A Crank–Nicolson scheme for the Landau–Lifshitz equation without damping
An accurate and efficient numerical approach, based on a finite difference method with Crank–Nicolson time stepping, is proposed for the Landau–Lifshitz equation without damping. The phenomenological Landau–Lifshitz equation describes the dynamics of ferromagnetism. The Crank–Nicolson method is very...
Saved in:
| Published in | Journal of computational and applied mathematics Vol. 234; no. 2; pp. 613 - 623 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
Kidlington
Elsevier B.V
15.05.2010
Elsevier |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0377-0427 1879-1778 |
| DOI | 10.1016/j.cam.2010.01.002 |
Cover
| Abstract | An accurate and efficient numerical approach, based on a finite difference method with Crank–Nicolson time stepping, is proposed for the Landau–Lifshitz equation without damping. The phenomenological Landau–Lifshitz equation describes the dynamics of ferromagnetism. The Crank–Nicolson method is very popular in the numerical schemes for parabolic equations since it is second-order accurate in time. Although widely used, the method does not always produce accurate results when it is applied to the Landau–Lifshitz equation. The objective of this article is to enumerate the problems and then to propose an accurate and robust numerical solution algorithm. A discrete scheme and a numerical solution algorithm for the Landau–Lifshitz equation are described. A nonlinear multigrid method is used for handling the nonlinearities of the resulting discrete system of equations at each time step. We show numerically that the proposed scheme has a second-order convergence in space and time. |
|---|---|
| AbstractList | An accurate and efficient numerical approach, based on a finite difference method with Crank–Nicolson time stepping, is proposed for the Landau–Lifshitz equation without damping. The phenomenological Landau–Lifshitz equation describes the dynamics of ferromagnetism. The Crank–Nicolson method is very popular in the numerical schemes for parabolic equations since it is second-order accurate in time. Although widely used, the method does not always produce accurate results when it is applied to the Landau–Lifshitz equation. The objective of this article is to enumerate the problems and then to propose an accurate and robust numerical solution algorithm. A discrete scheme and a numerical solution algorithm for the Landau–Lifshitz equation are described. A nonlinear multigrid method is used for handling the nonlinearities of the resulting discrete system of equations at each time step. We show numerically that the proposed scheme has a second-order convergence in space and time. |
| Author | Kim, Junseok Jeong, Darae |
| Author_xml | – sequence: 1 givenname: Darae surname: Jeong fullname: Jeong, Darae – sequence: 2 givenname: Junseok surname: Kim fullname: Kim, Junseok email: cfdkim@korea.ac.kr |
| BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22565646$$DView record in Pascal Francis |
| BookMark | eNp9kLtOwzAUhi1UJNrCA7BlYUw4viRuxVRV3KQIFpgt1xfikibFdkEw8Q68IU-CSxEDA5N15O87Ov8_QoOu7wxCxxgKDLg6XRZKrgoCaQZcAJA9NMQTPs0x55MBGgLlPAdG-AEahbAEgGqK2RDVs2zuZff4-f5x41Tfhr7LgmrMymS291lsTFbLTstNAmpnQ-PiW2aeNjK6RL642PSbmGm5Wrvu4RDtW9kGc_TzjtH9xfnd_Cqvby-v57M6V5TwmDOFKQNNVSUxZ5SWeqEtI5YoXdFFVdIJtYpzsOl24EQTq6Up2aLkJH1rS8foZLd3LYOSrU0BlAti7d1K-ldBSFmVFasSh3ec8n0I3thfBIPY1iaWItUmtrUJwCLVlhz-x1EufqeNXrr2X_NsZ5oU_dkZL4JyplNGO29UFLp3_9hfTOyLCA |
| CODEN | JCAMDI |
| CitedBy_id | crossref_primary_10_1016_j_enganabound_2015_07_010 crossref_primary_10_1007_s41365_018_0506_x crossref_primary_10_1016_j_jcp_2019_109104 crossref_primary_10_3390_a18010001 crossref_primary_10_1016_j_apnum_2021_05_027 crossref_primary_10_3934_dcdsb_2022002 crossref_primary_10_1016_j_cap_2013_12_028 |
| Cites_doi | 10.1137/S0036144504446187 10.1088/0022-3727/33/15/201 10.1016/S0304-8853(97)00048-6 10.1006/jcph.2001.6793 10.1016/S0304-8853(98)00519-8 10.1007/s11831-008-9021-2 10.1049/el:20030416 10.1109/20.278944 10.1016/j.cam.2008.09.017 |
| ContentType | Journal Article |
| Copyright | 2010 Elsevier B.V. 2015 INIST-CNRS |
| Copyright_xml | – notice: 2010 Elsevier B.V. – notice: 2015 INIST-CNRS |
| DBID | 6I. AAFTH AAYXX CITATION IQODW |
| DOI | 10.1016/j.cam.2010.01.002 |
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Pascal-Francis |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Mathematics |
| EISSN | 1879-1778 |
| EndPage | 623 |
| ExternalDocumentID | 22565646 10_1016_j_cam_2010_01_002 S0377042710000063 |
| GroupedDBID | --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 29K 4.4 457 4G. 5GY 5VS 6I. 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAFTH AAFWJ AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABAOU ABEFU ABFNM ABJNI ABMAC ABTAH ABVKL ABXDB ABYKQ ACAZW ACDAQ ACGFS ACRLP ADBBV ADEZE ADMUD AEBSH AEKER AENEX AEXQZ AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AIEXJ AIGVJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ARUGR ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CS3 D-I DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q G8K GBLVA HVGLF HZ~ IHE IXB J1W KOM LG9 M26 M41 MHUIS MO0 N9A NCXOZ NHB O-L O9- OAUVE OK1 OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SDF SDG SDP SES SEW SPC SPCBC SSW SSZ T5K TN5 UPT WUQ XPP YQT ZMT ZY4 ~02 ~G- AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO ADVLN AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD AFXIZ AGCQF AGRNS BNPGV IQODW SSH |
| ID | FETCH-LOGICAL-c327t-4c1340d3c6a174335dbdf42f2cd63b65383fc770f177072d2fdae54b5723b6df3 |
| IEDL.DBID | AIKHN |
| ISSN | 0377-0427 |
| IngestDate | Mon Jul 21 09:16:21 EDT 2025 Wed Oct 01 04:36:54 EDT 2025 Thu Apr 24 23:05:18 EDT 2025 Fri Feb 23 02:27:50 EST 2024 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Keywords | Crank–Nicolson 65Z05 Nonlinear multigrid method Landau–Lifshitz equation Finite difference method Damping Transcendental equation Landau-Lifshitz equation Crank Nicolson method Numerical method Discrete system Algorithm Discrete scheme Convergence Equation system Non linear equation Crank-Nicolson Parabolic equation Numerical analysis Applied mathematics Numerical solution Algebraic equation Nonlinearity Landau Lifshitz equation |
| Language | English |
| License | http://www.elsevier.com/open-access/userlicense/1.0 https://www.elsevier.com/tdm/userlicense/1.0 https://www.elsevier.com/open-access/userlicense/1.0 CC BY 4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c327t-4c1340d3c6a174335dbdf42f2cd63b65383fc770f177072d2fdae54b5723b6df3 |
| OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S0377042710000063 |
| PageCount | 11 |
| ParticipantIDs | pascalfrancis_primary_22565646 crossref_primary_10_1016_j_cam_2010_01_002 crossref_citationtrail_10_1016_j_cam_2010_01_002 elsevier_sciencedirect_doi_10_1016_j_cam_2010_01_002 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2010-05-15 |
| PublicationDateYYYYMMDD | 2010-05-15 |
| PublicationDate_xml | – month: 05 year: 2010 text: 2010-05-15 day: 15 |
| PublicationDecade | 2010 |
| PublicationPlace | Kidlington |
| PublicationPlace_xml | – name: Kidlington |
| PublicationTitle | Journal of computational and applied mathematics |
| PublicationYear | 2010 |
| Publisher | Elsevier B.V Elsevier |
| Publisher_xml | – name: Elsevier B.V – name: Elsevier |
| References | Wang, Garcia-Cervera, Weinan (b12) 2001; 171 Bertram, Seberino (b3) 1999; 193 Blue, Scheinfein (b4) 1991; 27 Jones, Miles (b6) 1997; 171 Sun, Trueman (b9) 2003; 39 Cimrák (b7) 2008; 15 Kruzik, Prohl (b8) 2006; 48 Landau, Lifshitz (b2) 1935; 8 Brown (b1) 1963 Cimrák (b10) 2009; 228 Fidler, Schrefl (b5) 2000; 33 Trottenberg, Oosterlee, Schüller (b11) 2001 Sun (10.1016/j.cam.2010.01.002_b9) 2003; 39 Fidler (10.1016/j.cam.2010.01.002_b5) 2000; 33 Wang (10.1016/j.cam.2010.01.002_b12) 2001; 171 Cimrák (10.1016/j.cam.2010.01.002_b7) 2008; 15 Landau (10.1016/j.cam.2010.01.002_b2) 1935; 8 Blue (10.1016/j.cam.2010.01.002_b4) 1991; 27 Kruzik (10.1016/j.cam.2010.01.002_b8) 2006; 48 Brown (10.1016/j.cam.2010.01.002_b1) 1963 Bertram (10.1016/j.cam.2010.01.002_b3) 1999; 193 Trottenberg (10.1016/j.cam.2010.01.002_b11) 2001 Jones (10.1016/j.cam.2010.01.002_b6) 1997; 171 Cimrák (10.1016/j.cam.2010.01.002_b10) 2009; 228 |
| References_xml | – volume: 27 start-page: 4778 year: 1991 end-page: 4780 ident: b4 article-title: Using multipoles decreases computation time for magnetic self-energy publication-title: IEEE Trans. Magn. – volume: 48 start-page: 439 year: 2006 end-page: 483 ident: b8 article-title: Recent developments in the modeling, analysis, and numerics of ferromagnetism publication-title: SIAM Rev. – volume: 15 start-page: 277 year: 2008 end-page: 309 ident: b7 article-title: A survey on the numerics and computations for the Landau–Lifshitz equation of micromagnetism publication-title: Arch. Comput. Methods Eng. – volume: 228 start-page: 238 year: 2009 end-page: 246 ident: b10 article-title: Convergence result for the constraint preserving mid-point scheme for micromagnetism publication-title: J. Comput. Appl. Math. – volume: 171 start-page: 190 year: 1997 end-page: 208 ident: b6 article-title: An accurate and efficient 3D micromagnetic simulation of metal evaporated tape publication-title: J. Magn. Magn. Mater. – volume: 33 start-page: 135 year: 2000 end-page: 156 ident: b5 article-title: Micromagnetic modeling-the current state of the art publication-title: J. Phys. D: Appl. Phys. – year: 2001 ident: b11 article-title: Multigrid – year: 1963 ident: b1 article-title: Micromagnetics – volume: 8 start-page: 153 year: 1935 end-page: 169 ident: b2 article-title: On the theory of the dispersion of magnetic permeability in ferromagnetic bodies publication-title: Phys. Z. Sowjetunion – volume: 171 start-page: 357 year: 2001 end-page: 372 ident: b12 article-title: A Gauss–Seidel projection method for micromagnetics simulations publication-title: J. Comput. Phys. – volume: 193 start-page: 388 year: 1999 end-page: 394 ident: b3 article-title: Numerical simulations of hysteresis in longitudinal magnetic tape publication-title: J. Magn. Magn. Mater. – volume: 39 start-page: 595 year: 2003 end-page: 597 ident: b9 article-title: Unconditionally stable Crank–Nicolson scheme for solving the two-dimensional Maxwell’s equations publication-title: IEEE Electron Device Lett. – volume: 8 start-page: 153 year: 1935 ident: 10.1016/j.cam.2010.01.002_b2 article-title: On the theory of the dispersion of magnetic permeability in ferromagnetic bodies publication-title: Phys. Z. Sowjetunion – year: 2001 ident: 10.1016/j.cam.2010.01.002_b11 – volume: 48 start-page: 439 issue: 3 year: 2006 ident: 10.1016/j.cam.2010.01.002_b8 article-title: Recent developments in the modeling, analysis, and numerics of ferromagnetism publication-title: SIAM Rev. doi: 10.1137/S0036144504446187 – volume: 33 start-page: 135 issue: 15 year: 2000 ident: 10.1016/j.cam.2010.01.002_b5 article-title: Micromagnetic modeling-the current state of the art publication-title: J. Phys. D: Appl. Phys. doi: 10.1088/0022-3727/33/15/201 – volume: 171 start-page: 190 year: 1997 ident: 10.1016/j.cam.2010.01.002_b6 article-title: An accurate and efficient 3D micromagnetic simulation of metal evaporated tape publication-title: J. Magn. Magn. Mater. doi: 10.1016/S0304-8853(97)00048-6 – volume: 171 start-page: 357 year: 2001 ident: 10.1016/j.cam.2010.01.002_b12 article-title: A Gauss–Seidel projection method for micromagnetics simulations publication-title: J. Comput. Phys. doi: 10.1006/jcph.2001.6793 – volume: 193 start-page: 388 year: 1999 ident: 10.1016/j.cam.2010.01.002_b3 article-title: Numerical simulations of hysteresis in longitudinal magnetic tape publication-title: J. Magn. Magn. Mater. doi: 10.1016/S0304-8853(98)00519-8 – volume: 15 start-page: 277 issue: 3 year: 2008 ident: 10.1016/j.cam.2010.01.002_b7 article-title: A survey on the numerics and computations for the Landau–Lifshitz equation of micromagnetism publication-title: Arch. Comput. Methods Eng. doi: 10.1007/s11831-008-9021-2 – year: 1963 ident: 10.1016/j.cam.2010.01.002_b1 – volume: 39 start-page: 595 year: 2003 ident: 10.1016/j.cam.2010.01.002_b9 article-title: Unconditionally stable Crank–Nicolson scheme for solving the two-dimensional Maxwell’s equations publication-title: IEEE Electron Device Lett. doi: 10.1049/el:20030416 – volume: 27 start-page: 4778 year: 1991 ident: 10.1016/j.cam.2010.01.002_b4 article-title: Using multipoles decreases computation time for magnetic self-energy publication-title: IEEE Trans. Magn. doi: 10.1109/20.278944 – volume: 228 start-page: 238 year: 2009 ident: 10.1016/j.cam.2010.01.002_b10 article-title: Convergence result for the constraint preserving mid-point scheme for micromagnetism publication-title: J. Comput. Appl. Math. doi: 10.1016/j.cam.2008.09.017 |
| SSID | ssj0006914 |
| Score | 1.9789912 |
| Snippet | An accurate and efficient numerical approach, based on a finite difference method with Crank–Nicolson time stepping, is proposed for the Landau–Lifshitz... |
| SourceID | pascalfrancis crossref elsevier |
| SourceType | Index Database Enrichment Source Publisher |
| StartPage | 613 |
| SubjectTerms | Crank–Nicolson Exact sciences and technology Finite difference method Landau–Lifshitz equation Mathematical analysis Mathematics Nonlinear algebraic and transcendental equations Nonlinear multigrid method Numerical analysis Numerical analysis. Scientific computation Partial differential equations Sciences and techniques of general use |
| Title | A Crank–Nicolson scheme for the Landau–Lifshitz equation without damping |
| URI | https://dx.doi.org/10.1016/j.cam.2010.01.002 |
| Volume | 234 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier Free Content customDbUrl: eissn: 1879-1778 dateEnd: 20211105 omitProxy: true ssIdentifier: ssj0006914 issn: 0377-0427 databaseCode: IXB dateStart: 19750301 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1879-1778 dateEnd: 20211105 omitProxy: true ssIdentifier: ssj0006914 issn: 0377-0427 databaseCode: ACRLP dateStart: 19950220 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect (Elsevier) customDbUrl: eissn: 1879-1778 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0006914 issn: 0377-0427 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect Freedom Collection Journals customDbUrl: eissn: 1879-1778 dateEnd: 20211015 omitProxy: true ssIdentifier: ssj0006914 issn: 0377-0427 databaseCode: AIKHN dateStart: 19950220 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1879-1778 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0006914 issn: 0377-0427 databaseCode: AKRWK dateStart: 19750301 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JS8NAFH50uSgirliXMgdPQmwyM0naYy2WVttetNBbSGbBil206cWD-B_8h_4S3zQLFqQHL4Ekb5LwzfC9JW_eA7hsoBqVjq8tWlcKHZQGtUKpIktL1A-RFsLRJqDfH3idIb8buaMCtLK9MCatMuX-hNNXbJ1eqaVo1ubjce3BZr5vOkWsItSoaYtQxufX6yUoN7v3nUFOyF4jKfGN8pYZkP3cXKV5iXCSJng5eXDlD_W0Mw8XCJpOul38UkHtPdhNbUfSTD5vHwpqegDb_bzw6uIQek3SMm3Yvz-_VnOM1jRB_1VNFEHrlKAk6ZnYwRIFemO9eBrH70S9JvW-iQnKzpYxkeHEbKM6gmH79rHVsdKGCZZg1I8tLhzGbcmEFxpHg7kykppTTYX0WOQhtzEtEDTt4MGnkmoZKpdHrk_xttTsGErT2VSdAOFMomepQy90I66ZF6ElKTinXNkuVVRXwM5wCkRaTdw0tXgJsrSx5wChDQy0ge0ECG0FrvIh86SUxiZhnoEfrK2HAKl-07Dq2kTlL0LaQsuVe6f_e-4ZbGVpA457DqX4baku0BqJoyoUrz-carrm8Kw7uvkBdk_gbA |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV05T8MwFLZKGQAhxCnK6YEJKTSxnYSOVUVVIO1CK3WzEh8iiB7QdGFA_Af-Ib-E51xQCXVgyZA8J9Fn613-_B5CFw0wo9LxtUWulYIApUGsUKrI0hLsQ6SFcLRJ6Hd7XmfA7obusIJaxVkYQ6vMdX-m01Ntnd-p52jWp3Fcf7Cp75tOEWmGGiztClplLvFNBHb1_sPz8BpZgW-Qtox4sbWZkrxEOMrpXU6ZWvnDOG1OwxlAprNeF78MUHsbbeWeI25mP7eDKmq8iza6ZdnV2R4KmrhlmrB_fXymMwy-NIboVY0UBt8UgyQOTOZgDgJBrGePcfKG1UtW7RublOxknmAZjswhqn00aN_0Wx0rb5dgCUr8xGLCocyWVHihCTOoKyOpGdFESI9GHmg2qgVAph24-EQSLUPlssj1CTyWmh6g6ngyVocIMyohrtShF7oR09SLwI8UjBGmbJcoomvILnDiIq8lblpaPPOCNPbEAVpuoOW2wwHaGrosh0yzQhrLhFkBPl9YDRwU_bJhZwsTVX4IlBb4rcw7-t97z9Fap98NeHDbuz9G6wWBwHFPUDV5natT8EuS6Cxdd98QueAw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Crank%E2%80%93Nicolson+scheme+for+the+Landau%E2%80%93Lifshitz+equation+without+damping&rft.jtitle=Journal+of+computational+and+applied+mathematics&rft.au=Jeong%2C+Darae&rft.au=Kim%2C+Junseok&rft.date=2010-05-15&rft.issn=0377-0427&rft.volume=234&rft.issue=2&rft.spage=613&rft.epage=623&rft_id=info:doi/10.1016%2Fj.cam.2010.01.002&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_cam_2010_01_002 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0377-0427&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0377-0427&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0377-0427&client=summon |