The Owen–Shapley Spatial Power Index in Three-Dimensional Space

Inspired by Owen’s (Nav Res Logist Quart 18:345–354, 1971) previous work on the subject, Shapley (A comparison of power indices and a non-symmetric generalization. Rand Corporation, Santa Monica, 1977) introduced the Owen–Shapley spatial power index, which takes the ideological location of individua...

Full description

Saved in:
Bibliographic Details
Published inGroup decision and negotiation Vol. 30; no. 5; pp. 1027 - 1055
Main Authors Albizuri, M. J., Goikoetxea, A.
Format Journal Article
LanguageEnglish
Published Dordrecht Springer Netherlands 01.10.2021
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0926-2644
1572-9907
DOI10.1007/s10726-021-09746-x

Cover

Abstract Inspired by Owen’s (Nav Res Logist Quart 18:345–354, 1971) previous work on the subject, Shapley (A comparison of power indices and a non-symmetric generalization. Rand Corporation, Santa Monica, 1977) introduced the Owen–Shapley spatial power index, which takes the ideological location of individuals into account, represented by vectors in the Euclidean space R m , to measure their power. In this work we study the Owen–Shapley spatial power index in three-dimensional space. Peters and Zarzuelo (Int J Game Theory 46:525–545, 2017) carried out a study of this index for individuals located in two-dimensional space, but pointed out the limitation of the two-dimensional feature. In this work focusing on three-dimensional space, we provide an explicit formula for spatial unanimity games, which makes it possible to calculate the Owen–Shapley spatial power index of any spatial game. We also give a characterization of the Owen–Shapley spatial power index employing two invariant positional axioms among others. Finally, we calculate this power index for the Basque Parliament, both in the two-dimensional and three-dimensional cases. We compare these positional indices against each other and against those that result when classical non-positional indices are considered, such as the Shapley–Shubik power index (Am Polit Sci Rev 48(3):787–792, 1954) and the Banzhaf-normalized index (Rutgers Law Rev 19:317–343, 1965).
AbstractList Inspired by Owen’s (Nav Res Logist Quart 18:345–354, 1971) previous work on the subject, Shapley (A comparison of power indices and a non-symmetric generalization. Rand Corporation, Santa Monica, 1977) introduced the Owen–Shapley spatial power index, which takes the ideological location of individuals into account, represented by vectors in the Euclidean space Rm, to measure their power. In this work we study the Owen–Shapley spatial power index in three-dimensional space. Peters and Zarzuelo (Int J Game Theory 46:525–545, 2017) carried out a study of this index for individuals located in two-dimensional space, but pointed out the limitation of the two-dimensional feature. In this work focusing on three-dimensional space, we provide an explicit formula for spatial unanimity games, which makes it possible to calculate the Owen–Shapley spatial power index of any spatial game. We also give a characterization of the Owen–Shapley spatial power index employing two invariant positional axioms among others. Finally, we calculate this power index for the Basque Parliament, both in the two-dimensional and three-dimensional cases. We compare these positional indices against each other and against those that result when classical non-positional indices are considered, such as the Shapley–Shubik power index (Am Polit Sci Rev 48(3):787–792, 1954) and the Banzhaf-normalized index (Rutgers Law Rev 19:317–343, 1965).
Inspired by Owen’s (Nav Res Logist Quart 18:345–354, 1971) previous work on the subject, Shapley (A comparison of power indices and a non-symmetric generalization. Rand Corporation, Santa Monica, 1977) introduced the Owen–Shapley spatial power index, which takes the ideological location of individuals into account, represented by vectors in the Euclidean space R m , to measure their power. In this work we study the Owen–Shapley spatial power index in three-dimensional space. Peters and Zarzuelo (Int J Game Theory 46:525–545, 2017) carried out a study of this index for individuals located in two-dimensional space, but pointed out the limitation of the two-dimensional feature. In this work focusing on three-dimensional space, we provide an explicit formula for spatial unanimity games, which makes it possible to calculate the Owen–Shapley spatial power index of any spatial game. We also give a characterization of the Owen–Shapley spatial power index employing two invariant positional axioms among others. Finally, we calculate this power index for the Basque Parliament, both in the two-dimensional and three-dimensional cases. We compare these positional indices against each other and against those that result when classical non-positional indices are considered, such as the Shapley–Shubik power index (Am Polit Sci Rev 48(3):787–792, 1954) and the Banzhaf-normalized index (Rutgers Law Rev 19:317–343, 1965).
Author Albizuri, M. J.
Goikoetxea, A.
Author_xml – sequence: 1
  givenname: M. J.
  orcidid: 0000-0002-2435-1046
  surname: Albizuri
  fullname: Albizuri, M. J.
  email: mj.albizuri@ehu.es
  organization: Department of Applied Economics IV, Faculty of Economics and Business, University of the Basque Country
– sequence: 2
  givenname: A.
  surname: Goikoetxea
  fullname: Goikoetxea, A.
  organization: Department of Applied Economics IV, Faculty of Economics and Business, University of the Basque Country
BookMark eNp9kM9KAzEQh4NUsFZfwNOC5-gkm2x2j6X-KxQqtJ5DdjO1W9rsmrS0vfkOvqFPYnQFb54GZr7fj-E7Jz3XOCTkisENA1C3gYHiGQXOKBRKZPRwQvpMKk6LAlSP9KGIZ54JcUbOQ1gBAJeg-mQ4X2Iy3aP7fP-YLU27xmMya822NuvkudmjT8bO4iGpXTJfekR6V2_QhbpxEYhghRfkdGHWAS9_54C8PNzPR090Mn0cj4YTWqVcbSkvi8qklcGCW1CL0iiQvMqtsnmpMpNKjCshSsusRZCiMsrkEkqBwhohRTog111v65u3HYatXjU7H98ImsusEHnOcogU76jKNyF4XOjW1xvjj5qB_lalO1U6qtI_qvQhhtIuFCLsXtH_Vf-T-gJj5W8j
Cites_doi 10.1016/j.geb.2011.03.007
10.1002/nav.3800180307
10.2307/1951053
10.1007/s10726-017-9546-6
10.1007/s10726-019-09651-4
10.1007/978-3-642-20853-9_19
10.1016/0165-4896(82)91084-8
10.1287/moor.12.2.185
10.1007/BF01254297
10.1007/BF01780630
10.1016/j.mathsocsci.2008.12.007
10.1007/s10726-014-9425-3
10.1007/s00182-016-0544-8
10.1007/s00355-011-0608-4
10.1287/mnsc.18.5.64
10.1016/j.geb.2004.03.002
10.1007/s00355-006-0155-6
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Nature B.V. 2021
The Author(s), under exclusive licence to Springer Nature B.V. 2021.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Nature B.V. 2021
– notice: The Author(s), under exclusive licence to Springer Nature B.V. 2021.
DBID AAYXX
CITATION
3V.
7UB
7WY
7WZ
7XB
87Z
88C
88G
8AO
8BJ
8FI
8FJ
8FK
8FL
8G5
ABUWG
AFKRA
AZQEC
BENPR
BEZIV
CCPQU
DWQXO
FQK
FRNLG
FYUFA
F~G
GHDGH
GNUQQ
GUQSH
JBE
K60
K6~
K8~
L.-
M0C
M0T
M2M
M2O
MBDVC
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQBIZ
PQBZA
PQEST
PQQKQ
PQUKI
PRINS
PSYQQ
Q9U
DOI 10.1007/s10726-021-09746-x
DatabaseName CrossRef
ProQuest Central (Corporate)
Worldwide Political Science Abstracts
ABI/INFORM Collection (ProQuest)
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Healthcare Administration Database (Alumni)
Psychology Database (Alumni)
ProQuest Pharma Collection
International Bibliography of the Social Sciences (IBSS)
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni Edition)
Research Library
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
ProQuest One Community College
ProQuest Central
International Bibliography of the Social Sciences
Business Premium Collection (Alumni)
Health Research Premium Collection
ABI/INFORM Global (Corporate)
Health Research Premium Collection (Alumni)
ProQuest Central Student
Research Library Prep
International Bibliography of the Social Sciences
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
DELNET Management Collection
ABI/INFORM Professional Advanced
ABI/INFORM Global
Healthcare Administration Database (Proquest)
Psychology Collection (Proquest)
Research Library (Proquest)
Research Library (Corporate)
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest One Psychology
ProQuest Central Basic
DatabaseTitle CrossRef
ABI/INFORM Global (Corporate)
ProQuest Business Collection (Alumni Edition)
ProQuest One Business
ProQuest One Psychology
Research Library Prep
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
Research Library (Alumni Edition)
ProQuest Pharma Collection
ProQuest Central China
ABI/INFORM Complete
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest Health & Medical Research Collection
Health Research Premium Collection
International Bibliography of the Social Sciences (IBSS)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Research Library
Worldwide Political Science Abstracts
ProQuest Central (New)
ABI/INFORM Complete (Alumni Edition)
Business Premium Collection
ABI/INFORM Global
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest One Academic Eastern Edition
ProQuest Health Management
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Psychology Journals (Alumni)
ProQuest Business Collection
ProQuest Hospital Collection (Alumni)
ProQuest Psychology Journals
ProQuest One Academic UKI Edition
ProQuest Health Management (Alumni Edition)
ProQuest DELNET Management Collection
ProQuest One Business (Alumni)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
DatabaseTitleList ABI/INFORM Global (Corporate)

Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Business
EISSN 1572-9907
EndPage 1055
ExternalDocumentID 10_1007_s10726_021_09746_x
GrantInformation_xml – fundername: Ministry of Science and Innovation
  grantid: PID2019-105291GB-I00
– fundername: University of the Basque Country
  grantid: GIU20/019
GroupedDBID -4X
-57
-5G
-BR
-EM
-Y2
-~C
-~X
.86
.VR
06D
0R~
0VY
199
1N0
1SB
2.D
203
28-
29I
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
78A
7WY
8AO
8FI
8FJ
8FL
8FW
8G5
8TC
8UJ
8VB
95-
95.
95~
96X
AAAVM
AABHQ
AABXT
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABIVO
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACDTI
ACGFS
ACHQT
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACYUM
ACZOJ
ADBBV
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHQJS
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKVCP
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
AQUVI
ARMRJ
ASPBG
AVWKF
AXYYD
AYQZM
AZFZN
AZQEC
B-.
BA0
BAPOH
BBWZM
BDATZ
BENPR
BEZIV
BGNMA
BPHCQ
BSONS
BVXVI
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBO
EBS
EBU
EHE
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
FYUFA
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GROUPED_ABI_INFORM_RESEARCH
GUQSH
GXS
H13
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K1G
K60
K6~
K8~
KDC
KOV
KOW
LAK
LLZTM
M0C
M0T
M2M
M2O
M4Y
MA-
N2Q
NB0
NDZJH
NPVJJ
NQJWS
NU0
O-J
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P9Q
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PSYQQ
PT4
PT5
Q2X
QOK
QOS
QWB
R-Y
R4E
R89
R9I
RHV
RNI
ROL
RPX
RSV
RZC
RZD
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SBE
SCF
SCLPG
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TH9
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UKHRP
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK6
WK8
YLTOR
Z45
Z81
Z8U
ZL0
ZMTXR
ZYFGU
~8M
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PJZUB
PPXIY
PUEGO
7UB
7XB
8BJ
8FK
FQK
JBE
L.-
MBDVC
PKEHL
PQEST
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c327t-2b9ca3cae92d07fba7052c8d7d8b76a35eba744bd1dde054ca7a850b4e4da4543
IEDL.DBID AGYKE
ISSN 0926-2644
IngestDate Sat Aug 23 14:49:28 EDT 2025
Wed Oct 01 03:21:13 EDT 2025
Fri Feb 21 02:48:03 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords C71
Power index
Owen–Shapley spatial index
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c327t-2b9ca3cae92d07fba7052c8d7d8b76a35eba744bd1dde054ca7a850b4e4da4543
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-2435-1046
PQID 2569488180
PQPubID 30672
PageCount 29
ParticipantIDs proquest_journals_2569488180
crossref_primary_10_1007_s10726_021_09746_x
springer_journals_10_1007_s10726_021_09746_x
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-10-01
PublicationDateYYYYMMDD 2021-10-01
PublicationDate_xml – month: 10
  year: 2021
  text: 2021-10-01
  day: 01
PublicationDecade 2020
PublicationPlace Dordrecht
PublicationPlace_xml – name: Dordrecht
PublicationSubtitle Published in cooperation with the Institute for Operations Research and the Management Sciences and its Section on Group Decision and Negotiation
PublicationTitle Group decision and negotiation
PublicationTitleAbbrev Group Decis Negot
PublicationYear 2021
Publisher Springer Netherlands
Springer Nature B.V
Publisher_xml – name: Springer Netherlands
– name: Springer Nature B.V
References Shapley L S (1977) A comparison of power indices and a non-symmetric generalization. Paper P5872, Rand Corporation, Santa Monica, CA
BernardiJA new axiomatization of the Banzhaf index for games with abstentionGroup Decis Negot20182716517710.1007/s10726-017-9546-6
PassarelliFBarrJPreferences, the agenda setter, and the distribution of power in the EUSoc Choice Welf200728416010.1007/s00355-006-0155-6
CarrerasFAlbina-PuenteMMaría Albina Puente Multinomial probabilistic valuesGroup Decis Negot20152498199110.1007/s10726-014-9425-3
EinyESemivalues of simple gamesMath Oper Res19871218519210.1287/moor.12.2.185
EinyEHaimankoOCharacterizations of the Shapley–Shubik power index without the efficiency axiomGames Econ Behav20117361562110.1016/j.geb.2011.03.007
OwenGShapleyLSOptimal location of candidates in ideological spaceInt J Game Theory19891822935610.1007/BF01254297
OwenGPolitical gamesNav Res Logist Quart19711834535410.1002/nav.3800180307
DubeyPOn the uniqueness of the Shapley valueInt J Game Theory1975413113910.1007/BF01780630
Alonso-Meijide JM, Fiestras-Janeiro MG, García-Jurado I (2011) A new power index for spatial games. Modern Mathematical tools and techniques in capturing complexity understandig complex systems, pp 275–285
DubeyPEinyEHaimankoOCompound voting and the Banzhaf indexGames Econ Behav200551203010.1016/j.geb.2004.03.002
OwenGMultilinear extensions of gamesManag Sci197218647910.1287/mnsc.18.5.64
ShenoyPPThe Banzhaf power index for political gamesMath Soc Sci1982229931510.1016/0165-4896(82)91084-8
BenatiSMarzettiGVProbabilistic spatial power indexesSoc Choice Welf20134039141010.1007/s00355-011-0608-4
FreixasJThe banzhaf value for cooperative and simple multichoice gamesGroup Decis Negot202029617410.1007/s10726-019-09651-4
BanzhafJFWeighted voting doesn’t work: a mathematical analysisRutgers Law Rev196519317343
Martin M, Nganmeni Z, Tchantcho B (2014) The Owen and Shapley spatial power indices: a comparison and a generalization. Working Paper, THEMA, Cergy Pontoise
ShapleyLSShubikMA method for evaluating the distribution of power in a committee systemAm Polit Sci Rev195448378779210.2307/1951053
PetersHZarzueloJMAn axiomatic characterization of the Owen–Shapley spatial power indexInt J Game Theory20174652554510.1007/s00182-016-0544-8
Casey J (1889) A treatise On spherical trigonometry, and its application to geodesy and astronomy with numerous examples. (www.survivorlibrary.com)
BarrJPassarelliFWho has the power in the EU?Math Soc Sci20095733936610.1016/j.mathsocsci.2008.12.007
G Owen (9746_CR15) 1971; 18
J Barr (9746_CR3) 2009; 57
S Benati (9746_CR4) 2013; 40
P Dubey (9746_CR8) 1975; 4
P Dubey (9746_CR9) 2005; 51
E Einy (9746_CR10) 1987; 12
LS Shapley (9746_CR20) 1954; 48
J Freixas (9746_CR12) 2020; 29
H Peters (9746_CR14) 2017; 46
J Bernardi (9746_CR5) 2018; 27
F Carreras (9746_CR7) 2015; 24
G Owen (9746_CR16) 1972; 18
9746_CR13
F Passarelli (9746_CR18) 2007; 28
9746_CR6
E Einy (9746_CR11) 2011; 73
JF Banzhaf (9746_CR2) 1965; 19
9746_CR19
9746_CR1
G Owen (9746_CR17) 1989; 18
PP Shenoy (9746_CR21) 1982; 2
References_xml – reference: CarrerasFAlbina-PuenteMMaría Albina Puente Multinomial probabilistic valuesGroup Decis Negot20152498199110.1007/s10726-014-9425-3
– reference: EinyEHaimankoOCharacterizations of the Shapley–Shubik power index without the efficiency axiomGames Econ Behav20117361562110.1016/j.geb.2011.03.007
– reference: EinyESemivalues of simple gamesMath Oper Res19871218519210.1287/moor.12.2.185
– reference: BarrJPassarelliFWho has the power in the EU?Math Soc Sci20095733936610.1016/j.mathsocsci.2008.12.007
– reference: Alonso-Meijide JM, Fiestras-Janeiro MG, García-Jurado I (2011) A new power index for spatial games. Modern Mathematical tools and techniques in capturing complexity understandig complex systems, pp 275–285
– reference: Casey J (1889) A treatise On spherical trigonometry, and its application to geodesy and astronomy with numerous examples. (www.survivorlibrary.com)
– reference: DubeyPEinyEHaimankoOCompound voting and the Banzhaf indexGames Econ Behav200551203010.1016/j.geb.2004.03.002
– reference: OwenGPolitical gamesNav Res Logist Quart19711834535410.1002/nav.3800180307
– reference: Shapley L S (1977) A comparison of power indices and a non-symmetric generalization. Paper P5872, Rand Corporation, Santa Monica, CA
– reference: BenatiSMarzettiGVProbabilistic spatial power indexesSoc Choice Welf20134039141010.1007/s00355-011-0608-4
– reference: BanzhafJFWeighted voting doesn’t work: a mathematical analysisRutgers Law Rev196519317343
– reference: OwenGMultilinear extensions of gamesManag Sci197218647910.1287/mnsc.18.5.64
– reference: ShapleyLSShubikMA method for evaluating the distribution of power in a committee systemAm Polit Sci Rev195448378779210.2307/1951053
– reference: PetersHZarzueloJMAn axiomatic characterization of the Owen–Shapley spatial power indexInt J Game Theory20174652554510.1007/s00182-016-0544-8
– reference: PassarelliFBarrJPreferences, the agenda setter, and the distribution of power in the EUSoc Choice Welf200728416010.1007/s00355-006-0155-6
– reference: ShenoyPPThe Banzhaf power index for political gamesMath Soc Sci1982229931510.1016/0165-4896(82)91084-8
– reference: DubeyPOn the uniqueness of the Shapley valueInt J Game Theory1975413113910.1007/BF01780630
– reference: OwenGShapleyLSOptimal location of candidates in ideological spaceInt J Game Theory19891822935610.1007/BF01254297
– reference: Martin M, Nganmeni Z, Tchantcho B (2014) The Owen and Shapley spatial power indices: a comparison and a generalization. Working Paper, THEMA, Cergy Pontoise
– reference: FreixasJThe banzhaf value for cooperative and simple multichoice gamesGroup Decis Negot202029617410.1007/s10726-019-09651-4
– reference: BernardiJA new axiomatization of the Banzhaf index for games with abstentionGroup Decis Negot20182716517710.1007/s10726-017-9546-6
– volume: 73
  start-page: 615
  year: 2011
  ident: 9746_CR11
  publication-title: Games Econ Behav
  doi: 10.1016/j.geb.2011.03.007
– ident: 9746_CR6
– ident: 9746_CR19
– volume: 18
  start-page: 345
  year: 1971
  ident: 9746_CR15
  publication-title: Nav Res Logist Quart
  doi: 10.1002/nav.3800180307
– volume: 48
  start-page: 787
  issue: 3
  year: 1954
  ident: 9746_CR20
  publication-title: Am Polit Sci Rev
  doi: 10.2307/1951053
– volume: 27
  start-page: 165
  year: 2018
  ident: 9746_CR5
  publication-title: Group Decis Negot
  doi: 10.1007/s10726-017-9546-6
– volume: 29
  start-page: 61
  year: 2020
  ident: 9746_CR12
  publication-title: Group Decis Negot
  doi: 10.1007/s10726-019-09651-4
– ident: 9746_CR1
  doi: 10.1007/978-3-642-20853-9_19
– volume: 2
  start-page: 299
  year: 1982
  ident: 9746_CR21
  publication-title: Math Soc Sci
  doi: 10.1016/0165-4896(82)91084-8
– volume: 12
  start-page: 185
  year: 1987
  ident: 9746_CR10
  publication-title: Math Oper Res
  doi: 10.1287/moor.12.2.185
– volume: 18
  start-page: 229
  year: 1989
  ident: 9746_CR17
  publication-title: Int J Game Theory
  doi: 10.1007/BF01254297
– volume: 4
  start-page: 131
  year: 1975
  ident: 9746_CR8
  publication-title: Int J Game Theory
  doi: 10.1007/BF01780630
– volume: 57
  start-page: 339
  year: 2009
  ident: 9746_CR3
  publication-title: Math Soc Sci
  doi: 10.1016/j.mathsocsci.2008.12.007
– volume: 24
  start-page: 981
  year: 2015
  ident: 9746_CR7
  publication-title: Group Decis Negot
  doi: 10.1007/s10726-014-9425-3
– volume: 46
  start-page: 525
  year: 2017
  ident: 9746_CR14
  publication-title: Int J Game Theory
  doi: 10.1007/s00182-016-0544-8
– volume: 19
  start-page: 317
  year: 1965
  ident: 9746_CR2
  publication-title: Rutgers Law Rev
– volume: 40
  start-page: 391
  year: 2013
  ident: 9746_CR4
  publication-title: Soc Choice Welf
  doi: 10.1007/s00355-011-0608-4
– volume: 18
  start-page: 64
  year: 1972
  ident: 9746_CR16
  publication-title: Manag Sci
  doi: 10.1287/mnsc.18.5.64
– volume: 51
  start-page: 20
  year: 2005
  ident: 9746_CR9
  publication-title: Games Econ Behav
  doi: 10.1016/j.geb.2004.03.002
– ident: 9746_CR13
– volume: 28
  start-page: 41
  year: 2007
  ident: 9746_CR18
  publication-title: Soc Choice Welf
  doi: 10.1007/s00355-006-0155-6
SSID ssj0002507
Score 2.266969
Snippet Inspired by Owen’s (Nav Res Logist Quart 18:345–354, 1971) previous work on the subject, Shapley (A comparison of power indices and a non-symmetric...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Index Database
Publisher
StartPage 1027
SubjectTerms Basque people
Biological and Physical Anthropology
Business and Management
Euclidean space
Game theory
Games
Indexes
Legislatures
Power
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LSwMxEB5qC-JFfGK1Sg7eNLjNYx8HkaotVbAWbaG3JZtk0cu2asUe_Q_-Q3-Jk-2uRUGvu0sIM8nMl83M9wEc4uTSpi85ZTq1VCAopSHmKSpSFyeVYsq4RuGbnt8diuuRHFWgV_bCuLLKMibmgdqMtftHfoKpOcLF1gy9s8kTdapR7na1lNBQhbSCOc0pxpagxhwzVhVq5-1e_-47NmPCzxuoI-a72i5RtNEUzXQBcwW5eLxGkO3T2c9UtcCfv65M80zUWYPVAkKS1tzn61Cx2QYslxXsm9BC15PbN5t9vn_cP6gJbnvilIdxpZG-E0UjV44ikTxmZICetPTSMfzP2Tnch9puwbDTHlx0aaGUQDVnwZSyJNKKa2UjZrwgTVTgSaZDE5gwCXzFpcVHQiSmidEMQZpWgQqllwgrjBJS8G2oZuPM7gCJNGI4zY3kVuDhKUqYx1PmWalTZVjo1eGoNEo8mRNixAvqY2fCGE0Y5yaMZ3VolHaLi83xEi9cWYfj0paL13-Ptvv_aHuwwpz78lK7BlSnz692HyHDNDko1sEX3fa92w
  priority: 102
  providerName: ProQuest
Title The Owen–Shapley Spatial Power Index in Three-Dimensional Space
URI https://link.springer.com/article/10.1007/s10726-021-09746-x
https://www.proquest.com/docview/2569488180
Volume 30
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1572-9907
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002507
  issn: 0926-2644
  databaseCode: AFBBN
  dateStart: 19970101
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1572-9907
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002507
  issn: 0926-2644
  databaseCode: AGYKE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1572-9907
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002507
  issn: 0926-2644
  databaseCode: U2A
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFA66gfjiXZzO0QffNKNLk14eO92cinPoCvOppEmKItThOhSf_A_-Q3-JJ704HfrgU6E9hPTkyzlfyLkgdACTi1s2szARscIUSCl2wU9hGms7yTnhUicKX_btXkDPR2xUJIVNymj38koys9Tfkt0cogNm4fgLJNjGwByrWb2tCqr6p7cXnS8LDG49S5P2QF47_CJZ5vdRfjqkGcucuxjN_E13FQXlTPMwk4fmNI2a4nWuiON_f2UNrRQE1PBzxKyjBZVsoKUy_n0T-QAc4-pZJR9v7zd3fAxGw9B9iwGnxkC3VDPOdIFF4z4xhoADhU90f4C8tocWFGoLBd3O8LiHiz4LWFjESTGJPMEtwZVHpOnEEXdMRoQrHelGjs0tpuAVpZFsgS0Eiie4w11mRlRRySmj1jaqJI-J2kGGJ4ABCksyS1E4enkRMa2YmIqJmEvimjV0WCo7HOflNMJZ4WStlRC0EmZaCV9qqF6uR1hsrUkIHM0Dq9PSgx2V6p19_nu03f-J76FlolcoC9yro0r6NFX7QEDSqAF467bb_UaBO3i2O_3BdQMtBsT_BAkO1gY
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LTsMwEB0BlYAN4isKBbyAFViktvNbVKhQUMunICgSu-DYjmATChQVdtyB-3AYTsI4TahAgh3bJLKi8cvMm3hmHsA6vlxS9VxOmUoMFUhKaYBxiorE-kkpmdS2Ufik7TUvxeGVezUC70UvjC2rLHxi5qj1nbL_yLcxNIcItmrg7HTvqVWNsqerhYSGzKUVdC0bMZY3dhyZlz6mcI-1VgP3e4Oxg_3OXpPmKgNUceb3KItDJbmSJmTa8ZNY-o7LVKB9HcS-J7lr8JIQsa6iJ0CCo6QvA9eJhRFaCldwXHcUSoKLEJO_0u5---z8KxYgwcgatkPm2Voykbft5M17PrMFwJjOI6n36PP30Djkuz-OaLPIdzANUzllJfUBxmZgxKSzMF5UzM9BHaFGTvsm_Xh9u7iRXXQzxCodI7LJmRVhIy07kpHcpqSDyDG0YRUFBtNA7IPKzMPlv9hsAcbSu9QsAgkVckbFtcuNwGQtjJnDE-YYVyVSs8Apw2ZhlKg7GMARDUctWxNGaMIoM2H0XIZKYbco_xgfoyF0yrBV2HJ4-_fVlv5ebQ0mmp2T4-i41T5ahklmtzIr86vAWO_hyawgXenFqzkmCFz_Nww_AZvj_LM
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NTuMwEB5BkRAXxK8odMEHOIFFcJy_A0IspaKwWyp-JG7BsR3BJRQoKtx4h30rHoMn2ZnUoWIl9sY1iUbR-MvM53i-GYB1fLl8Jwx8LnRuuURSymPMU1zmFCeVEsqQUPh3Jzy6lMdXwdUYvFVaGCqrrGJiGajNnaZ_5NuYmhMEGymTc1cW0W229nr3nCZI0UlrNU5DuTELZrdsN-ZEHif2ZYDbucfddhPXfkOI1uHFwRF3Ewe49kXU5yJLtPK1sokwXpRnKvICoWMTmTiLQuUHFi9JmZkdjApIdrSKVBx4mbTSKBlIH-2OwwQdfmGQmPh52OmefeQFJBuleDsRIdWVSSfhcUK-SFAxMG7tkeCH_Plzmhxx33-Oa8ss2JqBaUdf2f4Qb7MwZos5mKyq5-dhH2HHTge2eH_9c36jehhyGE09RpSzLg1kY21qz8huC3aBKLK8SdMFhp1B6EFtF-DyW3y2CLXirrBLwBKN_FH7JvCtxI1bkgnPz4VnA50rI2KvDpuVU9LesBlHOmq7TC5M0YVp6cL0uQ6Nym-p-zAf0xGM6rBV-XJ0-2try_-3tgaTCMf0V7tzsgJTglayrPhrQK3_8GR_IHPpZ6sOEgyuvxuFfwEWAwDx
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Owen%E2%80%93Shapley+Spatial+Power+Index+in+Three-Dimensional+Space&rft.jtitle=Group+decision+and+negotiation&rft.au=Albizuri%2C+M.+J.&rft.au=Goikoetxea%2C+A.&rft.date=2021-10-01&rft.pub=Springer+Netherlands&rft.issn=0926-2644&rft.eissn=1572-9907&rft.volume=30&rft.issue=5&rft.spage=1027&rft.epage=1055&rft_id=info:doi/10.1007%2Fs10726-021-09746-x&rft.externalDocID=10_1007_s10726_021_09746_x
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0926-2644&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0926-2644&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0926-2644&client=summon