Significance of near-wall dynamics in enhancement of heat flux for roughness aided turbulent Rayleigh–Bénard convection

We report a numerical investigation of the effect of multiscale roughness on heat flux ( N u ) and near-wall dynamics in turbulent Rayleigh–Bénard convection of air in a cell of aspect ratio 2 in the Rayleigh number ( R a ) range 10 6 ≤ R a ≤ 4.64 × 10 9. We observe that despite the same wetted area...

Full description

Saved in:
Bibliographic Details
Published inPhysics of fluids (1994) Vol. 33; no. 6
Main Authors Chand, Krishan, Sharma, Mukesh, De, Arnab Kr
Format Journal Article
LanguageEnglish
Published Melville American Institute of Physics 01.06.2021
Subjects
Online AccessGet full text
ISSN1070-6631
1089-7666
DOI10.1063/5.0053522

Cover

Abstract We report a numerical investigation of the effect of multiscale roughness on heat flux ( N u ) and near-wall dynamics in turbulent Rayleigh–Bénard convection of air in a cell of aspect ratio 2 in the Rayleigh number ( R a ) range 10 6 ≤ R a ≤ 4.64 × 10 9. We observe that despite the same wetted area, taller roughness yields higher heat flux owing to a multiple roll state. Based on the number of roughness peaks penetrating the thermal boundary layer, three regimes are identified. In regime I, heat flux drops marginally as only 50% of the peaks emerge uncovered, followed by a nearly unaltered Nu in regime II. A sudden increase in Nu in regime III is noted with more than 65% penetrating peaks. In contrast to the previous observation, heat flux continues to increase even when all the peaks exceed the boundary layer. Transformation of two large-scale rolls into smaller multiple rolls favors better access to the trapped fluid in the roughness throat leading to greater mixing. A significant improvement in the mixing of fluid inside the cavities is found due to the cascade of secondary vortices, which is connected to the improved heat flux in the tallest roughness setup. A thin thermal boundary layer that envelopes the rough surface at higher Ra supports the enhanced inter-mixing of fluid inside the cavities. Greater perturbation of the thermal boundary layer for the smaller roughness setup shows consistent connection with the enhanced N u ( R a ) scaling.
AbstractList We report a numerical investigation of the effect of multiscale roughness on heat flux (Nu) and near-wall dynamics in turbulent Rayleigh–Bénard convection of air in a cell of aspect ratio 2 in the Rayleigh number (Ra) range 106≤Ra≤4.64×109. We observe that despite the same wetted area, taller roughness yields higher heat flux owing to a multiple roll state. Based on the number of roughness peaks penetrating the thermal boundary layer, three regimes are identified. In regime I, heat flux drops marginally as only 50% of the peaks emerge uncovered, followed by a nearly unaltered Nu in regime II. A sudden increase in Nu in regime III is noted with more than 65% penetrating peaks. In contrast to the previous observation, heat flux continues to increase even when all the peaks exceed the boundary layer. Transformation of two large-scale rolls into smaller multiple rolls favors better access to the trapped fluid in the roughness throat leading to greater mixing. A significant improvement in the mixing of fluid inside the cavities is found due to the cascade of secondary vortices, which is connected to the improved heat flux in the tallest roughness setup. A thin thermal boundary layer that envelopes the rough surface at higher Ra supports the enhanced inter-mixing of fluid inside the cavities. Greater perturbation of the thermal boundary layer for the smaller roughness setup shows consistent connection with the enhanced Nu(Ra) scaling.
We report a numerical investigation of the effect of multiscale roughness on heat flux ( N u ) and near-wall dynamics in turbulent Rayleigh–Bénard convection of air in a cell of aspect ratio 2 in the Rayleigh number ( R a ) range 10 6 ≤ R a ≤ 4.64 × 10 9. We observe that despite the same wetted area, taller roughness yields higher heat flux owing to a multiple roll state. Based on the number of roughness peaks penetrating the thermal boundary layer, three regimes are identified. In regime I, heat flux drops marginally as only 50% of the peaks emerge uncovered, followed by a nearly unaltered Nu in regime II. A sudden increase in Nu in regime III is noted with more than 65% penetrating peaks. In contrast to the previous observation, heat flux continues to increase even when all the peaks exceed the boundary layer. Transformation of two large-scale rolls into smaller multiple rolls favors better access to the trapped fluid in the roughness throat leading to greater mixing. A significant improvement in the mixing of fluid inside the cavities is found due to the cascade of secondary vortices, which is connected to the improved heat flux in the tallest roughness setup. A thin thermal boundary layer that envelopes the rough surface at higher Ra supports the enhanced inter-mixing of fluid inside the cavities. Greater perturbation of the thermal boundary layer for the smaller roughness setup shows consistent connection with the enhanced N u ( R a ) scaling.
Author Sharma, Mukesh
De, Arnab Kr
Chand, Krishan
Author_xml – sequence: 1
  givenname: Krishan
  surname: Chand
  fullname: Chand, Krishan
  organization: Department of Mechanical Engineering, Indian Institute of Technology Guwahati, Assam 781039, India
– sequence: 2
  givenname: Mukesh
  surname: Sharma
  fullname: Sharma, Mukesh
  organization: Department of Mechanical Engineering, Indian Institute of Technology Guwahati, Assam 781039, India
– sequence: 3
  givenname: Arnab Kr
  surname: De
  fullname: De, Arnab Kr
  organization: Department of Mechanical Engineering, Indian Institute of Technology Guwahati, Assam 781039, India
BookMark eNp90M1KxDAQAOAgCv4efIOAJ4W6-WnS9qjiHwiCP-eSppPdSDdZk1ZdT76DT-Fz-CY-iVt2RRD1NDPwzQwz62jZeQcIbVOyT4nkA7FPiOCCsSW0RkleJJmUcrnPM5JIyekqWo_xjhDCCybX0PO1HTprrFZOA_YGO1AheVRNg-upU2OrI7YOgxv1YAyu7dEIVItN0z1h4wMOvhuOHMSIla2hxm0Xqq7p6ZWaNmCHo4-X18P3N6dCjbV3D6Bb690mWjGqibC1iBvo9uT45ugsubg8PT86uEg0Z1mb0NQwXRSCMJlXjDNdZVWmgIOggqYp12JWKq4IZ3VKJWQmzUlltEgV0FwWfAPtzOdOgr_vILblne-Cm60smeB5xoXM5UztzpUOPsYAppwEO1ZhWlJS9q8tRbl47cwOflhtW9Xf1AZlm1879uYd8Uv-O_5P_ODDNywnteGfAiubVQ
CODEN PHFLE6
CitedBy_id crossref_primary_10_1615_AnnualRevHeatTransfer_2022041888
crossref_primary_10_1063_5_0124124
crossref_primary_10_1063_5_0147174
crossref_primary_10_1063_5_0206619
crossref_primary_10_1063_5_0237891
crossref_primary_10_1103_PhysRevFluids_6_124605
crossref_primary_10_1103_PhysRevFluids_7_104609
crossref_primary_10_1063_5_0130492
crossref_primary_10_1063_5_0169955
crossref_primary_10_1017_jfm_2022_815
crossref_primary_10_1017_jfm_2022_274
Cites_doi 10.1103/RevModPhys.81.503
10.1103/PhysRevLett.119.154501
10.1063/1.1807751
10.1103/PhysRevLett.82.3998
10.1063/1.1706533
10.1103/PhysRevLett.118.074503
10.1017/S0022112099007624
10.1103/PhysRevE.63.045303
10.1103/PhysRevLett.120.144502
10.1017/S0022112006009785
10.1209/epl/i2003-10298-4
10.1140/epje/i2012-12058-1
10.1016/j.ijheatmasstransfer.2019.05.066
10.1016/j.euromechflu.2018.05.007
10.1017/jfm.2017.786
10.1017/jfm.2017.397
10.1103/PhysRevLett.81.4859
10.1017/jfm.2019.228
10.1103/PhysRevLett.125.074501
10.1103/PhysRevLett.79.3648
10.1063/1.5125758
10.1017/S0022112099007545
10.1103/PhysRevE.63.046303
10.1080/0309192021000049929
10.1016/j.ijheatmasstransfer.2015.09.022
10.1063/1.4862487
10.1017/S0022112089001643
10.1017/jfm.2020.826
10.1103/PhysRevLett.76.908
10.1088/1367-2630/12/7/075022
10.1146/annurev.fl.26.010194.001033
ContentType Journal Article
Copyright Author(s)
2021 Author(s). Published under an exclusive license by AIP Publishing.
Copyright_xml – notice: Author(s)
– notice: 2021 Author(s). Published under an exclusive license by AIP Publishing.
DBID AAYXX
CITATION
8FD
H8D
L7M
DOI 10.1063/5.0053522
DatabaseName CrossRef
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitleList Technology Research Database

CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Physics
EISSN 1089-7666
ExternalDocumentID 10_1063_5_0053522
GroupedDBID -~X
0ZJ
1UP
2-P
29O
2WC
4.4
5VS
6TJ
AAAAW
AABDS
AAEUA
AAPUP
AAYIH
ABJNI
ACBRY
ACGFS
ACLYJ
ACNCT
ACZLF
ADCTM
AEJMO
AENEX
AFATG
AFFNX
AFHCQ
AGKCL
AGLKD
AGMXG
AGTJO
AHSDT
AIDUJ
AJJCW
AJQPL
ALEPV
ALMA_UNASSIGNED_HOLDINGS
ATXIE
AWQPM
BPZLN
CS3
DU5
EBS
EJD
ESX
F5P
FDOHQ
FFFMQ
HAM
H~9
M6X
M71
M73
NEUPN
NPSNA
O-B
P2P
RDFOP
RIP
RNS
ROL
RQS
SC5
TN5
UCJ
UQL
WH7
XJT
~02
AAGWI
AAYXX
ABJGX
ADMLS
BDMKI
CITATION
8FD
H8D
L7M
ID FETCH-LOGICAL-c327t-14f2c9950268b232cb7b7ae3e5151443c5b7aa3a032d416e7f480bfc54ae18693
ISSN 1070-6631
IngestDate Mon Jun 30 03:37:20 EDT 2025
Tue Jul 01 02:44:22 EDT 2025
Thu Apr 24 23:10:14 EDT 2025
Fri Jun 21 00:13:43 EDT 2024
Thu Jun 23 13:35:42 EDT 2022
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License Published under an exclusive license by AIP Publishing.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c327t-14f2c9950268b232cb7b7ae3e5151443c5b7aa3a032d416e7f480bfc54ae18693
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-4647-954X
PQID 2538735686
PQPubID 2050667
PageCount 16
ParticipantIDs scitation_primary_10_1063_5_0053522
crossref_citationtrail_10_1063_5_0053522
proquest_journals_2538735686
crossref_primary_10_1063_5_0053522
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20210600
2021-06-01
20210601
PublicationDateYYYYMMDD 2021-06-01
PublicationDate_xml – month: 06
  year: 2021
  text: 20210600
PublicationDecade 2020
PublicationPlace Melville
PublicationPlace_xml – name: Melville
PublicationTitle Physics of fluids (1994)
PublicationYear 2021
Publisher American Institute of Physics
Publisher_xml – name: American Institute of Physics
References Zhu, Mathai, Stevens, Verzicco, Lohse (c11) 2018
Shen, Tong, Xia (c15) 1996
Chilla, Schumacher (c2) 2012
Toppaladoddi, Succi, Wettlaufer (c14) 2017
Schmalzl, Breuer, Hansen (c12) 2002
Siggia (c4) 1994
Zhu, Stevens, Shishkina, Verzicco, Lohse (c8) 2019
Tummers, Steunebrink (c22) 2019
Stringano, Pascazio, Verzicco (c30) 2006
Grossmann, Lohse (c5) 2000
Villermaux (c16) 1998
Shishkina, Stevens, Grossmann, Lohse (c26) 2010
Wang, Verzicco, Lohse, Shishkina (c28) 2020
Roche, Castaing, Chabaud, Hébral (c19) 2001
Xie, Xia (c21) 2017
Salort, Liot, Rusaouen, Seychelles, Tisserand, Creyssels, Castaing, Chillà (c31) 2014
Ciliberto, Laroche (c17) 1999
Toppaladoddi, Wells, Doering, Wettlaufer (c27) 2021
De, Eswaran, Mishra (c25) 2018
Zhang, Sun, Bao, Zhou (c7) 2018
Grossmann, Lohse (c6) 2004
Du, Tong (c18) 2000
Chand, Sharma, Vishnu, De (c32) 2019
De (c24) 2016
Zhu, Stevens, Verzicco, Lohse (c20) 2017
Ahlers, Grossmann, Lohse (c1) 2009
Kraichnan (c9) 1962
Chavanne, Chillà, Castaing, Hébral, Chabaud, Chaussy (c10) 1997
Schmalzl, Breuer, Hansen (c13) 2004
Du, Tong (c29) 2001
Castaing, Gunaratne, Heslot, Kadanoff, Libchaber, Thomae, Wu, Zanetti (c3) 1989
(2023080808152361400_c16) 1998; 81
(2023080808152361400_c28) 2020; 125
(2023080808152361400_c32) 2019; 31
(2023080808152361400_c7) 2018; 836
(2023080808152361400_c30) 2006; 557
(2023080808152361400_c26) 2010; 12
(2023080808152361400_c31) 2014; 26
(2023080808152361400_c27) 2021; 907
(2023080808152361400_c10) 1997; 79
(2023080808152361400_c19) 2001; 63
(2023080808152361400_c3) 1989; 204
(2023080808152361400_c12) 2002; 96
(2023080808152361400_c17) 1999; 82
(2023080808152361400_c9) 1962; 5
(2023080808152361400_c23) 1996
(2023080808152361400_c15) 1996; 76
(2023080808152361400_c6) 2004; 16
(2023080808152361400_c1) 2009; 81
(2023080808152361400_c4) 1994; 26
(2023080808152361400_c5) 2000; 407
(2023080808152361400_c21) 2017; 825
(2023080808152361400_c18) 2000; 407
(2023080808152361400_c25) 2018; 72
(2023080808152361400_c11) 2018; 120
(2023080808152361400_c22) 2019; 139
(2023080808152361400_c13) 2004; 67
(2023080808152361400_c2) 2012; 35
(2023080808152361400_c8) 2019; 869
(2023080808152361400_c24) 2016; 92
(2023080808152361400_c20) 2017; 119
(2023080808152361400_c14) 2017; 118
(2023080808152361400_c29) 2001; 63
References_xml – start-page: 164
  year: 2018
  ident: c25
  article-title: Dynamics of plumes in turbulent Rayleigh-Bénard convection
  publication-title: Eur. J. Mech. B/Fluids
– start-page: 144502
  year: 2018
  ident: c11
  article-title: Transition to the ultimate regime in two-dimensional Rayleigh-Bénard convection
  publication-title: Phys. Rev. Lett.
– start-page: R2
  year: 2018
  ident: c7
  article-title: How surface roughness reduces heat transport for small roughness heights in turbulent Rayleigh-Bénard convection
  publication-title: J. Fluid Mech.
– start-page: 908
  year: 1996
  ident: c15
  article-title: Turbulent convection over rough surfaces
  publication-title: Phys. Rev. Lett.
– start-page: 045303
  year: 2001
  ident: c19
  article-title: Observation of the power law in Rayleigh-Bénard convection
  publication-title: Phys. Rev. E
– start-page: 573
  year: 2017
  ident: c21
  article-title: Turbulent thermal convection over rough plates with varying roughness geometries
  publication-title: J. Fluid Mech.
– start-page: 046303
  year: 2001
  ident: c29
  article-title: Temperature fluctuations in a convection cell with rough upper and lower surfaces
  publication-title: Phys. Rev. E
– start-page: 075022
  year: 2010
  ident: c26
  article-title: Boundary layer structure in turbulent thermal convection and its consequences for the required numerical resolution
  publication-title: New J. Phys.
– start-page: 3998
  year: 1999
  ident: c17
  article-title: Random roughness of boundary increases the turbulent convection scaling exponent
  publication-title: Phys. Rev. Lett.
– start-page: 074501
  year: 2020
  ident: c28
  article-title: Multiple states in turbulent large-aspect-ratio thermal convection: What determines the number of convection rolls?
  publication-title: Phys. Rev. Lett.
– start-page: 27
  year: 2000
  ident: c5
  article-title: Scaling in thermal convection: A unifying theory
  publication-title: J. Fluid Mech.
– start-page: 074503
  year: 2017
  ident: c14
  article-title: Roughness as a route to the ultimate regime of thermal convection
  publication-title: Phys. Rev. Lett.
– start-page: 1056
  year: 2019
  ident: c22
  article-title: Effect of surface roughness on heat transfer in Rayleigh-Bénard convection
  publication-title: Int. J. Heat Mass Transfer
– start-page: 1374
  year: 1962
  ident: c9
  article-title: Turbulent thermal convection at arbitrary Prandtl number
  publication-title: Phys. Fluids
– start-page: R4
  year: 2019
  ident: c8
  article-title: scaling enabled by multiscale wall roughness in Rayleigh-Bénard turbulence
  publication-title: J. Fluid Mech.
– start-page: 4859
  year: 1998
  ident: c16
  article-title: Transfer at rough sheared interfaces
  publication-title: Phys. Rev. Lett.
– start-page: 957
  year: 2016
  ident: c24
  article-title: A diffuse interface immersed boundary method for convective heat and fluid flow
  publication-title: Int. J. Heat Mass Transfer
– start-page: 381
  year: 2002
  ident: c12
  article-title: The influence of the Prandtl number on the style of vigorous thermal convection
  publication-title: Geophys. Astrophys. Fluid Dyn.
– start-page: 3648
  year: 1997
  ident: c10
  article-title: Observation of the ultimate regime in Rayleigh-Bénard convection
  publication-title: Phys. Rev. Lett.
– start-page: A12
  year: 2021
  ident: c27
  article-title: Thermal convection over fractal surfaces
  publication-title: J. Fluid Mech.
– start-page: 307
  year: 2006
  ident: c30
  article-title: Turbulent thermal convection over grooved plates
  publication-title: J. Fluid Mech.
– start-page: 58
  year: 2012
  ident: c2
  article-title: New perspectives in turbulent Rayleigh-Bénard convection
  publication-title: Eur. Phys. J. E
– start-page: 57
  year: 2000
  ident: c18
  article-title: Turbulent thermal convection in a cell with ordered rough boundaries
  publication-title: J. Fluid Mech.
– start-page: 115112
  year: 2019
  ident: c32
  article-title: Statistics of coherent structures in two-dimensional turbulent Rayleigh-Bénard convection
  publication-title: Phys. Fluids
– start-page: 154501
  year: 2017
  ident: c20
  article-title: Roughness facilitated local 1/2 scaling does not imply the onset of the ultimate regime of thermal convection
  publication-title: Phys. Rev. Lett.
– start-page: 503
  year: 2009
  ident: c1
  article-title: Heat transfer and large scale dynamics in turbulent Rayleigh-Bénard convection
  publication-title: Rev. Mod. Phys.
– start-page: 1
  year: 1989
  ident: c3
  article-title: Scaling of hard thermal turbulence in Rayleigh-Bénard convection
  publication-title: J. Fluid Mech.
– start-page: 137
  year: 1994
  ident: c4
  article-title: High Rayleigh number convection
  publication-title: Annu. Rev. Fluid Mech.
– start-page: 4462
  year: 2004
  ident: c6
  article-title: Fluctuations in turbulent Rayleigh-Bénard convection: The role of plumes
  publication-title: Phys. Fluids
– start-page: 390
  year: 2004
  ident: c13
  article-title: On the validity of two-dimensional numerical approaches to time-dependent thermal convection
  publication-title: Europhys. Lett.
– start-page: 015112
  year: 2014
  ident: c31
  article-title: Thermal boundary layer near roughnesses in turbulent Rayleigh-Bénard convection: Flow structure and multistability
  publication-title: Phys. Fluids
– volume: 81
  start-page: 503
  year: 2009
  ident: 2023080808152361400_c1
  article-title: Heat transfer and large scale dynamics in turbulent Rayleigh-Bénard convection
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.81.503
– volume: 119
  start-page: 154501
  year: 2017
  ident: 2023080808152361400_c20
  article-title: Roughness facilitated local 1/2 scaling does not imply the onset of the ultimate regime of thermal convection
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.119.154501
– volume: 16
  start-page: 4462
  year: 2004
  ident: 2023080808152361400_c6
  article-title: Fluctuations in turbulent Rayleigh-Bénard convection: The role of plumes
  publication-title: Phys. Fluids
  doi: 10.1063/1.1807751
– volume: 82
  start-page: 3998
  year: 1999
  ident: 2023080808152361400_c17
  article-title: Random roughness of boundary increases the turbulent convection scaling exponent
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.82.3998
– volume: 5
  start-page: 1374
  year: 1962
  ident: 2023080808152361400_c9
  article-title: Turbulent thermal convection at arbitrary Prandtl number
  publication-title: Phys. Fluids
  doi: 10.1063/1.1706533
– volume: 118
  start-page: 074503
  year: 2017
  ident: 2023080808152361400_c14
  article-title: Roughness as a route to the ultimate regime of thermal convection
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.118.074503
– volume: 407
  start-page: 57
  year: 2000
  ident: 2023080808152361400_c18
  article-title: Turbulent thermal convection in a cell with ordered rough boundaries
  publication-title: J. Fluid Mech.
  doi: 10.1017/S0022112099007624
– volume: 63
  start-page: 045303
  year: 2001
  ident: 2023080808152361400_c19
  article-title: Observation of the 12 power law in Rayleigh-Bénard convection
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.63.045303
– volume: 120
  start-page: 144502
  year: 2018
  ident: 2023080808152361400_c11
  article-title: Transition to the ultimate regime in two-dimensional Rayleigh-Bénard convection
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.120.144502
– start-page: 51
  volume-title: Fundamentals of Atmospheric Physics
  year: 1996
  ident: 2023080808152361400_c23
– volume: 557
  start-page: 307
  year: 2006
  ident: 2023080808152361400_c30
  article-title: Turbulent thermal convection over grooved plates
  publication-title: J. Fluid Mech.
  doi: 10.1017/S0022112006009785
– volume: 67
  start-page: 390
  year: 2004
  ident: 2023080808152361400_c13
  article-title: On the validity of two-dimensional numerical approaches to time-dependent thermal convection
  publication-title: Europhys. Lett.
  doi: 10.1209/epl/i2003-10298-4
– volume: 35
  start-page: 58
  year: 2012
  ident: 2023080808152361400_c2
  article-title: New perspectives in turbulent Rayleigh-Bénard convection
  publication-title: Eur. Phys. J. E
  doi: 10.1140/epje/i2012-12058-1
– volume: 139
  start-page: 1056
  year: 2019
  ident: 2023080808152361400_c22
  article-title: Effect of surface roughness on heat transfer in Rayleigh-Bénard convection
  publication-title: Int. J. Heat Mass Transfer
  doi: 10.1016/j.ijheatmasstransfer.2019.05.066
– volume: 72
  start-page: 164
  year: 2018
  ident: 2023080808152361400_c25
  article-title: Dynamics of plumes in turbulent Rayleigh-Bénard convection
  publication-title: Eur. J. Mech. B/Fluids
  doi: 10.1016/j.euromechflu.2018.05.007
– volume: 836
  start-page: R2
  year: 2018
  ident: 2023080808152361400_c7
  article-title: How surface roughness reduces heat transport for small roughness heights in turbulent Rayleigh-Bénard convection
  publication-title: J. Fluid Mech.
  doi: 10.1017/jfm.2017.786
– volume: 825
  start-page: 573
  year: 2017
  ident: 2023080808152361400_c21
  article-title: Turbulent thermal convection over rough plates with varying roughness geometries
  publication-title: J. Fluid Mech.
  doi: 10.1017/jfm.2017.397
– volume: 81
  start-page: 4859
  year: 1998
  ident: 2023080808152361400_c16
  article-title: Transfer at rough sheared interfaces
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.81.4859
– volume: 869
  start-page: R4
  year: 2019
  ident: 2023080808152361400_c8
  article-title: scaling enabled by multiscale wall roughness in Rayleigh-Bénard turbulence
  publication-title: J. Fluid Mech.
  doi: 10.1017/jfm.2019.228
– volume: 125
  start-page: 074501
  year: 2020
  ident: 2023080808152361400_c28
  article-title: Multiple states in turbulent large-aspect-ratio thermal convection: What determines the number of convection rolls?
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.125.074501
– volume: 79
  start-page: 3648
  year: 1997
  ident: 2023080808152361400_c10
  article-title: Observation of the ultimate regime in Rayleigh-Bénard convection
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.79.3648
– volume: 31
  start-page: 115112
  year: 2019
  ident: 2023080808152361400_c32
  article-title: Statistics of coherent structures in two-dimensional turbulent Rayleigh-Bénard convection
  publication-title: Phys. Fluids
  doi: 10.1063/1.5125758
– volume: 407
  start-page: 27
  year: 2000
  ident: 2023080808152361400_c5
  article-title: Scaling in thermal convection: A unifying theory
  publication-title: J. Fluid Mech.
  doi: 10.1017/S0022112099007545
– volume: 63
  start-page: 046303
  year: 2001
  ident: 2023080808152361400_c29
  article-title: Temperature fluctuations in a convection cell with rough upper and lower surfaces
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.63.046303
– volume: 96
  start-page: 381
  year: 2002
  ident: 2023080808152361400_c12
  article-title: The influence of the Prandtl number on the style of vigorous thermal convection
  publication-title: Geophys. Astrophys. Fluid Dyn.
  doi: 10.1080/0309192021000049929
– volume: 92
  start-page: 957
  year: 2016
  ident: 2023080808152361400_c24
  article-title: A diffuse interface immersed boundary method for convective heat and fluid flow
  publication-title: Int. J. Heat Mass Transfer
  doi: 10.1016/j.ijheatmasstransfer.2015.09.022
– volume: 26
  start-page: 015112
  year: 2014
  ident: 2023080808152361400_c31
  article-title: Thermal boundary layer near roughnesses in turbulent Rayleigh-Bénard convection: Flow structure and multistability
  publication-title: Phys. Fluids
  doi: 10.1063/1.4862487
– volume: 204
  start-page: 1
  year: 1989
  ident: 2023080808152361400_c3
  article-title: Scaling of hard thermal turbulence in Rayleigh-Bénard convection
  publication-title: J. Fluid Mech.
  doi: 10.1017/S0022112089001643
– volume: 907
  start-page: A12
  year: 2021
  ident: 2023080808152361400_c27
  article-title: Thermal convection over fractal surfaces
  publication-title: J. Fluid Mech.
  doi: 10.1017/jfm.2020.826
– volume: 76
  start-page: 908
  year: 1996
  ident: 2023080808152361400_c15
  article-title: Turbulent convection over rough surfaces
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.76.908
– volume: 12
  start-page: 075022
  year: 2010
  ident: 2023080808152361400_c26
  article-title: Boundary layer structure in turbulent thermal convection and its consequences for the required numerical resolution
  publication-title: New J. Phys.
  doi: 10.1088/1367-2630/12/7/075022
– volume: 26
  start-page: 137
  year: 1994
  ident: 2023080808152361400_c4
  article-title: High Rayleigh number convection
  publication-title: Annu. Rev. Fluid Mech.
  doi: 10.1146/annurev.fl.26.010194.001033
SSID ssj0003926
Score 2.4079537
Snippet We report a numerical investigation of the effect of multiscale roughness on heat flux ( N u ) and near-wall dynamics in turbulent Rayleigh–Bénard convection...
We report a numerical investigation of the effect of multiscale roughness on heat flux (Nu) and near-wall dynamics in turbulent Rayleigh–Bénard convection of...
SourceID proquest
crossref
scitation
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Aerodynamics
Aspect ratio
Computational fluid dynamics
Fluid dynamics
Fluid flow
Heat flux
Heat transfer
Perturbation
Physics
Rayleigh-Benard convection
Rolls
Roughness
Thermal boundary layer
Title Significance of near-wall dynamics in enhancement of heat flux for roughness aided turbulent Rayleigh–Bénard convection
URI http://dx.doi.org/10.1063/5.0053522
https://www.proquest.com/docview/2538735686
Volume 33
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVABJ
  databaseName: AIP Complete
  customDbUrl:
  eissn: 1089-7666
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0003926
  issn: 1070-6631
  databaseCode: M71
  dateStart: 19940101
  isFulltext: true
  titleUrlDefault: http://www.scitation.org/
  providerName: American Institute of Physics
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1089-7666
  dateEnd: 20241105
  omitProxy: false
  ssIdentifier: ssj0003926
  issn: 1070-6631
  databaseCode: ADMLS
  dateStart: 19940101
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dbtMwFLZKJwQ3_AwQhYEs4AKpMqRxfi83BpoQ44Ju0u4i23FYxZROawtoV7wDT8Fz8CY8Cef4LwEqNLiJWstJLJ8v58-fjwl5IgAUmSgSlkK0zJI8zZlIhWRgbgSvRVlMJrgbef9ttneYvD5KjwaDVX93yVI-U-dr95X8j1ShDeSKu2T_QbLhodAAv0G-cAUJw_VCMp7O3rdI9TG0f2RkAGzZJ1xsru1B84bsqttj7OBX_VH7jpuT1WfDMDSn9Bh1h7Ui6zFYILlCSzR-B7E85k09HYLv2EX1FhMPhqyuglCdd2vopMqQQ-AFs9qWgSrLpJdvwO0MtVcvxx02p6aGtsnPrj7oRchS79qMK0yGhFv6SYq4R6ZyehU0CwPnxjZp11aULM_soSteGduqGA502VodD04VCAZTYViaJu4MmV-8_82-BdahWW_PeJVW7tZLZCMGYxANycb27v6baTDh4DRmlqxqR-1LUmX8eXjvr45MF51cAdfFsih6jsrBDXLNRRh028LlJhnodpNcd9EGdbp8sUkuO2ndIud9HNF5QwOOqMcRnbW0hyPshDiiiCMKOKIBR9TgiAYcUY-jH1--7nz_huihHXpuk8NXLw9e7DF3JgdTPM6XbJI0sSrLFEL3QoI3rmQuc6G5Br8YYnOuUvgruIh4XIOvr_MmKSLZqDQRGk8_43fIsJ23-i6hRV4oLmTEIaYAjdFInUCkp0URqbQBP3ZEnvoJrvyU4rkpJ9UfghyRR6Hrqa3Ssq7TlpdS5T7iRRWDwc9hBEU2Io-D5P72kDW9Ps7Puh7Vad3cu8h47pOr3aeyRYbLs5V-AB7uUj50ePwJPt6k0Q
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Significance+of+near-wall+dynamics+in+enhancement+of+heat+flux+for+roughness+aided+turbulent+Rayleigh%E2%80%93B%C3%A9nard+convection&rft.jtitle=Physics+of+fluids+%281994%29&rft.au=Chand%2C+Krishan&rft.au=Sharma%2C+Mukesh&rft.au=De%2C+Arnab+Kr&rft.date=2021-06-01&rft.issn=1070-6631&rft.eissn=1089-7666&rft.volume=33&rft.issue=6&rft_id=info:doi/10.1063%2F5.0053522&rft.externalDBID=n%2Fa&rft.externalDocID=10_1063_5_0053522
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1070-6631&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1070-6631&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1070-6631&client=summon