ST_AGCNT: Traffic Speed Forecasting Based on Spatial–Temporal Adaptive Graph Convolutional Network with Transformer

Traffic speed prediction is difficult because of the complicated dynamic spatiotemporal correlations. Recent studies in spatiotemporal models have achieved impressive outcomes for traffic speed prediction. But many studies use graphs in graph convolutional networks to learn spatial features that are...

Full description

Saved in:
Bibliographic Details
Published inSustainability Vol. 17; no. 5; p. 1829
Main Authors Cheng, Rongjun, Liu, Mengxia, Xu, Yuanzi
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.03.2025
Subjects
Online AccessGet full text
ISSN2071-1050
2071-1050
DOI10.3390/su17051829

Cover

Abstract Traffic speed prediction is difficult because of the complicated dynamic spatiotemporal correlations. Recent studies in spatiotemporal models have achieved impressive outcomes for traffic speed prediction. But many studies use graphs in graph convolutional networks to learn spatial features that are often static. Additionally, effectively modeling long-range temporal features is crucial for prediction accuracy. In order to overcome these challenges, a Spatial–Temporal Adaptive Graph Convolutional Network with Transformer (ST_AGCNT) is designed in this paper. Specifically, an adaptive graph convolution network (AGCN) is designed to extract spatial dependency. An adaptive graph that fuses predefined matrices and learnable matrix is proposed to learn the correlations between nodes. The predefined matrices provide the model with richer prior information, while the learnable matrix can extract the dynamic nature of the nodes. And a temporal transformer (TT) is proposed to extract the long-range temporal dependency. In addition, to learn more information to achieve better results, different historical segments are modeled. Experiments conducted on a real-world traffic dataset confirm the effectiveness of the proposed model when compared to other baseline models. This model demonstrated excellent performance in prediction tasks across different time steps, effectively accomplishing traffic speed forecasting. It provides data support for improving traffic efficiency and reducing resource waste, contributing to the sustainable development of traffic management.
AbstractList Traffic speed prediction is difficult because of the complicated dynamic spatiotemporal correlations. Recent studies in spatiotemporal models have achieved impressive outcomes for traffic speed prediction. But many studies use graphs in graph convolutional networks to learn spatial features that are often static. Additionally, effectively modeling long-range temporal features is crucial for prediction accuracy. In order to overcome these challenges, a Spatial–Temporal Adaptive Graph Convolutional Network with Transformer (ST_AGCNT) is designed in this paper. Specifically, an adaptive graph convolution network (AGCN) is designed to extract spatial dependency. An adaptive graph that fuses predefined matrices and learnable matrix is proposed to learn the correlations between nodes. The predefined matrices provide the model with richer prior information, while the learnable matrix can extract the dynamic nature of the nodes. And a temporal transformer (TT) is proposed to extract the long-range temporal dependency. In addition, to learn more information to achieve better results, different historical segments are modeled. Experiments conducted on a real-world traffic dataset confirm the effectiveness of the proposed model when compared to other baseline models. This model demonstrated excellent performance in prediction tasks across different time steps, effectively accomplishing traffic speed forecasting. It provides data support for improving traffic efficiency and reducing resource waste, contributing to the sustainable development of traffic management.
Audience Academic
Author Liu, Mengxia
Cheng, Rongjun
Xu, Yuanzi
Author_xml – sequence: 1
  givenname: Rongjun
  surname: Cheng
  fullname: Cheng, Rongjun
– sequence: 2
  givenname: Mengxia
  surname: Liu
  fullname: Liu, Mengxia
– sequence: 3
  givenname: Yuanzi
  surname: Xu
  fullname: Xu, Yuanzi
BookMark eNp9kc1uEzEQgC1UJErphSdYiROgFP-tvcstjWhaqSoSWc7WxGunLht7sb0NvfEOvCFPUldBor105jCjmW9G8_MaHfjgDUJvCT5hrMWf0kQkrklD2xfokGJJZgTX-OCR_wodp3SDizBGWiIO0bTq1Hy5uOo-V10Ea52uVqMxfXUWotGQsvOb6hRSiQRfUpAdDH9__-nMdgwRhmrew5jdramWEcbrahH8bRim7IIvySuTdyH-qHYuXz_098mGuDXxDXppYUjm-J89Qt_PvnSL89nl1-XFYn4504zKPKs1E7WEnnLbGmD1umaUNZILJgTXsm9oQ63kZZG14KTnWli-JtxIYWsrqGRH6OO-7-RHuNvBMKgxui3EO0Wwejia-n-0Qr_b02MMPyeTsroJUyx7JMWIFExiKnGhTvbUBgajnLchR9BFe7N1unzEuhKfN4ywlvG2KQXvnxQUJptfeQNTSupi9e0p-2HP6hhSisY-N-89Vs2Y2Q
Cites_doi 10.5085/0898-5510-19.2.139
10.1016/j.engappai.2023.106044
10.1609/aaai.v35i12.17325
10.1016/j.knosys.2023.110995
10.1016/j.comcom.2022.08.008
10.1016/j.neucom.2018.12.016
10.1061/(ASCE)TE.1943-5436.0000816
10.1088/1742-6596/2203/1/012033
10.1109/BigData59044.2023.10386250
10.1016/j.knosys.2023.110591
10.24963/ijcai.2019/264
10.1609/aaai.v35i5.16542
10.1016/j.knosys.2024.111406
10.24963/ijcai.2018/505
10.1109/TIT.1967.1053964
10.3233/FAIA230446
10.1109/TKDE.2023.3284156
10.1007/s10994-014-5453-0
10.1016/j.simpat.2019.102025
10.1109/TITS.2020.3019497
10.1109/TITS.2024.3362145
10.1016/j.trc.2024.104695
10.1631/jzus.A2300026
10.1109/TKDE.2021.3056502
10.1109/MSP.2012.2235192
10.1109/TITS.2020.2983763
10.1016/S0968-090X(97)82903-8
10.1145/3394486.3403118
ContentType Journal Article
Copyright COPYRIGHT 2025 MDPI AG
2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2025 MDPI AG
– notice: 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
ISR
4U-
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ADTOC
UNPAY
DOI 10.3390/su17051829
DatabaseName CrossRef
Gale In Context: Science
University Readers
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One
ProQuest Central
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
Publicly Available Content Database
University Readers
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList CrossRef
Publicly Available Content Database

Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 2
  dbid: BENPR
  name: ProQuest Central (New)
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Economics
Environmental Sciences
EISSN 2071-1050
ExternalDocumentID 10.3390/su17051829
A831393498
10_3390_su17051829
GeographicLocations China
GeographicLocations_xml – name: China
GroupedDBID 29Q
2WC
2XV
4P2
5VS
7XC
8FE
8FH
A8Z
AAHBH
AAYXX
ACHQT
ADBBV
ADMLS
AENEX
AFKRA
AFMMW
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BENPR
CCPQU
CITATION
E3Z
ECGQY
ESTFP
FRS
GX1
IAO
IEP
ISR
ITC
KQ8
ML.
MODMG
M~E
OK1
P2P
PHGZM
PHGZT
PIMPY
PROAC
TR2
4U-
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ADTOC
C1A
IPNFZ
PUEGO
RIG
UNPAY
ID FETCH-LOGICAL-c327t-5c3657ad24f9ea35b532387463664c7d8282f74916b641d4c6f4b14e76f5f6273
IEDL.DBID BENPR
ISSN 2071-1050
IngestDate Sun Sep 07 10:48:13 EDT 2025
Mon Jun 30 12:11:26 EDT 2025
Mon Oct 20 16:54:29 EDT 2025
Thu Oct 16 15:39:30 EDT 2025
Thu Oct 16 04:25:51 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c327t-5c3657ad24f9ea35b532387463664c7d8282f74916b641d4c6f4b14e76f5f6273
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://www.proquest.com/docview/3176370270?pq-origsite=%requestingapplication%&accountid=15518
PQID 3176370270
PQPubID 2032327
ParticipantIDs unpaywall_primary_10_3390_su17051829
proquest_journals_3176370270
gale_infotracacademiconefile_A831393498
gale_incontextgauss_ISR_A831393498
crossref_primary_10_3390_su17051829
PublicationCentury 2000
PublicationDate 2025-03-01
PublicationDateYYYYMMDD 2025-03-01
PublicationDate_xml – month: 03
  year: 2025
  text: 2025-03-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Sustainability
PublicationYear 2025
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Guo (ref_39) 2021; 34
Dougherty (ref_4) 1996; 4
ref_36
ref_13
ref_34
ref_33
ref_31
Zhang (ref_16) 2022; 2203
Liu (ref_19) 2024; 25
ref_18
ref_17
Shuman (ref_37) 2013; 30
Liu (ref_24) 2024; 165
Huang (ref_11) 2020; 7
Lv (ref_28) 2020; 22
Cushing (ref_1) 2006; 19
Zheng (ref_32) 2023; 36
Guo (ref_15) 2020; 23
Qu (ref_30) 2023; 272
ref_25
Johansson (ref_6) 2014; 97
Ji (ref_3) 2023; 24
ref_22
ref_21
Emami (ref_5) 2019; 102
ref_20
Gao (ref_27) 2023; 280
Li (ref_38) 2017; 7
Wu (ref_35) 2021; 34
ref_29
Chen (ref_12) 2022; 194
ref_26
ref_9
Yang (ref_14) 2018; 332
Yu (ref_8) 2016; 142
Bao (ref_23) 2023; 121
Cover (ref_7) 1967; 13
Ahmed (ref_2) 1979; 722
Alhaek (ref_10) 2024; 286
References_xml – volume: 19
  start-page: 139
  year: 2006
  ident: ref_1
  article-title: Historical averages, units roots and future net discount rates: A comprehensive estimator
  publication-title: J. Forensic Econ.
  doi: 10.5085/0898-5510-19.2.139
– ident: ref_9
– volume: 121
  start-page: 106044
  year: 2023
  ident: ref_23
  article-title: Spatial–temporal complex graph convolution network for traffic flow prediction
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2023.106044
– ident: ref_34
  doi: 10.1609/aaai.v35i12.17325
– volume: 280
  start-page: 110995
  year: 2023
  ident: ref_27
  article-title: Dynamic spatiotemporal interactive graph neural network for multivariate time series forecasting
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2023.110995
– volume: 194
  start-page: 446
  year: 2022
  ident: ref_12
  article-title: Traffic flow prediction using multi-view graph convolution and masked attention mechanism
  publication-title: Comput. Commun.
  doi: 10.1016/j.comcom.2022.08.008
– volume: 332
  start-page: 320
  year: 2018
  ident: ref_14
  article-title: Traffic flow prediction using LSTM with feature enhancement
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2018.12.016
– ident: ref_26
– volume: 142
  start-page: 04016018
  year: 2016
  ident: ref_8
  article-title: k-Nearest neighbor model for multiple-time-step prediction of short-term traffic condition
  publication-title: J. Transp. Eng.
  doi: 10.1061/(ASCE)TE.1943-5436.0000816
– volume: 7
  start-page: 2355
  year: 2020
  ident: ref_11
  article-title: LSGCN: Long short-term traffic prediction with graph convolutional networks
  publication-title: IJCAI
– volume: 2203
  start-page: 012033
  year: 2022
  ident: ref_16
  article-title: Spatial-Temporal Semantic neural network for time series forecasting
  publication-title: J. Phys. Conf. Ser.
  doi: 10.1088/1742-6596/2203/1/012033
– ident: ref_18
  doi: 10.1109/BigData59044.2023.10386250
– volume: 272
  start-page: 110591
  year: 2023
  ident: ref_30
  article-title: ST-A-PGCL: Spatiotemporal adaptive periodical graph contrastive learning for traffic prediction under real scenarios
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2023.110591
– ident: ref_22
  doi: 10.24963/ijcai.2019/264
– ident: ref_31
  doi: 10.1609/aaai.v35i5.16542
– volume: 286
  start-page: 111406
  year: 2024
  ident: ref_10
  article-title: Learning spatial patterns and temporal dependencies for traffic accident severity prediction: A deep learning approach
  publication-title: Knowl. Based Syst.
  doi: 10.1016/j.knosys.2024.111406
– ident: ref_20
  doi: 10.24963/ijcai.2018/505
– ident: ref_21
– volume: 13
  start-page: 21
  year: 1967
  ident: ref_7
  article-title: Nearest neighbor pattern classification
  publication-title: IEEE Trans. Inf. Theory
  doi: 10.1109/TIT.1967.1053964
– ident: ref_13
  doi: 10.3233/FAIA230446
– volume: 7
  start-page: 107
  year: 2017
  ident: ref_38
  article-title: Building sparse models for traffic flow prediction: An empirical comparison between statistical heuristics and geometric heuristics for Bayesian network approaches
  publication-title: Transp. B Transp. Dyn.
– volume: 36
  start-page: 372
  year: 2023
  ident: ref_32
  article-title: Spatio-temporal joint graph convolutional networks for traffic forecasting
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/TKDE.2023.3284156
– volume: 97
  start-page: 155
  year: 2014
  ident: ref_6
  article-title: Regression conformal prediction with random forests
  publication-title: Mach. Learn.
  doi: 10.1007/s10994-014-5453-0
– ident: ref_29
– ident: ref_33
– volume: 102
  start-page: 102025
  year: 2019
  ident: ref_5
  article-title: Short-term traffic flow prediction based on faded memory Kalman Filter fusing data from connected vehicles and Bluetooth sensors
  publication-title: Simul. Model. Pract. Theory
  doi: 10.1016/j.simpat.2019.102025
– volume: 34
  start-page: 22419
  year: 2021
  ident: ref_35
  article-title: Autoformer: Decomposition transformers with auto-correlation for long-term series forecasting
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 23
  start-page: 1009
  year: 2020
  ident: ref_15
  article-title: Dynamic graph convolution network for traffic forecasting based on latent network of Laplace matrix estimation
  publication-title: IEEE Trans. Intell. Transp. Syst.
  doi: 10.1109/TITS.2020.3019497
– volume: 25
  start-page: 7645
  year: 2024
  ident: ref_19
  article-title: Spatial–Temporal Dynamic Graph Convolutional Network with Interactive Learning for Traffic Forecasting
  publication-title: IEEE Trans. Intell. Transp. Syst.
  doi: 10.1109/TITS.2024.3362145
– volume: 165
  start-page: 104695
  year: 2024
  ident: ref_24
  article-title: End-to-end heterogeneous graph neural networks for traffic assignment
  publication-title: Transp. Res. Part C Emerg. Technol.
  doi: 10.1016/j.trc.2024.104695
– volume: 24
  start-page: 828
  year: 2023
  ident: ref_3
  article-title: Bifurcation control of solid angle car-following model through a time-delay feedback method
  publication-title: J. Zhejiang Univ.-Sci. A
  doi: 10.1631/jzus.A2300026
– volume: 34
  start-page: 5415
  year: 2021
  ident: ref_39
  article-title: Learning dynamics and heterogeneity of spatial-temporal graph data for traffic forecasting
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/TKDE.2021.3056502
– volume: 30
  start-page: 83
  year: 2013
  ident: ref_37
  article-title: The emerging field of signal processing on graphs: Extending high-dimensional data analysis to networks and other irregular domains
  publication-title: IEEE Signal Process. Mag.
  doi: 10.1109/MSP.2012.2235192
– ident: ref_17
– volume: 722
  start-page: 1
  year: 1979
  ident: ref_2
  article-title: Analysis of freeway traffic time-series data by using Box-Jenkins techniques
  publication-title: Transp. Res. Rec. J. Transp. Res. Board
– ident: ref_25
  doi: 10.1016/j.trc.2024.104695
– volume: 22
  start-page: 3337
  year: 2020
  ident: ref_28
  article-title: Temporal multi-graph convolutional network for traffic flow prediction
  publication-title: IEEE Trans. Intell. Transp. Syst.
  doi: 10.1109/TITS.2020.2983763
– volume: 4
  start-page: 307
  year: 1996
  ident: ref_4
  article-title: Combining Kohonen maps with ARIMA time series models to forecast traffic flow
  publication-title: Transp. Res. Part C Emerg. Technol.
  doi: 10.1016/S0968-090X(97)82903-8
– ident: ref_36
  doi: 10.1145/3394486.3403118
SSID ssj0000331916
Score 2.3679898
Snippet Traffic speed prediction is difficult because of the complicated dynamic spatiotemporal correlations. Recent studies in spatiotemporal models have achieved...
SourceID unpaywall
proquest
gale
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
StartPage 1829
SubjectTerms Convolutional codes
Deep learning
Forecasts and trends
Graph theory
Neural networks
Speed
Speed limits
Statistical methods
Time series
Traffic flow
SummonAdditionalLinks – databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NbtRADLbK9lA4UChULBQ0KpU4pdpmJjMJt-2qPyCxQmxWKqfRzGSmB6rsapOA4MQ78IY8CTZJaLuHinMcxYo99ufE_gxwoDx3Aiu2SARjImFHGAeFz6ICsYF0aWyUpNnhD1N5PhfvL5KLDdjvZ2Fu_L_nWI6jOYjvBUFwdg82ZYJ4ewCb8-nH8WfaGof5EeNIMmp5R9duuJVp1uPtA9hqyqX5_s1cXd1IKKfbMOlVaftIvhw2tT10P9ZYGu_W9RE87PAkG7cO8Bg2fLkDW_24cbUDuyfXo2wo2J3l6gk0s1yPzybT_C3DhEVMEmy2xFzGaFunMxX1Q7NjTHIFW5SMVhejq_7--StvyazwmYVZUrBkZ0R6zSaL8mvnx3hx2raXM_rOy_IeHfvVU5ifnuST86hbwhA5Hqs6ShyXiTJFLELmDU9swjHLK-IZk8KpAiu2OCiBKNNKcVQIJ4OwR8IrGZIgERztwqBclP4ZMOM42s86lyonMm7TQgY_cnHgheUYaYbwujeYXrZcGxprFHq3-vrdDmGfbKmJvKKk7phL01SVfjf7pMcpR0DLRZYO4U0nFBb1yjjTDRugIsR3dUtyr_cJ3R3fSiOoklxhxY46HfzzkzuUev5_Yi_gfkz7g__2sO3BoF41_iWCmtq-6rz6D02j8-0
  priority: 102
  providerName: Unpaywall
Title ST_AGCNT: Traffic Speed Forecasting Based on Spatial–Temporal Adaptive Graph Convolutional Network with Transformer
URI https://www.proquest.com/docview/3176370270
https://doi.org/10.3390/su17051829
UnpaywallVersion publishedVersion
Volume 17
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2071-1050
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000331916
  issn: 2071-1050
  databaseCode: KQ8
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVEBS
  databaseName: EBSCOhost Food Science Source
  customDbUrl:
  eissn: 2071-1050
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331916
  issn: 2071-1050
  databaseCode: A8Z
  dateStart: 20091201
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/login.aspx?authtype=ip,uid&profile=ehost&defaultdb=fsr
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 2071-1050
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331916
  issn: 2071-1050
  databaseCode: ADMLS
  dateStart: 20091201
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 2071-1050
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000331916
  issn: 2071-1050
  databaseCode: GX1
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2071-1050
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000331916
  issn: 2071-1050
  databaseCode: M~E
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: ProQuest Central (New)
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 2071-1050
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000331916
  issn: 2071-1050
  databaseCode: BENPR
  dateStart: 20090301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Pb9MwFH_ausPggGAwrTAmCyZximhjx06QEOqqrgOJaFpTqZwix064TElo2k3c-A58Qz4J7zXOyjjsGMVKLP-e3x_7vd8DOFU5NwIjNk8UWnsiG6AeFHnkWfQNpAl9rSTVDn-N5cVcfFkEix2Iu1oYSqvsdOJGUdvK0Bn5e7RzkisMogaf6h8edY2i29WuhYZ2rRXsxw3F2C7s-cSM1YO9s0l8eXV36jLgKHJD2fKUcoz3EW8ilEEvO7pnmf7Xz49hf13W-uetvr7-xwCdP4UnznNkoxbqZ7CTlwew3xUWNwdwONkWreFAt2ub57CeJeloOo6TDwxNE3FGsFmNVotRX06jG8p8ZmdoziyrSkZNilEo__z6nbS0VfhPq2tSi2xK9NZsXJU3TmLxZdwmkjM60WVJ5wfnyxcwP58k4wvPtVvwDPfVygsMl4HS1hdFlGseZAFHe66IUUwKoyzGZn6hBC5fJsXQCiMLkQ1FrmQRFBLdoEPolVWZHwHThmNklBkTKiMinoVWFvnA-AW3GUed0oe33VKndcuqkWI0QoCkW0D68IZQSImmoqQ8mO963TTp59lVOgo5uq5cRGEf3rlBRbVaaqNdWQFOhJit7o087tBM3UZt0q1Y9eH0DuEHJvXy4a-8gkc-dQjeZKkdQ2-1XOev0W1ZZSdOFk9gd7oY4tM8vhx9-wskNPDV
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3BbtQwEB2V9rBwQFCoWChgQRGniGzs2AlShbbLtru0XaFuKvXmOrbDpUrCZpeqN_6B_-Fj-BLGm6RLOfTWcyzb8oznzTgzbwB2hKWaYcTmsUwpj6U-2kFmY8-gb8B1FCjBXe3w8YSPTtmXs_BsDX63tTAurbK1iUtDbQrt3sg_IM5xKjCI8j-V3z3XNcr9XW1baKimtYLZXVKMNYUdh_bqEkO4anf8GeX9Lgj2h8lg5DVdBjxNAzH3Qk15KJQJWBZbRcM0pAhjwhFpcaaFwZAkyARDNyrlrGeY5hlLe8wKnoUZR_THee_BBqMsxuBvY284-Xpy_crjU1TxHq95USmNfdQvR2CDXn18Awn_x4MH0Fnkpbq6VBcX_wDe_iN42HiqpF-r1mNYs_kmdNpC5moTtoarIjkc2FiJ6gksponsHwwmyUeCUOg4Ksi0RJQkrg-oVpXLtCZ7CJ-GFDlxTZHxEvz5-SupabJwTaNKZ4bJgaPTJoMi_9HcEPw4qRPXiXtBJknrd9vZUzi9k4PfgvW8yO0zIEpTjMRSrSOhWUzTyPDM-jrIqEkp2rAuvG2PWpY1i4fE6McJRK4E0oU3TgrS0WLkLu_mm1pUlRxPT2Q_ougqo4ijLrxvBmXFfKa0asoYcCOOSevGyO1WmrIxDJVcqXEXdq4lfMumnt8-y2vojJLjI3k0nhy-gPuB6068zJDbhvX5bGFfoss0T181ekng_K6vwl_oryj_
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3BbtQwEB2VVqJwQFCoWChgQRGnqNnYcRKkCm23u-1SiKruVuotdRyHS5WEzS5Vb_wDf8Vn8CXMbJwu5dBbz7EcyzN-M2PPvAHYDgzXAiM2R-RKOSJ1EQeFiZwMfQOpQ08FkmqHv8by8FR8PvPPVuB3WwtDaZUtJi6AOis13ZHvoJ2TPMAgyt3JbVrE8f7wU_XdoQ5S9NLattNQts1CtrugG7NFHkfm6hLDuXp3tI-yf-95w8Gkf-jYjgOO5l4wc3zNpR-ozBN5ZBT3U5-jSQuIVEsKHWQYnnh5INClSqXoZkLLXKRdYQKZ-7lETwDnvQdr9PiFILG2N4iPT65vfFyO6t6VDUcq55GLukZkNujhRzes4v-24SGsz4tKXV2qi4t_jN_wMTyyXivrNWr2BFZMsQHrbVFzvQGbg2XBHA60iFE_hfl4kvQO-vHkI0OzSHwVbFyhxWTUE1SrmrKu2R6a0oyVBaMGyXgg_vz8NWkos_CfmaoIktkBUWuzfln8sKcFP8ZNEjuj22Q2aX1wM30Gp3ey8ZuwWpSFeQ5MaY5RWap1GGgR8TTMZG5c7eU8SzniWQfetVudVA2jR4KREAkkWQqkA29JCglRZBSkbN_UvK6T0fgk6YUc3WYuorADH-ygvJxNlVa2pAEXQqxaN0ZutdJMLEjUyVKlO7B9LeFbFvXi9lnewH08EsmXUXz0Eh541Kh4kSy3Bauz6dy8Qu9plr62asng_K5Pwl-MwC0u
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NbtRADLbK9lA4UChULBQ0KpU4pdpmJjMJt-2qPyCxQmxWKqfRzGSmB6rsapOA4MQ78IY8CTZJaLuHinMcxYo99ufE_gxwoDx3Aiu2SARjImFHGAeFz6ICsYF0aWyUpNnhD1N5PhfvL5KLDdjvZ2Fu_L_nWI6jOYjvBUFwdg82ZYJ4ewCb8-nH8WfaGof5EeNIMmp5R9duuJVp1uPtA9hqyqX5_s1cXd1IKKfbMOlVaftIvhw2tT10P9ZYGu_W9RE87PAkG7cO8Bg2fLkDW_24cbUDuyfXo2wo2J3l6gk0s1yPzybT_C3DhEVMEmy2xFzGaFunMxX1Q7NjTHIFW5SMVhejq_7--StvyazwmYVZUrBkZ0R6zSaL8mvnx3hx2raXM_rOy_IeHfvVU5ifnuST86hbwhA5Hqs6ShyXiTJFLELmDU9swjHLK-IZk8KpAiu2OCiBKNNKcVQIJ4OwR8IrGZIgERztwqBclP4ZMOM42s86lyonMm7TQgY_cnHgheUYaYbwujeYXrZcGxprFHq3-vrdDmGfbKmJvKKk7phL01SVfjf7pMcpR0DLRZYO4U0nFBb1yjjTDRugIsR3dUtyr_cJ3R3fSiOoklxhxY46HfzzkzuUev5_Yi_gfkz7g__2sO3BoF41_iWCmtq-6rz6D02j8-0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=ST_AGCNT%3A+Traffic+Speed+Forecasting+Based+on+Spatial%E2%80%93Temporal+Adaptive+Graph+Convolutional+Network+with+Transformer&rft.jtitle=Sustainability&rft.au=Cheng%2C+Rongjun&rft.au=Liu%2C+Mengxia&rft.au=Xu%2C+Yuanzi&rft.date=2025-03-01&rft.pub=MDPI+AG&rft.eissn=2071-1050&rft.volume=17&rft.issue=5&rft.spage=1829&rft_id=info:doi/10.3390%2Fsu17051829&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2071-1050&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2071-1050&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2071-1050&client=summon