Significance of near-wall dynamics in enhancement of heat flux for roughness aided turbulent Rayleigh–Bénard convection
We report a numerical investigation of the effect of multiscale roughness on heat flux ( N u ) and near-wall dynamics in turbulent Rayleigh–Bénard convection of air in a cell of aspect ratio 2 in the Rayleigh number ( R a ) range 10 6 ≤ R a ≤ 4.64 × 10 9. We observe that despite the same wetted area...
Saved in:
| Published in | Physics of fluids (1994) Vol. 33; no. 6 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
Melville
American Institute of Physics
01.06.2021
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 1070-6631 1089-7666 |
| DOI | 10.1063/5.0053522 |
Cover
| Abstract | We report a numerical investigation of the effect of multiscale roughness on heat flux
(
N
u
) and near-wall dynamics in turbulent Rayleigh–Bénard convection of air in a cell of aspect ratio 2 in the Rayleigh number
(
R
a
) range
10
6
≤
R
a
≤
4.64
×
10
9. We observe that despite the same wetted area, taller roughness yields higher heat flux owing to a multiple roll state. Based on the number of roughness peaks penetrating the thermal boundary layer, three regimes are identified. In regime I, heat flux drops marginally as only 50% of the peaks emerge uncovered, followed by a nearly unaltered Nu in regime II. A sudden increase in Nu in regime III is noted with more than 65% penetrating peaks. In contrast to the previous observation, heat flux continues to increase even when all the peaks exceed the boundary layer. Transformation of two large-scale rolls into smaller multiple rolls favors better access to the trapped fluid in the roughness throat leading to greater mixing. A significant improvement in the mixing of fluid inside the cavities is found due to the cascade of secondary vortices, which is connected to the improved heat flux in the tallest roughness setup. A thin thermal boundary layer that envelopes the rough surface at higher Ra supports the enhanced inter-mixing of fluid inside the cavities. Greater perturbation of the thermal boundary layer for the smaller roughness setup shows consistent connection with the enhanced
N
u
(
R
a
) scaling. |
|---|---|
| AbstractList | We report a numerical investigation of the effect of multiscale roughness on heat flux (Nu) and near-wall dynamics in turbulent Rayleigh–Bénard convection of air in a cell of aspect ratio 2 in the Rayleigh number (Ra) range 106≤Ra≤4.64×109. We observe that despite the same wetted area, taller roughness yields higher heat flux owing to a multiple roll state. Based on the number of roughness peaks penetrating the thermal boundary layer, three regimes are identified. In regime I, heat flux drops marginally as only 50% of the peaks emerge uncovered, followed by a nearly unaltered Nu in regime II. A sudden increase in Nu in regime III is noted with more than 65% penetrating peaks. In contrast to the previous observation, heat flux continues to increase even when all the peaks exceed the boundary layer. Transformation of two large-scale rolls into smaller multiple rolls favors better access to the trapped fluid in the roughness throat leading to greater mixing. A significant improvement in the mixing of fluid inside the cavities is found due to the cascade of secondary vortices, which is connected to the improved heat flux in the tallest roughness setup. A thin thermal boundary layer that envelopes the rough surface at higher Ra supports the enhanced inter-mixing of fluid inside the cavities. Greater perturbation of the thermal boundary layer for the smaller roughness setup shows consistent connection with the enhanced Nu(Ra) scaling. We report a numerical investigation of the effect of multiscale roughness on heat flux ( N u ) and near-wall dynamics in turbulent Rayleigh–Bénard convection of air in a cell of aspect ratio 2 in the Rayleigh number ( R a ) range 10 6 ≤ R a ≤ 4.64 × 10 9. We observe that despite the same wetted area, taller roughness yields higher heat flux owing to a multiple roll state. Based on the number of roughness peaks penetrating the thermal boundary layer, three regimes are identified. In regime I, heat flux drops marginally as only 50% of the peaks emerge uncovered, followed by a nearly unaltered Nu in regime II. A sudden increase in Nu in regime III is noted with more than 65% penetrating peaks. In contrast to the previous observation, heat flux continues to increase even when all the peaks exceed the boundary layer. Transformation of two large-scale rolls into smaller multiple rolls favors better access to the trapped fluid in the roughness throat leading to greater mixing. A significant improvement in the mixing of fluid inside the cavities is found due to the cascade of secondary vortices, which is connected to the improved heat flux in the tallest roughness setup. A thin thermal boundary layer that envelopes the rough surface at higher Ra supports the enhanced inter-mixing of fluid inside the cavities. Greater perturbation of the thermal boundary layer for the smaller roughness setup shows consistent connection with the enhanced N u ( R a ) scaling. |
| Author | Sharma, Mukesh De, Arnab Kr Chand, Krishan |
| Author_xml | – sequence: 1 givenname: Krishan surname: Chand fullname: Chand, Krishan organization: Department of Mechanical Engineering, Indian Institute of Technology Guwahati, Assam 781039, India – sequence: 2 givenname: Mukesh surname: Sharma fullname: Sharma, Mukesh organization: Department of Mechanical Engineering, Indian Institute of Technology Guwahati, Assam 781039, India – sequence: 3 givenname: Arnab Kr surname: De fullname: De, Arnab Kr organization: Department of Mechanical Engineering, Indian Institute of Technology Guwahati, Assam 781039, India |
| BookMark | eNp90M1KxDAQAOAgCv4efIOAJ4W6-WnS9qjiHwiCP-eSppPdSDdZk1ZdT76DT-Fz-CY-iVt2RRD1NDPwzQwz62jZeQcIbVOyT4nkA7FPiOCCsSW0RkleJJmUcrnPM5JIyekqWo_xjhDCCybX0PO1HTprrFZOA_YGO1AheVRNg-upU2OrI7YOgxv1YAyu7dEIVItN0z1h4wMOvhuOHMSIla2hxm0Xqq7p6ZWaNmCHo4-X18P3N6dCjbV3D6Bb690mWjGqibC1iBvo9uT45ugsubg8PT86uEg0Z1mb0NQwXRSCMJlXjDNdZVWmgIOggqYp12JWKq4IZ3VKJWQmzUlltEgV0FwWfAPtzOdOgr_vILblne-Cm60smeB5xoXM5UztzpUOPsYAppwEO1ZhWlJS9q8tRbl47cwOflhtW9Xf1AZlm1879uYd8Uv-O_5P_ODDNywnteGfAiubVQ |
| CODEN | PHFLE6 |
| CitedBy_id | crossref_primary_10_1615_AnnualRevHeatTransfer_2022041888 crossref_primary_10_1063_5_0124124 crossref_primary_10_1063_5_0147174 crossref_primary_10_1063_5_0206619 crossref_primary_10_1063_5_0237891 crossref_primary_10_1103_PhysRevFluids_6_124605 crossref_primary_10_1103_PhysRevFluids_7_104609 crossref_primary_10_1063_5_0130492 crossref_primary_10_1063_5_0169955 crossref_primary_10_1017_jfm_2022_815 crossref_primary_10_1017_jfm_2022_274 |
| Cites_doi | 10.1103/RevModPhys.81.503 10.1103/PhysRevLett.119.154501 10.1063/1.1807751 10.1103/PhysRevLett.82.3998 10.1063/1.1706533 10.1103/PhysRevLett.118.074503 10.1017/S0022112099007624 10.1103/PhysRevE.63.045303 10.1103/PhysRevLett.120.144502 10.1017/S0022112006009785 10.1209/epl/i2003-10298-4 10.1140/epje/i2012-12058-1 10.1016/j.ijheatmasstransfer.2019.05.066 10.1016/j.euromechflu.2018.05.007 10.1017/jfm.2017.786 10.1017/jfm.2017.397 10.1103/PhysRevLett.81.4859 10.1017/jfm.2019.228 10.1103/PhysRevLett.125.074501 10.1103/PhysRevLett.79.3648 10.1063/1.5125758 10.1017/S0022112099007545 10.1103/PhysRevE.63.046303 10.1080/0309192021000049929 10.1016/j.ijheatmasstransfer.2015.09.022 10.1063/1.4862487 10.1017/S0022112089001643 10.1017/jfm.2020.826 10.1103/PhysRevLett.76.908 10.1088/1367-2630/12/7/075022 10.1146/annurev.fl.26.010194.001033 |
| ContentType | Journal Article |
| Copyright | Author(s) 2021 Author(s). Published under an exclusive license by AIP Publishing. |
| Copyright_xml | – notice: Author(s) – notice: 2021 Author(s). Published under an exclusive license by AIP Publishing. |
| DBID | AAYXX CITATION 8FD H8D L7M |
| DOI | 10.1063/5.0053522 |
| DatabaseName | CrossRef Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace |
| DatabaseTitleList | Technology Research Database CrossRef |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences Physics |
| EISSN | 1089-7666 |
| ExternalDocumentID | 10_1063_5_0053522 |
| GroupedDBID | -~X 0ZJ 1UP 2-P 29O 2WC 4.4 5VS 6TJ AAAAW AABDS AAEUA AAPUP AAYIH ABJNI ACBRY ACGFS ACLYJ ACNCT ACZLF ADCTM AEJMO AENEX AFATG AFFNX AFHCQ AGKCL AGLKD AGMXG AGTJO AHSDT AIDUJ AJJCW AJQPL ALEPV ALMA_UNASSIGNED_HOLDINGS ATXIE AWQPM BPZLN CS3 DU5 EBS EJD ESX F5P FDOHQ FFFMQ HAM H~9 M6X M71 M73 NEUPN NPSNA O-B P2P RDFOP RIP RNS ROL RQS SC5 TN5 UCJ UQL WH7 XJT ~02 AAGWI AAYXX ABJGX ADMLS BDMKI CITATION 8FD H8D L7M |
| ID | FETCH-LOGICAL-c327t-14f2c9950268b232cb7b7ae3e5151443c5b7aa3a032d416e7f480bfc54ae18693 |
| ISSN | 1070-6631 |
| IngestDate | Mon Jun 30 03:37:20 EDT 2025 Tue Jul 01 02:44:22 EDT 2025 Thu Apr 24 23:10:14 EDT 2025 Fri Jun 21 00:13:43 EDT 2024 Thu Jun 23 13:35:42 EDT 2022 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 6 |
| Language | English |
| License | Published under an exclusive license by AIP Publishing. |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c327t-14f2c9950268b232cb7b7ae3e5151443c5b7aa3a032d416e7f480bfc54ae18693 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-4647-954X |
| PQID | 2538735686 |
| PQPubID | 2050667 |
| PageCount | 16 |
| ParticipantIDs | scitation_primary_10_1063_5_0053522 crossref_citationtrail_10_1063_5_0053522 proquest_journals_2538735686 crossref_primary_10_1063_5_0053522 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 20210600 2021-06-01 20210601 |
| PublicationDateYYYYMMDD | 2021-06-01 |
| PublicationDate_xml | – month: 06 year: 2021 text: 20210600 |
| PublicationDecade | 2020 |
| PublicationPlace | Melville |
| PublicationPlace_xml | – name: Melville |
| PublicationTitle | Physics of fluids (1994) |
| PublicationYear | 2021 |
| Publisher | American Institute of Physics |
| Publisher_xml | – name: American Institute of Physics |
| References | Zhu, Mathai, Stevens, Verzicco, Lohse (c11) 2018 Shen, Tong, Xia (c15) 1996 Chilla, Schumacher (c2) 2012 Toppaladoddi, Succi, Wettlaufer (c14) 2017 Schmalzl, Breuer, Hansen (c12) 2002 Siggia (c4) 1994 Zhu, Stevens, Shishkina, Verzicco, Lohse (c8) 2019 Tummers, Steunebrink (c22) 2019 Stringano, Pascazio, Verzicco (c30) 2006 Grossmann, Lohse (c5) 2000 Villermaux (c16) 1998 Shishkina, Stevens, Grossmann, Lohse (c26) 2010 Wang, Verzicco, Lohse, Shishkina (c28) 2020 Roche, Castaing, Chabaud, Hébral (c19) 2001 Xie, Xia (c21) 2017 Salort, Liot, Rusaouen, Seychelles, Tisserand, Creyssels, Castaing, Chillà (c31) 2014 Ciliberto, Laroche (c17) 1999 Toppaladoddi, Wells, Doering, Wettlaufer (c27) 2021 De, Eswaran, Mishra (c25) 2018 Zhang, Sun, Bao, Zhou (c7) 2018 Grossmann, Lohse (c6) 2004 Du, Tong (c18) 2000 Chand, Sharma, Vishnu, De (c32) 2019 De (c24) 2016 Zhu, Stevens, Verzicco, Lohse (c20) 2017 Ahlers, Grossmann, Lohse (c1) 2009 Kraichnan (c9) 1962 Chavanne, Chillà, Castaing, Hébral, Chabaud, Chaussy (c10) 1997 Schmalzl, Breuer, Hansen (c13) 2004 Du, Tong (c29) 2001 Castaing, Gunaratne, Heslot, Kadanoff, Libchaber, Thomae, Wu, Zanetti (c3) 1989 (2023080808152361400_c16) 1998; 81 (2023080808152361400_c28) 2020; 125 (2023080808152361400_c32) 2019; 31 (2023080808152361400_c7) 2018; 836 (2023080808152361400_c30) 2006; 557 (2023080808152361400_c26) 2010; 12 (2023080808152361400_c31) 2014; 26 (2023080808152361400_c27) 2021; 907 (2023080808152361400_c10) 1997; 79 (2023080808152361400_c19) 2001; 63 (2023080808152361400_c3) 1989; 204 (2023080808152361400_c12) 2002; 96 (2023080808152361400_c17) 1999; 82 (2023080808152361400_c9) 1962; 5 (2023080808152361400_c23) 1996 (2023080808152361400_c15) 1996; 76 (2023080808152361400_c6) 2004; 16 (2023080808152361400_c1) 2009; 81 (2023080808152361400_c4) 1994; 26 (2023080808152361400_c5) 2000; 407 (2023080808152361400_c21) 2017; 825 (2023080808152361400_c18) 2000; 407 (2023080808152361400_c25) 2018; 72 (2023080808152361400_c11) 2018; 120 (2023080808152361400_c22) 2019; 139 (2023080808152361400_c13) 2004; 67 (2023080808152361400_c2) 2012; 35 (2023080808152361400_c8) 2019; 869 (2023080808152361400_c24) 2016; 92 (2023080808152361400_c20) 2017; 119 (2023080808152361400_c14) 2017; 118 (2023080808152361400_c29) 2001; 63 |
| References_xml | – start-page: 164 year: 2018 ident: c25 article-title: Dynamics of plumes in turbulent Rayleigh-Bénard convection publication-title: Eur. J. Mech. B/Fluids – start-page: 144502 year: 2018 ident: c11 article-title: Transition to the ultimate regime in two-dimensional Rayleigh-Bénard convection publication-title: Phys. Rev. Lett. – start-page: R2 year: 2018 ident: c7 article-title: How surface roughness reduces heat transport for small roughness heights in turbulent Rayleigh-Bénard convection publication-title: J. Fluid Mech. – start-page: 908 year: 1996 ident: c15 article-title: Turbulent convection over rough surfaces publication-title: Phys. Rev. Lett. – start-page: 045303 year: 2001 ident: c19 article-title: Observation of the power law in Rayleigh-Bénard convection publication-title: Phys. Rev. E – start-page: 573 year: 2017 ident: c21 article-title: Turbulent thermal convection over rough plates with varying roughness geometries publication-title: J. Fluid Mech. – start-page: 046303 year: 2001 ident: c29 article-title: Temperature fluctuations in a convection cell with rough upper and lower surfaces publication-title: Phys. Rev. E – start-page: 075022 year: 2010 ident: c26 article-title: Boundary layer structure in turbulent thermal convection and its consequences for the required numerical resolution publication-title: New J. Phys. – start-page: 3998 year: 1999 ident: c17 article-title: Random roughness of boundary increases the turbulent convection scaling exponent publication-title: Phys. Rev. Lett. – start-page: 074501 year: 2020 ident: c28 article-title: Multiple states in turbulent large-aspect-ratio thermal convection: What determines the number of convection rolls? publication-title: Phys. Rev. Lett. – start-page: 27 year: 2000 ident: c5 article-title: Scaling in thermal convection: A unifying theory publication-title: J. Fluid Mech. – start-page: 074503 year: 2017 ident: c14 article-title: Roughness as a route to the ultimate regime of thermal convection publication-title: Phys. Rev. Lett. – start-page: 1056 year: 2019 ident: c22 article-title: Effect of surface roughness on heat transfer in Rayleigh-Bénard convection publication-title: Int. J. Heat Mass Transfer – start-page: 1374 year: 1962 ident: c9 article-title: Turbulent thermal convection at arbitrary Prandtl number publication-title: Phys. Fluids – start-page: R4 year: 2019 ident: c8 article-title: scaling enabled by multiscale wall roughness in Rayleigh-Bénard turbulence publication-title: J. Fluid Mech. – start-page: 4859 year: 1998 ident: c16 article-title: Transfer at rough sheared interfaces publication-title: Phys. Rev. Lett. – start-page: 957 year: 2016 ident: c24 article-title: A diffuse interface immersed boundary method for convective heat and fluid flow publication-title: Int. J. Heat Mass Transfer – start-page: 381 year: 2002 ident: c12 article-title: The influence of the Prandtl number on the style of vigorous thermal convection publication-title: Geophys. Astrophys. Fluid Dyn. – start-page: 3648 year: 1997 ident: c10 article-title: Observation of the ultimate regime in Rayleigh-Bénard convection publication-title: Phys. Rev. Lett. – start-page: A12 year: 2021 ident: c27 article-title: Thermal convection over fractal surfaces publication-title: J. Fluid Mech. – start-page: 307 year: 2006 ident: c30 article-title: Turbulent thermal convection over grooved plates publication-title: J. Fluid Mech. – start-page: 58 year: 2012 ident: c2 article-title: New perspectives in turbulent Rayleigh-Bénard convection publication-title: Eur. Phys. J. E – start-page: 57 year: 2000 ident: c18 article-title: Turbulent thermal convection in a cell with ordered rough boundaries publication-title: J. Fluid Mech. – start-page: 115112 year: 2019 ident: c32 article-title: Statistics of coherent structures in two-dimensional turbulent Rayleigh-Bénard convection publication-title: Phys. Fluids – start-page: 154501 year: 2017 ident: c20 article-title: Roughness facilitated local 1/2 scaling does not imply the onset of the ultimate regime of thermal convection publication-title: Phys. Rev. Lett. – start-page: 503 year: 2009 ident: c1 article-title: Heat transfer and large scale dynamics in turbulent Rayleigh-Bénard convection publication-title: Rev. Mod. Phys. – start-page: 1 year: 1989 ident: c3 article-title: Scaling of hard thermal turbulence in Rayleigh-Bénard convection publication-title: J. Fluid Mech. – start-page: 137 year: 1994 ident: c4 article-title: High Rayleigh number convection publication-title: Annu. Rev. Fluid Mech. – start-page: 4462 year: 2004 ident: c6 article-title: Fluctuations in turbulent Rayleigh-Bénard convection: The role of plumes publication-title: Phys. Fluids – start-page: 390 year: 2004 ident: c13 article-title: On the validity of two-dimensional numerical approaches to time-dependent thermal convection publication-title: Europhys. Lett. – start-page: 015112 year: 2014 ident: c31 article-title: Thermal boundary layer near roughnesses in turbulent Rayleigh-Bénard convection: Flow structure and multistability publication-title: Phys. Fluids – volume: 81 start-page: 503 year: 2009 ident: 2023080808152361400_c1 article-title: Heat transfer and large scale dynamics in turbulent Rayleigh-Bénard convection publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.81.503 – volume: 119 start-page: 154501 year: 2017 ident: 2023080808152361400_c20 article-title: Roughness facilitated local 1/2 scaling does not imply the onset of the ultimate regime of thermal convection publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.119.154501 – volume: 16 start-page: 4462 year: 2004 ident: 2023080808152361400_c6 article-title: Fluctuations in turbulent Rayleigh-Bénard convection: The role of plumes publication-title: Phys. Fluids doi: 10.1063/1.1807751 – volume: 82 start-page: 3998 year: 1999 ident: 2023080808152361400_c17 article-title: Random roughness of boundary increases the turbulent convection scaling exponent publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.82.3998 – volume: 5 start-page: 1374 year: 1962 ident: 2023080808152361400_c9 article-title: Turbulent thermal convection at arbitrary Prandtl number publication-title: Phys. Fluids doi: 10.1063/1.1706533 – volume: 118 start-page: 074503 year: 2017 ident: 2023080808152361400_c14 article-title: Roughness as a route to the ultimate regime of thermal convection publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.118.074503 – volume: 407 start-page: 57 year: 2000 ident: 2023080808152361400_c18 article-title: Turbulent thermal convection in a cell with ordered rough boundaries publication-title: J. Fluid Mech. doi: 10.1017/S0022112099007624 – volume: 63 start-page: 045303 year: 2001 ident: 2023080808152361400_c19 article-title: Observation of the 12 power law in Rayleigh-Bénard convection publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.63.045303 – volume: 120 start-page: 144502 year: 2018 ident: 2023080808152361400_c11 article-title: Transition to the ultimate regime in two-dimensional Rayleigh-Bénard convection publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.120.144502 – start-page: 51 volume-title: Fundamentals of Atmospheric Physics year: 1996 ident: 2023080808152361400_c23 – volume: 557 start-page: 307 year: 2006 ident: 2023080808152361400_c30 article-title: Turbulent thermal convection over grooved plates publication-title: J. Fluid Mech. doi: 10.1017/S0022112006009785 – volume: 67 start-page: 390 year: 2004 ident: 2023080808152361400_c13 article-title: On the validity of two-dimensional numerical approaches to time-dependent thermal convection publication-title: Europhys. Lett. doi: 10.1209/epl/i2003-10298-4 – volume: 35 start-page: 58 year: 2012 ident: 2023080808152361400_c2 article-title: New perspectives in turbulent Rayleigh-Bénard convection publication-title: Eur. Phys. J. E doi: 10.1140/epje/i2012-12058-1 – volume: 139 start-page: 1056 year: 2019 ident: 2023080808152361400_c22 article-title: Effect of surface roughness on heat transfer in Rayleigh-Bénard convection publication-title: Int. J. Heat Mass Transfer doi: 10.1016/j.ijheatmasstransfer.2019.05.066 – volume: 72 start-page: 164 year: 2018 ident: 2023080808152361400_c25 article-title: Dynamics of plumes in turbulent Rayleigh-Bénard convection publication-title: Eur. J. Mech. B/Fluids doi: 10.1016/j.euromechflu.2018.05.007 – volume: 836 start-page: R2 year: 2018 ident: 2023080808152361400_c7 article-title: How surface roughness reduces heat transport for small roughness heights in turbulent Rayleigh-Bénard convection publication-title: J. Fluid Mech. doi: 10.1017/jfm.2017.786 – volume: 825 start-page: 573 year: 2017 ident: 2023080808152361400_c21 article-title: Turbulent thermal convection over rough plates with varying roughness geometries publication-title: J. Fluid Mech. doi: 10.1017/jfm.2017.397 – volume: 81 start-page: 4859 year: 1998 ident: 2023080808152361400_c16 article-title: Transfer at rough sheared interfaces publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.81.4859 – volume: 869 start-page: R4 year: 2019 ident: 2023080808152361400_c8 article-title: scaling enabled by multiscale wall roughness in Rayleigh-Bénard turbulence publication-title: J. Fluid Mech. doi: 10.1017/jfm.2019.228 – volume: 125 start-page: 074501 year: 2020 ident: 2023080808152361400_c28 article-title: Multiple states in turbulent large-aspect-ratio thermal convection: What determines the number of convection rolls? publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.125.074501 – volume: 79 start-page: 3648 year: 1997 ident: 2023080808152361400_c10 article-title: Observation of the ultimate regime in Rayleigh-Bénard convection publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.79.3648 – volume: 31 start-page: 115112 year: 2019 ident: 2023080808152361400_c32 article-title: Statistics of coherent structures in two-dimensional turbulent Rayleigh-Bénard convection publication-title: Phys. Fluids doi: 10.1063/1.5125758 – volume: 407 start-page: 27 year: 2000 ident: 2023080808152361400_c5 article-title: Scaling in thermal convection: A unifying theory publication-title: J. Fluid Mech. doi: 10.1017/S0022112099007545 – volume: 63 start-page: 046303 year: 2001 ident: 2023080808152361400_c29 article-title: Temperature fluctuations in a convection cell with rough upper and lower surfaces publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.63.046303 – volume: 96 start-page: 381 year: 2002 ident: 2023080808152361400_c12 article-title: The influence of the Prandtl number on the style of vigorous thermal convection publication-title: Geophys. Astrophys. Fluid Dyn. doi: 10.1080/0309192021000049929 – volume: 92 start-page: 957 year: 2016 ident: 2023080808152361400_c24 article-title: A diffuse interface immersed boundary method for convective heat and fluid flow publication-title: Int. J. Heat Mass Transfer doi: 10.1016/j.ijheatmasstransfer.2015.09.022 – volume: 26 start-page: 015112 year: 2014 ident: 2023080808152361400_c31 article-title: Thermal boundary layer near roughnesses in turbulent Rayleigh-Bénard convection: Flow structure and multistability publication-title: Phys. Fluids doi: 10.1063/1.4862487 – volume: 204 start-page: 1 year: 1989 ident: 2023080808152361400_c3 article-title: Scaling of hard thermal turbulence in Rayleigh-Bénard convection publication-title: J. Fluid Mech. doi: 10.1017/S0022112089001643 – volume: 907 start-page: A12 year: 2021 ident: 2023080808152361400_c27 article-title: Thermal convection over fractal surfaces publication-title: J. Fluid Mech. doi: 10.1017/jfm.2020.826 – volume: 76 start-page: 908 year: 1996 ident: 2023080808152361400_c15 article-title: Turbulent convection over rough surfaces publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.76.908 – volume: 12 start-page: 075022 year: 2010 ident: 2023080808152361400_c26 article-title: Boundary layer structure in turbulent thermal convection and its consequences for the required numerical resolution publication-title: New J. Phys. doi: 10.1088/1367-2630/12/7/075022 – volume: 26 start-page: 137 year: 1994 ident: 2023080808152361400_c4 article-title: High Rayleigh number convection publication-title: Annu. Rev. Fluid Mech. doi: 10.1146/annurev.fl.26.010194.001033 |
| SSID | ssj0003926 |
| Score | 2.4079537 |
| Snippet | We report a numerical investigation of the effect of multiscale roughness on heat flux
(
N
u
) and near-wall dynamics in turbulent Rayleigh–Bénard convection... We report a numerical investigation of the effect of multiscale roughness on heat flux (Nu) and near-wall dynamics in turbulent Rayleigh–Bénard convection of... |
| SourceID | proquest crossref scitation |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| SubjectTerms | Aerodynamics Aspect ratio Computational fluid dynamics Fluid dynamics Fluid flow Heat flux Heat transfer Perturbation Physics Rayleigh-Benard convection Rolls Roughness Thermal boundary layer |
| Title | Significance of near-wall dynamics in enhancement of heat flux for roughness aided turbulent Rayleigh–Bénard convection |
| URI | http://dx.doi.org/10.1063/5.0053522 https://www.proquest.com/docview/2538735686 |
| Volume | 33 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVABJ databaseName: AIP Complete customDbUrl: eissn: 1089-7666 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0003926 issn: 1070-6631 databaseCode: M71 dateStart: 19940101 isFulltext: true titleUrlDefault: http://www.scitation.org/ providerName: American Institute of Physics – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1089-7666 dateEnd: 20241105 omitProxy: false ssIdentifier: ssj0003926 issn: 1070-6631 databaseCode: ADMLS dateStart: 19940101 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dbtMwFLZKJwQ3_AwQhYEs4AKpMqRxfi83BpoQ44Ju0u4i23FYxZROawtoV7wDT8Fz8CY8Cef4LwEqNLiJWstJLJ8v58-fjwl5IgAUmSgSlkK0zJI8zZlIhWRgbgSvRVlMJrgbef9ttneYvD5KjwaDVX93yVI-U-dr95X8j1ShDeSKu2T_QbLhodAAv0G-cAUJw_VCMp7O3rdI9TG0f2RkAGzZJ1xsru1B84bsqttj7OBX_VH7jpuT1WfDMDSn9Bh1h7Ui6zFYILlCSzR-B7E85k09HYLv2EX1FhMPhqyuglCdd2vopMqQQ-AFs9qWgSrLpJdvwO0MtVcvxx02p6aGtsnPrj7oRchS79qMK0yGhFv6SYq4R6ZyehU0CwPnxjZp11aULM_soSteGduqGA502VodD04VCAZTYViaJu4MmV-8_82-BdahWW_PeJVW7tZLZCMGYxANycb27v6baTDh4DRmlqxqR-1LUmX8eXjvr45MF51cAdfFsih6jsrBDXLNRRh028LlJhnodpNcd9EGdbp8sUkuO2ndIud9HNF5QwOOqMcRnbW0hyPshDiiiCMKOKIBR9TgiAYcUY-jH1--7nz_huihHXpuk8NXLw9e7DF3JgdTPM6XbJI0sSrLFEL3QoI3rmQuc6G5Br8YYnOuUvgruIh4XIOvr_MmKSLZqDQRGk8_43fIsJ23-i6hRV4oLmTEIaYAjdFInUCkp0URqbQBP3ZEnvoJrvyU4rkpJ9UfghyRR6Hrqa3Ssq7TlpdS5T7iRRWDwc9hBEU2Io-D5P72kDW9Ps7Puh7Vad3cu8h47pOr3aeyRYbLs5V-AB7uUj50ePwJPt6k0Q |
| linkProvider | EBSCOhost |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Significance+of+near-wall+dynamics+in+enhancement+of+heat+flux+for+roughness+aided+turbulent+Rayleigh%E2%80%93B%C3%A9nard+convection&rft.jtitle=Physics+of+fluids+%281994%29&rft.au=Chand%2C+Krishan&rft.au=Sharma%2C+Mukesh&rft.au=De%2C+Arnab+Kr&rft.date=2021-06-01&rft.issn=1070-6631&rft.eissn=1089-7666&rft.volume=33&rft.issue=6&rft_id=info:doi/10.1063%2F5.0053522&rft.externalDBID=n%2Fa&rft.externalDocID=10_1063_5_0053522 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1070-6631&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1070-6631&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1070-6631&client=summon |