Study of the Duffing–Rayleigh oscillator subject to harmonic and stochastic excitations by path integration

In this paper, the Duffing–Rayleigh oscillator subject to harmonic and stochastic excitations is investigated via path integration based on the Gauss–Legendre integration formula. The method can successfully capture the steady state periodic solution of probability density function. This path integr...

Full description

Saved in:
Bibliographic Details
Published inApplied mathematics and computation Vol. 172; no. 2; pp. 1212 - 1224
Main Authors Xie, W.X., Xu, W., Cai, L.
Format Journal Article
LanguageEnglish
Published New York, NY Elsevier Inc 15.01.2006
Elsevier
Subjects
Online AccessGet full text
ISSN0096-3003
1873-5649
DOI10.1016/j.amc.2005.03.018

Cover

Abstract In this paper, the Duffing–Rayleigh oscillator subject to harmonic and stochastic excitations is investigated via path integration based on the Gauss–Legendre integration formula. The method can successfully capture the steady state periodic solution of probability density function. This path integration method, using the periodicity of the coefficient of associated Fokker–Planck–Kolmogorov equation, is extended to deal with the averaged stationary probability density, and is efficient to computation. Meanwhile, the changes of probability density caused by the intensities of harmonic and stochastic excitations, are discussed in three cases through the instantaneous probability density and the averaged stationary probability density.
AbstractList In this paper, the Duffing–Rayleigh oscillator subject to harmonic and stochastic excitations is investigated via path integration based on the Gauss–Legendre integration formula. The method can successfully capture the steady state periodic solution of probability density function. This path integration method, using the periodicity of the coefficient of associated Fokker–Planck–Kolmogorov equation, is extended to deal with the averaged stationary probability density, and is efficient to computation. Meanwhile, the changes of probability density caused by the intensities of harmonic and stochastic excitations, are discussed in three cases through the instantaneous probability density and the averaged stationary probability density.
Author Xie, W.X.
Cai, L.
Xu, W.
Author_xml – sequence: 1
  givenname: W.X.
  surname: Xie
  fullname: Xie, W.X.
  organization: Department of Applied Mathematics, Northwestern Polytechnical University, Xi’an, Shaanxi 710072, PR China
– sequence: 2
  givenname: W.
  surname: Xu
  fullname: Xu, W.
  email: weixu@nwpu.edu.cn
  organization: Department of Applied Mathematics, Northwestern Polytechnical University, Xi’an, Shaanxi 710072, PR China
– sequence: 3
  givenname: L.
  surname: Cai
  fullname: Cai, L.
  organization: College of Astronautics, Northwestern Polytechnical University, Xi’an, Shaanxi 710072, PR China
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=17493403$$DView record in Pascal Francis
BookMark eNp9kM1q3DAQx0VJoZuPB-hNlx7tjCzZsumppB8JBAJJcxazsrTW4pUWSVu6t7xD3zBPEiWbUughp2Fm_r-B-R2TIx-8IeQjg5oB687XNW503QC0NfAaWP-OLFgvedV2YjgiC4ChqzgA_0COU1oDgOyYWJDNXd6NexoszZOhX3fWOr96fPhzi_vZuNVEQ9JunjGHSNNuuTY60xzohHETvNMU_UhTDnrClEtrfmuXMbvgE13u6RbzRJ3PZhVfhqfkvcU5mbPXekLuv3_7eXFZXd_8uLr4cl1p3shcNUPfjVbYnjWtZLIVCLoZjAUwfWdhaPhS2G4YALG3lpetMFYw20rTSSEYPyGfDne3mDTONqLXLqltdBuMe8WkGLgAXnLskNMxpBSN_RcB9exVrVXxqp69KuCqeC2M_I_5-3KO6OY3yc8H0pTXfzkTVXFrvDaji8WrGoN7g34CWfmW2g
CODEN AMHCBQ
CitedBy_id crossref_primary_10_1016_j_amc_2018_09_061
crossref_primary_10_1016_j_physa_2006_05_021
crossref_primary_10_1177_09544062231203844
crossref_primary_10_1016_j_amc_2007_07_088
crossref_primary_10_1115_1_4050612
crossref_primary_10_7498_aps_60_090507
crossref_primary_10_1016_j_apm_2012_04_014
crossref_primary_10_1007_s10483_019_2467_8
crossref_primary_10_1016_j_probengmech_2014_05_001
crossref_primary_10_1088_1402_4896_acc0b2
crossref_primary_10_12677_AAM_2020_96102
crossref_primary_10_1115_1_4029993
Cites_doi 10.1016/0020-7462(82)90013-0
10.1016/0020-7462(90)90014-Z
10.1006/jsvi.2000.3083
10.1016/S0266-8920(99)00031-4
10.1016/S0020-7462(96)00096-0
10.1016/j.ijnonlinmec.2004.02.011
10.1016/0020-7462(96)00053-4
10.1016/S0266-8920(02)00034-6
10.1016/S0266-8920(99)00007-7
10.1023/A:1008389909132
10.1016/0020-7462(82)90023-3
ContentType Journal Article
Copyright 2005 Elsevier Inc.
2006 INIST-CNRS
Copyright_xml – notice: 2005 Elsevier Inc.
– notice: 2006 INIST-CNRS
DBID AAYXX
CITATION
IQODW
DOI 10.1016/j.amc.2005.03.018
DatabaseName CrossRef
Pascal-Francis
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1873-5649
EndPage 1224
ExternalDocumentID 17493403
10_1016_j_amc_2005_03_018
S0096300305002882
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1RT
1~.
1~5
23M
4.4
457
4G.
5GY
5VS
6J9
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABAOU
ABEFU
ABFNM
ABFRF
ABJNI
ABMAC
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFO
ACGFS
ACRLP
ADBBV
ADEZE
ADGUI
ADIYS
ADMUD
AEBSH
AEFWE
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AI.
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLZ
HMJ
HVGLF
HZ~
IHE
J1W
KOM
LG9
M26
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
RXW
SBC
SDF
SDG
SES
SEW
SME
SPC
SPCBC
SSW
SSZ
T5K
TAE
TN5
VH1
VOH
WH7
WUQ
X6Y
XPP
ZMT
~02
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
AFXIZ
AGCQF
AGRNS
BNPGV
IQODW
SSH
ID FETCH-LOGICAL-c327t-2986df4f812571754a0c29ef00e86f0923b4f6990aa8ff3a0c4ef41f57e674413
IEDL.DBID AIKHN
ISSN 0096-3003
IngestDate Mon Jul 21 09:13:58 EDT 2025
Thu Apr 24 23:11:37 EDT 2025
Wed Oct 01 02:15:19 EDT 2025
Fri Feb 23 02:29:03 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Harmonic and stochastic excitations
Probability density
Path integration
Duffing–Rayleigh oscillator
Harmonic and stochastic excitations: Probability density
Path integral
Periodic function
Probability distribution
Duffing-Rayleigh oscillator
Gauss formula
Stochastic excitation
Applied mathematics
Duffing Rayleigh oscillator
Fokker Planck equation
Probability density function
Sinusoidal excitation
Kolmogorov equation
Steady state solution
Harmonic oscillator
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c327t-2986df4f812571754a0c29ef00e86f0923b4f6990aa8ff3a0c4ef41f57e674413
PageCount 13
ParticipantIDs pascalfrancis_primary_17493403
crossref_primary_10_1016_j_amc_2005_03_018
crossref_citationtrail_10_1016_j_amc_2005_03_018
elsevier_sciencedirect_doi_10_1016_j_amc_2005_03_018
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2006-01-15
PublicationDateYYYYMMDD 2006-01-15
PublicationDate_xml – month: 01
  year: 2006
  text: 2006-01-15
  day: 15
PublicationDecade 2000
PublicationPlace New York, NY
PublicationPlace_xml – name: New York, NY
PublicationTitle Applied mathematics and computation
PublicationYear 2006
Publisher Elsevier Inc
Elsevier
Publisher_xml – name: Elsevier Inc
– name: Elsevier
References Dimentberg (bib2) 1982; 17
Caughey, Ma (bib1) 1982; 17
Cai, Lin (bib3) 1996; 31
Rong, Xu, Meng, Fang (bib13) 2001; 18
Nayfeh, Serhan (bib10) 1990; 25
Naess, Moe (bib6) 2000; 15
Huang, Zhu, Suzuki (bib7) 2000; 238
Yu, Cai, Lin (bib8) 1997; 32
Naess (bib11) 2000; 15
Von Wagner, Wedig (bib4) 2000; 21
Zhou, Zhu (bib12) 1998
Paola, Sofi (bib5) 2002; 17
Yu, Lin (bib9) 2004; 39
Cai (10.1016/j.amc.2005.03.018_bib3) 1996; 31
Caughey (10.1016/j.amc.2005.03.018_bib1) 1982; 17
Paola (10.1016/j.amc.2005.03.018_bib5) 2002; 17
Naess (10.1016/j.amc.2005.03.018_bib6) 2000; 15
Yu (10.1016/j.amc.2005.03.018_bib8) 1997; 32
Dimentberg (10.1016/j.amc.2005.03.018_bib2) 1982; 17
Von Wagner (10.1016/j.amc.2005.03.018_bib4) 2000; 21
Naess (10.1016/j.amc.2005.03.018_bib11) 2000; 15
Yu (10.1016/j.amc.2005.03.018_bib9) 2004; 39
Huang (10.1016/j.amc.2005.03.018_bib7) 2000; 238
Rong (10.1016/j.amc.2005.03.018_bib13) 2001; 18
Zhou (10.1016/j.amc.2005.03.018_bib12) 1998
Nayfeh (10.1016/j.amc.2005.03.018_bib10) 1990; 25
References_xml – volume: 17
  start-page: 369
  year: 2002
  end-page: 384
  ident: bib5
  article-title: Approximate solution of the Fokker–Planck–Kolmogorov equation
  publication-title: Probabilistic Engineering Mechanics
– volume: 25
  start-page: 493
  year: 1990
  end-page: 515
  ident: bib10
  article-title: Response statistics of nonlinear systems to combined deterministic and random excitations
  publication-title: International Journal of Non-Linear Mechanics
– volume: 15
  start-page: 221
  year: 2000
  end-page: 231
  ident: bib6
  article-title: Efficient path integration methods for nonlinear dynamic systems
  publication-title: Probabilistic Engineering Mechanic
– volume: 31
  start-page: 647
  year: 1996
  end-page: 655
  ident: bib3
  article-title: Exact and approximate solutions for randomly excited MDOF nonlinear systems
  publication-title: International Journal of Non-Linear Mechanics
– volume: 15
  start-page: 37
  year: 2000
  end-page: 47
  ident: bib11
  article-title: Chaos and nonlinear stochastic dynamics
  publication-title: Probabilistic Engineering Mechanics
– volume: 17
  start-page: 231
  year: 1982
  end-page: 236
  ident: bib2
  article-title: An exact solution to a certain non-linear random vibration problem
  publication-title: International Journal of Non-Linear Mechanics
– volume: 17
  start-page: 137
  year: 1982
  end-page: 142
  ident: bib1
  article-title: The exact steady-state solution of a class of nonlinear stochastic systems
  publication-title: International Journal of Non-Linear Mechanics
– volume: 21
  start-page: 289
  year: 2000
  end-page: 306
  ident: bib4
  article-title: On The calculation of stationary solutions of multi-dimensional Fokker–Planck equations by orthogonal functions
  publication-title: Nonlinear Dynamics
– volume: 18
  start-page: 32
  year: 2001
  end-page: 36
  ident: bib13
  article-title: Response of nonlinear oscillator to combined harmonic and random excitation
  publication-title: Chinese Journal of Applied Mechanics
– volume: 238
  start-page: 233
  year: 2000
  end-page: 256
  ident: bib7
  article-title: Stochastic averaging of strongly non-linear oscillators under combined harmonic and white noise excitations
  publication-title: Journal of Sound and Vibration
– year: 1998
  ident: bib12
  article-title: Nonlinear vibrations
– volume: 32
  start-page: 759
  year: 1997
  end-page: 768
  ident: bib8
  article-title: A new path integration procedure based on Gauss–Legendre scheme
  publication-title: International Journal of Non-Linear Mechanics
– volume: 39
  start-page: 1493
  year: 2004
  end-page: 1500
  ident: bib9
  article-title: Numerical path integration of a nonlinear oscillator subject to both sinusoidal and white noise excitations
  publication-title: International Journal of Non-Linear Mechanics
– volume: 17
  start-page: 137
  year: 1982
  ident: 10.1016/j.amc.2005.03.018_bib1
  article-title: The exact steady-state solution of a class of nonlinear stochastic systems
  publication-title: International Journal of Non-Linear Mechanics
  doi: 10.1016/0020-7462(82)90013-0
– volume: 25
  start-page: 493
  year: 1990
  ident: 10.1016/j.amc.2005.03.018_bib10
  article-title: Response statistics of nonlinear systems to combined deterministic and random excitations
  publication-title: International Journal of Non-Linear Mechanics
  doi: 10.1016/0020-7462(90)90014-Z
– volume: 238
  start-page: 233
  year: 2000
  ident: 10.1016/j.amc.2005.03.018_bib7
  article-title: Stochastic averaging of strongly non-linear oscillators under combined harmonic and white noise excitations
  publication-title: Journal of Sound and Vibration
  doi: 10.1006/jsvi.2000.3083
– volume: 15
  start-page: 221
  year: 2000
  ident: 10.1016/j.amc.2005.03.018_bib6
  article-title: Efficient path integration methods for nonlinear dynamic systems
  publication-title: Probabilistic Engineering Mechanic
  doi: 10.1016/S0266-8920(99)00031-4
– volume: 32
  start-page: 759
  year: 1997
  ident: 10.1016/j.amc.2005.03.018_bib8
  article-title: A new path integration procedure based on Gauss–Legendre scheme
  publication-title: International Journal of Non-Linear Mechanics
  doi: 10.1016/S0020-7462(96)00096-0
– volume: 39
  start-page: 1493
  year: 2004
  ident: 10.1016/j.amc.2005.03.018_bib9
  article-title: Numerical path integration of a nonlinear oscillator subject to both sinusoidal and white noise excitations
  publication-title: International Journal of Non-Linear Mechanics
  doi: 10.1016/j.ijnonlinmec.2004.02.011
– volume: 31
  start-page: 647
  year: 1996
  ident: 10.1016/j.amc.2005.03.018_bib3
  article-title: Exact and approximate solutions for randomly excited MDOF nonlinear systems
  publication-title: International Journal of Non-Linear Mechanics
  doi: 10.1016/0020-7462(96)00053-4
– volume: 18
  start-page: 32
  year: 2001
  ident: 10.1016/j.amc.2005.03.018_bib13
  article-title: Response of nonlinear oscillator to combined harmonic and random excitation
  publication-title: Chinese Journal of Applied Mechanics
– volume: 17
  start-page: 369
  year: 2002
  ident: 10.1016/j.amc.2005.03.018_bib5
  article-title: Approximate solution of the Fokker–Planck–Kolmogorov equation
  publication-title: Probabilistic Engineering Mechanics
  doi: 10.1016/S0266-8920(02)00034-6
– year: 1998
  ident: 10.1016/j.amc.2005.03.018_bib12
– volume: 15
  start-page: 37
  year: 2000
  ident: 10.1016/j.amc.2005.03.018_bib11
  article-title: Chaos and nonlinear stochastic dynamics
  publication-title: Probabilistic Engineering Mechanics
  doi: 10.1016/S0266-8920(99)00007-7
– volume: 21
  start-page: 289
  year: 2000
  ident: 10.1016/j.amc.2005.03.018_bib4
  article-title: On The calculation of stationary solutions of multi-dimensional Fokker–Planck equations by orthogonal functions
  publication-title: Nonlinear Dynamics
  doi: 10.1023/A:1008389909132
– volume: 17
  start-page: 231
  year: 1982
  ident: 10.1016/j.amc.2005.03.018_bib2
  article-title: An exact solution to a certain non-linear random vibration problem
  publication-title: International Journal of Non-Linear Mechanics
  doi: 10.1016/0020-7462(82)90023-3
SSID ssj0007614
Score 1.8735325
Snippet In this paper, the Duffing–Rayleigh oscillator subject to harmonic and stochastic excitations is investigated via path integration based on the Gauss–Legendre...
SourceID pascalfrancis
crossref
elsevier
SourceType Index Database
Enrichment Source
Publisher
StartPage 1212
SubjectTerms Distribution theory
Duffing–Rayleigh oscillator
Exact sciences and technology
Harmonic and stochastic excitations
Mathematical analysis
Mathematics
Measure and integration
Partial differential equations
Path integration
Probability and statistics
Probability density
Probability theory and stochastic processes
Sciences and techniques of general use
Title Study of the Duffing–Rayleigh oscillator subject to harmonic and stochastic excitations by path integration
URI https://dx.doi.org/10.1016/j.amc.2005.03.018
Volume 172
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1873-5649
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007614
  issn: 0096-3003
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1873-5649
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007614
  issn: 0096-3003
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Science Direct
  customDbUrl:
  eissn: 1873-5649
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007614
  issn: 0096-3003
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1873-5649
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007614
  issn: 0096-3003
  databaseCode: AKRWK
  dateStart: 19930101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF60vSgiPrE-yh48CWm32U2yexS1VKU9iIXewm6yg4p9YFvQi_gf_If-EmebpFqQHrxuskmYXeb7ZjL7DSGnYBLFQGhPGKs8gRTcM6lWnpWR9WfHBmZyTe1O2OqKm17QWyEXxVkYV1aZ-_7Mp8-8dT5Sz61ZHz0-ujO-yulF4YZ1gYNEP1xG_JGyRMrn17etztwhY6SeiTErV-bFePFzc1bmpftJnlnhNeZaf_wNTxsjPUajQdbt4hcENbfIZs4d6Xn2edtkxQ52yHp7Lrw63iV9Vxf4RodAcZBeTgEQmr4-Pu8wMHdJUOq0K3HlMdKm46lxSRg6GVKnX-00cqkepBTpYPKgnX4zta9JruE9puaNuvbFtBCYwME90m1e3V-0vLyjgpdwP5p4vpJhCgIQ1QOM4wKhWeIrC4xZGQJDsmcEhAhQWksAjleFBdGAILJhhMSJ75PSYDiwB4QyLZGqpRGExhdJmBqQNjTI15TmAgJVIawwZFx8qut68RwXdWVPMdretcEMYsZjtH2FnM2njDKtjWU3i2J14oUNEyMWLJtWXVjJnxdFQnHB-OH_nntE1orkTCM4JqXJy9SeIF2ZmCpZrb03qvmm_AYwresZ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JSgQxEA2iBxURVxyXMQdPQmvspJccRR3GZTzICN6apDuFI86CMwN6Ef_BP_RLrOrFBWQOXtOd7lAVql5VKq8Y2wObagHKeMo67SmE4J7NjPZcHDk_vzaQ0zW1rsPmrbq4C-6m2El1F4bKKkvbX9j03FqXI4elNA8HnQ7d8dXEF4UblgKHGO3wjAr8iCKwg9fvOg-M0wsqZk1FXkJWR5t5kZfppmVeRR4Iavzxt3NaGJghigyKXhc_HFBjiS2WyJEfF4tbZlOut8LmW1-0q8NV1qWqwBfeB46D_HQMgI7p4-39BsNySoFyYq5EvWOczYdjSykYPupzYq8mhlxuehlHMJjeG2Jv5u45LRm8h9y-cGpezCt6CRxcY7eNs_ZJ0yv7KXip9KOR5-s4zEAB-vQAo7hAGZH62oEQLg5BINSzCkJ0T8bEABKfKgfqCILIhRHCJrnOpnv9nttgXJgYgVoWQWh9lYaZhdiFFtGaNlJBoGtMVIJMqqVSz4vHpKoqe0hQ9tQEM0iETFD2Nbb_NWVQMG1MellV2kl-bZcEPcGkafVfmvz-UaS0VEJu_u-7u2y22W5dJVfn15dbbK5K0xwF22x69DR2OwhcRraeb8xPJvHr4Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Study+of+the+Duffing-Rayleigh+oscillator+subject+to+harmonic+and+stochastic+excitations+by+path+integration&rft.jtitle=Applied+mathematics+and+computation&rft.au=XIE%2C+W.+X&rft.au=XU%2C+W&rft.au=CAI%2C+L&rft.date=2006-01-15&rft.pub=Elsevier&rft.issn=0096-3003&rft.volume=172&rft.issue=2&rft.spage=1212&rft.epage=1224&rft_id=info:doi/10.1016%2Fj.amc.2005.03.018&rft.externalDBID=n%2Fa&rft.externalDocID=17493403
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0096-3003&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0096-3003&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0096-3003&client=summon