Study of the Duffing–Rayleigh oscillator subject to harmonic and stochastic excitations by path integration
In this paper, the Duffing–Rayleigh oscillator subject to harmonic and stochastic excitations is investigated via path integration based on the Gauss–Legendre integration formula. The method can successfully capture the steady state periodic solution of probability density function. This path integr...
Saved in:
| Published in | Applied mathematics and computation Vol. 172; no. 2; pp. 1212 - 1224 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
New York, NY
Elsevier Inc
15.01.2006
Elsevier |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0096-3003 1873-5649 |
| DOI | 10.1016/j.amc.2005.03.018 |
Cover
| Abstract | In this paper, the Duffing–Rayleigh oscillator subject to harmonic and stochastic excitations is investigated via path integration based on the Gauss–Legendre integration formula. The method can successfully capture the steady state periodic solution of probability density function. This path integration method, using the periodicity of the coefficient of associated Fokker–Planck–Kolmogorov equation, is extended to deal with the averaged stationary probability density, and is efficient to computation. Meanwhile, the changes of probability density caused by the intensities of harmonic and stochastic excitations, are discussed in three cases through the instantaneous probability density and the averaged stationary probability density. |
|---|---|
| AbstractList | In this paper, the Duffing–Rayleigh oscillator subject to harmonic and stochastic excitations is investigated via path integration based on the Gauss–Legendre integration formula. The method can successfully capture the steady state periodic solution of probability density function. This path integration method, using the periodicity of the coefficient of associated Fokker–Planck–Kolmogorov equation, is extended to deal with the averaged stationary probability density, and is efficient to computation. Meanwhile, the changes of probability density caused by the intensities of harmonic and stochastic excitations, are discussed in three cases through the instantaneous probability density and the averaged stationary probability density. |
| Author | Xie, W.X. Cai, L. Xu, W. |
| Author_xml | – sequence: 1 givenname: W.X. surname: Xie fullname: Xie, W.X. organization: Department of Applied Mathematics, Northwestern Polytechnical University, Xi’an, Shaanxi 710072, PR China – sequence: 2 givenname: W. surname: Xu fullname: Xu, W. email: weixu@nwpu.edu.cn organization: Department of Applied Mathematics, Northwestern Polytechnical University, Xi’an, Shaanxi 710072, PR China – sequence: 3 givenname: L. surname: Cai fullname: Cai, L. organization: College of Astronautics, Northwestern Polytechnical University, Xi’an, Shaanxi 710072, PR China |
| BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=17493403$$DView record in Pascal Francis |
| BookMark | eNp9kM1q3DAQx0VJoZuPB-hNlx7tjCzZsumppB8JBAJJcxazsrTW4pUWSVu6t7xD3zBPEiWbUughp2Fm_r-B-R2TIx-8IeQjg5oB687XNW503QC0NfAaWP-OLFgvedV2YjgiC4ChqzgA_0COU1oDgOyYWJDNXd6NexoszZOhX3fWOr96fPhzi_vZuNVEQ9JunjGHSNNuuTY60xzohHETvNMU_UhTDnrClEtrfmuXMbvgE13u6RbzRJ3PZhVfhqfkvcU5mbPXekLuv3_7eXFZXd_8uLr4cl1p3shcNUPfjVbYnjWtZLIVCLoZjAUwfWdhaPhS2G4YALG3lpetMFYw20rTSSEYPyGfDne3mDTONqLXLqltdBuMe8WkGLgAXnLskNMxpBSN_RcB9exVrVXxqp69KuCqeC2M_I_5-3KO6OY3yc8H0pTXfzkTVXFrvDaji8WrGoN7g34CWfmW2g |
| CODEN | AMHCBQ |
| CitedBy_id | crossref_primary_10_1016_j_amc_2018_09_061 crossref_primary_10_1016_j_physa_2006_05_021 crossref_primary_10_1177_09544062231203844 crossref_primary_10_1016_j_amc_2007_07_088 crossref_primary_10_1115_1_4050612 crossref_primary_10_7498_aps_60_090507 crossref_primary_10_1016_j_apm_2012_04_014 crossref_primary_10_1007_s10483_019_2467_8 crossref_primary_10_1016_j_probengmech_2014_05_001 crossref_primary_10_1088_1402_4896_acc0b2 crossref_primary_10_12677_AAM_2020_96102 crossref_primary_10_1115_1_4029993 |
| Cites_doi | 10.1016/0020-7462(82)90013-0 10.1016/0020-7462(90)90014-Z 10.1006/jsvi.2000.3083 10.1016/S0266-8920(99)00031-4 10.1016/S0020-7462(96)00096-0 10.1016/j.ijnonlinmec.2004.02.011 10.1016/0020-7462(96)00053-4 10.1016/S0266-8920(02)00034-6 10.1016/S0266-8920(99)00007-7 10.1023/A:1008389909132 10.1016/0020-7462(82)90023-3 |
| ContentType | Journal Article |
| Copyright | 2005 Elsevier Inc. 2006 INIST-CNRS |
| Copyright_xml | – notice: 2005 Elsevier Inc. – notice: 2006 INIST-CNRS |
| DBID | AAYXX CITATION IQODW |
| DOI | 10.1016/j.amc.2005.03.018 |
| DatabaseName | CrossRef Pascal-Francis |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Mathematics |
| EISSN | 1873-5649 |
| EndPage | 1224 |
| ExternalDocumentID | 17493403 10_1016_j_amc_2005_03_018 S0096300305002882 |
| GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1RT 1~. 1~5 23M 4.4 457 4G. 5GY 5VS 6J9 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABAOU ABEFU ABFNM ABFRF ABJNI ABMAC ABXDB ABYKQ ACAZW ACDAQ ACGFO ACGFS ACRLP ADBBV ADEZE ADGUI ADIYS ADMUD AEBSH AEFWE AEKER AENEX AFFNX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AI. AIEXJ AIGVJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ARUGR ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLZ HMJ HVGLF HZ~ IHE J1W KOM LG9 M26 M41 MHUIS MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ RXW SBC SDF SDG SES SEW SME SPC SPCBC SSW SSZ T5K TAE TN5 VH1 VOH WH7 WUQ X6Y XPP ZMT ~02 ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD AFXIZ AGCQF AGRNS BNPGV IQODW SSH |
| ID | FETCH-LOGICAL-c327t-2986df4f812571754a0c29ef00e86f0923b4f6990aa8ff3a0c4ef41f57e674413 |
| IEDL.DBID | AIKHN |
| ISSN | 0096-3003 |
| IngestDate | Mon Jul 21 09:13:58 EDT 2025 Thu Apr 24 23:11:37 EDT 2025 Wed Oct 01 02:15:19 EDT 2025 Fri Feb 23 02:29:03 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Keywords | Harmonic and stochastic excitations Probability density Path integration Duffing–Rayleigh oscillator Harmonic and stochastic excitations: Probability density Path integral Periodic function Probability distribution Duffing-Rayleigh oscillator Gauss formula Stochastic excitation Applied mathematics Duffing Rayleigh oscillator Fokker Planck equation Probability density function Sinusoidal excitation Kolmogorov equation Steady state solution Harmonic oscillator |
| Language | English |
| License | https://www.elsevier.com/tdm/userlicense/1.0 CC BY 4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c327t-2986df4f812571754a0c29ef00e86f0923b4f6990aa8ff3a0c4ef41f57e674413 |
| PageCount | 13 |
| ParticipantIDs | pascalfrancis_primary_17493403 crossref_primary_10_1016_j_amc_2005_03_018 crossref_citationtrail_10_1016_j_amc_2005_03_018 elsevier_sciencedirect_doi_10_1016_j_amc_2005_03_018 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2006-01-15 |
| PublicationDateYYYYMMDD | 2006-01-15 |
| PublicationDate_xml | – month: 01 year: 2006 text: 2006-01-15 day: 15 |
| PublicationDecade | 2000 |
| PublicationPlace | New York, NY |
| PublicationPlace_xml | – name: New York, NY |
| PublicationTitle | Applied mathematics and computation |
| PublicationYear | 2006 |
| Publisher | Elsevier Inc Elsevier |
| Publisher_xml | – name: Elsevier Inc – name: Elsevier |
| References | Dimentberg (bib2) 1982; 17 Caughey, Ma (bib1) 1982; 17 Cai, Lin (bib3) 1996; 31 Rong, Xu, Meng, Fang (bib13) 2001; 18 Nayfeh, Serhan (bib10) 1990; 25 Naess, Moe (bib6) 2000; 15 Huang, Zhu, Suzuki (bib7) 2000; 238 Yu, Cai, Lin (bib8) 1997; 32 Naess (bib11) 2000; 15 Von Wagner, Wedig (bib4) 2000; 21 Zhou, Zhu (bib12) 1998 Paola, Sofi (bib5) 2002; 17 Yu, Lin (bib9) 2004; 39 Cai (10.1016/j.amc.2005.03.018_bib3) 1996; 31 Caughey (10.1016/j.amc.2005.03.018_bib1) 1982; 17 Paola (10.1016/j.amc.2005.03.018_bib5) 2002; 17 Naess (10.1016/j.amc.2005.03.018_bib6) 2000; 15 Yu (10.1016/j.amc.2005.03.018_bib8) 1997; 32 Dimentberg (10.1016/j.amc.2005.03.018_bib2) 1982; 17 Von Wagner (10.1016/j.amc.2005.03.018_bib4) 2000; 21 Naess (10.1016/j.amc.2005.03.018_bib11) 2000; 15 Yu (10.1016/j.amc.2005.03.018_bib9) 2004; 39 Huang (10.1016/j.amc.2005.03.018_bib7) 2000; 238 Rong (10.1016/j.amc.2005.03.018_bib13) 2001; 18 Zhou (10.1016/j.amc.2005.03.018_bib12) 1998 Nayfeh (10.1016/j.amc.2005.03.018_bib10) 1990; 25 |
| References_xml | – volume: 17 start-page: 369 year: 2002 end-page: 384 ident: bib5 article-title: Approximate solution of the Fokker–Planck–Kolmogorov equation publication-title: Probabilistic Engineering Mechanics – volume: 25 start-page: 493 year: 1990 end-page: 515 ident: bib10 article-title: Response statistics of nonlinear systems to combined deterministic and random excitations publication-title: International Journal of Non-Linear Mechanics – volume: 15 start-page: 221 year: 2000 end-page: 231 ident: bib6 article-title: Efficient path integration methods for nonlinear dynamic systems publication-title: Probabilistic Engineering Mechanic – volume: 31 start-page: 647 year: 1996 end-page: 655 ident: bib3 article-title: Exact and approximate solutions for randomly excited MDOF nonlinear systems publication-title: International Journal of Non-Linear Mechanics – volume: 15 start-page: 37 year: 2000 end-page: 47 ident: bib11 article-title: Chaos and nonlinear stochastic dynamics publication-title: Probabilistic Engineering Mechanics – volume: 17 start-page: 231 year: 1982 end-page: 236 ident: bib2 article-title: An exact solution to a certain non-linear random vibration problem publication-title: International Journal of Non-Linear Mechanics – volume: 17 start-page: 137 year: 1982 end-page: 142 ident: bib1 article-title: The exact steady-state solution of a class of nonlinear stochastic systems publication-title: International Journal of Non-Linear Mechanics – volume: 21 start-page: 289 year: 2000 end-page: 306 ident: bib4 article-title: On The calculation of stationary solutions of multi-dimensional Fokker–Planck equations by orthogonal functions publication-title: Nonlinear Dynamics – volume: 18 start-page: 32 year: 2001 end-page: 36 ident: bib13 article-title: Response of nonlinear oscillator to combined harmonic and random excitation publication-title: Chinese Journal of Applied Mechanics – volume: 238 start-page: 233 year: 2000 end-page: 256 ident: bib7 article-title: Stochastic averaging of strongly non-linear oscillators under combined harmonic and white noise excitations publication-title: Journal of Sound and Vibration – year: 1998 ident: bib12 article-title: Nonlinear vibrations – volume: 32 start-page: 759 year: 1997 end-page: 768 ident: bib8 article-title: A new path integration procedure based on Gauss–Legendre scheme publication-title: International Journal of Non-Linear Mechanics – volume: 39 start-page: 1493 year: 2004 end-page: 1500 ident: bib9 article-title: Numerical path integration of a nonlinear oscillator subject to both sinusoidal and white noise excitations publication-title: International Journal of Non-Linear Mechanics – volume: 17 start-page: 137 year: 1982 ident: 10.1016/j.amc.2005.03.018_bib1 article-title: The exact steady-state solution of a class of nonlinear stochastic systems publication-title: International Journal of Non-Linear Mechanics doi: 10.1016/0020-7462(82)90013-0 – volume: 25 start-page: 493 year: 1990 ident: 10.1016/j.amc.2005.03.018_bib10 article-title: Response statistics of nonlinear systems to combined deterministic and random excitations publication-title: International Journal of Non-Linear Mechanics doi: 10.1016/0020-7462(90)90014-Z – volume: 238 start-page: 233 year: 2000 ident: 10.1016/j.amc.2005.03.018_bib7 article-title: Stochastic averaging of strongly non-linear oscillators under combined harmonic and white noise excitations publication-title: Journal of Sound and Vibration doi: 10.1006/jsvi.2000.3083 – volume: 15 start-page: 221 year: 2000 ident: 10.1016/j.amc.2005.03.018_bib6 article-title: Efficient path integration methods for nonlinear dynamic systems publication-title: Probabilistic Engineering Mechanic doi: 10.1016/S0266-8920(99)00031-4 – volume: 32 start-page: 759 year: 1997 ident: 10.1016/j.amc.2005.03.018_bib8 article-title: A new path integration procedure based on Gauss–Legendre scheme publication-title: International Journal of Non-Linear Mechanics doi: 10.1016/S0020-7462(96)00096-0 – volume: 39 start-page: 1493 year: 2004 ident: 10.1016/j.amc.2005.03.018_bib9 article-title: Numerical path integration of a nonlinear oscillator subject to both sinusoidal and white noise excitations publication-title: International Journal of Non-Linear Mechanics doi: 10.1016/j.ijnonlinmec.2004.02.011 – volume: 31 start-page: 647 year: 1996 ident: 10.1016/j.amc.2005.03.018_bib3 article-title: Exact and approximate solutions for randomly excited MDOF nonlinear systems publication-title: International Journal of Non-Linear Mechanics doi: 10.1016/0020-7462(96)00053-4 – volume: 18 start-page: 32 year: 2001 ident: 10.1016/j.amc.2005.03.018_bib13 article-title: Response of nonlinear oscillator to combined harmonic and random excitation publication-title: Chinese Journal of Applied Mechanics – volume: 17 start-page: 369 year: 2002 ident: 10.1016/j.amc.2005.03.018_bib5 article-title: Approximate solution of the Fokker–Planck–Kolmogorov equation publication-title: Probabilistic Engineering Mechanics doi: 10.1016/S0266-8920(02)00034-6 – year: 1998 ident: 10.1016/j.amc.2005.03.018_bib12 – volume: 15 start-page: 37 year: 2000 ident: 10.1016/j.amc.2005.03.018_bib11 article-title: Chaos and nonlinear stochastic dynamics publication-title: Probabilistic Engineering Mechanics doi: 10.1016/S0266-8920(99)00007-7 – volume: 21 start-page: 289 year: 2000 ident: 10.1016/j.amc.2005.03.018_bib4 article-title: On The calculation of stationary solutions of multi-dimensional Fokker–Planck equations by orthogonal functions publication-title: Nonlinear Dynamics doi: 10.1023/A:1008389909132 – volume: 17 start-page: 231 year: 1982 ident: 10.1016/j.amc.2005.03.018_bib2 article-title: An exact solution to a certain non-linear random vibration problem publication-title: International Journal of Non-Linear Mechanics doi: 10.1016/0020-7462(82)90023-3 |
| SSID | ssj0007614 |
| Score | 1.8735325 |
| Snippet | In this paper, the Duffing–Rayleigh oscillator subject to harmonic and stochastic excitations is investigated via path integration based on the Gauss–Legendre... |
| SourceID | pascalfrancis crossref elsevier |
| SourceType | Index Database Enrichment Source Publisher |
| StartPage | 1212 |
| SubjectTerms | Distribution theory Duffing–Rayleigh oscillator Exact sciences and technology Harmonic and stochastic excitations Mathematical analysis Mathematics Measure and integration Partial differential equations Path integration Probability and statistics Probability density Probability theory and stochastic processes Sciences and techniques of general use |
| Title | Study of the Duffing–Rayleigh oscillator subject to harmonic and stochastic excitations by path integration |
| URI | https://dx.doi.org/10.1016/j.amc.2005.03.018 |
| Volume | 172 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1873-5649 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0007614 issn: 0096-3003 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1873-5649 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0007614 issn: 0096-3003 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Science Direct customDbUrl: eissn: 1873-5649 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0007614 issn: 0096-3003 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1873-5649 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0007614 issn: 0096-3003 databaseCode: AKRWK dateStart: 19930101 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF60vSgiPrE-yh48CWm32U2yexS1VKU9iIXewm6yg4p9YFvQi_gf_If-EmebpFqQHrxuskmYXeb7ZjL7DSGnYBLFQGhPGKs8gRTcM6lWnpWR9WfHBmZyTe1O2OqKm17QWyEXxVkYV1aZ-_7Mp8-8dT5Sz61ZHz0-ujO-yulF4YZ1gYNEP1xG_JGyRMrn17etztwhY6SeiTErV-bFePFzc1bmpftJnlnhNeZaf_wNTxsjPUajQdbt4hcENbfIZs4d6Xn2edtkxQ52yHp7Lrw63iV9Vxf4RodAcZBeTgEQmr4-Pu8wMHdJUOq0K3HlMdKm46lxSRg6GVKnX-00cqkepBTpYPKgnX4zta9JruE9puaNuvbFtBCYwME90m1e3V-0vLyjgpdwP5p4vpJhCgIQ1QOM4wKhWeIrC4xZGQJDsmcEhAhQWksAjleFBdGAILJhhMSJ75PSYDiwB4QyLZGqpRGExhdJmBqQNjTI15TmAgJVIawwZFx8qut68RwXdWVPMdretcEMYsZjtH2FnM2njDKtjWU3i2J14oUNEyMWLJtWXVjJnxdFQnHB-OH_nntE1orkTCM4JqXJy9SeIF2ZmCpZrb03qvmm_AYwresZ |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JSgQxEA2iBxURVxyXMQdPQmvspJccRR3GZTzICN6apDuFI86CMwN6Ef_BP_RLrOrFBWQOXtOd7lAVql5VKq8Y2wObagHKeMo67SmE4J7NjPZcHDk_vzaQ0zW1rsPmrbq4C-6m2El1F4bKKkvbX9j03FqXI4elNA8HnQ7d8dXEF4UblgKHGO3wjAr8iCKwg9fvOg-M0wsqZk1FXkJWR5t5kZfppmVeRR4Iavzxt3NaGJghigyKXhc_HFBjiS2WyJEfF4tbZlOut8LmW1-0q8NV1qWqwBfeB46D_HQMgI7p4-39BsNySoFyYq5EvWOczYdjSykYPupzYq8mhlxuehlHMJjeG2Jv5u45LRm8h9y-cGpezCt6CRxcY7eNs_ZJ0yv7KXip9KOR5-s4zEAB-vQAo7hAGZH62oEQLg5BINSzCkJ0T8bEABKfKgfqCILIhRHCJrnOpnv9nttgXJgYgVoWQWh9lYaZhdiFFtGaNlJBoGtMVIJMqqVSz4vHpKoqe0hQ9tQEM0iETFD2Nbb_NWVQMG1MellV2kl-bZcEPcGkafVfmvz-UaS0VEJu_u-7u2y22W5dJVfn15dbbK5K0xwF22x69DR2OwhcRraeb8xPJvHr4Q |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Study+of+the+Duffing-Rayleigh+oscillator+subject+to+harmonic+and+stochastic+excitations+by+path+integration&rft.jtitle=Applied+mathematics+and+computation&rft.au=XIE%2C+W.+X&rft.au=XU%2C+W&rft.au=CAI%2C+L&rft.date=2006-01-15&rft.pub=Elsevier&rft.issn=0096-3003&rft.volume=172&rft.issue=2&rft.spage=1212&rft.epage=1224&rft_id=info:doi/10.1016%2Fj.amc.2005.03.018&rft.externalDBID=n%2Fa&rft.externalDocID=17493403 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0096-3003&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0096-3003&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0096-3003&client=summon |