As If by Magic: Self-Supervised Training of Deep Despeckling Networks With MERLIN
Speckle fluctuations seriously limit the interpretability of synthetic aperture radar (SAR) images. Speckle reduction has thus been the subject of numerous works spanning at least four decades. Techniques based on deep neural networks have recently achieved a new level of performance in terms of SAR...
Saved in:
| Published in | IEEE transactions on geoscience and remote sensing Vol. 60; pp. 1 - 13 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
New York
IEEE
2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Institute of Electrical and Electronics Engineers |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0196-2892 1558-0644 |
| DOI | 10.1109/TGRS.2021.3128621 |
Cover
| Abstract | Speckle fluctuations seriously limit the interpretability of synthetic aperture radar (SAR) images. Speckle reduction has thus been the subject of numerous works spanning at least four decades. Techniques based on deep neural networks have recently achieved a new level of performance in terms of SAR image restoration quality. Beyond the design of suitable network architectures or the selection of adequate loss functions, the construction of training sets is of uttermost importance. So far, most approaches have considered a supervised training strategy: the networks are trained to produce outputs as close as possible to speckle-free reference images. Speckle-free images are generally not available, which requires resorting to natural or optical images or the selection of stable areas in long time series to circumvent the lack of ground truth. Self-supervision, on the other hand, avoids the use of speckle-free images. We introduce a self-supervised strategy based on the separation of the real and imaginary parts of single-look complex (SLC) SAR images, called coMplex sElf-supeRvised despeckLINg (MERLIN), and show that it offers a straightforward way to train all kinds of deep despeckling networks. Networks trained with MERLIN take into account the spatial correlations due to the SAR transfer function specific to a given sensor and imaging mode. By requiring only a single image, and possibly exploiting large archives, MERLIN opens the door to hassle-free as well as large-scale training of despeckling networks. The code of the trained models is made freely available at https://gitlab.telecom-paris.fr/RING/MERLIN . |
|---|---|
| AbstractList | Speckle fluctuations seriously limit the interpretability of synthetic aperture radar (SAR) images. Speckle reduction has thus been the subject of numerous works spanning at least four decades. Techniques based on deep neural networks have recently achieved a new level of performance in terms of SAR image restoration quality. Beyond the design of suitable network architectures or the selection of adequate loss functions, the construction of training sets is of uttermost importance. So far, most approaches have considered a supervised training strategy: the networks are trained to produce outputs as close as possible to speckle-free reference images. Speckle-free images are generally not available, which requires resorting to natural or optical images or the selection of stable areas in long time series to circumvent the lack of ground truth. Self-supervision, on the other hand, avoids the use of speckle-free images. We introduce a self-supervised strategy based on the separation of the real and imaginary parts of single-look complex (SLC) SAR images, called coMplex sElf-supeRvised despeckLINg (MERLIN), and show that it offers a straightforward way to train all kinds of deep despeckling networks. Networks trained with MERLIN take into account the spatial correlations due to the SAR transfer function specific to a given sensor and imaging mode. By requiring only a single image, and possibly exploiting large archives, MERLIN opens the door to hassle-free as well as large-scale training of despeckling networks. The code of the trained models is made freely available at https://gitlab.telecom-paris.fr/RING/MERLIN . |
| Author | Dalsasso, Emanuele Denis, Loic Tupin, Florence |
| Author_xml | – sequence: 1 givenname: Emanuele orcidid: 0000-0001-7170-9015 surname: Dalsasso fullname: Dalsasso, Emanuele email: emanuele.dalsasso@telecom-paris.fr organization: Information Processing and Communications Laboratory (LTCI), Télécom Paris, Institut Polytechnique de Paris, Palaiseau, France – sequence: 2 givenname: Loic orcidid: 0000-0001-9216-8318 surname: Denis fullname: Denis, Loic email: loic.denis@univ-st-etienne.fr organization: Laboratoire Hubert Curien UMR 5516, Centre National de la Recherche Scientifique (CNRS), Institut d Optique Graduate School, Univ Lyon, Université Jean Monnet (UJM)-Saint-Etienne, Saint-Etienne, France – sequence: 3 givenname: Florence orcidid: 0000-0002-3110-8183 surname: Tupin fullname: Tupin, Florence email: florence.tupin@telecom-paris.fr organization: Information Processing and Communications Laboratory (LTCI), Télécom Paris, Institut Polytechnique de Paris, Palaiseau, France |
| BackLink | https://ujm.hal.science/ujm-03270455$$DView record in HAL |
| BookMark | eNp9kM1OwzAQhC0EEqXwAIiLJU4cUtZ27CTcKv5aqYCgRRwtJ12DS0iCnYJ4e1K1cODAZVdazcyOvj2yXdUVEnLIYMAYZKez64fpgANnA8F4qjjbIj0mZRqBiuNt0gOWqYinGd8leyEsAFgsWdIj98NAx5bmX_TGPLvijE6xtNF02aD_cAHndOaNq1z1TGtLLxCbboQGi9dydbvF9rP2r4E-ufaF3lw-TMa3-2THmjLgwWb3yePV5ex8FE3ursfnw0lUCJ60kcwtSxMByEVuE0i4hTRWKCCXczNXAlkWq8Ly3BbCFJjxHKQUiQQpMhMzK_rkZJ37YkrdePdm_JeujdOj4UQvF28auj8QS_nBO-3xWtv4-n2JodWLeumrrp7mSoDIQHXhfZKsVYWvQ_BodeFa07q6ajsIpWagV6z1irVesdYb1p2T_XH-FPrPc7T2OET81WeKJSpOxTcXA4jj |
| CODEN | IGRSD2 |
| CitedBy_id | crossref_primary_10_1016_j_isprsjprs_2025_01_030 crossref_primary_10_1109_TGRS_2024_3397325 crossref_primary_10_1109_JSTARS_2022_3201480 crossref_primary_10_1109_JSTARS_2023_3327180 crossref_primary_10_1109_TGRS_2024_3432193 crossref_primary_10_1109_TGRS_2025_3541013 crossref_primary_10_1109_TGRS_2023_3314857 crossref_primary_10_1109_TGRS_2024_3501314 crossref_primary_10_1109_JSTARS_2024_3479229 crossref_primary_10_1007_s41064_022_00226_8 crossref_primary_10_1109_TGRS_2022_3233892 crossref_primary_10_1007_s10851_022_01067_1 crossref_primary_10_1364_OE_492221 crossref_primary_10_1109_LGRS_2022_3146370 crossref_primary_10_1109_LGRS_2022_3212078 crossref_primary_10_5194_tc_18_3933_2024 crossref_primary_10_1007_s00371_023_03101_8 crossref_primary_10_1017_eds_2024_53 crossref_primary_10_3390_rs15041029 crossref_primary_10_1080_07038992_2023_2257323 crossref_primary_10_1109_TGRS_2024_3524208 crossref_primary_10_3390_electronics13030490 crossref_primary_10_1109_LGRS_2024_3352544 crossref_primary_10_1007_s11042_023_17159_y crossref_primary_10_1016_j_cviu_2024_103940 crossref_primary_10_1016_j_sigpro_2025_109967 crossref_primary_10_1109_TGRS_2024_3397815 crossref_primary_10_1109_TGRS_2024_3432180 crossref_primary_10_1016_j_dt_2023_12_007 crossref_primary_10_1016_j_isprsjprs_2025_01_008 crossref_primary_10_1007_s42979_024_03274_6 crossref_primary_10_1016_j_isprsjprs_2024_12_016 crossref_primary_10_1109_TGRS_2025_3531957 crossref_primary_10_1016_j_neucom_2023_01_081 crossref_primary_10_1016_j_sigpro_2023_109040 crossref_primary_10_1109_JSEN_2023_3317060 crossref_primary_10_1016_j_isprsjprs_2024_08_018 crossref_primary_10_1109_OJSP_2022_3229618 crossref_primary_10_1117_1_JRS_17_016502 crossref_primary_10_1016_j_isprsjprs_2024_11_003 crossref_primary_10_1016_j_patrec_2025_02_021 crossref_primary_10_1109_LGRS_2023_3345137 crossref_primary_10_1109_LGRS_2024_3387994 |
| Cites_doi | 10.1109/JSTARS.2018.2790987 10.1109/MGRS.2020.3046356 10.1109/IGARSS47720.2021.9555039 10.1049/SBRA509E_ch8 10.1109/LGRS.2013.2271650 10.3390/rs11131532 10.1109/TIP.2010.2045029 10.1007/3-540-44935-3_21 10.1109/JSTARS.2021.3071864 10.1109/IGARSS.2019.8900596 10.1109/JSTARS.2016.2555579 10.1109/TGRS.2014.2352555 10.1109/TGRS.2013.2246838 10.1109/LGRS.2019.2957240 10.1109/TGRS.2010.2076376 10.1007/978-3-319-24574-4_28 10.1109/TIP.2009.2019302 10.1109/TGRS.2010.2087763 10.1109/IGARSS.2017.8128234 10.1109/TGRS.2002.802473 10.1007/978-3-642-02256-2_24 10.1109/MGRS.2020.3004508 10.1109/IGARSS39084.2020.9324183 10.1109/TGRS.2005.864142 10.1109/MSP.2014.2311305 10.1109/TGRS.2011.2161586 10.1016/0734-189X(83)90047-6 10.1007/s10851-009-0179-5 10.1109/CAMSAP.2017.8313133 10.1109/JSTARS.2017.2747118 10.1016/j.patcog.2013.04.001 10.1137/060671814 10.1109/LSP.2017.2758203 10.1137/040616024 10.3390/rs12061006 10.1109/TIP.2009.2029593 10.3390/rs12162636 10.23919/EURAD.2017.8249179 10.1109/36.62623 10.3390/rs10020196 10.1109/TIP.2007.901238 10.1109/TGRS.2021.3065461 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 Distributed under a Creative Commons Attribution 4.0 International License |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 – notice: Distributed under a Creative Commons Attribution 4.0 International License |
| DBID | 97E RIA RIE AAYXX CITATION 7UA 8FD C1K F1W FR3 H8D H96 KR7 L.G L7M 1XC VOOES |
| DOI | 10.1109/TGRS.2021.3128621 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Water Resources Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Advanced Technologies Database with Aerospace Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) |
| DatabaseTitle | CrossRef Aerospace Database Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Technology Research Database ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Water Resources Abstracts Environmental Sciences and Pollution Management |
| DatabaseTitleList | Aerospace Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Physics |
| EISSN | 1558-0644 |
| EndPage | 13 |
| ExternalDocumentID | oai:HAL:ujm-03270455v2 10_1109_TGRS_2021_3128621 9617648 |
| Genre | orig-research |
| GroupedDBID | -~X 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT AENEX AETIX AFRAH AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ H~9 IBMZZ ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS RXW TAE TN5 VH1 Y6R AAYXX CITATION 7UA 8FD C1K F1W FR3 H8D H96 KR7 L.G L7M 1XC VOOES |
| ID | FETCH-LOGICAL-c327t-5bf18730e23bf7072f0846e30b5dad63e1946cf2bfc3ace92b0553750539a41f3 |
| IEDL.DBID | RIE |
| ISSN | 0196-2892 |
| IngestDate | Tue Oct 14 20:48:15 EDT 2025 Mon Jun 30 08:21:32 EDT 2025 Wed Oct 01 02:20:11 EDT 2025 Thu Apr 24 23:01:41 EDT 2025 Wed Aug 27 02:49:52 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c327t-5bf18730e23bf7072f0846e30b5dad63e1946cf2bfc3ace92b0553750539a41f3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-7170-9015 0000-0002-3110-8183 0000-0001-9216-8318 |
| OpenAccessLink | https://ujm.hal.science/ujm-03270455 |
| PQID | 2630390655 |
| PQPubID | 85465 |
| PageCount | 13 |
| ParticipantIDs | crossref_citationtrail_10_1109_TGRS_2021_3128621 crossref_primary_10_1109_TGRS_2021_3128621 hal_primary_oai_HAL_ujm_03270455v2 ieee_primary_9617648 proquest_journals_2630390655 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 20220000 2022-00-00 20220101 2022 |
| PublicationDateYYYYMMDD | 2022-01-01 |
| PublicationDate_xml | – year: 2022 text: 20220000 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE transactions on geoscience and remote sensing |
| PublicationTitleAbbrev | TGRS |
| PublicationYear | 2022 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Institute of Electrical and Electronics Engineers |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) – name: Institute of Electrical and Electronics Engineers |
| References | ref13 ref12 ref15 ref14 ref11 ref10 ref17 ref16 ref19 ref18 ref50 Xie (ref41) 2020 ref46 ref48 ref47 ref44 ref49 ref8 ref7 ref9 Lehtinen (ref42) ref4 Laine (ref39) ref3 ref6 ref5 Dalsasso (ref33) ref35 ref34 ref37 ref36 ref31 ref30 ref32 ref1 ref38 ref24 ref23 ref26 ref25 ref20 ref22 ref21 Goodman (ref43) 2007 ref28 ref27 ref29 Miranda (ref51) 2014 Zhang (ref45) 2019 Fracastoro (ref2) 2020 Lee (ref40) 2020 |
| References_xml | – ident: ref32 doi: 10.1109/JSTARS.2018.2790987 – ident: ref3 doi: 10.1109/MGRS.2020.3046356 – ident: ref4 doi: 10.1109/IGARSS47720.2021.9555039 – ident: ref47 doi: 10.1049/SBRA509E_ch8 – ident: ref21 doi: 10.1109/LGRS.2013.2271650 – ident: ref29 doi: 10.3390/rs11131532 – issue: 1 year: 2014 ident: ref51 article-title: Definition of the TOPS SLC deramping function for products generated by the S-1 IPF – ident: ref9 doi: 10.1109/TIP.2010.2045029 – ident: ref11 doi: 10.1007/3-540-44935-3_21 – ident: ref36 doi: 10.1109/JSTARS.2021.3071864 – ident: ref18 doi: 10.1109/IGARSS.2019.8900596 – start-page: 6970 volume-title: Proc. Adv. Neural Inf. Process. Syst. ident: ref39 article-title: High-quality self-supervised deep image denoising – ident: ref12 doi: 10.1109/JSTARS.2016.2555579 – ident: ref25 doi: 10.1109/TGRS.2014.2352555 – ident: ref31 doi: 10.1109/TGRS.2013.2246838 – ident: ref49 doi: 10.1109/LGRS.2019.2957240 – ident: ref22 doi: 10.1109/TGRS.2010.2076376 – ident: ref44 doi: 10.1007/978-3-319-24574-4_28 – ident: ref8 doi: 10.1109/TIP.2009.2019302 – ident: ref23 doi: 10.1109/TGRS.2010.2087763 – ident: ref34 doi: 10.1109/IGARSS.2017.8128234 – ident: ref13 doi: 10.1109/TGRS.2002.802473 – ident: ref14 doi: 10.1007/978-3-642-02256-2_24 – ident: ref50 doi: 10.1109/MGRS.2020.3004508 – ident: ref37 doi: 10.1109/IGARSS39084.2020.9324183 – ident: ref5 doi: 10.1109/TGRS.2005.864142 – start-page: 2965 volume-title: Proc. Int. Conf. Mach. Learn. ident: ref42 article-title: Noise2Noise: Learning image restoration without clean data – ident: ref17 doi: 10.1109/MSP.2014.2311305 – ident: ref20 doi: 10.1109/TGRS.2011.2161586 – volume-title: arXiv:2010.11971 year: 2020 ident: ref41 article-title: Noise2Same: Optimizing a self-supervised bound for image denoising – volume-title: arXiv:1905.11881 year: 2019 ident: ref45 article-title: Why gradient clipping accelerates training: A theoretical justification for adaptivity – ident: ref1 doi: 10.1016/0734-189X(83)90047-6 – ident: ref10 doi: 10.1007/s10851-009-0179-5 – ident: ref27 doi: 10.1109/CAMSAP.2017.8313133 – ident: ref48 doi: 10.1109/JSTARS.2017.2747118 – ident: ref24 doi: 10.1016/j.patcog.2013.04.001 – ident: ref7 doi: 10.1137/060671814 – start-page: 1233 volume-title: Proc. 13th Eur. Conf. Synth. Aperture Radar (EUSAR) ident: ref33 article-title: How to handle spatial correlations in SAR despeckling? Resampling strategies and deep learning approaches – ident: ref26 doi: 10.1109/LSP.2017.2758203 – ident: ref15 doi: 10.1137/040616024 – ident: ref35 doi: 10.3390/rs12061006 – ident: ref19 doi: 10.1109/TIP.2009.2029593 – ident: ref30 doi: 10.3390/rs12162636 – volume-title: arXiv:2012.03623 year: 2020 ident: ref40 article-title: Noise2Kernel: Adaptive self-supervised blind denoising using a dilated convolutional kernel architecture – volume-title: Speckle Phenomena in Optics: Theory and Applications year: 2007 ident: ref43 – ident: ref46 doi: 10.23919/EURAD.2017.8249179 – ident: ref6 doi: 10.1109/36.62623 – ident: ref28 doi: 10.3390/rs10020196 – ident: ref16 doi: 10.1109/TIP.2007.901238 – volume-title: arXiv:2012.05508 year: 2020 ident: ref2 article-title: Deep learning methods for synthetic aperture radar image despeckling: An overview of trends and perspectives – ident: ref38 doi: 10.1109/TGRS.2021.3065461 |
| SSID | ssj0014517 |
| Score | 2.6161852 |
| Snippet | Speckle fluctuations seriously limit the interpretability of synthetic aperture radar (SAR) images. Speckle reduction has thus been the subject of numerous... |
| SourceID | hal proquest crossref ieee |
| SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1 |
| SubjectTerms | Archives Artificial neural networks Computer architecture Deep learning Engineering Sciences image despeckling Image quality Image restoration Neural networks Radar imaging Radar polarimetry Restoration SAR (radar) self-supervised training Signal and Image processing Speckle Synthetic aperture radar synthetic aperture radar (SAR) Training Transfer functions |
| Title | As If by Magic: Self-Supervised Training of Deep Despeckling Networks With MERLIN |
| URI | https://ieeexplore.ieee.org/document/9617648 https://www.proquest.com/docview/2630390655 https://ujm.hal.science/ujm-03270455 |
| Volume | 60 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1558-0644 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014517 issn: 0196-2892 databaseCode: RIE dateStart: 19800101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwED-tk5DgAcYGWmFDFuIJkc6fccxbNRgdopWgndhblDg2g21tRRIk-Ot3TtKILyFeIj_YkqPf-e539n0APLMF17QQInJJkkUyUwaPFNdRwWJaaKUdEyEbeTqLJ2fy7bk634IXfS6Mc64JPnOjMGze8ouVrcNV2ZFBcxvLZAADncRtrlb_YiAV61Kj4widCN69YDJqjhZvPszRE-QMHVSODJ79YoMGFyECsmmt8oc-bozMyT2YbrbXxpZcjuoqH9kfv1Vu_N_978Ddjm2ScSse92HLLXfhzk81CHfhVhMDass9eD8uyakn-XcyzVAfviRzd-Wjeb0O6qR0BVl07STIypNXzq3xExI1Q8_3T2TWxpOX5OPn6oJMkSSfzh7A2cnrxfEk6jouRFZwXUUq9yzBM--4yL2mmnuK_MQJmqsiK2LhmJGx9Tz3VmTWGZ5TpQSSDiVMJpkXD2F7uVq6fSAWNakWzOVxJqX0KvHG2ESaAu0hsko9BLrBILVdOfLQFeMqbdwSatIAWxpgSzvYhvC8X7Jua3H8a_JTBLafF6poT8bv0vrLdUrxX5HJqm98CHsBpX5WB9AQDjZykHZHukx5jNbeIGNTj_6-6jHc5iE3ormfOYDt6mvtDpGxVPmTRlRvAJkZ4kI |
| linkProvider | IEEE |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB61RQg48GhBLBSwECdEtn4mMbcVULbQrAS7Fb1ZiWNToOyuSIIEv55xko14CXGJcrClOJ89843nBfDIljyhpRCRS9M8krnSeKR4EpUspmWiEsdEyEbOZvH0RL46Vadb8GTIhXHOtcFnbhxeW19-ubJNuCo70KhuY5luwwUlpVRdttbgM5CK9cnRcYRmBO99mIzqg8XLt3O0BTlDE5Ujh2e_aKHtsxAD2TZX-UMit2rm8Bpkmw_soks-jZu6GNvvv9Vu_N8VXIerPd8kk26D3IAtt9yFKz9VIdyFi20UqK324M2kIkeeFN9IlqNEfErm7txH82YdBErlSrLoG0qQlSfPnVvjI6Rqhq7v78msiyivyLsP9RnJkCYfzW7CyeGLxbNp1PdciKzgSR2pwrMUT73jovAJTbinyFCcoIUq8zIWjmkZW88Lb0VuneYFVUog7VBC55J5cQt2lquluw3EoixNBHNFnCNaXqVea5tKXaJGRF6ZjIBuMDC2L0ge-mKcm9YwodoE2EyAzfSwjeDxMGXdVeP41-CHCOwwLtTRnk6OTfPxs6G4VuSy6isfwV5AaRjVAzSC_c0-MP2hrgyPUd9r5Gzqzt9nPYBL00V2bPD3vr4Ll3nIlGhva_Zhp_7SuHvIX-rifrttfwCeR-WP |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=As+If+by+Magic%3A+Self-Supervised+Training+of+Deep+Despeckling+Networks+With+MERLIN&rft.jtitle=IEEE+transactions+on+geoscience+and+remote+sensing&rft.au=Dalsasso%2C+Emanuele&rft.au=Denis%2C+Loic&rft.au=Tupin%2C+Florence&rft.date=2022&rft.pub=IEEE&rft.issn=0196-2892&rft.volume=60&rft.spage=1&rft.epage=13&rft_id=info:doi/10.1109%2FTGRS.2021.3128621&rft.externalDocID=9617648 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0196-2892&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0196-2892&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0196-2892&client=summon |