeNIMmp5R9duuJVp1uPtA9hqyqX5_s1cXd1IKKfbMOlVaftIvhw2tT10P9ZYGu_W9RE87PAkG7cO8Bg2fLkDW_24cbUDuyfXo2wo2J3l6gk0s1yPzybT_C3DhEVMEmy2xFzGaFunMxX1Q7NjTHIFW5SMVhejq_7--StvyazwmYVZUrBkZ0R6zSaL8mvnx3hx2raXM_rOy_IeHfvVU5ifnuST86hbwhA5Hqs6ShyXiTJFLELmDU9swjHLK-IZk8KpAiu2OCiBKNNKcVQIJ4OwR8IrGZIgERztwqBclP4ZMOM42s86lyonMm7TQgY_cnHgheUYaYbwujeYXrZcGxprFHq3-vrdDmGfbKmJvKKk7phL01SVfjf7pMcpR0DLRZYO4U0nFBb1yjjTDRugIsR3dUtyr_cJ3R3fSiOoklxhxY46HfzzkzuUev5_Yi_gfkz7g__2sO3BoF41_iWCmtq-6rz6D02j8-0 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=ST_AGCNT%3A+Traffic+Speed+Forecasting+Based+on+Spatial%E2%80%93Temporal+Adaptive+Graph+Convolutional+Network+with+Transformer&rft.jtitle=Sustainability&rft.au=Cheng%2C+Rongjun&rft.au=Liu%2C+Mengxia&rft.au=Xu%2C+Yuanzi&rft.date=2025-03-01&rft.pub=MDPI+AG&rft.eissn=2071-1050&rft.volume=17&rft.issue=5&rft.spage=1829&rft_id=info:doi/10.3390%2Fsu17051829&rft.externalDBID=HAS_PDF_LINK |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2071-1050&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2071-1050&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2071-1050&client=summon |