Two-dimensional anisotropic monolayers NbOX2 (X = Cl, Br, I): Promising candidates for photocatalytic water splitting with high solar-to-hydrogen efficiency
Motivated by the recent experimental synthesis of two-dimensional (2D) NbOI2 which possesses a moderate bandgap and outstanding absorption of sunlight, using the first-principles calculations, we conduct a thorough study of the geometric configuration, electronic structures, and photocatalytic prope...
Saved in:
Published in | Journal of applied physics Vol. 134; no. 8 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Melville
American Institute of Physics
28.08.2023
|
Subjects | |
Online Access | Get full text |
ISSN | 0021-8979 1089-7550 |
DOI | 10.1063/5.0164167 |
Cover
Abstract | Motivated by the recent experimental synthesis of two-dimensional (2D) NbOI2 which possesses a moderate bandgap and outstanding absorption of sunlight, using the first-principles calculations, we conduct a thorough study of the geometric configuration, electronic structures, and photocatalytic properties for NbOX2 (X = Cl, Br, I) monolayers. These NbOX2 monolayers have been demonstrated to be dynamically, thermally, and mechanically stable. The significant anisotropic mechanical properties of NbOX2 monolayers are reflected by the calculated Young's modulus and Poisson's ratio. Our results indicate that these NbOX2 materials unfold semiconductor characters with indirect bandgaps of 1.886, 1.909, and 1.813 eV, respectively. Among these monolayers, it is found that the NbOBr2 system exhibits a favorable photocatalytic activity in an acidic condition (pH = 0), and the NbOI2 monolayer can act as a potential photocatalyst for spontaneous photocatalytic water splitting under a neutral environment (pH = 7). Furthermore, the response of bandgap and band edge positions of NbOX2 monolayers to the exerting in-plane strain (–6% to 6%) are investigated. These NbOX2 monolayers also show strong light absorption from the visible to ultraviolet region and anisotropic high carrier transport. Particularly, the high solar-to-hydrogen efficiency of the NbOCl2 (1% tensile strain), NbOBr2, and NbOI2 monolayers are predicted to be 14.11% (pH = 0), 16.34% (pH = 0), and 17.05% (pH = 7), respectively. Therefore, we expect the NbOX2 monolayers to be promising candidates for highly efficient photocatalytic water splitting. |
---|---|
AbstractList | Motivated by the recent experimental synthesis of two-dimensional (2D) NbOI2 which possesses a moderate bandgap and outstanding absorption of sunlight, using the first-principles calculations, we conduct a thorough study of the geometric configuration, electronic structures, and photocatalytic properties for NbOX2 (X = Cl, Br, I) monolayers. These NbOX2 monolayers have been demonstrated to be dynamically, thermally, and mechanically stable. The significant anisotropic mechanical properties of NbOX2 monolayers are reflected by the calculated Young's modulus and Poisson's ratio. Our results indicate that these NbOX2 materials unfold semiconductor characters with indirect bandgaps of 1.886, 1.909, and 1.813 eV, respectively. Among these monolayers, it is found that the NbOBr2 system exhibits a favorable photocatalytic activity in an acidic condition (pH = 0), and the NbOI2 monolayer can act as a potential photocatalyst for spontaneous photocatalytic water splitting under a neutral environment (pH = 7). Furthermore, the response of bandgap and band edge positions of NbOX2 monolayers to the exerting in-plane strain (–6% to 6%) are investigated. These NbOX2 monolayers also show strong light absorption from the visible to ultraviolet region and anisotropic high carrier transport. Particularly, the high solar-to-hydrogen efficiency of the NbOCl2 (1% tensile strain), NbOBr2, and NbOI2 monolayers are predicted to be 14.11% (pH = 0), 16.34% (pH = 0), and 17.05% (pH = 7), respectively. Therefore, we expect the NbOX2 monolayers to be promising candidates for highly efficient photocatalytic water splitting. |
Author | Pan, Lu Wang, Zhao-Qi Wan, Yu-Lu Chen, Xiang-Rong Geng, Hua-Yun |
Author_xml | – sequence: 1 givenname: Lu surname: Pan fullname: Pan, Lu organization: College of Physics, Institute of Atomic and Molecular Physics, Sichuan University – sequence: 2 givenname: Yu-Lu surname: Wan fullname: Wan, Yu-Lu organization: College of Physics, Institute of Atomic and Molecular Physics, Sichuan University – sequence: 3 givenname: Zhao-Qi surname: Wang fullname: Wang, Zhao-Qi organization: College of Science, Xi'an University of Science and Technology – sequence: 4 givenname: Hua-Yun surname: Geng fullname: Geng, Hua-Yun organization: National Key Laboratory for Shock Wave and Detonation Physics Research, Institute of Fluid Physics, CAEP – sequence: 5 givenname: Xiang-Rong surname: Chen fullname: Chen, Xiang-Rong organization: College of Physics, Institute of Atomic and Molecular Physics, Sichuan University |
BookMark | eNp9kc1KxDAUhYOM4Piz8A0CblSs3rRN2wgudPBnYFAXCu5KJk2mGTpJTSJDd259C5_NJ7EyuhFxcbmL-51z4ZxNNDDWSIR2CRwTyJITegwkS0mWr6EhgYJFOaUwQEOAmEQFy9kG2vR-DkBIkbAhen9Y2qjSC2m8toY3mBvtbXC21QIvrLEN76Tz-HZ69xTj_aeP17ezfkbNEb5wR3h8cIrvnV1or80MC24qXfEgPVbW4ba2wQoeeNOF3m3ZHxz2baND-KKXOtS41rMa-_6Li4KN6q5ydiYNlkppoaUR3TZaV7zxcud7b6HHq8uH0U00ubsej84nkUjiPESEpcAZlVMGMimIZExBDsChyFUxlbzKCRGJSmjK40SqIqtIFZMqzVTK4lTSZAvtrXxbZ59fpA_l3L64PhFfxgVNs5QBzXrqYEUJZ713UpWt0wvuupJA-VVAScvvAnr25BcrdOChjzk4rps_FYcrhf8h_7H_BJ7Tmfo |
CODEN | JAPIAU |
CitedBy_id | crossref_primary_10_1016_j_mssp_2024_109040 crossref_primary_10_1016_j_jpcs_2024_112182 crossref_primary_10_1039_D4CP04591B crossref_primary_10_1088_2053_1583_ad2692 crossref_primary_10_1103_PhysRevB_109_035411 crossref_primary_10_1021_acs_nanolett_4c05418 crossref_primary_10_1063_5_0227188 crossref_primary_10_1039_D4CP01897D crossref_primary_10_1039_D4TC02708F |
Cites_doi | 10.1016/j.scriptamat.2015.07.021 10.1038/238037a0 10.1016/j.apsusc.2021.148968 10.1039/C4CP02021A 10.1021/acsnano.0c05482 10.1016/j.carbon.2020.12.003 10.1103/PhysRevB.94.235306 10.1103/RevModPhys.73.515 10.1021/acsnano.5b05556 10.1063/5.0097163 10.1039/C8TA12405A 10.1039/C5EE03316K 10.1002/adma.202101505 10.1073/pnas.1414290111 10.1103/PhysRevB.47.558 10.1039/C5EE03732H 10.1016/j.nantod.2018.07.001 10.1021/acsami.8b21001 10.1063/1.3382344 10.1039/D1TC00467K 10.1021/jp047349j 10.1039/D1CP02526K 10.1039/D2TA05346B 10.1039/C8TC06050A 10.1039/C9NH00208A 10.1021/acsaem.8b01521 10.1021/acscatal.7b03437 10.1016/j.apsusc.2018.12.275 10.1021/acs.nanolett.8b02561 10.1039/D2NR02761E 10.1016/j.mattod.2016.10.002 10.2138/am-2000-0416 10.1002/adma.201802106 10.1039/D1CP05369H 10.1016/j.apsusc.2021.151992 10.1103/PhysRevB.54.11169 10.1002/chem.201703683 10.1002/advs.201600062 10.1038/s41524-019-0270-4 10.1063/1.1564060 10.1016/j.apcatb.2018.10.054 10.1007/s12274-014-0532-x 10.1002/adma.202102807 10.1088/1361-6463/ac4cf9 10.1126/science.1102896 10.1109/16.337449 10.1021/jacs.8b11350 10.1088/0953-8984/6/40/015 10.1039/C8NR05561K 10.1016/j.apcatb.2017.05.087 10.1039/D0TA05834C 10.1021/acs.jpcc.8b01081 10.1039/D1TC01245B 10.1039/C6TA04414J 10.1039/C8NR08270G 10.1016/j.carbon.2018.08.072 10.1039/C6NR00546B 10.1002/adma.201503270 10.1103/PhysRevB.62.8828 10.1039/C8NR08908F 10.1039/C4CS00126E 10.1039/D1TA00019E 10.1007/s10853-019-03699-y 10.1038/srep04043 10.1021/acsenergylett.9b00940 10.1016/j.nanoen.2020.105716 10.1038/s41467-022-29495-y 10.1039/C8NA00084K 10.1007/s12274-022-4206-9 10.1088/1361-6528/ac622f 10.1016/j.apsusc.2021.149066 10.1103/PhysRevLett.77.3865 10.1021/nn203879f 10.1016/j.apcatb.2020.119368 10.1103/PhysRevB.85.125428 10.1021/jacs.7b04865 10.1039/D0TA06299E |
ContentType | Journal Article |
Copyright | Author(s) 2023 Author(s). Published under an exclusive license by AIP Publishing. |
Copyright_xml | – notice: Author(s) – notice: 2023 Author(s). Published under an exclusive license by AIP Publishing. |
DBID | AAYXX CITATION 8FD H8D L7M |
DOI | 10.1063/5.0164167 |
DatabaseName | CrossRef Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace |
DatabaseTitleList | CrossRef Technology Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Physics |
EISSN | 1089-7550 |
ExternalDocumentID | 10_1063_5_0164167 jap |
GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 12074274 funderid: 10.13039/501100001809 – fundername: Natural Science Basic Research Program of Shaanxi Province grantid: 2023-JC-QN-0068 funderid: 10.13039/501100017596 |
GroupedDBID | -DZ -~X .DC 2-P 29J 4.4 5GY 5VS 85S AAAAW AABDS AAEUA AAIKC AAMNW AAPUP AAYIH ABFTF ABJNI ABZEH ACBEA ACBRY ACGFO ACGFS ACLYJ ACNCT ACZLF ADCTM AEGXH AEJMO AENEX AFATG AFHCQ AGKCL AGLKD AGMXG AGTJO AHSDT AIAGR AIDUJ AJJCW AJQPL ALEPV ALMA_UNASSIGNED_HOLDINGS AQWKA ATXIE AWQPM BPZLN CS3 D0L DU5 EBS ESX F5P FDOHQ FFFMQ HAM M6X M71 M73 N9A NPSNA O-B P2P RIP RNS RQS RXW SC5 TAE TN5 TWZ UCJ UHB UPT WH7 XSW YQT YZZ ZCA ~02 1UP 53G AAGWI AAYXX ABJGX ADMLS BDMKI CITATION 8FD H8D L7M |
ID | FETCH-LOGICAL-c327t-1940a95eb90e381e99f0700a087f8bead711c3f354a23ef86d1d21d46f4924e53 |
ISSN | 0021-8979 |
IngestDate | Sun Jun 29 16:41:43 EDT 2025 Tue Jul 01 00:38:53 EDT 2025 Thu Apr 24 23:02:23 EDT 2025 Fri Jun 21 00:15:24 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Language | English |
License | Published under an exclusive license by AIP Publishing. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c327t-1940a95eb90e381e99f0700a087f8bead711c3f354a23ef86d1d21d46f4924e53 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-4528-2198 0000-0003-4073-3906 0000-0003-4664-8411 0000-0001-5757-3027 |
OpenAccessLink | https://pubs.aip.org/aip/jap/article-pdf/doi/10.1063/5.0164167/18093264/085105_1_5.0164167.pdf |
PQID | 2854649056 |
PQPubID | 2050677 |
PageCount | 13 |
ParticipantIDs | scitation_primary_10_1063_5_0164167 crossref_citationtrail_10_1063_5_0164167 crossref_primary_10_1063_5_0164167 proquest_journals_2854649056 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20230828 2023-08-28 |
PublicationDateYYYYMMDD | 2023-08-28 |
PublicationDate_xml | – month: 08 year: 2023 text: 20230828 day: 28 |
PublicationDecade | 2020 |
PublicationPlace | Melville |
PublicationPlace_xml | – name: Melville |
PublicationTitle | Journal of applied physics |
PublicationYear | 2023 |
Publisher | American Institute of Physics |
Publisher_xml | – name: American Institute of Physics |
References | Luttrell, Halpegamage, Tao, Kramer, Sutter, Batzill (c49) 2014 Wei, Ma, Wei, Li, Huang, Dai (c54) 2018 Choi, Choudhary, Han, Park, Akinwande, Lee (c19) 2017 Cui, Ren, Deng, Deng, Bao (c64) 2016 Fu, Sun, Luo, Li, Hu, Yang (c61) 2018 Liu, Shen, Gao, Lv, Ma, Wu, Wang, Zhou (c55) 2020 Guo, Wang, Ming, Wang, Luo, Lai, Zhang (c46) 2019 Zhang, Huang, Zhang, Li (c68) 2014 Ashwin Kishore, Sjåstad, Ravindran (c9) 2019 Yu, Zhao, Sun, Bergara, Lin, Zhang, Xu, Zhang, Yang, Liu (c5) 2019 Grimme, Antony, Ehrlich, Krieg (c38) 2010 Kilic, Lee (c56) 2021 Su, Shao, Qin, Guo, Wu (c7) 2018 Mortazavi, Silani, Podryabinkin, Rabczuk, Zhuang, Shapeev (c14) 2021 (c57) 2022 Yi, Li, Gong, She, Song, Xu, Deng, Yuan, Xu, Li (c20) 2019 Gu, Tao, Chen, Zhu, Ouyang, Peng (c60) 2019 Noor, Nolan (c28) 2022 Zhu, Yuan, Song, Wang, Xue, Xu, Cheng, Miao (c69) 2019 Fang, Wang, Wang, Zhai, Huang (c30) 2021 Nasir, Rehman, Shah, Khan, Butler, Catlow (c8) 2020 Novoselov, Geim, Morozov, Jiang, Zhang, Dubonos, Grigorieva, Firsov (c10) 2004 Jing, Ma, Wang, Li, Heine (c70) 2017 Lim, Handoko, Nemani, Wyatt, Jiang, Tang, Anasori, Seh (c17) 2020 Abboud, Ozbey, Kilic, Durgun (c45) 2022 Rahman, Kwong, Davey, Qiao (c15) 2016 Xu, Zhou, Zhang, Zeng, Chen, Geng (c25) 2022 Baroni, de Gironcoli, Dal Corso, Giannozzi (c40) 2001 Fujishima, Honda (c4) 1972 Yang, Gou, Lu, Hao (c27) 2022 Lu, Zheng, Li (c23) 2019 Heyd, Scuseria, Ernzerhof (c39) 2003 Kresse, Furthmüller (c34) 1996 Pan, Zhang, Hu, Chen, Geng (c78) 2022 Luo, Liu, Wang (c3) 2016 Kresse, Hafner (c36) 1994 Cox, Lee, Nocera, Buonassisi (c62) 2014 Zhang, Zhao, Wu, Jing, Zhou (c71) 2016 Andrew, Mapasha, Ukpong, Chetty (c44) 2012 Xu, Schoonen (c50) 2000 Jia, Zhao, Gou, Zeng, Li (c32) 2019 Long, Liang, Jin, Huang, Dai (c22) 2019 Perdew, Burke, Ernzerhof (c37) 1996 Liu, Wang, Sun, Sun, Wang, Yang (c47) 2018 Lv, Wei, Sun, Li, Huang, Dai (c51) 2017 Mortazavi, Shahrokhi, Javvaji, Shapeev, Zhuang (c33) 2022 Kilic, Lee (c73) 2021 Zhang, Shen, Liu, Lv, Gao, Zhou, Yang, Meng, Zheng, Zhou (c77) 2022 Fu, Wu, Yang (c6) 2018 Guo, Zhou, Zhu, Sun (c16) 2016 Nørskov, Rossmeisl, Logadottir, Lindqvist, Kitchin, Bligaard, Jónsson (c63) 2004 Ai, Song, Qi, Li, Zhao (c29) 2019 Bhimanapati, Lin, Meunier, Jung, Cha, Das, Xiao, Son, Strano, Cooper, Liang, Louie, Ringe, Zhou, Kim, Naik, Sumpter, Terrones, Xia, Wang, Zhu, Akinwande, Alem, Schuller, Schaak, Terrones, Robinson (c11) 2015 Zhao, Chen, Wang, Yao (c12) 2021 Lv, Yu, Li, Gong, He, Chen (c59) 2021 Lv, Shen, Gao, Liu, Wu, Ma, Wang, Gong, Zhou (c24) 2021 Takagi, Toriumi, Iwase, Tango (c67) 1994 Wang, Zhang, Chen, Hu, Li, Wang, Liu, Wang (c1) 2014 Sun, Meng, Xu, He, Ni, Wang (c72) 2019 Kresse, Hafner (c35) 1993 Shen, Zhang, Wang, Ji, Xue, Zhang (c79) 2021 Togo, Tanaka (c41) 2015 Bushick, Chae, Deng, Heron, Kioupakis (c52) 2020 Wu, Abdelwahab, Kwon, Verzhbitskiy, Wang, Liew, Yao, Eda, Loh, Shen, Quek (c31) 2022 Bertolazzi, Brivio, Kis (c48) 2011 Lei, Zhang, Heymann, Tang, Wen, Zheng, Hu, Ming (c76) 2019 Oyedele, Yang, Liang, Puretzky, Wang, Zhang, Yu, Pudasaini, Ghosh, Liu, Rouleau, Sumpter, Chisholm, Zhou, Rack, Geohegan, Xiao (c21) 2017 Ganguly, Harb, Cao, Cavallo, Breen, Dervin, Dionysiou, Pillai (c2) 2019 Lu, Yu, Ma, Chen, Zhang (c18) 2016 Xu, Xu, Ma, Chen, Zhang, Liu, Ji (c26) 2020 Saha, Sinha, Mookerjee (c58) 2000 Lang, Zhang, Liu (c75) 2016 Deng, Sumant, Berry (c53) 2018 Xiao, Lei, Wang, Xu, Zhang, Ming (c74) 2021 Zhang, Chen, Zhang, Jiao, Zhou (c66) 2019 Mortazavi, Javvaji, Shojaei, Rabczuk, Shapeev, Zhuang (c13) 2021 Wirth, Neumann, Antonietti, Saalfrank (c65) 2014 (2023082210140629600_c68) 2014; 7 (2023082210140629600_c20) 2019; 243 (2023082210140629600_c21) 2017; 139 (2023082210140629600_c69) 2019; 54 (2023082210140629600_c4) 1972; 238 (2023082210140629600_c18) 2016; 28 (2023082210140629600_c51) 2017; 217 (2023082210140629600_c76) 2019; 7 (2023082210140629600_c42) 1995 (2023082210140629600_c78) 2022; 10 (2023082210140629600_c6) 2018; 30 (2023082210140629600_c5) 2019; 141 (2023082210140629600_c64) 2016; 9 (2023082210140629600_c50) 2000; 85 (2023082210140629600_c23) 2019; 11 (2023082210140629600_c44) 2012; 85 (2023082210140629600_c26) 2020; 8 (2023082210140629600_c55) 2020; 279 (2023082210140629600_c70) 2017; 23 (2023082210140629600_c10) 2004; 306 (2023082210140629600_c22) 2019; 2 (2023082210140629600_c61) 2018; 18 (2023082210140629600_c59) 2021; 9 (2023082210140629600_c75) 2016; 94 (2023082210140629600_c19) 2017; 20 (2023082210140629600_c15) 2016; 9 (2023082210140629600_c45) 2022; 55 (2023082210140629600_c77) 2022; 578 (2023082210140629600_c25) 2022; 24 (2023082210140629600_c2) 2019; 4 (2023082210140629600_c11) 2015; 9 (2023082210140629600_c24) 2021; 546 (2023082210140629600_c41) 2015; 108 (2023082210140629600_c29) 2019; 11 (2023082210140629600_c60) 2019; 11 (2023082210140629600_c17) 2020; 14 (2023082210140629600_c16) 2016; 4 (2023082210140629600_c54) 2018; 122 (2023082210140629600_c9) 2019; 141 (2023082210140629600_c3) 2016; 8 (2023082210140629600_c32) 2019; 4 (2023082210140629600_c53) 2018; 22 (2023082210140629600_c7) 2018; 8 (2023082210140629600_c34) 1996; 54 (2023082210140629600_c65) 2014; 16 (2023082210140629600_c27) 2022; 15 (2023082210140629600_c12) 2021; 545 Z. Zhu, C. Zhang, M. Zhou, C. He, J. Li, T. Ouyang, C. Tang, and J. Zhong (2023082210140629600_c57) 2022; 132 (2023082210140629600_c38) 2010; 132 (2023082210140629600_c37) 1996; 77 (2023082210140629600_c30) 2021; 33 (2023082210140629600_c33) 2022; 33 (2023082210140629600_c62) 2014; 111 (2023082210140629600_c14) 2021; 33 (2023082210140629600_c79) 2021; 23 (2023082210140629600_c8) 2020; 8 (2023082210140629600_c13) 2021; 82 (2023082210140629600_c73) 2021; 174 (2023082210140629600_c31) 2022; 13 (2023082210140629600_c58) 2000; 62 (2023082210140629600_c63) 2004; 108 (2023082210140629600_c48) 2011; 5 (2023082210140629600_c49) 2014; 4 (2023082210140629600_c1) 2014; 43 (2023082210140629600_c67) 1994; 41 (2023082210140629600_c52) 2020; 6 (2023082210140629600_c39) 2003; 118 (2023082210140629600_c74) 2021; 9 (2023082210140629600_c28) 2022; 14 (2023082210140629600_c56) 2021; 9 (2023082210140629600_c47) 2018; 10 (2023082210140629600_c43) 1954 (2023082210140629600_c46) 2019; 475 (2023082210140629600_c72) 2019; 7 (2023082210140629600_c35) 1993; 47 (2023082210140629600_c36) 1994; 6 (2023082210140629600_c40) 2001; 73 (2023082210140629600_c71) 2016; 3 (2023082210140629600_c66) 2019; 1 |
References_xml | – start-page: 513 year: 2019 ident: c22 article-title: PdSe : Flexible two-dimensional transition metal dichalcogenides monolayer for water splitting photocatalyst with extremely low recombination rate publication-title: ACS Appl. Energy Mater. – start-page: 149066 year: 2021 ident: c24 article-title: Strain engineering on the electrical properties and photocatalytic activity in gold sulfide monolayer publication-title: Appl. Surf. Sci. – start-page: 8207 year: 2003 ident: c39 article-title: Hybrid functionals based on a screened Coulomb potential publication-title: J. Chem. Phys. – start-page: 8245 year: 1994 ident: c36 article-title: Norm-conserving and ultrasoft pseudopotentials for first-row and transition elements publication-title: J. Phys.: Condens. Matter – start-page: 7791 year: 2019 ident: c72 article-title: Flexible, auxetic and strain-tunable two dimensional penta-X C family as water splitting photocatalysts with high carrier mobility publication-title: J. Mater. Chem. A – start-page: 4971 year: 2021 ident: c56 article-title: Auxetic, flexible, and strain-tunable two-dimensional Th-AlN for photocatalytic visible light water splitting with anisotropic high carrier mobility publication-title: J. Mater. Chem. C – start-page: 235306 year: 2016 ident: c75 article-title: Mobility anisotropy of two-dimensional semiconductors publication-title: Phys. Rev. B – start-page: 2096 year: 2019 ident: c76 article-title: A new 2D high-pressure phase of PdSe with high-mobility transport anisotropy for photovoltaic applications publication-title: J. Mater. Chem. C – start-page: 11676 year: 2022 ident: c28 article-title: Large piezoelectric response in ferroelectric/multiferroelectric metal oxyhalide MOX (M = Ti, V and X = F, Cl and Br) monolayers publication-title: Nanoscale – start-page: 2335 year: 2019 ident: c60 article-title: Enhanced photocatalytic activity for water splitting of blue-phase GeS and GeSe monolayers via biaxial straining publication-title: Nanoscale – start-page: 13612 year: 2017 ident: c70 article-title: Ultrathin layers of PdPX (X = S, Se): Two dimensional semiconductors for photocatalytic water splitting publication-title: Chem. Eur. J. – start-page: 123 year: 2016 ident: c64 article-title: Single layer graphene encapsulating non-precious metals as high-performance electrocatalysts for water oxidation publication-title: Energy Environ. Sci. – start-page: 11169 year: 1996 ident: c34 article-title: Efficient iterative schemes for total-energy calculations using a plane-wave basis set publication-title: Phys. Rev. B – start-page: 1917 year: 2016 ident: c18 article-title: 2D transition-metal-dichalcogenide-nanosheet-based composites for photocatalytic and electrocatalytic hydrogen evolution reactions publication-title: Adv. Mater. – start-page: 368 year: 2021 ident: c73 article-title: Tetrahex carbides: Two-dimensional group-IV materials for nanoelectronics and photocatalytic water splitting publication-title: Carbon – start-page: 2057 year: 2020 ident: c52 article-title: Boron arsenide heterostructures: Lattice-matched heterointerfaces and strain effects on band alignments and mobility publication-title: npj Comput. Mater. – start-page: 148968 year: 2021 ident: c12 article-title: insights into electronic structures, optical and photocatalytic properties of Janus WXY (X/Y = O, S, Se and Te) publication-title: Appl. Surf. Sci. – start-page: 2101505 year: 2021 ident: c30 article-title: 2D NbOI : A chiral semiconductor with highly in-plane anisotropic electrical and optical properties publication-title: Adv. Mater. – start-page: 1884 year: 2022 ident: c31 article-title: Data-driven discovery of high performance layered van der Waals piezoelectric NbOI publication-title: Nat. Commun. – start-page: 102 year: 2019 ident: c46 article-title: Trap effects on vacancy defect of C N as anode material in Li-ion battery publication-title: Appl. Surf. Sci. – start-page: 21825 year: 2021 ident: c79 article-title: Janus PtXO (X = S, Se) monolayers: The visible light driven water splitting photocatalysts with high carrier mobilities publication-title: Phys. Chem. Chem. Phys. – start-page: 37 year: 1972 ident: c4 article-title: Electrochemical photolysis of water at a semiconductor electrode publication-title: Nature – start-page: 17886 year: 2004 ident: c63 article-title: Origin of the overpotential for oxygen reduction at a fuel-cell cathode publication-title: J. Phys. Chem. B – start-page: 666 year: 2004 ident: c10 article-title: Electric field effect in atomically thin carbon films publication-title: Science – start-page: 154 year: 2019 ident: c66 article-title: Rational design of C N-based type-II heterojunctions for overall photocatalytic water splitting publication-title: Nanoscale Adv. – start-page: 6904 year: 2016 ident: c3 article-title: Recent advances in 2D materials for photocatalysis publication-title: Nanoscale – start-page: 15917 year: 2014 ident: c65 article-title: Adsorption and photocatalytic splitting of water on graphitic carbon nitride: A combined first principles and semiempirical study publication-title: Phys. Chem. Chem. Phys. – start-page: 16169 year: 2018 ident: c47 article-title: Penta-Pt N : An ideal two-dimensional material for nanoelectronics publication-title: Nanoscale – start-page: 1731 year: 2014 ident: c68 article-title: Two-dimensional semiconductors with possible high room temperature mobility publication-title: Nano Res. – start-page: 709 year: 2016 ident: c15 article-title: 2D phosphorene as a water splitting photocatalyst: Fundamentals to applications publication-title: Energy Environ. Sci. – start-page: 10163 year: 2019 ident: c23 article-title: Few-layer P O : A promising photocatalyst for water splitting publication-title: ACS Appl. Mater. Interfaces – start-page: 154104 year: 2010 ident: c38 article-title: A consistent and accurate parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu publication-title: J. Chem. Phys. – start-page: 1599 year: 2019 ident: c5 article-title: Two-dimensional PC with direct band gap and anisotropic carrier mobility publication-title: J. Am. Chem. Soc. – start-page: 8102 year: 2018 ident: c54 article-title: Promising photocatalysts for water splitting in BeN and MgN monolayers publication-title: J. Phys. Chem. C – start-page: 10834 year: 2020 ident: c17 article-title: Rational design of two-dimensional transition metal carbide/nitride (MXene) hybrids and nanocomposites for catalytic energy storage and conversion publication-title: ACS Nano – start-page: 558 year: 1993 ident: c35 article-title: molecular dynamics for liquid metals publication-title: Phys. Rev. B – start-page: 185302 year: 2022 ident: c45 article-title: Investigation of anisotropic mechanical, electronic, and charge carrier transport properties of germanium-pnictogen monolayers publication-title: J. Phys. D: Appl. Phys. – start-page: 50 year: 2019 ident: c9 article-title: Influence of hydrogen and halogen adsorption on the photocatalytic water splitting activity of C N monolayer: A first-principles study publication-title: Carbon – start-page: 14057 year: 2014 ident: c62 article-title: Ten-percent solar-to-fuel conversion with nonprecious materials publication-title: Proc. Natl. Acad. Sci. U.S.A. – start-page: 515 year: 2001 ident: c40 article-title: Phonons and related crystal properties from density-functional perturbation theory publication-title: Rev. Mod. Phys. – start-page: 055001 year: 2022 ident: c57 article-title: Highly efficient water splitting in step-scheme PtS2/GaSe van der Waals heterojunction publication-title: J. Appl. Phys. – start-page: 116 year: 2017 ident: c19 article-title: Recent development of two-dimensional transition metal dichalcogenides and their applications publication-title: Mater. Today – start-page: 27 year: 2022 ident: c33 article-title: Highly anisotropic mechanical and optical properties of 2D NbOX (X = Cl, Br, I) revealed by first-principle publication-title: Nanotechnology – start-page: 1 year: 2015 ident: c41 article-title: First principles phonon calculations in materials science publication-title: Scr. Mater. – start-page: 2253 year: 2018 ident: c7 article-title: Role of interfaces in two-dimensional photocatalyst for water splitting publication-title: ACS Catal. – start-page: 543 year: 2000 ident: c50 article-title: The absolute energy positions of conduction and valence bands of selected semiconducting minerals publication-title: Am. Mineral. – start-page: 14090 year: 2017 ident: c21 article-title: Pdse : Pentagonal two-dimensional layers with high air stability for electronics publication-title: J. Am. Chem. Soc. – start-page: 9703 year: 2011 ident: c48 article-title: Stretching and breaking of ultrathin MoS publication-title: ACS Nano – start-page: 7753 year: 2021 ident: c74 article-title: Pentagonal two-dimensional noble-metal dichalcogenide PdSSe for photocatalytic water splitting with pronounced optical absorption and ultrahigh anisotropic carrier mobility publication-title: J. Mater. Chem. C – start-page: 125428 year: 2012 ident: c44 article-title: Mechanical properties of graphene and boronitrene publication-title: Phys. Rev. B – start-page: 6993 year: 2021 ident: c59 article-title: Penta-MS (M = Mn, Ni, Cu/Ag and Zn/Cd) monolayers with negative Poisson’s ratios and tunable bandgaps as water-splitting photocatalysts publication-title: J. Mater. Chem. A – start-page: 4043 year: 2014 ident: c49 article-title: Why is anatase a better photocatalyst than rutile?–Model studies on epitaxial TiO films publication-title: Sci. Rep. – start-page: 1103 year: 2019 ident: c29 article-title: Intrinsic multiferroicity in two-dimensional VOCl monolayers publication-title: Nanoscale – start-page: 11509 year: 2015 ident: c11 article-title: Recent advances in two-dimensional materials beyond graphene publication-title: ACS Nano – start-page: 5234 year: 2014 ident: c1 article-title: Semiconductor heterojunction photocatalysts: Design, construction, and photocatalytic performances publication-title: Chem. Soc. Rev. – start-page: 19612 year: 2020 ident: c26 article-title: Novel two-dimensional β-GeSe and β-SnSe semiconductors: Anisotropic high carrier mobility and excellent photocatalytic water splitting publication-title: J. Mater. Chem. A – start-page: 275 year: 2017 ident: c51 article-title: Two-dimensional germanium monochalcogenides for photocatalytic water splitting with high carrier mobility publication-title: Appl. Catal. B – start-page: 2102807 year: 2021 ident: c14 article-title: First-principles multiscale modeling of mechanical properties in graphene/borophene heterostructures empowered by machine-learning interatomic potentials publication-title: Adv. Mater. – start-page: 105716 year: 2021 ident: c13 article-title: Exceptional piezoelectricity, high thermal conductivity and stiffness and promising photocatalysis in two-dimensional MoSi N family confirmed by first-principles publication-title: Nano Energy – start-page: 8828 year: 2000 ident: c58 article-title: Electronic structure, chemical bonding, and optical properties of paraelectric BaTiO publication-title: Phys. Rev. B: Condens. Matter Mater. Phys. – start-page: 1113 year: 2019 ident: c32 article-title: Niobium oxide dihalides NbOX : A new family of two-dimensional van der Waals layered materials with intrinsic ferroelectricity and antiferroelectricity publication-title: Nanoscale Horiz. – start-page: 2358 year: 1994 ident: c67 article-title: On the universality of inversion layer mobility in Si MOSFET’s: Part 1—Effects of substrate impurity concentration publication-title: IEEE Trans. Electron Devices – start-page: 151992 year: 2022 ident: c77 article-title: Novel 2D HfTeS for water splitting with high visible-light absorption publication-title: Appl. Surf. Sci. – start-page: 6779 year: 2022 ident: c27 article-title: Linear dichroism and polarization controllable persistent spin helix in two-dimensional ferroelectric ZrOI monolayer publication-title: Nano Res. – start-page: 1600062 year: 2016 ident: c71 article-title: MnPSe monolayer: A promising 2D visible-light photohydrolytic catalyst with high carrier mobility publication-title: Adv. Sci. – start-page: 20752 year: 2020 ident: c8 article-title: Recent developments and perspectives in CdS-based photocatalysts for water splitting publication-title: J. Mater. Chem. A – start-page: 11485 year: 2019 ident: c69 article-title: Two-dimensional silicon chalcogenides with high carrier mobility for photocatalytic water splitting publication-title: J. Mater. Sci. – start-page: 22676 year: 2022 ident: c78 article-title: Two-dimensional AlXY (X = S, Se, and Y = Cl, Br, I) monolayers: Promising photocatalysts for water splitting with high-anisotropic carrier mobilities publication-title: J. Mater. Chem. A – start-page: 6312 year: 2018 ident: c61 article-title: Intrinsic electric fields in two-dimensional materials boost the solar-to-hydrogen efficiency for photocatalytic water splitting publication-title: Nano Lett. – start-page: 3865 year: 1996 ident: c37 article-title: Generalized gradient approximation made simple publication-title: Phys. Rev. Lett. – start-page: 11446 year: 2016 ident: c16 article-title: MXene: A promising photocatalyst for water splitting publication-title: J. Mater. Chem. A – start-page: 14 year: 2018 ident: c53 article-title: Strain engineering in two-dimensional nanomaterials beyond graphene publication-title: Nano Today – start-page: 1687 year: 2019 ident: c2 article-title: 2D nanomaterials for photocatalytic hydrogen production publication-title: ACS Energy Lett. – start-page: 3770 year: 2022 ident: c25 article-title: An study of two-dimensional anisotropic monolayers ScXY (X = S and Se; Y = Cl and Br) for photocatalytic water splitting applications with high carrier mobilities publication-title: Phys. Chem. Chem. Phys. – start-page: 1802106 year: 2018 ident: c6 article-title: Material design for photocatalytic water splitting from a theoretical perspective publication-title: Adv. Mater. – start-page: 330 year: 2019 ident: c20 article-title: Phase and interlayer effect of transition metal dichalcogenide cocatalyst toward photocatalytic hydrogen evolution: The case of MoSe publication-title: Appl. Catal. B – start-page: 119368 year: 2020 ident: c55 article-title: Gen monolayer: A promising 2D high-efficiency photo-hydrolytic catalyst with high carrier mobility transport anisotropy publication-title: Appl. Catal. B – volume: 108 start-page: 1 year: 2015 ident: 2023082210140629600_c41 article-title: First principles phonon calculations in materials science publication-title: Scr. Mater. doi: 10.1016/j.scriptamat.2015.07.021 – volume: 238 start-page: 37 year: 1972 ident: 2023082210140629600_c4 article-title: Electrochemical photolysis of water at a semiconductor electrode publication-title: Nature doi: 10.1038/238037a0 – volume: 545 start-page: 148968 year: 2021 ident: 2023082210140629600_c12 article-title: Ab-initio insights into electronic structures, optical and photocatalytic properties of Janus WXY (X/Y = O, S, Se and Te) publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2021.148968 – volume: 16 start-page: 15917 year: 2014 ident: 2023082210140629600_c65 article-title: Adsorption and photocatalytic splitting of water on graphitic carbon nitride: A combined first principles and semiempirical study publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C4CP02021A – volume: 14 start-page: 10834 year: 2020 ident: 2023082210140629600_c17 article-title: Rational design of two-dimensional transition metal carbide/nitride (MXene) hybrids and nanocomposites for catalytic energy storage and conversion publication-title: ACS Nano doi: 10.1021/acsnano.0c05482 – volume: 174 start-page: 368 year: 2021 ident: 2023082210140629600_c73 article-title: Tetrahex carbides: Two-dimensional group-IV materials for nanoelectronics and photocatalytic water splitting publication-title: Carbon doi: 10.1016/j.carbon.2020.12.003 – volume: 94 start-page: 235306 year: 2016 ident: 2023082210140629600_c75 article-title: Mobility anisotropy of two-dimensional semiconductors publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.94.235306 – volume: 73 start-page: 515 year: 2001 ident: 2023082210140629600_c40 article-title: Phonons and related crystal properties from density-functional perturbation theory publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.73.515 – volume: 9 start-page: 11509 year: 2015 ident: 2023082210140629600_c11 article-title: Recent advances in two-dimensional materials beyond graphene publication-title: ACS Nano doi: 10.1021/acsnano.5b05556 – volume: 132 start-page: 055001 year: 2022 ident: 2023082210140629600_c57 article-title: Highly efficient water splitting in step-scheme PtS2/GaSe van der Waals heterojunction publication-title: J. Appl. Phys. doi: 10.1063/5.0097163 – volume: 7 start-page: 7791 year: 2019 ident: 2023082210140629600_c72 article-title: Flexible, auxetic and strain-tunable two dimensional penta-X2C family as water splitting photocatalysts with high carrier mobility publication-title: J. Mater. Chem. A doi: 10.1039/C8TA12405A – volume: 9 start-page: 123 year: 2016 ident: 2023082210140629600_c64 article-title: Single layer graphene encapsulating non-precious metals as high-performance electrocatalysts for water oxidation publication-title: Energy Environ. Sci. doi: 10.1039/C5EE03316K – volume: 33 start-page: 2101505 year: 2021 ident: 2023082210140629600_c30 article-title: 2D NbOI2: A chiral semiconductor with highly in-plane anisotropic electrical and optical properties publication-title: Adv. Mater. doi: 10.1002/adma.202101505 – volume: 111 start-page: 14057 year: 2014 ident: 2023082210140629600_c62 article-title: Ten-percent solar-to-fuel conversion with nonprecious materials publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.1414290111 – volume: 47 start-page: 558 year: 1993 ident: 2023082210140629600_c35 article-title: Ab initio molecular dynamics for liquid metals publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.47.558 – volume: 9 start-page: 709 year: 2016 ident: 2023082210140629600_c15 article-title: 2D phosphorene as a water splitting photocatalyst: Fundamentals to applications publication-title: Energy Environ. Sci. doi: 10.1039/C5EE03732H – volume: 22 start-page: 14 year: 2018 ident: 2023082210140629600_c53 article-title: Strain engineering in two-dimensional nanomaterials beyond graphene publication-title: Nano Today doi: 10.1016/j.nantod.2018.07.001 – volume: 11 start-page: 10163 year: 2019 ident: 2023082210140629600_c23 article-title: Few-layer P4O2: A promising photocatalyst for water splitting publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.8b21001 – volume: 132 start-page: 154104 year: 2010 ident: 2023082210140629600_c38 article-title: A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu publication-title: J. Chem. Phys. doi: 10.1063/1.3382344 – volume: 9 start-page: 4971 year: 2021 ident: 2023082210140629600_c56 article-title: Auxetic, flexible, and strain-tunable two-dimensional Th-AlN for photocatalytic visible light water splitting with anisotropic high carrier mobility publication-title: J. Mater. Chem. C doi: 10.1039/D1TC00467K – volume: 108 start-page: 17886 year: 2004 ident: 2023082210140629600_c63 article-title: Origin of the overpotential for oxygen reduction at a fuel-cell cathode publication-title: J. Phys. Chem. B doi: 10.1021/jp047349j – volume: 23 start-page: 21825 year: 2021 ident: 2023082210140629600_c79 article-title: Janus PtXO (X = S, Se) monolayers: The visible light driven water splitting photocatalysts with high carrier mobilities publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/D1CP02526K – volume: 10 start-page: 22676 year: 2022 ident: 2023082210140629600_c78 article-title: Two-dimensional AlXY (X = S, Se, and Y = Cl, Br, I) monolayers: Promising photocatalysts for water splitting with high-anisotropic carrier mobilities publication-title: J. Mater. Chem. A doi: 10.1039/D2TA05346B – volume: 7 start-page: 2096 year: 2019 ident: 2023082210140629600_c76 article-title: A new 2D high-pressure phase of PdSe2 with high-mobility transport anisotropy for photovoltaic applications publication-title: J. Mater. Chem. C doi: 10.1039/C8TC06050A – volume: 4 start-page: 1113 year: 2019 ident: 2023082210140629600_c32 article-title: Niobium oxide dihalides NbOX2: A new family of two-dimensional van der Waals layered materials with intrinsic ferroelectricity and antiferroelectricity publication-title: Nanoscale Horiz. doi: 10.1039/C9NH00208A – volume: 2 start-page: 513 year: 2019 ident: 2023082210140629600_c22 article-title: PdSe2: Flexible two-dimensional transition metal dichalcogenides monolayer for water splitting photocatalyst with extremely low recombination rate publication-title: ACS Appl. Energy Mater. doi: 10.1021/acsaem.8b01521 – volume: 8 start-page: 2253 year: 2018 ident: 2023082210140629600_c7 article-title: Role of interfaces in two-dimensional photocatalyst for water splitting publication-title: ACS Catal. doi: 10.1021/acscatal.7b03437 – volume: 475 start-page: 102 year: 2019 ident: 2023082210140629600_c46 article-title: Trap effects on vacancy defect of C3N as anode material in Li-ion battery publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2018.12.275 – volume: 18 start-page: 6312 year: 2018 ident: 2023082210140629600_c61 article-title: Intrinsic electric fields in two-dimensional materials boost the solar-to-hydrogen efficiency for photocatalytic water splitting publication-title: Nano Lett. doi: 10.1021/acs.nanolett.8b02561 – volume: 14 start-page: 11676 year: 2022 ident: 2023082210140629600_c28 article-title: Large piezoelectric response in ferroelectric/multiferroelectric metal oxyhalide MOX2 (M = Ti, V and X = F, Cl and Br) monolayers publication-title: Nanoscale doi: 10.1039/D2NR02761E – volume: 20 start-page: 116 year: 2017 ident: 2023082210140629600_c19 article-title: Recent development of two-dimensional transition metal dichalcogenides and their applications publication-title: Mater. Today doi: 10.1016/j.mattod.2016.10.002 – volume: 85 start-page: 543 year: 2000 ident: 2023082210140629600_c50 article-title: The absolute energy positions of conduction and valence bands of selected semiconducting minerals publication-title: Am. Mineral. doi: 10.2138/am-2000-0416 – volume: 30 start-page: 1802106 year: 2018 ident: 2023082210140629600_c6 article-title: Material design for photocatalytic water splitting from a theoretical perspective publication-title: Adv. Mater. doi: 10.1002/adma.201802106 – volume: 24 start-page: 3770 year: 2022 ident: 2023082210140629600_c25 article-title: An ab initio study of two-dimensional anisotropic monolayers ScXY (X = S and Se; Y = Cl and Br) for photocatalytic water splitting applications with high carrier mobilities publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/D1CP05369H – volume: 578 start-page: 151992 year: 2022 ident: 2023082210140629600_c77 article-title: Novel 2D HfTeS4 for water splitting with high visible-light absorption publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2021.151992 – volume: 54 start-page: 11169 year: 1996 ident: 2023082210140629600_c34 article-title: Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.54.11169 – volume: 23 start-page: 13612 year: 2017 ident: 2023082210140629600_c70 article-title: Ultrathin layers of PdPX (X = S, Se): Two dimensional semiconductors for photocatalytic water splitting publication-title: Chem. Eur. J. doi: 10.1002/chem.201703683 – volume: 3 start-page: 1600062 year: 2016 ident: 2023082210140629600_c71 article-title: MnPSe3 monolayer: A promising 2D visible-light photohydrolytic catalyst with high carrier mobility publication-title: Adv. Sci. doi: 10.1002/advs.201600062 – volume: 6 start-page: 2057 year: 2020 ident: 2023082210140629600_c52 article-title: Boron arsenide heterostructures: Lattice-matched heterointerfaces and strain effects on band alignments and mobility publication-title: npj Comput. Mater. doi: 10.1038/s41524-019-0270-4 – volume: 118 start-page: 8207 year: 2003 ident: 2023082210140629600_c39 article-title: Hybrid functionals based on a screened Coulomb potential publication-title: J. Chem. Phys. doi: 10.1063/1.1564060 – volume: 243 start-page: 330 year: 2019 ident: 2023082210140629600_c20 article-title: Phase and interlayer effect of transition metal dichalcogenide cocatalyst toward photocatalytic hydrogen evolution: The case of MoSe2 publication-title: Appl. Catal. B doi: 10.1016/j.apcatb.2018.10.054 – volume: 7 start-page: 1731 year: 2014 ident: 2023082210140629600_c68 article-title: Two-dimensional semiconductors with possible high room temperature mobility publication-title: Nano Res. doi: 10.1007/s12274-014-0532-x – volume: 33 start-page: 2102807 year: 2021 ident: 2023082210140629600_c14 article-title: First-principles multiscale modeling of mechanical properties in graphene/borophene heterostructures empowered by machine-learning interatomic potentials publication-title: Adv. Mater. doi: 10.1002/adma.202102807 – volume: 55 start-page: 185302 year: 2022 ident: 2023082210140629600_c45 article-title: Investigation of anisotropic mechanical, electronic, and charge carrier transport properties of germanium-pnictogen monolayers publication-title: J. Phys. D: Appl. Phys. doi: 10.1088/1361-6463/ac4cf9 – volume: 306 start-page: 666 year: 2004 ident: 2023082210140629600_c10 article-title: Electric field effect in atomically thin carbon films publication-title: Science doi: 10.1126/science.1102896 – volume: 41 start-page: 2358 year: 1994 ident: 2023082210140629600_c67 article-title: On the universality of inversion layer mobility in Si MOSFET’s: Part 1—Effects of substrate impurity concentration publication-title: IEEE Trans. Electron Devices doi: 10.1109/16.337449 – volume: 141 start-page: 1599 year: 2019 ident: 2023082210140629600_c5 article-title: Two-dimensional PC6 with direct band gap and anisotropic carrier mobility publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.8b11350 – volume: 6 start-page: 8245 year: 1994 ident: 2023082210140629600_c36 article-title: Norm-conserving and ultrasoft pseudopotentials for first-row and transition elements publication-title: J. Phys.: Condens. Matter doi: 10.1088/0953-8984/6/40/015 – volume-title: Dynamical Theory of Crystal Lattices year: 1954 ident: 2023082210140629600_c43 – volume: 10 start-page: 16169 year: 2018 ident: 2023082210140629600_c47 article-title: Penta-Pt2N4: An ideal two-dimensional material for nanoelectronics publication-title: Nanoscale doi: 10.1039/C8NR05561K – volume: 217 start-page: 275 year: 2017 ident: 2023082210140629600_c51 article-title: Two-dimensional germanium monochalcogenides for photocatalytic water splitting with high carrier mobility publication-title: Appl. Catal. B doi: 10.1016/j.apcatb.2017.05.087 – volume: 8 start-page: 20752 year: 2020 ident: 2023082210140629600_c8 article-title: Recent developments and perspectives in CdS-based photocatalysts for water splitting publication-title: J. Mater. Chem. A doi: 10.1039/D0TA05834C – volume: 122 start-page: 8102 year: 2018 ident: 2023082210140629600_c54 article-title: Promising photocatalysts for water splitting in BeN2 and MgN2 monolayers publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.8b01081 – volume: 9 start-page: 7753 year: 2021 ident: 2023082210140629600_c74 article-title: Pentagonal two-dimensional noble-metal dichalcogenide PdSSe for photocatalytic water splitting with pronounced optical absorption and ultrahigh anisotropic carrier mobility publication-title: J. Mater. Chem. C doi: 10.1039/D1TC01245B – volume: 4 start-page: 11446 year: 2016 ident: 2023082210140629600_c16 article-title: MXene: A promising photocatalyst for water splitting publication-title: J. Mater. Chem. A doi: 10.1039/C6TA04414J – volume: 11 start-page: 1103 year: 2019 ident: 2023082210140629600_c29 article-title: Intrinsic multiferroicity in two-dimensional VOCl2 monolayers publication-title: Nanoscale doi: 10.1039/C8NR08270G – volume: 141 start-page: 50 year: 2019 ident: 2023082210140629600_c9 article-title: Influence of hydrogen and halogen adsorption on the photocatalytic water splitting activity of C2N monolayer: A first-principles study publication-title: Carbon doi: 10.1016/j.carbon.2018.08.072 – volume: 8 start-page: 6904 year: 2016 ident: 2023082210140629600_c3 article-title: Recent advances in 2D materials for photocatalysis publication-title: Nanoscale doi: 10.1039/C6NR00546B – volume: 28 start-page: 1917 year: 2016 ident: 2023082210140629600_c18 article-title: 2D transition-metal-dichalcogenide-nanosheet-based composites for photocatalytic and electrocatalytic hydrogen evolution reactions publication-title: Adv. Mater. doi: 10.1002/adma.201503270 – volume: 62 start-page: 8828 year: 2000 ident: 2023082210140629600_c58 article-title: Electronic structure, chemical bonding, and optical properties of paraelectric BaTiO3 publication-title: Phys. Rev. B: Condens. Matter Mater. Phys. doi: 10.1103/PhysRevB.62.8828 – volume: 11 start-page: 2335 year: 2019 ident: 2023082210140629600_c60 article-title: Enhanced photocatalytic activity for water splitting of blue-phase GeS and GeSe monolayers via biaxial straining publication-title: Nanoscale doi: 10.1039/C8NR08908F – volume-title: Theory of Elasticity year: 1995 ident: 2023082210140629600_c42 – volume: 43 start-page: 5234 year: 2014 ident: 2023082210140629600_c1 article-title: Semiconductor heterojunction photocatalysts: Design, construction, and photocatalytic performances publication-title: Chem. Soc. Rev. doi: 10.1039/C4CS00126E – volume: 9 start-page: 6993 year: 2021 ident: 2023082210140629600_c59 article-title: Penta-MS2 (M = Mn, Ni, Cu/Ag and Zn/Cd) monolayers with negative Poisson’s ratios and tunable bandgaps as water-splitting photocatalysts publication-title: J. Mater. Chem. A doi: 10.1039/D1TA00019E – volume: 54 start-page: 11485 year: 2019 ident: 2023082210140629600_c69 article-title: Two-dimensional silicon chalcogenides with high carrier mobility for photocatalytic water splitting publication-title: J. Mater. Sci. doi: 10.1007/s10853-019-03699-y – volume: 4 start-page: 4043 year: 2014 ident: 2023082210140629600_c49 article-title: Why is anatase a better photocatalyst than rutile?–Model studies on epitaxial TiO2 films publication-title: Sci. Rep. doi: 10.1038/srep04043 – volume: 4 start-page: 1687 year: 2019 ident: 2023082210140629600_c2 article-title: 2D nanomaterials for photocatalytic hydrogen production publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.9b00940 – volume: 82 start-page: 105716 year: 2021 ident: 2023082210140629600_c13 article-title: Exceptional piezoelectricity, high thermal conductivity and stiffness and promising photocatalysis in two-dimensional MoSi2N4 family confirmed by first-principles publication-title: Nano Energy doi: 10.1016/j.nanoen.2020.105716 – volume: 13 start-page: 1884 year: 2022 ident: 2023082210140629600_c31 article-title: Data-driven discovery of high performance layered van der Waals piezoelectric NbOI2 publication-title: Nat. Commun. doi: 10.1038/s41467-022-29495-y – volume: 1 start-page: 154 year: 2019 ident: 2023082210140629600_c66 article-title: Rational design of C2N-based type-II heterojunctions for overall photocatalytic water splitting publication-title: Nanoscale Adv. doi: 10.1039/C8NA00084K – volume: 15 start-page: 6779 year: 2022 ident: 2023082210140629600_c27 article-title: Linear dichroism and polarization controllable persistent spin helix in two-dimensional ferroelectric ZrOI2 monolayer publication-title: Nano Res. doi: 10.1007/s12274-022-4206-9 – volume: 33 start-page: 27 year: 2022 ident: 2023082210140629600_c33 article-title: Highly anisotropic mechanical and optical properties of 2D NbOX2 (X = Cl, Br, I) revealed by first-principle publication-title: Nanotechnology doi: 10.1088/1361-6528/ac622f – volume: 546 start-page: 149066 year: 2021 ident: 2023082210140629600_c24 article-title: Strain engineering on the electrical properties and photocatalytic activity in gold sulfide monolayer publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2021.149066 – volume: 77 start-page: 3865 year: 1996 ident: 2023082210140629600_c37 article-title: Generalized gradient approximation made simple publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.77.3865 – volume: 5 start-page: 9703 year: 2011 ident: 2023082210140629600_c48 article-title: Stretching and breaking of ultrathin MoS2 publication-title: ACS Nano doi: 10.1021/nn203879f – volume: 279 start-page: 119368 year: 2020 ident: 2023082210140629600_c55 article-title: Gen3 monolayer: A promising 2D high-efficiency photo-hydrolytic catalyst with high carrier mobility transport anisotropy publication-title: Appl. Catal. B doi: 10.1016/j.apcatb.2020.119368 – volume: 85 start-page: 125428 year: 2012 ident: 2023082210140629600_c44 article-title: Mechanical properties of graphene and boronitrene publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.85.125428 – volume: 139 start-page: 14090 year: 2017 ident: 2023082210140629600_c21 article-title: Pdse2: Pentagonal two-dimensional layers with high air stability for electronics publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b04865 – volume: 8 start-page: 19612 year: 2020 ident: 2023082210140629600_c26 article-title: Novel two-dimensional β-GeSe and β-SnSe semiconductors: Anisotropic high carrier mobility and excellent photocatalytic water splitting publication-title: J. Mater. Chem. A doi: 10.1039/D0TA06299E |
SSID | ssj0011839 |
Score | 2.5099266 |
Snippet | Motivated by the recent experimental synthesis of two-dimensional (2D) NbOI2 which possesses a moderate bandgap and outstanding absorption of sunlight, using... |
SourceID | proquest crossref scitation |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Applied physics Carrier transport Catalytic activity Electromagnetic absorption Energy gap First principles Hydrogen Mathematical analysis Mechanical properties Modulus of elasticity Monolayers Photocatalysis Plane strain Poisson's ratio Tensile strain Water splitting |
Title | Two-dimensional anisotropic monolayers NbOX2 (X = Cl, Br, I): Promising candidates for photocatalytic water splitting with high solar-to-hydrogen efficiency |
URI | http://dx.doi.org/10.1063/5.0164167 https://www.proquest.com/docview/2854649056 |
Volume | 134 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dbtMwGLVKJwRcIBggCgNZwKShziOJ48RG4mJ0oA6xMcQmddxE-bFppamp2kTTuOKWt-AleCGehM9xmqRbJw0uGrVWmkQ9p_bx5-87RuhFpLRLOnWJq2JK3MhShDvwUSUxyHFuUZ7oieLevtc_cj8M2KDV-t3IWsqzaCv-vrSu5H9QhTbAVVfJ_gOy1UWhAd4DvnAEhOF4NYxPU5Joe35jrdENx6NZmk3TySjuwkPArFUL6u5-9GngaCk5KFMbuFinO9X7nll4KKDbXXeEDhIcTFMgQFGQq-tedFigMG7oToZplhYxnzNt9XoaapPFGShZkz9dhHW1BXJ3pufMJEvJ8CyZpt_0ZgKFW4Uu9bxEEYelIjbRlkrsH5TlEXkd_C8ajnOy0FZ0Wl-HYUo-j6q0Imma-3lIjvNxM8bhUB20dXiz33ZswoXZdmZLmq7a4oL4zNjWVn15GRk1pOVLxwgQZQCsdmv1QI369UA4X_w_Nz5WWYvFer1HAxaUX72GVhwfJFsbrWzv7H38Ui1fadlpcovMY88trTz6qrrvohCqZzc3QPqYLIyG0Dm8g26XeOBtQ7e7qCXHq-hWw7dyFV0_MAjdQ7_OURA3KIhrCuKCgnhj8OfHzzfw6p1s4rfTTbz78jWuqIZrqmGgGl6kGi6ohiuqYU01rKmGL1AN11S7j47evzvs9Um56QeJqeNnxBauFQomI2FJUJNSCAWjkhVa3Fc8gn7Pt-2YKsrc0KFScS-xE8dOXE-5wnElow9Qe5yO5UOEXaZcSzKpfBGBbmWhE1tM8SRmjPpRzDtoY45AMP_N9cYsJ8EFpDvoWXXqxNjALDtpbQ5jUPYSs0BXKHuugHlGBz2voL38Io-ucqfH6Gb9N1lD7WyayycgjrPoaUnFvwpkuUY |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Two-dimensional+anisotropic+monolayers+NbOX2+%28X%E2%80%89%3D%E2%80%89Cl%2C+Br%2C+I%29%3A+Promising+candidates+for+photocatalytic+water+splitting+with+high+solar-to-hydrogen+efficiency&rft.jtitle=Journal+of+applied+physics&rft.au=Pan%2C+Lu&rft.au=Wan%2C+Yu-Lu&rft.au=Wang%2C+Zhao-Qi&rft.au=Geng%2C+Hua-Yun&rft.date=2023-08-28&rft.issn=0021-8979&rft.eissn=1089-7550&rft.volume=134&rft.issue=8&rft_id=info:doi/10.1063%2F5.0164167&rft.externalDBID=n%2Fa&rft.externalDocID=10_1063_5_0164167 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-8979&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-8979&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-8979&client=summon |