As If by Magic: Self-Supervised Training of Deep Despeckling Networks With MERLIN

Speckle fluctuations seriously limit the interpretability of synthetic aperture radar (SAR) images. Speckle reduction has thus been the subject of numerous works spanning at least four decades. Techniques based on deep neural networks have recently achieved a new level of performance in terms of SAR...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on geoscience and remote sensing Vol. 60; pp. 1 - 13
Main Authors Dalsasso, Emanuele, Denis, Loic, Tupin, Florence
Format Journal Article
LanguageEnglish
Published New York IEEE 2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Institute of Electrical and Electronics Engineers
Subjects
Online AccessGet full text
ISSN0196-2892
1558-0644
DOI10.1109/TGRS.2021.3128621

Cover

Abstract Speckle fluctuations seriously limit the interpretability of synthetic aperture radar (SAR) images. Speckle reduction has thus been the subject of numerous works spanning at least four decades. Techniques based on deep neural networks have recently achieved a new level of performance in terms of SAR image restoration quality. Beyond the design of suitable network architectures or the selection of adequate loss functions, the construction of training sets is of uttermost importance. So far, most approaches have considered a supervised training strategy: the networks are trained to produce outputs as close as possible to speckle-free reference images. Speckle-free images are generally not available, which requires resorting to natural or optical images or the selection of stable areas in long time series to circumvent the lack of ground truth. Self-supervision, on the other hand, avoids the use of speckle-free images. We introduce a self-supervised strategy based on the separation of the real and imaginary parts of single-look complex (SLC) SAR images, called coMplex sElf-supeRvised despeckLINg (MERLIN), and show that it offers a straightforward way to train all kinds of deep despeckling networks. Networks trained with MERLIN take into account the spatial correlations due to the SAR transfer function specific to a given sensor and imaging mode. By requiring only a single image, and possibly exploiting large archives, MERLIN opens the door to hassle-free as well as large-scale training of despeckling networks. The code of the trained models is made freely available at https://gitlab.telecom-paris.fr/RING/MERLIN .
AbstractList Speckle fluctuations seriously limit the interpretability of synthetic aperture radar (SAR) images. Speckle reduction has thus been the subject of numerous works spanning at least four decades. Techniques based on deep neural networks have recently achieved a new level of performance in terms of SAR image restoration quality. Beyond the design of suitable network architectures or the selection of adequate loss functions, the construction of training sets is of uttermost importance. So far, most approaches have considered a supervised training strategy: the networks are trained to produce outputs as close as possible to speckle-free reference images. Speckle-free images are generally not available, which requires resorting to natural or optical images or the selection of stable areas in long time series to circumvent the lack of ground truth. Self-supervision, on the other hand, avoids the use of speckle-free images. We introduce a self-supervised strategy based on the separation of the real and imaginary parts of single-look complex (SLC) SAR images, called coMplex sElf-supeRvised despeckLINg (MERLIN), and show that it offers a straightforward way to train all kinds of deep despeckling networks. Networks trained with MERLIN take into account the spatial correlations due to the SAR transfer function specific to a given sensor and imaging mode. By requiring only a single image, and possibly exploiting large archives, MERLIN opens the door to hassle-free as well as large-scale training of despeckling networks. The code of the trained models is made freely available at https://gitlab.telecom-paris.fr/RING/MERLIN .
Author Dalsasso, Emanuele
Denis, Loic
Tupin, Florence
Author_xml – sequence: 1
  givenname: Emanuele
  orcidid: 0000-0001-7170-9015
  surname: Dalsasso
  fullname: Dalsasso, Emanuele
  email: emanuele.dalsasso@telecom-paris.fr
  organization: Information Processing and Communications Laboratory (LTCI), Télécom Paris, Institut Polytechnique de Paris, Palaiseau, France
– sequence: 2
  givenname: Loic
  orcidid: 0000-0001-9216-8318
  surname: Denis
  fullname: Denis, Loic
  email: loic.denis@univ-st-etienne.fr
  organization: Laboratoire Hubert Curien UMR 5516, Centre National de la Recherche Scientifique (CNRS), Institut d Optique Graduate School, Univ Lyon, Université Jean Monnet (UJM)-Saint-Etienne, Saint-Etienne, France
– sequence: 3
  givenname: Florence
  orcidid: 0000-0002-3110-8183
  surname: Tupin
  fullname: Tupin, Florence
  email: florence.tupin@telecom-paris.fr
  organization: Information Processing and Communications Laboratory (LTCI), Télécom Paris, Institut Polytechnique de Paris, Palaiseau, France
BackLink https://ujm.hal.science/ujm-03270455$$DView record in HAL
BookMark eNp9kM1OwzAQhC0EEqXwAIiLJU4cUtZ27CTcKv5aqYCgRRwtJ12DS0iCnYJ4e1K1cODAZVdazcyOvj2yXdUVEnLIYMAYZKez64fpgANnA8F4qjjbIj0mZRqBiuNt0gOWqYinGd8leyEsAFgsWdIj98NAx5bmX_TGPLvijE6xtNF02aD_cAHndOaNq1z1TGtLLxCbboQGi9dydbvF9rP2r4E-ufaF3lw-TMa3-2THmjLgwWb3yePV5ex8FE3ursfnw0lUCJ60kcwtSxMByEVuE0i4hTRWKCCXczNXAlkWq8Ly3BbCFJjxHKQUiQQpMhMzK_rkZJ37YkrdePdm_JeujdOj4UQvF28auj8QS_nBO-3xWtv4-n2JodWLeumrrp7mSoDIQHXhfZKsVYWvQ_BodeFa07q6ajsIpWagV6z1irVesdYb1p2T_XH-FPrPc7T2OET81WeKJSpOxTcXA4jj
CODEN IGRSD2
CitedBy_id crossref_primary_10_1016_j_isprsjprs_2025_01_030
crossref_primary_10_1109_TGRS_2024_3397325
crossref_primary_10_1109_JSTARS_2022_3201480
crossref_primary_10_1109_JSTARS_2023_3327180
crossref_primary_10_1109_TGRS_2024_3432193
crossref_primary_10_1109_TGRS_2025_3541013
crossref_primary_10_1109_TGRS_2023_3314857
crossref_primary_10_1109_TGRS_2024_3501314
crossref_primary_10_1109_JSTARS_2024_3479229
crossref_primary_10_1007_s41064_022_00226_8
crossref_primary_10_1109_TGRS_2022_3233892
crossref_primary_10_1007_s10851_022_01067_1
crossref_primary_10_1364_OE_492221
crossref_primary_10_1109_LGRS_2022_3146370
crossref_primary_10_1109_LGRS_2022_3212078
crossref_primary_10_5194_tc_18_3933_2024
crossref_primary_10_1007_s00371_023_03101_8
crossref_primary_10_1017_eds_2024_53
crossref_primary_10_3390_rs15041029
crossref_primary_10_1080_07038992_2023_2257323
crossref_primary_10_1109_TGRS_2024_3524208
crossref_primary_10_3390_electronics13030490
crossref_primary_10_1109_LGRS_2024_3352544
crossref_primary_10_1007_s11042_023_17159_y
crossref_primary_10_1016_j_cviu_2024_103940
crossref_primary_10_1016_j_sigpro_2025_109967
crossref_primary_10_1109_TGRS_2024_3397815
crossref_primary_10_1109_TGRS_2024_3432180
crossref_primary_10_1016_j_dt_2023_12_007
crossref_primary_10_1016_j_isprsjprs_2025_01_008
crossref_primary_10_1007_s42979_024_03274_6
crossref_primary_10_1016_j_isprsjprs_2024_12_016
crossref_primary_10_1109_TGRS_2025_3531957
crossref_primary_10_1016_j_neucom_2023_01_081
crossref_primary_10_1016_j_sigpro_2023_109040
crossref_primary_10_1109_JSEN_2023_3317060
crossref_primary_10_1016_j_isprsjprs_2024_08_018
crossref_primary_10_1109_OJSP_2022_3229618
crossref_primary_10_1117_1_JRS_17_016502
crossref_primary_10_1016_j_isprsjprs_2024_11_003
crossref_primary_10_1016_j_patrec_2025_02_021
crossref_primary_10_1109_LGRS_2023_3345137
crossref_primary_10_1109_LGRS_2024_3387994
Cites_doi 10.1109/JSTARS.2018.2790987
10.1109/MGRS.2020.3046356
10.1109/IGARSS47720.2021.9555039
10.1049/SBRA509E_ch8
10.1109/LGRS.2013.2271650
10.3390/rs11131532
10.1109/TIP.2010.2045029
10.1007/3-540-44935-3_21
10.1109/JSTARS.2021.3071864
10.1109/IGARSS.2019.8900596
10.1109/JSTARS.2016.2555579
10.1109/TGRS.2014.2352555
10.1109/TGRS.2013.2246838
10.1109/LGRS.2019.2957240
10.1109/TGRS.2010.2076376
10.1007/978-3-319-24574-4_28
10.1109/TIP.2009.2019302
10.1109/TGRS.2010.2087763
10.1109/IGARSS.2017.8128234
10.1109/TGRS.2002.802473
10.1007/978-3-642-02256-2_24
10.1109/MGRS.2020.3004508
10.1109/IGARSS39084.2020.9324183
10.1109/TGRS.2005.864142
10.1109/MSP.2014.2311305
10.1109/TGRS.2011.2161586
10.1016/0734-189X(83)90047-6
10.1007/s10851-009-0179-5
10.1109/CAMSAP.2017.8313133
10.1109/JSTARS.2017.2747118
10.1016/j.patcog.2013.04.001
10.1137/060671814
10.1109/LSP.2017.2758203
10.1137/040616024
10.3390/rs12061006
10.1109/TIP.2009.2029593
10.3390/rs12162636
10.23919/EURAD.2017.8249179
10.1109/36.62623
10.3390/rs10020196
10.1109/TIP.2007.901238
10.1109/TGRS.2021.3065461
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID 97E
RIA
RIE
AAYXX
CITATION
7UA
8FD
C1K
F1W
FR3
H8D
H96
KR7
L.G
L7M
1XC
VOOES
DOI 10.1109/TGRS.2021.3128621
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Water Resources Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Water Resources Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList Aerospace Database


Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1558-0644
EndPage 13
ExternalDocumentID oai:HAL:ujm-03270455v2
10_1109_TGRS_2021_3128621
9617648
Genre orig-research
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
AENEX
AETIX
AFRAH
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IBMZZ
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
RXW
TAE
TN5
VH1
Y6R
AAYXX
CITATION
7UA
8FD
C1K
F1W
FR3
H8D
H96
KR7
L.G
L7M
1XC
VOOES
ID FETCH-LOGICAL-c327t-5bf18730e23bf7072f0846e30b5dad63e1946cf2bfc3ace92b0553750539a41f3
IEDL.DBID RIE
ISSN 0196-2892
IngestDate Tue Oct 14 20:48:15 EDT 2025
Mon Jun 30 08:21:32 EDT 2025
Wed Oct 01 02:20:11 EDT 2025
Thu Apr 24 23:01:41 EDT 2025
Wed Aug 27 02:49:52 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c327t-5bf18730e23bf7072f0846e30b5dad63e1946cf2bfc3ace92b0553750539a41f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-7170-9015
0000-0002-3110-8183
0000-0001-9216-8318
OpenAccessLink https://ujm.hal.science/ujm-03270455
PQID 2630390655
PQPubID 85465
PageCount 13
ParticipantIDs crossref_citationtrail_10_1109_TGRS_2021_3128621
crossref_primary_10_1109_TGRS_2021_3128621
hal_primary_oai_HAL_ujm_03270455v2
ieee_primary_9617648
proquest_journals_2630390655
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20220000
2022-00-00
20220101
2022
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – year: 2022
  text: 20220000
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on geoscience and remote sensing
PublicationTitleAbbrev TGRS
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Institute of Electrical and Electronics Engineers
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
– name: Institute of Electrical and Electronics Engineers
References ref13
ref12
ref15
ref14
ref11
ref10
ref17
ref16
ref19
ref18
ref50
Xie (ref41) 2020
ref46
ref48
ref47
ref44
ref49
ref8
ref7
ref9
Lehtinen (ref42)
ref4
Laine (ref39)
ref3
ref6
ref5
Dalsasso (ref33)
ref35
ref34
ref37
ref36
ref31
ref30
ref32
ref1
ref38
ref24
ref23
ref26
ref25
ref20
ref22
ref21
Goodman (ref43) 2007
ref28
ref27
ref29
Miranda (ref51) 2014
Zhang (ref45) 2019
Fracastoro (ref2) 2020
Lee (ref40) 2020
References_xml – ident: ref32
  doi: 10.1109/JSTARS.2018.2790987
– ident: ref3
  doi: 10.1109/MGRS.2020.3046356
– ident: ref4
  doi: 10.1109/IGARSS47720.2021.9555039
– ident: ref47
  doi: 10.1049/SBRA509E_ch8
– ident: ref21
  doi: 10.1109/LGRS.2013.2271650
– ident: ref29
  doi: 10.3390/rs11131532
– issue: 1
  year: 2014
  ident: ref51
  article-title: Definition of the TOPS SLC deramping function for products generated by the S-1 IPF
– ident: ref9
  doi: 10.1109/TIP.2010.2045029
– ident: ref11
  doi: 10.1007/3-540-44935-3_21
– ident: ref36
  doi: 10.1109/JSTARS.2021.3071864
– ident: ref18
  doi: 10.1109/IGARSS.2019.8900596
– start-page: 6970
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref39
  article-title: High-quality self-supervised deep image denoising
– ident: ref12
  doi: 10.1109/JSTARS.2016.2555579
– ident: ref25
  doi: 10.1109/TGRS.2014.2352555
– ident: ref31
  doi: 10.1109/TGRS.2013.2246838
– ident: ref49
  doi: 10.1109/LGRS.2019.2957240
– ident: ref22
  doi: 10.1109/TGRS.2010.2076376
– ident: ref44
  doi: 10.1007/978-3-319-24574-4_28
– ident: ref8
  doi: 10.1109/TIP.2009.2019302
– ident: ref23
  doi: 10.1109/TGRS.2010.2087763
– ident: ref34
  doi: 10.1109/IGARSS.2017.8128234
– ident: ref13
  doi: 10.1109/TGRS.2002.802473
– ident: ref14
  doi: 10.1007/978-3-642-02256-2_24
– ident: ref50
  doi: 10.1109/MGRS.2020.3004508
– ident: ref37
  doi: 10.1109/IGARSS39084.2020.9324183
– ident: ref5
  doi: 10.1109/TGRS.2005.864142
– start-page: 2965
  volume-title: Proc. Int. Conf. Mach. Learn.
  ident: ref42
  article-title: Noise2Noise: Learning image restoration without clean data
– ident: ref17
  doi: 10.1109/MSP.2014.2311305
– ident: ref20
  doi: 10.1109/TGRS.2011.2161586
– volume-title: arXiv:2010.11971
  year: 2020
  ident: ref41
  article-title: Noise2Same: Optimizing a self-supervised bound for image denoising
– volume-title: arXiv:1905.11881
  year: 2019
  ident: ref45
  article-title: Why gradient clipping accelerates training: A theoretical justification for adaptivity
– ident: ref1
  doi: 10.1016/0734-189X(83)90047-6
– ident: ref10
  doi: 10.1007/s10851-009-0179-5
– ident: ref27
  doi: 10.1109/CAMSAP.2017.8313133
– ident: ref48
  doi: 10.1109/JSTARS.2017.2747118
– ident: ref24
  doi: 10.1016/j.patcog.2013.04.001
– ident: ref7
  doi: 10.1137/060671814
– start-page: 1233
  volume-title: Proc. 13th Eur. Conf. Synth. Aperture Radar (EUSAR)
  ident: ref33
  article-title: How to handle spatial correlations in SAR despeckling? Resampling strategies and deep learning approaches
– ident: ref26
  doi: 10.1109/LSP.2017.2758203
– ident: ref15
  doi: 10.1137/040616024
– ident: ref35
  doi: 10.3390/rs12061006
– ident: ref19
  doi: 10.1109/TIP.2009.2029593
– ident: ref30
  doi: 10.3390/rs12162636
– volume-title: arXiv:2012.03623
  year: 2020
  ident: ref40
  article-title: Noise2Kernel: Adaptive self-supervised blind denoising using a dilated convolutional kernel architecture
– volume-title: Speckle Phenomena in Optics: Theory and Applications
  year: 2007
  ident: ref43
– ident: ref46
  doi: 10.23919/EURAD.2017.8249179
– ident: ref6
  doi: 10.1109/36.62623
– ident: ref28
  doi: 10.3390/rs10020196
– ident: ref16
  doi: 10.1109/TIP.2007.901238
– volume-title: arXiv:2012.05508
  year: 2020
  ident: ref2
  article-title: Deep learning methods for synthetic aperture radar image despeckling: An overview of trends and perspectives
– ident: ref38
  doi: 10.1109/TGRS.2021.3065461
SSID ssj0014517
Score 2.6161852
Snippet Speckle fluctuations seriously limit the interpretability of synthetic aperture radar (SAR) images. Speckle reduction has thus been the subject of numerous...
SourceID hal
proquest
crossref
ieee
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Archives
Artificial neural networks
Computer architecture
Deep learning
Engineering Sciences
image despeckling
Image quality
Image restoration
Neural networks
Radar imaging
Radar polarimetry
Restoration
SAR (radar)
self-supervised training
Signal and Image processing
Speckle
Synthetic aperture radar
synthetic aperture radar (SAR)
Training
Transfer functions
Title As If by Magic: Self-Supervised Training of Deep Despeckling Networks With MERLIN
URI https://ieeexplore.ieee.org/document/9617648
https://www.proquest.com/docview/2630390655
https://ujm.hal.science/ujm-03270455
Volume 60
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-0644
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014517
  issn: 0196-2892
  databaseCode: RIE
  dateStart: 19800101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwED-tk5DgAcYGWmFDFuIJkc6fccxbNRgdopWgndhblDg2g21tRRIk-Ot3TtKILyFeIj_YkqPf-e539n0APLMF17QQInJJkkUyUwaPFNdRwWJaaKUdEyEbeTqLJ2fy7bk634IXfS6Mc64JPnOjMGze8ouVrcNV2ZFBcxvLZAADncRtrlb_YiAV61Kj4widCN69YDJqjhZvPszRE-QMHVSODJ79YoMGFyECsmmt8oc-bozMyT2YbrbXxpZcjuoqH9kfv1Vu_N_978Ddjm2ScSse92HLLXfhzk81CHfhVhMDass9eD8uyakn-XcyzVAfviRzd-Wjeb0O6qR0BVl07STIypNXzq3xExI1Q8_3T2TWxpOX5OPn6oJMkSSfzh7A2cnrxfEk6jouRFZwXUUq9yzBM--4yL2mmnuK_MQJmqsiK2LhmJGx9Tz3VmTWGZ5TpQSSDiVMJpkXD2F7uVq6fSAWNakWzOVxJqX0KvHG2ESaAu0hsko9BLrBILVdOfLQFeMqbdwSatIAWxpgSzvYhvC8X7Jua3H8a_JTBLafF6poT8bv0vrLdUrxX5HJqm98CHsBpX5WB9AQDjZykHZHukx5jNbeIGNTj_6-6jHc5iE3ormfOYDt6mvtDpGxVPmTRlRvAJkZ4kI
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB61RQg48GhBLBSwECdEtn4mMbcVULbQrAS7Fb1ZiWNToOyuSIIEv55xko14CXGJcrClOJ89843nBfDIljyhpRCRS9M8krnSeKR4EpUspmWiEsdEyEbOZvH0RL46Vadb8GTIhXHOtcFnbhxeW19-ubJNuCo70KhuY5luwwUlpVRdttbgM5CK9cnRcYRmBO99mIzqg8XLt3O0BTlDE5Ujh2e_aKHtsxAD2TZX-UMit2rm8Bpkmw_soks-jZu6GNvvv9Vu_N8VXIerPd8kk26D3IAtt9yFKz9VIdyFi20UqK324M2kIkeeFN9IlqNEfErm7txH82YdBErlSrLoG0qQlSfPnVvjI6Rqhq7v78msiyivyLsP9RnJkCYfzW7CyeGLxbNp1PdciKzgSR2pwrMUT73jovAJTbinyFCcoIUq8zIWjmkZW88Lb0VuneYFVUog7VBC55J5cQt2lquluw3EoixNBHNFnCNaXqVea5tKXaJGRF6ZjIBuMDC2L0ge-mKcm9YwodoE2EyAzfSwjeDxMGXdVeP41-CHCOwwLtTRnk6OTfPxs6G4VuSy6isfwV5AaRjVAzSC_c0-MP2hrgyPUd9r5Gzqzt9nPYBL00V2bPD3vr4Ll3nIlGhva_Zhp_7SuHvIX-rifrttfwCeR-WP
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=As+If+by+Magic%3A+Self-Supervised+Training+of+Deep+Despeckling+Networks+With+MERLIN&rft.jtitle=IEEE+transactions+on+geoscience+and+remote+sensing&rft.au=Dalsasso%2C+Emanuele&rft.au=Denis%2C+Loic&rft.au=Tupin%2C+Florence&rft.date=2022&rft.pub=IEEE&rft.issn=0196-2892&rft.volume=60&rft.spage=1&rft.epage=13&rft_id=info:doi/10.1109%2FTGRS.2021.3128621&rft.externalDocID=9617648
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0196-2892&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0196-2892&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0196-2892&client=summon