A Crank–Nicolson scheme for the Landau–Lifshitz equation without damping

An accurate and efficient numerical approach, based on a finite difference method with Crank–Nicolson time stepping, is proposed for the Landau–Lifshitz equation without damping. The phenomenological Landau–Lifshitz equation describes the dynamics of ferromagnetism. The Crank–Nicolson method is very...

Full description

Saved in:
Bibliographic Details
Published inJournal of computational and applied mathematics Vol. 234; no. 2; pp. 613 - 623
Main Authors Jeong, Darae, Kim, Junseok
Format Journal Article
LanguageEnglish
Published Kidlington Elsevier B.V 15.05.2010
Elsevier
Subjects
Online AccessGet full text
ISSN0377-0427
1879-1778
DOI10.1016/j.cam.2010.01.002

Cover

Abstract An accurate and efficient numerical approach, based on a finite difference method with Crank–Nicolson time stepping, is proposed for the Landau–Lifshitz equation without damping. The phenomenological Landau–Lifshitz equation describes the dynamics of ferromagnetism. The Crank–Nicolson method is very popular in the numerical schemes for parabolic equations since it is second-order accurate in time. Although widely used, the method does not always produce accurate results when it is applied to the Landau–Lifshitz equation. The objective of this article is to enumerate the problems and then to propose an accurate and robust numerical solution algorithm. A discrete scheme and a numerical solution algorithm for the Landau–Lifshitz equation are described. A nonlinear multigrid method is used for handling the nonlinearities of the resulting discrete system of equations at each time step. We show numerically that the proposed scheme has a second-order convergence in space and time.
AbstractList An accurate and efficient numerical approach, based on a finite difference method with Crank–Nicolson time stepping, is proposed for the Landau–Lifshitz equation without damping. The phenomenological Landau–Lifshitz equation describes the dynamics of ferromagnetism. The Crank–Nicolson method is very popular in the numerical schemes for parabolic equations since it is second-order accurate in time. Although widely used, the method does not always produce accurate results when it is applied to the Landau–Lifshitz equation. The objective of this article is to enumerate the problems and then to propose an accurate and robust numerical solution algorithm. A discrete scheme and a numerical solution algorithm for the Landau–Lifshitz equation are described. A nonlinear multigrid method is used for handling the nonlinearities of the resulting discrete system of equations at each time step. We show numerically that the proposed scheme has a second-order convergence in space and time.
Author Kim, Junseok
Jeong, Darae
Author_xml – sequence: 1
  givenname: Darae
  surname: Jeong
  fullname: Jeong, Darae
– sequence: 2
  givenname: Junseok
  surname: Kim
  fullname: Kim, Junseok
  email: cfdkim@korea.ac.kr
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22565646$$DView record in Pascal Francis
BookMark eNp9kLtOwzAUhi1UJNrCA7BlYUw4viRuxVRV3KQIFpgt1xfikibFdkEw8Q68IU-CSxEDA5N15O87Ov8_QoOu7wxCxxgKDLg6XRZKrgoCaQZcAJA9NMQTPs0x55MBGgLlPAdG-AEahbAEgGqK2RDVs2zuZff4-f5x41Tfhr7LgmrMymS291lsTFbLTstNAmpnQ-PiW2aeNjK6RL642PSbmGm5Wrvu4RDtW9kGc_TzjtH9xfnd_Cqvby-v57M6V5TwmDOFKQNNVSUxZ5SWeqEtI5YoXdFFVdIJtYpzsOl24EQTq6Up2aLkJH1rS8foZLd3LYOSrU0BlAti7d1K-ldBSFmVFasSh3ec8n0I3thfBIPY1iaWItUmtrUJwCLVlhz-x1EufqeNXrr2X_NsZ5oU_dkZL4JyplNGO29UFLp3_9hfTOyLCA
CODEN JCAMDI
CitedBy_id crossref_primary_10_1016_j_enganabound_2015_07_010
crossref_primary_10_1007_s41365_018_0506_x
crossref_primary_10_1016_j_jcp_2019_109104
crossref_primary_10_3390_a18010001
crossref_primary_10_1016_j_apnum_2021_05_027
crossref_primary_10_3934_dcdsb_2022002
crossref_primary_10_1016_j_cap_2013_12_028
Cites_doi 10.1137/S0036144504446187
10.1088/0022-3727/33/15/201
10.1016/S0304-8853(97)00048-6
10.1006/jcph.2001.6793
10.1016/S0304-8853(98)00519-8
10.1007/s11831-008-9021-2
10.1049/el:20030416
10.1109/20.278944
10.1016/j.cam.2008.09.017
ContentType Journal Article
Copyright 2010 Elsevier B.V.
2015 INIST-CNRS
Copyright_xml – notice: 2010 Elsevier B.V.
– notice: 2015 INIST-CNRS
DBID 6I.
AAFTH
AAYXX
CITATION
IQODW
DOI 10.1016/j.cam.2010.01.002
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Pascal-Francis
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1879-1778
EndPage 623
ExternalDocumentID 22565646
10_1016_j_cam_2010_01_002
S0377042710000063
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
29K
4.4
457
4G.
5GY
5VS
6I.
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAFTH
AAFWJ
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABAOU
ABEFU
ABFNM
ABJNI
ABMAC
ABTAH
ABVKL
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
ADMUD
AEBSH
AEKER
AENEX
AEXQZ
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
D-I
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
HVGLF
HZ~
IHE
IXB
J1W
KOM
LG9
M26
M41
MHUIS
MO0
N9A
NCXOZ
NHB
O-L
O9-
OAUVE
OK1
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSW
SSZ
T5K
TN5
UPT
WUQ
XPP
YQT
ZMT
ZY4
~02
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
AFXIZ
AGCQF
AGRNS
BNPGV
IQODW
SSH
ID FETCH-LOGICAL-c327t-4c1340d3c6a174335dbdf42f2cd63b65383fc770f177072d2fdae54b5723b6df3
IEDL.DBID AIKHN
ISSN 0377-0427
IngestDate Mon Jul 21 09:16:21 EDT 2025
Wed Oct 01 04:36:54 EDT 2025
Thu Apr 24 23:05:18 EDT 2025
Fri Feb 23 02:27:50 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Crank–Nicolson
65Z05
Nonlinear multigrid method
Landau–Lifshitz equation
Finite difference method
Damping
Transcendental equation
Landau-Lifshitz equation
Crank Nicolson method
Numerical method
Discrete system
Algorithm
Discrete scheme
Convergence
Equation system
Non linear equation
Crank-Nicolson
Parabolic equation
Numerical analysis
Applied mathematics
Numerical solution
Algebraic equation
Nonlinearity
Landau Lifshitz equation
Language English
License http://www.elsevier.com/open-access/userlicense/1.0
https://www.elsevier.com/tdm/userlicense/1.0
https://www.elsevier.com/open-access/userlicense/1.0
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c327t-4c1340d3c6a174335dbdf42f2cd63b65383fc770f177072d2fdae54b5723b6df3
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S0377042710000063
PageCount 11
ParticipantIDs pascalfrancis_primary_22565646
crossref_primary_10_1016_j_cam_2010_01_002
crossref_citationtrail_10_1016_j_cam_2010_01_002
elsevier_sciencedirect_doi_10_1016_j_cam_2010_01_002
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2010-05-15
PublicationDateYYYYMMDD 2010-05-15
PublicationDate_xml – month: 05
  year: 2010
  text: 2010-05-15
  day: 15
PublicationDecade 2010
PublicationPlace Kidlington
PublicationPlace_xml – name: Kidlington
PublicationTitle Journal of computational and applied mathematics
PublicationYear 2010
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Wang, Garcia-Cervera, Weinan (b12) 2001; 171
Bertram, Seberino (b3) 1999; 193
Blue, Scheinfein (b4) 1991; 27
Jones, Miles (b6) 1997; 171
Sun, Trueman (b9) 2003; 39
Cimrák (b7) 2008; 15
Kruzik, Prohl (b8) 2006; 48
Landau, Lifshitz (b2) 1935; 8
Brown (b1) 1963
Cimrák (b10) 2009; 228
Fidler, Schrefl (b5) 2000; 33
Trottenberg, Oosterlee, Schüller (b11) 2001
Sun (10.1016/j.cam.2010.01.002_b9) 2003; 39
Fidler (10.1016/j.cam.2010.01.002_b5) 2000; 33
Wang (10.1016/j.cam.2010.01.002_b12) 2001; 171
Cimrák (10.1016/j.cam.2010.01.002_b7) 2008; 15
Landau (10.1016/j.cam.2010.01.002_b2) 1935; 8
Blue (10.1016/j.cam.2010.01.002_b4) 1991; 27
Kruzik (10.1016/j.cam.2010.01.002_b8) 2006; 48
Brown (10.1016/j.cam.2010.01.002_b1) 1963
Bertram (10.1016/j.cam.2010.01.002_b3) 1999; 193
Trottenberg (10.1016/j.cam.2010.01.002_b11) 2001
Jones (10.1016/j.cam.2010.01.002_b6) 1997; 171
Cimrák (10.1016/j.cam.2010.01.002_b10) 2009; 228
References_xml – volume: 27
  start-page: 4778
  year: 1991
  end-page: 4780
  ident: b4
  article-title: Using multipoles decreases computation time for magnetic self-energy
  publication-title: IEEE Trans. Magn.
– volume: 48
  start-page: 439
  year: 2006
  end-page: 483
  ident: b8
  article-title: Recent developments in the modeling, analysis, and numerics of ferromagnetism
  publication-title: SIAM Rev.
– volume: 15
  start-page: 277
  year: 2008
  end-page: 309
  ident: b7
  article-title: A survey on the numerics and computations for the Landau–Lifshitz equation of micromagnetism
  publication-title: Arch. Comput. Methods Eng.
– volume: 228
  start-page: 238
  year: 2009
  end-page: 246
  ident: b10
  article-title: Convergence result for the constraint preserving mid-point scheme for micromagnetism
  publication-title: J. Comput. Appl. Math.
– volume: 171
  start-page: 190
  year: 1997
  end-page: 208
  ident: b6
  article-title: An accurate and efficient 3D micromagnetic simulation of metal evaporated tape
  publication-title: J. Magn. Magn. Mater.
– volume: 33
  start-page: 135
  year: 2000
  end-page: 156
  ident: b5
  article-title: Micromagnetic modeling-the current state of the art
  publication-title: J. Phys. D: Appl. Phys.
– year: 2001
  ident: b11
  article-title: Multigrid
– year: 1963
  ident: b1
  article-title: Micromagnetics
– volume: 8
  start-page: 153
  year: 1935
  end-page: 169
  ident: b2
  article-title: On the theory of the dispersion of magnetic permeability in ferromagnetic bodies
  publication-title: Phys. Z. Sowjetunion
– volume: 171
  start-page: 357
  year: 2001
  end-page: 372
  ident: b12
  article-title: A Gauss–Seidel projection method for micromagnetics simulations
  publication-title: J. Comput. Phys.
– volume: 193
  start-page: 388
  year: 1999
  end-page: 394
  ident: b3
  article-title: Numerical simulations of hysteresis in longitudinal magnetic tape
  publication-title: J. Magn. Magn. Mater.
– volume: 39
  start-page: 595
  year: 2003
  end-page: 597
  ident: b9
  article-title: Unconditionally stable Crank–Nicolson scheme for solving the two-dimensional Maxwell’s equations
  publication-title: IEEE Electron Device Lett.
– volume: 8
  start-page: 153
  year: 1935
  ident: 10.1016/j.cam.2010.01.002_b2
  article-title: On the theory of the dispersion of magnetic permeability in ferromagnetic bodies
  publication-title: Phys. Z. Sowjetunion
– year: 2001
  ident: 10.1016/j.cam.2010.01.002_b11
– volume: 48
  start-page: 439
  issue: 3
  year: 2006
  ident: 10.1016/j.cam.2010.01.002_b8
  article-title: Recent developments in the modeling, analysis, and numerics of ferromagnetism
  publication-title: SIAM Rev.
  doi: 10.1137/S0036144504446187
– volume: 33
  start-page: 135
  issue: 15
  year: 2000
  ident: 10.1016/j.cam.2010.01.002_b5
  article-title: Micromagnetic modeling-the current state of the art
  publication-title: J. Phys. D: Appl. Phys.
  doi: 10.1088/0022-3727/33/15/201
– volume: 171
  start-page: 190
  year: 1997
  ident: 10.1016/j.cam.2010.01.002_b6
  article-title: An accurate and efficient 3D micromagnetic simulation of metal evaporated tape
  publication-title: J. Magn. Magn. Mater.
  doi: 10.1016/S0304-8853(97)00048-6
– volume: 171
  start-page: 357
  year: 2001
  ident: 10.1016/j.cam.2010.01.002_b12
  article-title: A Gauss–Seidel projection method for micromagnetics simulations
  publication-title: J. Comput. Phys.
  doi: 10.1006/jcph.2001.6793
– volume: 193
  start-page: 388
  year: 1999
  ident: 10.1016/j.cam.2010.01.002_b3
  article-title: Numerical simulations of hysteresis in longitudinal magnetic tape
  publication-title: J. Magn. Magn. Mater.
  doi: 10.1016/S0304-8853(98)00519-8
– volume: 15
  start-page: 277
  issue: 3
  year: 2008
  ident: 10.1016/j.cam.2010.01.002_b7
  article-title: A survey on the numerics and computations for the Landau–Lifshitz equation of micromagnetism
  publication-title: Arch. Comput. Methods Eng.
  doi: 10.1007/s11831-008-9021-2
– year: 1963
  ident: 10.1016/j.cam.2010.01.002_b1
– volume: 39
  start-page: 595
  year: 2003
  ident: 10.1016/j.cam.2010.01.002_b9
  article-title: Unconditionally stable Crank–Nicolson scheme for solving the two-dimensional Maxwell’s equations
  publication-title: IEEE Electron Device Lett.
  doi: 10.1049/el:20030416
– volume: 27
  start-page: 4778
  year: 1991
  ident: 10.1016/j.cam.2010.01.002_b4
  article-title: Using multipoles decreases computation time for magnetic self-energy
  publication-title: IEEE Trans. Magn.
  doi: 10.1109/20.278944
– volume: 228
  start-page: 238
  year: 2009
  ident: 10.1016/j.cam.2010.01.002_b10
  article-title: Convergence result for the constraint preserving mid-point scheme for micromagnetism
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/j.cam.2008.09.017
SSID ssj0006914
Score 1.9789912
Snippet An accurate and efficient numerical approach, based on a finite difference method with Crank–Nicolson time stepping, is proposed for the Landau–Lifshitz...
SourceID pascalfrancis
crossref
elsevier
SourceType Index Database
Enrichment Source
Publisher
StartPage 613
SubjectTerms Crank–Nicolson
Exact sciences and technology
Finite difference method
Landau–Lifshitz equation
Mathematical analysis
Mathematics
Nonlinear algebraic and transcendental equations
Nonlinear multigrid method
Numerical analysis
Numerical analysis. Scientific computation
Partial differential equations
Sciences and techniques of general use
Title A Crank–Nicolson scheme for the Landau–Lifshitz equation without damping
URI https://dx.doi.org/10.1016/j.cam.2010.01.002
Volume 234
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier Free Content
  customDbUrl:
  eissn: 1879-1778
  dateEnd: 20211105
  omitProxy: true
  ssIdentifier: ssj0006914
  issn: 0377-0427
  databaseCode: IXB
  dateStart: 19750301
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1879-1778
  dateEnd: 20211105
  omitProxy: true
  ssIdentifier: ssj0006914
  issn: 0377-0427
  databaseCode: ACRLP
  dateStart: 19950220
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect (Elsevier)
  customDbUrl:
  eissn: 1879-1778
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0006914
  issn: 0377-0427
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect Freedom Collection Journals
  customDbUrl:
  eissn: 1879-1778
  dateEnd: 20211015
  omitProxy: true
  ssIdentifier: ssj0006914
  issn: 0377-0427
  databaseCode: AIKHN
  dateStart: 19950220
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1879-1778
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0006914
  issn: 0377-0427
  databaseCode: AKRWK
  dateStart: 19750301
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JS8NAFH50uSgirliXMgdPQmwyM0naYy2WVttetNBbSGbBil206cWD-B_8h_4S3zQLFqQHL4Ekb5LwzfC9JW_eA7hsoBqVjq8tWlcKHZQGtUKpIktL1A-RFsLRJqDfH3idIb8buaMCtLK9MCatMuX-hNNXbJ1eqaVo1ubjce3BZr5vOkWsItSoaYtQxufX6yUoN7v3nUFOyF4jKfGN8pYZkP3cXKV5iXCSJng5eXDlD_W0Mw8XCJpOul38UkHtPdhNbUfSTD5vHwpqegDb_bzw6uIQek3SMm3Yvz-_VnOM1jRB_1VNFEHrlKAk6ZnYwRIFemO9eBrH70S9JvW-iQnKzpYxkeHEbKM6gmH79rHVsdKGCZZg1I8tLhzGbcmEFxpHg7kykppTTYX0WOQhtzEtEDTt4MGnkmoZKpdHrk_xttTsGErT2VSdAOFMomepQy90I66ZF6ElKTinXNkuVVRXwM5wCkRaTdw0tXgJsrSx5wChDQy0ge0ECG0FrvIh86SUxiZhnoEfrK2HAKl-07Dq2kTlL0LaQsuVe6f_e-4ZbGVpA457DqX4baku0BqJoyoUrz-carrm8Kw7uvkBdk_gbA
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV05T8MwFLZKGQAhxCnK6YEJKTSxnYSOVUVVIO1CK3WzEh8iiB7QdGFA_Af-Ib-E51xQCXVgyZA8J9Fn613-_B5CFw0wo9LxtUWulYIApUGsUKrI0hLsQ6SFcLRJ6Hd7XmfA7obusIJaxVkYQ6vMdX-m01Ntnd-p52jWp3Fcf7Cp75tOEWmGGiztClplLvFNBHb1_sPz8BpZgW-Qtox4sbWZkrxEOMrpXU6ZWvnDOG1OwxlAprNeF78MUHsbbeWeI25mP7eDKmq8iza6ZdnV2R4KmrhlmrB_fXymMwy-NIboVY0UBt8UgyQOTOZgDgJBrGePcfKG1UtW7RublOxknmAZjswhqn00aN_0Wx0rb5dgCUr8xGLCocyWVHihCTOoKyOpGdFESI9GHmg2qgVAph24-EQSLUPlssj1CTyWmh6g6ngyVocIMyohrtShF7oR09SLwI8UjBGmbJcoomvILnDiIq8lblpaPPOCNPbEAVpuoOW2wwHaGrosh0yzQhrLhFkBPl9YDRwU_bJhZwsTVX4IlBb4rcw7-t97z9Fap98NeHDbuz9G6wWBwHFPUDV5natT8EuS6Cxdd98QueAw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Crank%E2%80%93Nicolson+scheme+for+the+Landau%E2%80%93Lifshitz+equation+without+damping&rft.jtitle=Journal+of+computational+and+applied+mathematics&rft.au=Jeong%2C+Darae&rft.au=Kim%2C+Junseok&rft.date=2010-05-15&rft.issn=0377-0427&rft.volume=234&rft.issue=2&rft.spage=613&rft.epage=623&rft_id=info:doi/10.1016%2Fj.cam.2010.01.002&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_cam_2010_01_002
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0377-0427&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0377-0427&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0377-0427&client=summon