Tempered stable Lévy motion and transient super-diffusion

The space-fractional diffusion equation models anomalous super-diffusion. Its solutions are transition densities of a stable Lévy motion, representing the accumulation of power-law jumps. The tempered stable Lévy motion uses exponential tempering to cool these jumps. A tempered fractional diffusion...

Full description

Saved in:
Bibliographic Details
Published inJournal of computational and applied mathematics Vol. 233; no. 10; pp. 2438 - 2448
Main Authors Baeumer, Boris, Meerschaert, Mark M.
Format Journal Article
LanguageEnglish
Published Kidlington Elsevier B.V 15.03.2010
Elsevier
Subjects
Online AccessGet full text
ISSN0377-0427
1879-1778
DOI10.1016/j.cam.2009.10.027

Cover

Abstract The space-fractional diffusion equation models anomalous super-diffusion. Its solutions are transition densities of a stable Lévy motion, representing the accumulation of power-law jumps. The tempered stable Lévy motion uses exponential tempering to cool these jumps. A tempered fractional diffusion equation governs the transition densities, which progress from super-diffusive early-time to diffusive late-time behavior. This article provides finite difference and particle tracking methods for solving the tempered fractional diffusion equation with drift. A temporal and spatial second-order Crank–Nicolson method is developed, based on a finite difference formula for tempered fractional derivatives. A new exponential rejection method for simulating tempered Lévy stables is presented to facilitate particle tracking codes.
AbstractList The space-fractional diffusion equation models anomalous super-diffusion. Its solutions are transition densities of a stable Lévy motion, representing the accumulation of power-law jumps. The tempered stable Lévy motion uses exponential tempering to cool these jumps. A tempered fractional diffusion equation governs the transition densities, which progress from super-diffusive early-time to diffusive late-time behavior. This article provides finite difference and particle tracking methods for solving the tempered fractional diffusion equation with drift. A temporal and spatial second-order Crank–Nicolson method is developed, based on a finite difference formula for tempered fractional derivatives. A new exponential rejection method for simulating tempered Lévy stables is presented to facilitate particle tracking codes.
Author Baeumer, Boris
Meerschaert, Mark M.
Author_xml – sequence: 1
  givenname: Boris
  surname: Baeumer
  fullname: Baeumer, Boris
  email: bbaeumer@maths.otago.ac.nz
  organization: Department of Mathematics & Statistics, University of Otago, Dunedin, New Zealand
– sequence: 2
  givenname: Mark M.
  surname: Meerschaert
  fullname: Meerschaert, Mark M.
  email: mcubed@stt.msu.edu
  organization: Department of Statistics & Probability, Michigan State University, Wells Hall, E. Lansing, MI 48824, United States
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22540404$$DView record in Pascal Francis
BookMark eNp9kLtqwzAUhkVJoUnaB-jmpaPdo4utuJ1K6A0CXdJZHEsyKPgSJCeQR-pz9MUq49KhQ9Cg2_8J_d-CzLq-s4TcUsgo0OJ-l2lsMwZQxn0GTF6QOV3JMqVSrmZkDlzKFASTV2QRwg4AipKKOXnY2nZvvTVJGLBqbLL5_jqekrYfXN8l2Jlk8NgFZ7shCYeYTI2r60OIt9fkssYm2JvfeUk-X56367d08_H6vn7apJozOaSsQMyxYiUUFTecGshNISTPhRFCs1xToSHnRjJbYlxbVq8KZFXFuaaUlnxJ7qZ39xg0NnX8j3ZB7b1r0Z8UY7mAOGKOTjnt-xC8rf8iFNQoSe1UlKRGSeNRlBQZ-Y_RbsCxe6ztmrPk40TaWP3orFdBR0vaGuetHpTp3Rn6B7YWgyw
CODEN JCAMDI
CitedBy_id crossref_primary_10_1002_jgrf_20083
crossref_primary_10_1007_s11227_024_06442_w
crossref_primary_10_1080_03610926_2017_1410719
crossref_primary_10_1111_gwat_12267
crossref_primary_10_1002_fut_21647
crossref_primary_10_1016_j_jeconom_2019_06_002
crossref_primary_10_1017_S096249292000001X
crossref_primary_10_1214_23_BJPS565
crossref_primary_10_12677_PM_2023_1311339
crossref_primary_10_1016_j_jcp_2014_04_024
crossref_primary_10_1080_02664763_2016_1266310
crossref_primary_10_1016_j_physa_2011_07_028
crossref_primary_10_1002_2016WR020192
crossref_primary_10_1016_j_apnum_2021_03_008
crossref_primary_10_1155_2013_878097
crossref_primary_10_2478_s13540_012_0033_0
crossref_primary_10_1515_fca_2015_0023
crossref_primary_10_1016_j_rinp_2021_104360
crossref_primary_10_1007_s10614_019_09882_2
crossref_primary_10_1007_s10444_015_9434_z
crossref_primary_10_1016_j_spa_2018_08_004
crossref_primary_10_1007_s42967_024_00406_w
crossref_primary_10_1103_PhysRevE_91_042124
crossref_primary_10_1515_fca_2017_0065
crossref_primary_10_1007_s10915_020_01193_1
crossref_primary_10_1007_s11071_021_06628_4
crossref_primary_10_1016_j_matcom_2020_10_016
crossref_primary_10_1016_j_chaos_2022_112547
crossref_primary_10_2139_ssrn_2651135
crossref_primary_10_1515_fca_2019_0081
crossref_primary_10_1186_s13662_019_2417_5
crossref_primary_10_1515_cmam_2017_0029
crossref_primary_10_3390_fractalfract6020053
crossref_primary_10_1016_j_apnum_2022_01_015
crossref_primary_10_1088_1742_6596_798_1_012037
crossref_primary_10_1186_s13662_017_1150_1
crossref_primary_10_1080_00207160_2020_1841175
crossref_primary_10_1016_j_physa_2013_03_018
crossref_primary_10_1137_20M1335959
crossref_primary_10_1007_s11147_018_9151_0
crossref_primary_10_1080_03081087_2023_2242563
crossref_primary_10_1088_1751_8121_ac4a1c
crossref_primary_10_1239_jap_1331216840
crossref_primary_10_1051_m2an_2019052
crossref_primary_10_1140_epjst_e2014_02331_7
crossref_primary_10_1016_j_camwa_2024_11_004
crossref_primary_10_1088_1742_5468_2013_05_P05016
crossref_primary_10_1016_j_jconhyd_2013_11_002
crossref_primary_10_1002_mma_7813
crossref_primary_10_1007_s10915_017_0506_8
crossref_primary_10_1016_j_apnum_2019_05_008
crossref_primary_10_1515_fca_2017_0007
crossref_primary_10_1016_j_isatra_2017_04_005
crossref_primary_10_3390_fractalfract5040145
crossref_primary_10_1016_j_cnsns_2013_12_003
crossref_primary_10_1029_2012GL053476
crossref_primary_10_1088_1361_6560_acbf9c
crossref_primary_10_1088_1748_9326_6_3_034008
crossref_primary_10_1103_PhysRevE_87_042136
crossref_primary_10_1080_01621459_2018_1447485
crossref_primary_10_1007_s10959_024_01361_1
crossref_primary_10_1016_j_physa_2014_11_049
crossref_primary_10_1080_03610918_2011_582561
crossref_primary_10_1016_j_physd_2017_12_005
crossref_primary_10_1088_1402_4896_ad837e
crossref_primary_10_1002_hyp_10837
crossref_primary_10_1016_j_physa_2011_04_025
crossref_primary_10_1016_j_acha_2019_11_004
crossref_primary_10_1016_j_jhydrol_2014_02_064
crossref_primary_10_1029_2011WR011657
crossref_primary_10_1088_1742_5468_2014_09_P09023
crossref_primary_10_1016_j_jeconom_2020_11_004
crossref_primary_10_1214_EJP_v16_920
crossref_primary_10_1214_EJP_v16_909
crossref_primary_10_1007_s10955_010_9965_0
crossref_primary_10_1137_140985536
crossref_primary_10_3934_dcdss_2021149
crossref_primary_10_1002_mma_8441
crossref_primary_10_1002_mma_7343
crossref_primary_10_1007_s10915_024_02472_x
crossref_primary_10_1016_j_cam_2016_09_006
crossref_primary_10_1145_3184453
crossref_primary_10_1016_j_amc_2018_02_023
crossref_primary_10_1137_130927292
crossref_primary_10_1137_17M1151791
crossref_primary_10_1080_14697688_2015_1111522
crossref_primary_10_1080_03610926_2011_552828
crossref_primary_10_1103_PhysRevE_96_052116
crossref_primary_10_1140_epjb_e2017_80400_5
crossref_primary_10_1016_j_jeconom_2018_03_016
crossref_primary_10_1103_PhysRevLett_115_110601
crossref_primary_10_3390_sym13050823
crossref_primary_10_1051_0004_6361_202451765
crossref_primary_10_1016_j_chaos_2017_03_059
crossref_primary_10_1103_PhysRevE_101_052119
crossref_primary_10_3390_axioms13040264
crossref_primary_10_1007_s11009_018_9648_x
crossref_primary_10_1002_num_22254
crossref_primary_10_1016_j_camwa_2016_07_026
crossref_primary_10_1007_s10955_019_02475_1
crossref_primary_10_1016_j_camwa_2015_05_015
crossref_primary_10_1177_1077546314557554
crossref_primary_10_1007_s10915_019_01027_9
crossref_primary_10_1103_PhysRevE_84_066704
crossref_primary_10_1007_s11075_016_0169_9
crossref_primary_10_1007_s10955_011_0310_z
crossref_primary_10_30757_ALEA_v21_59
crossref_primary_10_1088_1751_8121_aa9ad8
crossref_primary_10_1016_j_spl_2011_01_019
crossref_primary_10_4236_jamp_2024_124068
crossref_primary_10_1016_j_aml_2018_06_037
crossref_primary_10_1016_j_apnum_2016_10_011
crossref_primary_10_1186_s13662_019_1990_y
crossref_primary_10_1007_s13540_023_00163_2
crossref_primary_10_2139_ssrn_4422376
crossref_primary_10_1029_2021WR031128
crossref_primary_10_1103_PhysRevE_99_062120
crossref_primary_10_1103_PhysRevE_84_061146
crossref_primary_10_3390_fractalfract9030187
crossref_primary_10_1016_j_physleta_2017_04_012
crossref_primary_10_1016_j_cma_2024_117448
crossref_primary_10_1214_16_ECP4383
crossref_primary_10_1007_s13540_021_00011_1
crossref_primary_10_1016_j_camwa_2016_12_017
crossref_primary_10_1103_PhysRevE_103_032133
crossref_primary_10_3934_math_20241318
crossref_primary_10_1155_2024_6710903
crossref_primary_10_1090_S0002_9939_2012_11362_0
crossref_primary_10_1016_j_cnsns_2023_107412
crossref_primary_10_1016_j_jde_2024_04_037
crossref_primary_10_1098_rsif_2016_0889
crossref_primary_10_1103_PhysRevE_84_021137
crossref_primary_10_1007_s11464_022_0185_0
crossref_primary_10_1515_ijcre_2024_0128
crossref_primary_10_1007_s10955_016_1547_3
crossref_primary_10_1016_j_physa_2012_05_072
crossref_primary_10_1016_j_physa_2016_07_041
crossref_primary_10_1007_s42967_020_00067_5
crossref_primary_10_1016_j_cam_2019_04_010
crossref_primary_10_1016_j_jhydrol_2019_124515
crossref_primary_10_2139_ssrn_2835371
crossref_primary_10_1103_PhysRevE_99_022122
crossref_primary_10_1515_fca_2021_0020
crossref_primary_10_3934_era_2024091
crossref_primary_10_1016_j_ress_2025_110818
crossref_primary_10_1088_1742_5468_2014_10_P10028
crossref_primary_10_1080_17442508_2017_1311897
crossref_primary_10_1007_s10444_016_9503_y
crossref_primary_10_1016_j_chaos_2017_04_023
crossref_primary_10_1007_s10955_011_0191_1
crossref_primary_10_1016_j_bulsci_2024_103488
crossref_primary_10_1007_s10915_019_01029_7
crossref_primary_10_1103_PhysRevE_82_011117
crossref_primary_10_1016_j_amc_2019_124725
crossref_primary_10_1103_PhysRevE_92_012102
crossref_primary_10_1016_j_jcp_2014_05_026
crossref_primary_10_1016_j_cam_2024_115772
crossref_primary_10_1016_j_cnsns_2023_107118
crossref_primary_10_1186_s13662_017_1317_9
crossref_primary_10_1016_j_cnsns_2020_105178
crossref_primary_10_1002_fld_4901
crossref_primary_10_1007_s00180_024_01462_9
crossref_primary_10_4028_www_scientific_net_DDF_407_173
crossref_primary_10_1088_1742_5468_2013_10_P10011
crossref_primary_10_1016_j_jmaa_2020_124659
crossref_primary_10_2139_ssrn_3206896
crossref_primary_10_3934_dcdsb_2020319
crossref_primary_10_1137_140966083
crossref_primary_10_1016_j_padiff_2024_100938
crossref_primary_10_1007_s12190_019_01241_6
crossref_primary_10_1007_s10955_012_0537_3
crossref_primary_10_3390_jrfm14030136
crossref_primary_10_1063_1_4935475
crossref_primary_10_1142_S0218348X20500206
crossref_primary_10_2139_ssrn_1951537
crossref_primary_10_1007_s41478_023_00686_0
crossref_primary_10_1103_PhysRevE_82_011132
crossref_primary_10_1016_j_jhydrol_2020_125504
crossref_primary_10_1088_1751_8121_50_3_034002
crossref_primary_10_1016_j_physa_2016_09_018
crossref_primary_10_1007_s10915_019_00930_5
crossref_primary_10_1002_mma_4361
crossref_primary_10_1016_j_apnum_2017_05_012
crossref_primary_10_1007_s13160_016_0231_y
crossref_primary_10_1029_2010GL043609
crossref_primary_10_1186_s13662_020_02594_0
crossref_primary_10_1016_j_aei_2024_102490
crossref_primary_10_1016_j_cam_2010_12_014
crossref_primary_10_1007_s42967_020_00080_8
crossref_primary_10_3390_fractalfract7030277
crossref_primary_10_1007_s10915_022_01835_6
crossref_primary_10_1016_j_spa_2014_03_002
crossref_primary_10_1007_s10915_018_0640_y
crossref_primary_10_1080_00036811_2020_1751826
crossref_primary_10_1007_s10092_024_00604_1
crossref_primary_10_1017_S0021900200008925
crossref_primary_10_1002_mana_201700111
crossref_primary_10_1137_14097207X
crossref_primary_10_1103_PhysRevE_93_032151
Cites_doi 10.3150/07-BEJ6011
10.1137/0517050
10.1016/S0370-1573(00)00070-3
10.1103/PhysRevE.76.041105
10.1103/PhysRevLett.73.2946
10.1007/s10955-006-9042-x
10.1016/j.cam.2004.01.033
10.1038/376046a0
10.1103/PhysRevE.59.5026
10.1088/0305-4470/37/31/R01
10.1103/PhysRevE.72.010101
10.1016/j.spa.2006.10.003
10.1016/S0895-7177(99)00105-3
10.1029/2008JF001246
10.1016/j.physa.2003.12.044
10.1239/jap/1091543414
10.1080/01621459.1976.10480344
10.1016/j.jcp.2005.08.008
ContentType Journal Article
Copyright 2009 Elsevier B.V.
2015 INIST-CNRS
Copyright_xml – notice: 2009 Elsevier B.V.
– notice: 2015 INIST-CNRS
DBID 6I.
AAFTH
AAYXX
CITATION
IQODW
DOI 10.1016/j.cam.2009.10.027
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Pascal-Francis
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1879-1778
EndPage 2448
ExternalDocumentID 22540404
10_1016_j_cam_2009_10_027
S0377042709007250
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
29K
4.4
457
4G.
5GY
5VS
6I.
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAFTH
AAFWJ
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABAOU
ABEFU
ABFNM
ABJNI
ABMAC
ABTAH
ABVKL
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
ADMUD
AEBSH
AEKER
AENEX
AEXQZ
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
D-I
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
HVGLF
HZ~
IHE
IXB
J1W
KOM
LG9
M26
M41
MHUIS
MO0
N9A
NCXOZ
NHB
O-L
O9-
OAUVE
OK1
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSW
SSZ
T5K
TN5
UPT
WUQ
XPP
YQT
ZMT
ZY4
~02
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
AFXIZ
AGCQF
AGRNS
BNPGV
IQODW
SSH
ID FETCH-LOGICAL-c327t-26aa5ab2906b3d31d05d647354d44c25c14c053d72e9a14ce2f86a2bb33c11193
IEDL.DBID AIKHN
ISSN 0377-0427
IngestDate Mon Jul 21 09:14:07 EDT 2025
Wed Oct 01 04:36:53 EDT 2025
Thu Apr 24 23:09:00 EDT 2025
Fri Feb 23 02:27:51 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Keywords Fractional derivatives
Particle tracking
Power law
Truncated power law
Numerical analysis
Applied mathematics
Crank Nicolson method
Diffusion equation
Finite difference method
Language English
License http://www.elsevier.com/open-access/userlicense/1.0
https://www.elsevier.com/tdm/userlicense/1.0
https://www.elsevier.com/open-access/userlicense/1.0
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c327t-26aa5ab2906b3d31d05d647354d44c25c14c053d72e9a14ce2f86a2bb33c11193
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S0377042709007250
PageCount 11
ParticipantIDs pascalfrancis_primary_22540404
crossref_primary_10_1016_j_cam_2009_10_027
crossref_citationtrail_10_1016_j_cam_2009_10_027
elsevier_sciencedirect_doi_10_1016_j_cam_2009_10_027
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2010-03-15
PublicationDateYYYYMMDD 2010-03-15
PublicationDate_xml – month: 03
  year: 2010
  text: 2010-03-15
  day: 15
PublicationDecade 2010
PublicationPlace Kidlington
PublicationPlace_xml – name: Kidlington
PublicationTitle Journal of computational and applied mathematics
PublicationYear 2010
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References R. Schumer, M.M. Meerschaert, B. Baeumer, Fractional advection-dispersion equations for modeling transport at the Earth surface, J. Geophys. Res. (2009) in press
Preprint available at
Chambers, Mallows, Stuck (b26) 1976; 71
Cohen, Rosiński (b28) 2007; 13
Metzler, Klafter (b2) 2000; 339
(b6) 1995
Mantegna, Stanley (b10) 1994; 73
Sokolov, Chechkin, Klafter (b12) 2004; 336
Zhang, Benson, Meerschaert, Scheffler (b18) 2006; 123
Lubich (b24) 1986; 17
Meerschaert, Scheffler (b7) 2004; 41
E. Scalas, Five years of Continuous-Time Random Walks in Econophysics. in: A. Namatame (Ed.), Proceedings of WEHIA 2004, Kyoto, 2004
Widder (b23) 1946; vol. 6
Rosiński (b14) 2007; 117
Zolotarev (b20) 1986; vol. 65
Tadjeran, Meerschaert, Scheffler (b17) 2006; 213
Feller (b4) 1971
Mantegna, Stanley (b11) 1995; 376
Meerschaert, Benson, Bäumer (b1) 1999; 59
Butzer, Nessel (b22) 1971; vol. 40
Samorodnitsky, Taqqu (b19) 1994
Metzler, Klafter (b3) 2004; 37
Chechkin, Gonchar, Klafter, Metzler (b13) 2005; 72
Isaacson, Keller (b25) 1966
Nikias, Shao (b5) 1995
Meerschaert, Tadjeran (b16) 2004; 172
Meerschaert, Scheffler (b21) 2001
Nolan (b27) 1999; 29
Cartea, del Castillo-Negrete (b15) 2007; 76
10.1016/j.cam.2009.10.027_b9
(10.1016/j.cam.2009.10.027_b6) 1995
Meerschaert (10.1016/j.cam.2009.10.027_b1) 1999; 59
Lubich (10.1016/j.cam.2009.10.027_b24) 1986; 17
Zolotarev (10.1016/j.cam.2009.10.027_b20) 1986; vol. 65
10.1016/j.cam.2009.10.027_b8
Chambers (10.1016/j.cam.2009.10.027_b26) 1976; 71
Feller (10.1016/j.cam.2009.10.027_b4) 1971
Isaacson (10.1016/j.cam.2009.10.027_b25) 1966
Cohen (10.1016/j.cam.2009.10.027_b28) 2007; 13
Zhang (10.1016/j.cam.2009.10.027_b18) 2006; 123
Widder (10.1016/j.cam.2009.10.027_b23) 1946; vol. 6
Metzler (10.1016/j.cam.2009.10.027_b3) 2004; 37
Mantegna (10.1016/j.cam.2009.10.027_b11) 1995; 376
Butzer (10.1016/j.cam.2009.10.027_b22) 1971; vol. 40
Chechkin (10.1016/j.cam.2009.10.027_b13) 2005; 72
Sokolov (10.1016/j.cam.2009.10.027_b12) 2004; 336
Samorodnitsky (10.1016/j.cam.2009.10.027_b19) 1994
Meerschaert (10.1016/j.cam.2009.10.027_b21) 2001
Meerschaert (10.1016/j.cam.2009.10.027_b16) 2004; 172
Meerschaert (10.1016/j.cam.2009.10.027_b7) 2004; 41
Nolan (10.1016/j.cam.2009.10.027_b27) 1999; 29
Rosiński (10.1016/j.cam.2009.10.027_b14) 2007; 117
Metzler (10.1016/j.cam.2009.10.027_b2) 2000; 339
Cartea (10.1016/j.cam.2009.10.027_b15) 2007; 76
Nikias (10.1016/j.cam.2009.10.027_b5) 1995
Mantegna (10.1016/j.cam.2009.10.027_b10) 1994; 73
Tadjeran (10.1016/j.cam.2009.10.027_b17) 2006; 213
References_xml – year: 1971
  ident: b4
  article-title: An Introduction to Probability Theory and Its Applications, Vol. II
– volume: vol. 40
  year: 1971
  ident: b22
  article-title: Fourier analysis and approximation
  publication-title: Volume 1: One-dimensional Theory
– year: 1995
  ident: b6
  publication-title: Lévy Flights and Related Topics in Physics
– volume: 172
  start-page: 65
  year: 2004
  end-page: 77
  ident: b16
  article-title: Finite difference approximations for fractional advection-dispersion flow equations
  publication-title: J. Comput. Appl. Math.
– volume: 71
  start-page: 340
  year: 1976
  end-page: 344
  ident: b26
  article-title: A method for simulating stable random variables
  publication-title: J. Amer. Statist. Assoc.
– reference: ). Preprint available at:
– volume: 73
  start-page: 2946
  year: 1994
  end-page: 2949
  ident: b10
  article-title: Stochastic process with ultraslow convergence to a Gaussian: The truncated Lévy flight
  publication-title: Phys. Rev. Lett.
– year: 1994
  ident: b19
  article-title: Stable Non-Gaussian Random Processes
– volume: vol. 65
  year: 1986
  ident: b20
  article-title: One-dimensional stable distributions
  publication-title: Translations of Mathematical Monographs
– volume: 376
  start-page: 46
  year: 1995
  end-page: 49
  ident: b11
  article-title: Scaling behavior in the dyamics of an economic index
  publication-title: Nature
– volume: 339
  start-page: 1
  year: 2000
  end-page: 77
  ident: b2
  article-title: The random walk’s guide to anomalous diffusion: A fractional dynamics approach
  publication-title: Phys. Rep.
– volume: 17
  start-page: 704
  year: 1986
  end-page: 719
  ident: b24
  article-title: Discretized fractional calculus
  publication-title: SIAM J. Math. Anal.
– volume: 76
  start-page: 041105
  year: 2007
  ident: b15
  article-title: Fluid limit of the continuous-time random walk with general Lévy jump distribution functions
  publication-title: Phys. Rev. E
– volume: 59
  start-page: 5026
  year: 1999
  end-page: 5028
  ident: b1
  article-title: Multidimensional advection and fractional dispersion
  publication-title: Phys. Rev. E
– volume: 29
  start-page: 229
  year: 1999
  end-page: 233
  ident: b27
  article-title: An algorithm for evaluating stable densities in Zolotarev’s (M) parameterization
  publication-title: Math. Comput. Modeling
– volume: 37
  start-page: R161
  year: 2004
  end-page: R208
  ident: b3
  article-title: The restaurant at the end of the random walk: Recent developments in the description of anomalous transport by fractional dynamics
  publication-title: J. Phys. A
– volume: 72
  start-page: 010101
  year: 2005
  ident: b13
  article-title: Natural cutoff in Lévy flights caused by dissipative nonlinearity
  publication-title: Phys. Rev. E
– volume: vol. 6
  year: 1946
  ident: b23
  publication-title: The Laplace Transform
– volume: 13
  start-page: 195
  year: 2007
  end-page: 210
  ident: b28
  article-title: Gaussian approximation of multivariate Lévy processes with applications to simulation of tempered stable processes
  publication-title: Bernoulli
– volume: 123
  start-page: 89
  year: 2006
  end-page: 110
  ident: b18
  article-title: On using random walks to solve the space-fractional advection-dispersion equations
  publication-title: J. Statist. Phys.
– reference: E. Scalas, Five years of Continuous-Time Random Walks in Econophysics. in: A. Namatame (Ed.), Proceedings of WEHIA 2004, Kyoto, 2004
– volume: 117
  start-page: 677
  year: 2007
  end-page: 707
  ident: b14
  article-title: Tempering stable processes
  publication-title: Stochastic Process. Appl.
– year: 2001
  ident: b21
  article-title: Limit Distributions for Sums of Independent Random Vectors: Heavy Tails in Theory and Practice
– volume: 41
  start-page: 623
  year: 2004
  end-page: 638
  ident: b7
  article-title: Limit theorems for continuous time random walks with infinite mean waiting times
  publication-title: J. Appl. Probab.
– volume: 336
  start-page: 245
  year: 2004
  end-page: 251
  ident: b12
  article-title: Fractional diffusion equation for a power-law-truncated Lévy process
  publication-title: Physica A
– reference: R. Schumer, M.M. Meerschaert, B. Baeumer, Fractional advection-dispersion equations for modeling transport at the Earth surface, J. Geophys. Res. (2009) in press (
– year: 1966
  ident: b25
  article-title: Analysis of Numerical Methods
– volume: 213
  start-page: 205
  year: 2006
  end-page: 213
  ident: b17
  article-title: A second-order accurate numerical approximation for the fractional diffusion equation
  publication-title: J. Comput. Phys.
– year: 1995
  ident: b5
  article-title: Signal Processing with Alpha Stable Distributions and Applications
– volume: 13
  start-page: 195
  year: 2007
  ident: 10.1016/j.cam.2009.10.027_b28
  article-title: Gaussian approximation of multivariate Lévy processes with applications to simulation of tempered stable processes
  publication-title: Bernoulli
  doi: 10.3150/07-BEJ6011
– volume: 17
  start-page: 704
  year: 1986
  ident: 10.1016/j.cam.2009.10.027_b24
  article-title: Discretized fractional calculus
  publication-title: SIAM J. Math. Anal.
  doi: 10.1137/0517050
– volume: 339
  start-page: 1
  year: 2000
  ident: 10.1016/j.cam.2009.10.027_b2
  article-title: The random walk’s guide to anomalous diffusion: A fractional dynamics approach
  publication-title: Phys. Rep.
  doi: 10.1016/S0370-1573(00)00070-3
– volume: 76
  start-page: 041105
  year: 2007
  ident: 10.1016/j.cam.2009.10.027_b15
  article-title: Fluid limit of the continuous-time random walk with general Lévy jump distribution functions
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.76.041105
– year: 1966
  ident: 10.1016/j.cam.2009.10.027_b25
– ident: 10.1016/j.cam.2009.10.027_b8
– volume: 73
  start-page: 2946
  year: 1994
  ident: 10.1016/j.cam.2009.10.027_b10
  article-title: Stochastic process with ultraslow convergence to a Gaussian: The truncated Lévy flight
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.73.2946
– volume: vol. 40
  year: 1971
  ident: 10.1016/j.cam.2009.10.027_b22
  article-title: Fourier analysis and approximation
– volume: 123
  start-page: 89
  year: 2006
  ident: 10.1016/j.cam.2009.10.027_b18
  article-title: On using random walks to solve the space-fractional advection-dispersion equations
  publication-title: J. Statist. Phys.
  doi: 10.1007/s10955-006-9042-x
– volume: vol. 65
  year: 1986
  ident: 10.1016/j.cam.2009.10.027_b20
  article-title: One-dimensional stable distributions
– volume: 172
  start-page: 65
  year: 2004
  ident: 10.1016/j.cam.2009.10.027_b16
  article-title: Finite difference approximations for fractional advection-dispersion flow equations
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/j.cam.2004.01.033
– year: 1971
  ident: 10.1016/j.cam.2009.10.027_b4
– volume: 376
  start-page: 46
  year: 1995
  ident: 10.1016/j.cam.2009.10.027_b11
  article-title: Scaling behavior in the dyamics of an economic index
  publication-title: Nature
  doi: 10.1038/376046a0
– year: 1994
  ident: 10.1016/j.cam.2009.10.027_b19
– volume: 59
  start-page: 5026
  year: 1999
  ident: 10.1016/j.cam.2009.10.027_b1
  article-title: Multidimensional advection and fractional dispersion
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.59.5026
– volume: 37
  start-page: R161
  year: 2004
  ident: 10.1016/j.cam.2009.10.027_b3
  article-title: The restaurant at the end of the random walk: Recent developments in the description of anomalous transport by fractional dynamics
  publication-title: J. Phys. A
  doi: 10.1088/0305-4470/37/31/R01
– year: 1995
  ident: 10.1016/j.cam.2009.10.027_b6
– volume: 72
  start-page: 010101
  year: 2005
  ident: 10.1016/j.cam.2009.10.027_b13
  article-title: Natural cutoff in Lévy flights caused by dissipative nonlinearity
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.72.010101
– volume: 117
  start-page: 677
  year: 2007
  ident: 10.1016/j.cam.2009.10.027_b14
  article-title: Tempering stable processes
  publication-title: Stochastic Process. Appl.
  doi: 10.1016/j.spa.2006.10.003
– volume: 29
  start-page: 229
  year: 1999
  ident: 10.1016/j.cam.2009.10.027_b27
  article-title: An algorithm for evaluating stable densities in Zolotarev’s (M) parameterization
  publication-title: Math. Comput. Modeling
  doi: 10.1016/S0895-7177(99)00105-3
– year: 1995
  ident: 10.1016/j.cam.2009.10.027_b5
– year: 2001
  ident: 10.1016/j.cam.2009.10.027_b21
– ident: 10.1016/j.cam.2009.10.027_b9
  doi: 10.1029/2008JF001246
– volume: 336
  start-page: 245
  year: 2004
  ident: 10.1016/j.cam.2009.10.027_b12
  article-title: Fractional diffusion equation for a power-law-truncated Lévy process
  publication-title: Physica A
  doi: 10.1016/j.physa.2003.12.044
– volume: 41
  start-page: 623
  year: 2004
  ident: 10.1016/j.cam.2009.10.027_b7
  article-title: Limit theorems for continuous time random walks with infinite mean waiting times
  publication-title: J. Appl. Probab.
  doi: 10.1239/jap/1091543414
– volume: vol. 6
  year: 1946
  ident: 10.1016/j.cam.2009.10.027_b23
– volume: 71
  start-page: 340
  year: 1976
  ident: 10.1016/j.cam.2009.10.027_b26
  article-title: A method for simulating stable random variables
  publication-title: J. Amer. Statist. Assoc.
  doi: 10.1080/01621459.1976.10480344
– volume: 213
  start-page: 205
  year: 2006
  ident: 10.1016/j.cam.2009.10.027_b17
  article-title: A second-order accurate numerical approximation for the fractional diffusion equation
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2005.08.008
SSID ssj0006914
Score 2.4423351
Snippet The space-fractional diffusion equation models anomalous super-diffusion. Its solutions are transition densities of a stable Lévy motion, representing the...
SourceID pascalfrancis
crossref
elsevier
SourceType Index Database
Enrichment Source
Publisher
StartPage 2438
SubjectTerms Exact sciences and technology
Fractional derivatives
Mathematical analysis
Mathematics
Numerical analysis
Numerical analysis. Scientific computation
Particle tracking
Power law
Real functions
Sciences and techniques of general use
Truncated power law
Title Tempered stable Lévy motion and transient super-diffusion
URI https://dx.doi.org/10.1016/j.cam.2009.10.027
Volume 233
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier Free Content
  customDbUrl:
  eissn: 1879-1778
  dateEnd: 20211105
  omitProxy: true
  ssIdentifier: ssj0006914
  issn: 0377-0427
  databaseCode: IXB
  dateStart: 19750301
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1879-1778
  dateEnd: 20211105
  omitProxy: true
  ssIdentifier: ssj0006914
  issn: 0377-0427
  databaseCode: ACRLP
  dateStart: 19950220
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection
  customDbUrl:
  eissn: 1879-1778
  dateEnd: 20211015
  omitProxy: true
  ssIdentifier: ssj0006914
  issn: 0377-0427
  databaseCode: AIKHN
  dateStart: 19950220
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection
  customDbUrl:
  eissn: 1879-1778
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0006914
  issn: 0377-0427
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1879-1778
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0006914
  issn: 0377-0427
  databaseCode: AKRWK
  dateStart: 19750301
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5qe1FEfOKz5OBJWJtkN5vEWy1Kq7YXW-gt7CugaC19CF78P_4O_5gzeRQL0oO3ZNlNwrfJN7PZmfkIOU_RKEUypNJPs5SciCoVcqoE06lSwjVZUli3J9oDfjcMhhXSKnNhMKyy4P6c0zO2LloaBZqN8dNT49FlYYhKEW6M5a9x3V4D-xNFVVJrdu7bvQUhizgv8Q39KQ4oNzezMC8tX_OqlRjjhdoyf5unzbGcAmhprnbxywTdbpOtwnd0mvnj7ZCKHe2Sje6i8Op0j1z1LfjBE2sc8PrUi3Uevr_eP5xcq8eRI-PM0DhhEqQznUNPigopc_xltk8Gtzf9VpsW8ghUMz-cUV9IGUiF9doVM8wzbmAEKglzw7n2A-1xDZ-YCX0bSzi2fhoJ6SvFmAaGi9kBqY7eRvaQOAb9NuvhFqrmgFCsRGo8N3W1kAocuiPilqgkuqgdjhIWL0kZJPacAJCoaRljEwB5RC4WQ8Z54YxVnXkJdbI0-wkQ-6ph9aVpWdwISIoDO_Hj_133hKznQQKMesEpqc4mc3sGvsdM1cna5adXL94wOOsMr38A_XnX7g
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5KPaiI-MT6qDl4EtYm2c2m8SbFUrXtxRZ6C_sKVGosbSp48f_4O_xj7mSTakE8eAvLbBK-TWYm2ZnvQ-gigaDU5CHmfpK35DSxECHFghGZCMFclTeF9fqsM6T3o2BUQa2yFwbKKgvfb3167q2LkUaBZmM6HjceXRKGoBThRkB_Dd_tazTwQ_gCu3r_rvNgkSX4NtYYzMutzbzIS_Jny1kJFV6gLPN7cNqa8rmBLLFaFz8CUHsHbReZo3Njb24XVXS6hzZ7S9rV-T66HmiTBc-0ckzOJyba6X5-vL45VqnH4alyMghN0ALpzBfGEoM-ygJ-mB2gYft20OrgQhwBS-KHGfYZ5wEXwNYuiCKecgPFQEeYKkqlH0iPSvOCqdDXETfH2k-ajPtCECKNf4vIIaqmL6k-Qo6CrE17sIEqqUEoEixRnpu4knFh0rkacktUYlkwh4OAxSQuS8SeYgMkKFpGMGSArKHL5ZSppc34y5iWUMcrax8bt_7XtPrKsiwvZFwUNb6JHv_vvOdovTPodePuXf_hBG3YcgGCveAUVbPZQp-ZLCQT9fwp-wK0ddey
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Tempered+stable+L%C3%A9vy+motion+and+transient+super-diffusion&rft.jtitle=Journal+of+computational+and+applied+mathematics&rft.au=Baeumer%2C+Boris&rft.au=Meerschaert%2C+Mark+M.&rft.date=2010-03-15&rft.issn=0377-0427&rft.volume=233&rft.issue=10&rft.spage=2438&rft.epage=2448&rft_id=info:doi/10.1016%2Fj.cam.2009.10.027&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_cam_2009_10_027
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0377-0427&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0377-0427&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0377-0427&client=summon