Spatio-Temporal Classification of Lung Ventilation Patterns Using 3D EIT Images: A General Approach for Individualized Lung Function Evaluation
The Pulmonary Function Test (PFT) is a widely utilized and rigorous classification test for evaluating lung function, serving as a comprehensive diagnostic tool for lung conditions. Meanwhile, Electrical Impedance Tomography (EIT) is a rapidly advancing clinical technique that visualizes conductivit...
Saved in:
| Published in | IEEE journal of biomedical and health informatics Vol. 28; no. 1; pp. 367 - 378 |
|---|---|
| Main Authors | , , , , , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Piscataway
IEEE
01.01.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 2168-2194 2168-2208 2168-2208 |
| DOI | 10.1109/JBHI.2023.3328343 |
Cover
| Abstract | The Pulmonary Function Test (PFT) is a widely utilized and rigorous classification test for evaluating lung function, serving as a comprehensive diagnostic tool for lung conditions. Meanwhile, Electrical Impedance Tomography (EIT) is a rapidly advancing clinical technique that visualizes conductivity distribution induced by ventilation. EIT provides additional spatial and temporal information on lung ventilation beyond traditional PFT. However, relying solely on conventional isolated interpretations of PFT results and EIT images overlooks the continuous dynamic aspects of lung ventilation. This study aims to classify lung ventilation patterns by extracting spatial and temporal features from the 3D EIT image series. The study uses a Variational Autoencoder (VAE) with a MultiRes block to compress the spatial distribution in a 3D image into a one-dimensional vector. These vectors are then stacked to create a feature map for the exhibition of temporal features. A simple convolutional neural network is used for classification. Data from 137 subjects were utilized for the training phase. Initially, the model underwent validation through a leave-one-out cross-validation process. During this validation, the model achieved an accuracy and sensitivity of 0.96 and 1.00, respectively, with an f1-score of 0.98 when identifying the normal subjects. To assess pipeline reliability and feasibility, we tested it on 9 newly recruited subjects, with accurate ventilation mode predictions for 8 out of 9. In addition, we included 2D EIT results for comparison and conducted ablation experiments to validate the effectiveness of the VAE. The study demonstrates the potential of using image series for lung ventilation mode classification, providing a feasible method for patient prescreening and presenting an alternative form of PFT. |
|---|---|
| AbstractList | The Pulmonary Function Test (PFT) is a widely utilized and rigorous classification test for evaluating lung function, serving as a comprehensive diagnostic tool for lung conditions. Meanwhile, Electrical Impedance Tomography (EIT) is a rapidly advancing clinical technique that visualizes conductivity distribution induced by ventilation. EIT provides additional spatial and temporal information on lung ventilation beyond traditional PFT. However, relying solely on conventional isolated interpretations of PFT results and EIT images overlooks the continuous dynamic aspects of lung ventilation. This study aims to classify lung ventilation patterns by extracting spatial and temporal features from the 3D EIT image series. The study uses a Variational Autoencoder (VAE) with a MultiRes block to compress the spatial distribution in a 3D image into a one-dimensional vector. These vectors are then stacked to create a feature map for the exhibition of temporal features. A simple convolutional neural network is used for classification. Data from 137 subjects were utilized for the training phase. Initially, the model underwent validation through a leave-one-out cross-validation process. During this validation, the model achieved an accuracy and sensitivity of 0.96 and 1.00, respectively, with an f1-score of 0.98 when identifying the normal subjects. To assess pipeline reliability and feasibility, we tested it on 9 newly recruited subjects, with accurate ventilation mode predictions for 8 out of 9. In addition, we included 2D EIT results for comparison and conducted ablation experiments to validate the effectiveness of the VAE. The study demonstrates the potential of using image series for lung ventilation mode classification, providing a feasible method for patient prescreening and presenting an alternative form of PFT. The Pulmonary Function Test (PFT) is a widely utilized and rigorous classification test for evaluating lung function, serving as a comprehensive diagnostic tool for lung conditions. Meanwhile, Electrical Impedance Tomography (EIT) is a rapidly advancing clinical technique that visualizes conductivity distribution induced by ventilation. EIT provides additional spatial and temporal information on lung ventilation beyond traditional PFT. However, relying solely on conventional isolated interpretations of PFT results and EIT images overlooks the continuous dynamic aspects of lung ventilation. This study aims to classify lung ventilation patterns by extracting spatial and temporal features from the 3D EIT image series. The study uses a Variational Autoencoder (VAE) with a MultiRes block to compress the spatial distribution in a 3D image into a one-dimensional vector. These vectors are then stacked to create a feature map for the exhibition of temporal features. A simple convolutional neural network is used for classification. Data from 137 subjects were utilized for the training phase. Initially, the model underwent validation through a leave-one-out cross-validation process. During this validation, the model achieved an accuracy and sensitivity of 0.96 and 1.00, respectively, with an f1-score of 0.98 when identifying the normal subjects. To assess pipeline reliability and feasibility, we tested it on 9 newly recruited subjects, with accurate ventilation mode predictions for 8 out of 9. In addition, we included 2D EIT results for comparison and conducted ablation experiments to validate the effectiveness of the VAE. The study demonstrates the potential of using image series for lung ventilation mode classification, providing a feasible method for patient prescreening and presenting an alternative form of PFT.The Pulmonary Function Test (PFT) is a widely utilized and rigorous classification test for evaluating lung function, serving as a comprehensive diagnostic tool for lung conditions. Meanwhile, Electrical Impedance Tomography (EIT) is a rapidly advancing clinical technique that visualizes conductivity distribution induced by ventilation. EIT provides additional spatial and temporal information on lung ventilation beyond traditional PFT. However, relying solely on conventional isolated interpretations of PFT results and EIT images overlooks the continuous dynamic aspects of lung ventilation. This study aims to classify lung ventilation patterns by extracting spatial and temporal features from the 3D EIT image series. The study uses a Variational Autoencoder (VAE) with a MultiRes block to compress the spatial distribution in a 3D image into a one-dimensional vector. These vectors are then stacked to create a feature map for the exhibition of temporal features. A simple convolutional neural network is used for classification. Data from 137 subjects were utilized for the training phase. Initially, the model underwent validation through a leave-one-out cross-validation process. During this validation, the model achieved an accuracy and sensitivity of 0.96 and 1.00, respectively, with an f1-score of 0.98 when identifying the normal subjects. To assess pipeline reliability and feasibility, we tested it on 9 newly recruited subjects, with accurate ventilation mode predictions for 8 out of 9. In addition, we included 2D EIT results for comparison and conducted ablation experiments to validate the effectiveness of the VAE. The study demonstrates the potential of using image series for lung ventilation mode classification, providing a feasible method for patient prescreening and presenting an alternative form of PFT. |
| Author | Zhang, Ke Li, Maokun Xu, Shenheng Gong, Ying Li, Li Wu, Xu Yang, Fan Wang, Lu Song, Yuanlin Lin, Zhichao Chen, Shuzhe |
| Author_xml | – sequence: 1 givenname: Shuzhe orcidid: 0009-0006-7669-3503 surname: Chen fullname: Chen, Shuzhe email: csz21@mails.tsinghua.edu.cn organization: Beijing National Research Center for Information Science and Technology (BNRist), the Institute of Precision Medicine, Tsinghua University, Beijing, China – sequence: 2 givenname: Li orcidid: 0009-0003-7052-8978 surname: Li fullname: Li, Li email: li.li@zs-hospital.sh.cn organization: Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, China – sequence: 3 givenname: Zhichao orcidid: 0000-0002-7354-8435 surname: Lin fullname: Lin, Zhichao email: lzc19@mails.tsinghua.edu.cn organization: the BNRist and the Department of Electronic Engineering, Tsinghua University, Beijing, China – sequence: 4 givenname: Ke orcidid: 0000-0002-5751-0621 surname: Zhang fullname: Zhang, Ke email: kzhang320@mail.tsinghua.edu.cn organization: the BNRist and the Department of Electronic Engineering, Tsinghua University, Beijing, China – sequence: 5 givenname: Ying orcidid: 0009-0004-9605-8115 surname: Gong fullname: Gong, Ying email: gong.ying@zs-hospital.sh.cn organization: Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, China – sequence: 6 givenname: Lu orcidid: 0000-0003-2681-2683 surname: Wang fullname: Wang, Lu email: bluewang723@163.com organization: Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, China – sequence: 7 givenname: Xu surname: Wu fullname: Wu, Xu email: wu.xu@zs-hospital.sh.cn organization: Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, China – sequence: 8 givenname: Maokun orcidid: 0000-0002-7258-6413 surname: Li fullname: Li, Maokun email: maokunli@tsinghua.edu.cn organization: Beijing National Research Center for Information Science and Technology (BNRist), the Institute of Precision Medicine, Tsinghua University, Beijing, China – sequence: 9 givenname: Yuanlin orcidid: 0000-0003-3373-6631 surname: Song fullname: Song, Yuanlin email: song.yuanlin@zs-hospital.sh.cn organization: Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, China – sequence: 10 givenname: Fan orcidid: 0000-0002-0362-4236 surname: Yang fullname: Yang, Fan email: fan_yang@tsinghua.edu.cn organization: the BNRist and the Department of Electronic Engineering, Tsinghua University, Beijing, China – sequence: 11 givenname: Shenheng orcidid: 0000-0003-0105-8194 surname: Xu fullname: Xu, Shenheng email: shxu@tsinghua.edu.cn organization: the BNRist and the Department of Electronic Engineering, Tsinghua University, Beijing, China |
| BookMark | eNp9UU1v1DAQtVArWpb-ACQOlrj0kq2_SGxuy3bbBq0EEluulutMiqusHeykEvwJ_jLOpkioB-Yyo-f3nkfzXqEjHzwg9IaSJaVEXXz6eFMvGWF8yTmTXPAX6JTRUhaMEXn0d6ZKnKCzlB5ILpkhVb5EJ7xShBMuT9Hvr70ZXCh2sO9DNB1edyYl1zo7wR6HFm9Hf4-_gR9cN2NfzDBA9AnfJpef-CXe1Dtc7809pA94ha_Bw2S16vsYjP2O2xBx7Rv36JrRdO4XNLPp1ejtwXHzaLrxYP4aHbemS3D21Bfo9mqzW98U28_X9Xq1LSxn1VBQ0VBD2_eUS-CKWaG4MKLh4q5lshRlSZlggpDWMmmYmYY7azMFSFWppuELdD775hV_jJAGvXfJQtcZD2FMmkkpyqoSTGXqu2fUhzBGn7fTTFEqpBD5lgtEZ5aNIaUIre6j25v4U1Oip8D0FJieAtNPgWVN9Uxj3XA4wxCN6_6rfDsrHQD88xMntCQl_wPROaK3 |
| CODEN | IJBHA9 |
| CitedBy_id | crossref_primary_10_1016_j_bios_2025_117159 crossref_primary_10_1109_TIM_2025_3534224 crossref_primary_10_1016_j_measurement_2025_117176 |
| Cites_doi | 10.1038/d41586-020-01373-x 10.21037/qims-22-70 10.1172/jci.insight.132781 10.1016/j.addr.2015.03.010 10.1016/s2213-2600(20)30105-3 10.1111/anae.14919 10.1088/0967-3334/37/6/698 10.1097/MCP.0000000000000754 10.1513/AnnalsATS.201908-613OC 10.1136/thx.51.3.277 10.1183/13993003.01499-2021 10.1136/thoraxjnl-2016-208357 10.2147/COPD.S369904 10.1038/s41598-020-79336-5 10.1080/0309190021000059687 10.1088/1361-6579/abdad6 10.1002/ppul.23444 10.1002/jmri.26799 10.1007/s00330-018-5888-y 10.1152/japplphysiol.01630.2011 10.3389/fphys.2021.762791 10.1186/s13054-021-03615-4 10.1159/000454956 10.1002/mrm.22031 10.1002/jmri.1054 10.1109/EMBC48229.2022.9871104 10.1088/0967-3334/33/5/679 10.1183/23120541.00240-2018 10.21037/atm-20-4984 10.1183/09031936.05.00035205 10.3389/fmed.2021.744958 10.1016/j.jocs.2022.101768 10.1183/13993003.01660-2018 10.1016/j.ijrobp.2014.06.006 10.1378/chest.10-0189 10.1016/j.acra.2018.10.022 10.1148/radiol.2019190450 10.4046/trd.2005.58.3.230 10.1109/TIM.2022.3192054 10.1001/jama.2022.6110 10.3389/fmed.2023.1174631 10.1152/ajplung.00463.2015 10.1089/tmj.2017.0008 10.1088/0967-3334/21/2/201 10.1109/HIBIT.2010.5478898 10.1038/s41598-021-91305-0 10.1109/PerCom45495.2020.9127380 10.1016/j.neunet.2019.08.025 10.1183/13993003.00829-2019 10.1164/rccm.201605-1055OC 10.3389/fphys.2021.749542 10.1111/jocn.16234 10.1016/S0140-6736(22)01273-9 10.1148/radiol.221488 10.1148/radiol.2018171993 10.1088/1361-6579/aab8c4 10.3389/fpubh.2022.1015876 10.3389/fdgth.2022.750226 10.1016/j.ijrobp.2022.11.026 10.1186/s13054-022-04069-y 10.3389/fmed.2022.805680 10.1038/s42256-022-00483-7 10.1109/TBME.2018.2890410 10.2147/copd.s279850 10.21037/atm-22-3597 10.1109/TIM.2022.3227600 10.1016/j.media.2020.101694 10.1002/mrm.26893 10.1088/1361-6579/38/1/77 10.3390/jcm10020192 10.1007/s00246-014-0886-6 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
| DBID | 97E RIA RIE AAYXX CITATION 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 K9. KR7 L7M L~C L~D NAPCQ P64 7X8 |
| DOI | 10.1109/JBHI.2023.3328343 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Materials Research Database ProQuest Computer Science Collection ProQuest Health & Medical Complete (Alumni) Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Nursing & Allied Health Premium Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
| DatabaseTitle | CrossRef Materials Research Database Civil Engineering Abstracts Aluminium Industry Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Health & Medical Complete (Alumni) Ceramic Abstracts Materials Business File METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Aerospace Database Nursing & Allied Health Premium Engineered Materials Abstracts Biotechnology Research Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic Materials Research Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine |
| EISSN | 2168-2208 |
| EndPage | 378 |
| ExternalDocumentID | 10_1109_JBHI_2023_3328343 10301606 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 61971263; 62171259 funderid: 10.13039/501100001809 – fundername: Institute for Precision Medicine – fundername: Tsinghua University funderid: 10.13039/501100004147 – fundername: Biren Technology – fundername: BGP Inc. |
| GroupedDBID | 0R~ 4.4 6IF 6IH 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACIWK ACPRK AENEX AFRAH AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD HZ~ IFIPE IPLJI JAVBF M43 O9- OCL PQQKQ RIA RIE RNS AAYXX CITATION 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 K9. KR7 L7M L~C L~D NAPCQ P64 7X8 |
| ID | FETCH-LOGICAL-c327t-14d1a1f5138e392c4934a4d34bf2864661242400fc28a2a00fcbcc4a4e0779dd3 |
| IEDL.DBID | RIE |
| ISSN | 2168-2194 2168-2208 |
| IngestDate | Wed Oct 01 13:29:11 EDT 2025 Mon Jun 30 07:10:00 EDT 2025 Wed Oct 01 03:40:08 EDT 2025 Thu Apr 24 22:59:30 EDT 2025 Wed Aug 27 02:37:23 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c327t-14d1a1f5138e392c4934a4d34bf2864661242400fc28a2a00fcbcc4a4e0779dd3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-7258-6413 0000-0003-0105-8194 0000-0002-7354-8435 0009-0004-9605-8115 0000-0002-5751-0621 0000-0003-2681-2683 0009-0006-7669-3503 0009-0003-7052-8978 0000-0002-0362-4236 0000-0003-3373-6631 |
| PMID | 37903038 |
| PQID | 2911484430 |
| PQPubID | 85417 |
| PageCount | 12 |
| ParticipantIDs | crossref_primary_10_1109_JBHI_2023_3328343 proquest_miscellaneous_2884677429 proquest_journals_2911484430 crossref_citationtrail_10_1109_JBHI_2023_3328343 ieee_primary_10301606 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2024-01-01 |
| PublicationDateYYYYMMDD | 2024-01-01 |
| PublicationDate_xml | – month: 01 year: 2024 text: 2024-01-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Piscataway |
| PublicationPlace_xml | – name: Piscataway |
| PublicationTitle | IEEE journal of biomedical and health informatics |
| PublicationTitleAbbrev | JBHI |
| PublicationYear | 2024 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref57 ref12 ref56 ref15 ref59 ref14 ref58 ref53 ref52 ref11 ref55 ref54 Talman (ref9) 2021; 176 ref17 ref16 ref19 ref18 Kingma (ref73) 2013 ref51 ref50 ref46 ref45 ref48 ref47 ref42 ref41 ref44 ref43 ref49 ref8 ref7 ref4 ref3 ref6 ref5 ref40 Lumb (ref67) 2018; 73 ref35 ref34 ref37 ref36 ref31 ref75 ref30 ref74 ref33 ref32 ref76 ref2 ref1 Zhu (ref10) 2012; 35 ref39 ref38 ref71 ref72 ref24 ref68 ref23 ref26 ref25 ref69 ref20 ref64 ref63 ref22 ref66 ref21 ref65 ref28 ref27 ref29 Scherzer (ref70) 2010 ref60 ref62 ref61 |
| References_xml | – ident: ref21 doi: 10.1038/d41586-020-01373-x – ident: ref35 doi: 10.21037/qims-22-70 – ident: ref30 doi: 10.1172/jci.insight.132781 – ident: ref55 doi: 10.1016/j.addr.2015.03.010 – ident: ref2 doi: 10.1016/s2213-2600(20)30105-3 – ident: ref68 doi: 10.1111/anae.14919 – year: 2013 ident: ref73 article-title: Auto-encoding variational Bayes – ident: ref15 doi: 10.1088/0967-3334/37/6/698 – ident: ref7 doi: 10.1097/MCP.0000000000000754 – ident: ref29 doi: 10.1513/AnnalsATS.201908-613OC – ident: ref8 doi: 10.1136/thx.51.3.277 – ident: ref5 doi: 10.1183/13993003.01499-2021 – ident: ref18 doi: 10.1136/thoraxjnl-2016-208357 – volume-title: Handbook of Mathematical Methods in Imaging year: 2010 ident: ref70 – ident: ref28 doi: 10.2147/COPD.S369904 – ident: ref41 doi: 10.1038/s41598-020-79336-5 – ident: ref11 doi: 10.1080/0309190021000059687 – ident: ref56 doi: 10.1088/1361-6579/abdad6 – ident: ref60 doi: 10.1002/ppul.23444 – ident: ref43 doi: 10.1002/jmri.26799 – ident: ref49 doi: 10.1007/s00330-018-5888-y – ident: ref59 doi: 10.1152/japplphysiol.01630.2011 – ident: ref57 doi: 10.3389/fphys.2021.762791 – ident: ref16 doi: 10.1186/s13054-021-03615-4 – ident: ref23 doi: 10.1159/000454956 – ident: ref48 doi: 10.1002/mrm.22031 – ident: ref44 doi: 10.1002/jmri.1054 – volume: 35 start-page: 235 issue: 3 year: 2012 ident: ref10 article-title: Lung function diagnosis publication-title: Chin. J. Tuberculosis Respir. Dis. – ident: ref52 doi: 10.1109/EMBC48229.2022.9871104 – ident: ref51 doi: 10.1088/0967-3334/33/5/679 – ident: ref62 doi: 10.1183/23120541.00240-2018 – ident: ref12 doi: 10.21037/atm-20-4984 – ident: ref19 doi: 10.1183/09031936.05.00035205 – ident: ref65 doi: 10.3389/fmed.2021.744958 – ident: ref26 doi: 10.1016/j.jocs.2022.101768 – ident: ref20 doi: 10.1183/13993003.01660-2018 – ident: ref46 doi: 10.1016/j.ijrobp.2014.06.006 – ident: ref22 doi: 10.1378/chest.10-0189 – ident: ref40 doi: 10.1016/j.acra.2018.10.022 – ident: ref39 doi: 10.1148/radiol.2019190450 – ident: ref6 doi: 10.4046/trd.2005.58.3.230 – ident: ref75 doi: 10.1109/TIM.2022.3192054 – volume: 176 year: 2021 ident: ref9 article-title: Pulmonary function and health-related quality of life after COVID-19 pneumonia publication-title: Respir. Med. – ident: ref4 doi: 10.1001/jama.2022.6110 – ident: ref27 doi: 10.3389/fmed.2023.1174631 – ident: ref58 doi: 10.1152/ajplung.00463.2015 – ident: ref32 doi: 10.1089/tmj.2017.0008 – ident: ref13 doi: 10.1088/0967-3334/21/2/201 – ident: ref25 doi: 10.1109/HIBIT.2010.5478898 – ident: ref38 doi: 10.1038/s41598-021-91305-0 – ident: ref34 doi: 10.1109/PerCom45495.2020.9127380 – ident: ref74 doi: 10.1016/j.neunet.2019.08.025 – ident: ref24 doi: 10.1183/13993003.00829-2019 – ident: ref14 doi: 10.1164/rccm.201605-1055OC – ident: ref64 doi: 10.3389/fphys.2021.749542 – ident: ref1 doi: 10.1111/jocn.16234 – ident: ref3 doi: 10.1016/S0140-6736(22)01273-9 – ident: ref36 doi: 10.1148/radiol.221488 – ident: ref45 doi: 10.1148/radiol.2018171993 – ident: ref53 doi: 10.1088/1361-6579/aab8c4 – ident: ref31 doi: 10.3389/fpubh.2022.1015876 – ident: ref33 doi: 10.3389/fdgth.2022.750226 – ident: ref47 doi: 10.1016/j.ijrobp.2022.11.026 – ident: ref17 doi: 10.1186/s13054-022-04069-y – ident: ref69 doi: 10.3389/fmed.2022.805680 – ident: ref42 doi: 10.1038/s42256-022-00483-7 – ident: ref71 doi: 10.1109/TBME.2018.2890410 – ident: ref37 doi: 10.2147/copd.s279850 – ident: ref63 doi: 10.21037/atm-22-3597 – volume: 73 year: 2018 ident: ref67 article-title: Observational study of the effect of tracheal intubation and tracheal tube position on regional lung ventilation during general anaesthesia publication-title: Anaesthesia – ident: ref72 doi: 10.1109/TIM.2022.3227600 – ident: ref76 doi: 10.1016/j.media.2020.101694 – ident: ref50 doi: 10.1002/mrm.26893 – ident: ref54 doi: 10.1088/1361-6579/38/1/77 – ident: ref61 doi: 10.3390/jcm10020192 – ident: ref66 doi: 10.1007/s00246-014-0886-6 |
| SSID | ssj0000816896 |
| Score | 2.4417448 |
| Snippet | The Pulmonary Function Test (PFT) is a widely utilized and rigorous classification test for evaluating lung function, serving as a comprehensive diagnostic... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 367 |
| SubjectTerms | Ablation Artificial neural networks Chronic obstructive pulmonary disease Classification Computed tomography Electrical impedance Electrical impedance tomography Electrical impedance tomography (EIT) Evaluation Feasibility Feature maps Lung lung ventilation classification Lungs Medical imaging Model accuracy Neural networks Predictive models pulmonary function test (PFT) Pulmonary functions Reliability analysis Respiratory function Spatial distribution Temporal variations Three-dimensional displays variational autoencoder (VAE) Ventilation |
| Title | Spatio-Temporal Classification of Lung Ventilation Patterns Using 3D EIT Images: A General Approach for Individualized Lung Function Evaluation |
| URI | https://ieeexplore.ieee.org/document/10301606 https://www.proquest.com/docview/2911484430 https://www.proquest.com/docview/2884677429 |
| Volume | 28 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 2168-2208 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000816896 issn: 2168-2194 databaseCode: RIE dateStart: 20130101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fS-QwEA6eD-LL-eM8bj3viODTQWvSpG3q23q3y66oCK7iW2mTFETtirv74j9x_7IzSbaI4nFvgU6HlEky08zM9xFywLMU_JJF-vZCYUtOHdVYuFZpAzbRPGEOxPXsPBtdyZOb9CY0q7teGGutKz6zMQ5dLt9M9QKvyg6REotnCLD9KVeZb9bqLlQcg4Tj40pgEMFOlCGLyVlxeHI8GsdIFR4LAR5VIn-OyAtQiJ0pr1yS41h5dzA7bzPcIOfLefoik7t4Ma9j_fwGwvG_P2STfA5xJ-37hbJFVmy7TdbOQmb9C_l76Uqro4mHqrqnji0T64ic6ei0oadwLtBrrC7y9XP0wmFztjPq6g6o-EMH4wkdP8ARNTuifRogrWk_4JZTCJDpuOsAu322xisdgnN1Ggcd9vgOuRoOJr9HUSBriLRI8nnEpeEVb1IulIWYS8tCyEoaIesmUZmEMAAbURhrdKKqpMJBrTWIWJbnhTHiK1ltp639RqgtUptZblRilGwgBklBUGhl8qpqmFY9wpb2KnVAMkdCjfvS_dGwokRrl2jtMli7R351rzx6GI9_Ce-gyV4Jemv1yN5yVZRhp8_KpMA_SikF65H97jHsUUy8VK2dLkBGYZSXg-vf_UD1d7IOM5D-bmePrM6fFvYHRDvz-qdb5S-69_c9 |
| linkProvider | IEEE |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fa9swEBajg60v-9WWpu06DfY0sCtZsi33Ld0S4i4Jg6Wjb8aWZBjrnLEkL_0n9i_vTlJMWVnZm8DnQ-Yk3Vl3932EvONZCn7JIn17obAlp4kaLFyrtQGbaJ4wB-I6m2eTK3l5nV6HZnXXC2OtdcVnNsahy-Wbpd7gVdkZUmLxDAG2H6dSytS3a_VXKo5DwjFyJTCIYC_KkMfkrDi7vJiUMZKFx0KAT5XIoCPyAlRib8odp-RYVu4dzc7fjJ-T-Xamvszke7xZN7G-_QvE8b8_5QV5FiJPOvRL5SV5ZLtX5Mks5Nb3yO8vrrg6Wniwqhvq-DKxksgZjy5bOoWTgX7F-iJfQUc_O3TObkVd5QEVH-moXNDyBxxSq3M6pAHUmg4DcjmFEJmWfQ_Yt1trvNIxuFencdSjj--Tq_Fo8WESBbqGSIskX0dcGl7zNuVCWYi6tCyErKURsmkTlUkIBLAVhbFWJ6pOahw0WoOIZXleGCMOyE637OwhobZIbWa5UYlRsoUoJAVBoZXJ67plWg0I29qr0gHLHCk1bir3T8OKCq1dobWrYO0Bed-_8tMDeTwkvI8muyPorTUgJ9tVUYW9vqqSAv8ppRRsQN72j2GXYuql7uxyAzIK47wcnP_RP1S_IU8ni9m0mpbzT8dkF2Yj_U3PCdlZ_9rY1xD7rJtTt-L_ANGN-oo |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Spatio-Temporal+Classification+of+Lung+Ventilation+Patterns+Using+3D+EIT+Images%3A+A+General+Approach+for+Individualized+Lung+Function+Evaluation&rft.jtitle=IEEE+journal+of+biomedical+and+health+informatics&rft.au=Chen%2C+Shuzhe&rft.au=Li%2C+Li&rft.au=Lin%2C+Zhichao&rft.au=Zhang%2C+Ke&rft.date=2024-01-01&rft.pub=IEEE&rft.issn=2168-2194&rft.volume=28&rft.issue=1&rft.spage=367&rft.epage=378&rft_id=info:doi/10.1109%2FJBHI.2023.3328343&rft_id=info%3Apmid%2F37903038&rft.externalDocID=10301606 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2168-2194&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2168-2194&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2168-2194&client=summon |