Spatio-Temporal Classification of Lung Ventilation Patterns Using 3D EIT Images: A General Approach for Individualized Lung Function Evaluation

The Pulmonary Function Test (PFT) is a widely utilized and rigorous classification test for evaluating lung function, serving as a comprehensive diagnostic tool for lung conditions. Meanwhile, Electrical Impedance Tomography (EIT) is a rapidly advancing clinical technique that visualizes conductivit...

Full description

Saved in:
Bibliographic Details
Published inIEEE journal of biomedical and health informatics Vol. 28; no. 1; pp. 367 - 378
Main Authors Chen, Shuzhe, Li, Li, Lin, Zhichao, Zhang, Ke, Gong, Ying, Wang, Lu, Wu, Xu, Li, Maokun, Song, Yuanlin, Yang, Fan, Xu, Shenheng
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 01.01.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN2168-2194
2168-2208
2168-2208
DOI10.1109/JBHI.2023.3328343

Cover

Abstract The Pulmonary Function Test (PFT) is a widely utilized and rigorous classification test for evaluating lung function, serving as a comprehensive diagnostic tool for lung conditions. Meanwhile, Electrical Impedance Tomography (EIT) is a rapidly advancing clinical technique that visualizes conductivity distribution induced by ventilation. EIT provides additional spatial and temporal information on lung ventilation beyond traditional PFT. However, relying solely on conventional isolated interpretations of PFT results and EIT images overlooks the continuous dynamic aspects of lung ventilation. This study aims to classify lung ventilation patterns by extracting spatial and temporal features from the 3D EIT image series. The study uses a Variational Autoencoder (VAE) with a MultiRes block to compress the spatial distribution in a 3D image into a one-dimensional vector. These vectors are then stacked to create a feature map for the exhibition of temporal features. A simple convolutional neural network is used for classification. Data from 137 subjects were utilized for the training phase. Initially, the model underwent validation through a leave-one-out cross-validation process. During this validation, the model achieved an accuracy and sensitivity of 0.96 and 1.00, respectively, with an f1-score of 0.98 when identifying the normal subjects. To assess pipeline reliability and feasibility, we tested it on 9 newly recruited subjects, with accurate ventilation mode predictions for 8 out of 9. In addition, we included 2D EIT results for comparison and conducted ablation experiments to validate the effectiveness of the VAE. The study demonstrates the potential of using image series for lung ventilation mode classification, providing a feasible method for patient prescreening and presenting an alternative form of PFT.
AbstractList The Pulmonary Function Test (PFT) is a widely utilized and rigorous classification test for evaluating lung function, serving as a comprehensive diagnostic tool for lung conditions. Meanwhile, Electrical Impedance Tomography (EIT) is a rapidly advancing clinical technique that visualizes conductivity distribution induced by ventilation. EIT provides additional spatial and temporal information on lung ventilation beyond traditional PFT. However, relying solely on conventional isolated interpretations of PFT results and EIT images overlooks the continuous dynamic aspects of lung ventilation. This study aims to classify lung ventilation patterns by extracting spatial and temporal features from the 3D EIT image series. The study uses a Variational Autoencoder (VAE) with a MultiRes block to compress the spatial distribution in a 3D image into a one-dimensional vector. These vectors are then stacked to create a feature map for the exhibition of temporal features. A simple convolutional neural network is used for classification. Data from 137 subjects were utilized for the training phase. Initially, the model underwent validation through a leave-one-out cross-validation process. During this validation, the model achieved an accuracy and sensitivity of 0.96 and 1.00, respectively, with an f1-score of 0.98 when identifying the normal subjects. To assess pipeline reliability and feasibility, we tested it on 9 newly recruited subjects, with accurate ventilation mode predictions for 8 out of 9. In addition, we included 2D EIT results for comparison and conducted ablation experiments to validate the effectiveness of the VAE. The study demonstrates the potential of using image series for lung ventilation mode classification, providing a feasible method for patient prescreening and presenting an alternative form of PFT.
The Pulmonary Function Test (PFT) is a widely utilized and rigorous classification test for evaluating lung function, serving as a comprehensive diagnostic tool for lung conditions. Meanwhile, Electrical Impedance Tomography (EIT) is a rapidly advancing clinical technique that visualizes conductivity distribution induced by ventilation. EIT provides additional spatial and temporal information on lung ventilation beyond traditional PFT. However, relying solely on conventional isolated interpretations of PFT results and EIT images overlooks the continuous dynamic aspects of lung ventilation. This study aims to classify lung ventilation patterns by extracting spatial and temporal features from the 3D EIT image series. The study uses a Variational Autoencoder (VAE) with a MultiRes block to compress the spatial distribution in a 3D image into a one-dimensional vector. These vectors are then stacked to create a feature map for the exhibition of temporal features. A simple convolutional neural network is used for classification. Data from 137 subjects were utilized for the training phase. Initially, the model underwent validation through a leave-one-out cross-validation process. During this validation, the model achieved an accuracy and sensitivity of 0.96 and 1.00, respectively, with an f1-score of 0.98 when identifying the normal subjects. To assess pipeline reliability and feasibility, we tested it on 9 newly recruited subjects, with accurate ventilation mode predictions for 8 out of 9. In addition, we included 2D EIT results for comparison and conducted ablation experiments to validate the effectiveness of the VAE. The study demonstrates the potential of using image series for lung ventilation mode classification, providing a feasible method for patient prescreening and presenting an alternative form of PFT.The Pulmonary Function Test (PFT) is a widely utilized and rigorous classification test for evaluating lung function, serving as a comprehensive diagnostic tool for lung conditions. Meanwhile, Electrical Impedance Tomography (EIT) is a rapidly advancing clinical technique that visualizes conductivity distribution induced by ventilation. EIT provides additional spatial and temporal information on lung ventilation beyond traditional PFT. However, relying solely on conventional isolated interpretations of PFT results and EIT images overlooks the continuous dynamic aspects of lung ventilation. This study aims to classify lung ventilation patterns by extracting spatial and temporal features from the 3D EIT image series. The study uses a Variational Autoencoder (VAE) with a MultiRes block to compress the spatial distribution in a 3D image into a one-dimensional vector. These vectors are then stacked to create a feature map for the exhibition of temporal features. A simple convolutional neural network is used for classification. Data from 137 subjects were utilized for the training phase. Initially, the model underwent validation through a leave-one-out cross-validation process. During this validation, the model achieved an accuracy and sensitivity of 0.96 and 1.00, respectively, with an f1-score of 0.98 when identifying the normal subjects. To assess pipeline reliability and feasibility, we tested it on 9 newly recruited subjects, with accurate ventilation mode predictions for 8 out of 9. In addition, we included 2D EIT results for comparison and conducted ablation experiments to validate the effectiveness of the VAE. The study demonstrates the potential of using image series for lung ventilation mode classification, providing a feasible method for patient prescreening and presenting an alternative form of PFT.
Author Zhang, Ke
Li, Maokun
Xu, Shenheng
Gong, Ying
Li, Li
Wu, Xu
Yang, Fan
Wang, Lu
Song, Yuanlin
Lin, Zhichao
Chen, Shuzhe
Author_xml – sequence: 1
  givenname: Shuzhe
  orcidid: 0009-0006-7669-3503
  surname: Chen
  fullname: Chen, Shuzhe
  email: csz21@mails.tsinghua.edu.cn
  organization: Beijing National Research Center for Information Science and Technology (BNRist), the Institute of Precision Medicine, Tsinghua University, Beijing, China
– sequence: 2
  givenname: Li
  orcidid: 0009-0003-7052-8978
  surname: Li
  fullname: Li, Li
  email: li.li@zs-hospital.sh.cn
  organization: Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
– sequence: 3
  givenname: Zhichao
  orcidid: 0000-0002-7354-8435
  surname: Lin
  fullname: Lin, Zhichao
  email: lzc19@mails.tsinghua.edu.cn
  organization: the BNRist and the Department of Electronic Engineering, Tsinghua University, Beijing, China
– sequence: 4
  givenname: Ke
  orcidid: 0000-0002-5751-0621
  surname: Zhang
  fullname: Zhang, Ke
  email: kzhang320@mail.tsinghua.edu.cn
  organization: the BNRist and the Department of Electronic Engineering, Tsinghua University, Beijing, China
– sequence: 5
  givenname: Ying
  orcidid: 0009-0004-9605-8115
  surname: Gong
  fullname: Gong, Ying
  email: gong.ying@zs-hospital.sh.cn
  organization: Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
– sequence: 6
  givenname: Lu
  orcidid: 0000-0003-2681-2683
  surname: Wang
  fullname: Wang, Lu
  email: bluewang723@163.com
  organization: Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
– sequence: 7
  givenname: Xu
  surname: Wu
  fullname: Wu, Xu
  email: wu.xu@zs-hospital.sh.cn
  organization: Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
– sequence: 8
  givenname: Maokun
  orcidid: 0000-0002-7258-6413
  surname: Li
  fullname: Li, Maokun
  email: maokunli@tsinghua.edu.cn
  organization: Beijing National Research Center for Information Science and Technology (BNRist), the Institute of Precision Medicine, Tsinghua University, Beijing, China
– sequence: 9
  givenname: Yuanlin
  orcidid: 0000-0003-3373-6631
  surname: Song
  fullname: Song, Yuanlin
  email: song.yuanlin@zs-hospital.sh.cn
  organization: Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
– sequence: 10
  givenname: Fan
  orcidid: 0000-0002-0362-4236
  surname: Yang
  fullname: Yang, Fan
  email: fan_yang@tsinghua.edu.cn
  organization: the BNRist and the Department of Electronic Engineering, Tsinghua University, Beijing, China
– sequence: 11
  givenname: Shenheng
  orcidid: 0000-0003-0105-8194
  surname: Xu
  fullname: Xu, Shenheng
  email: shxu@tsinghua.edu.cn
  organization: the BNRist and the Department of Electronic Engineering, Tsinghua University, Beijing, China
BookMark eNp9UU1v1DAQtVArWpb-ACQOlrj0kq2_SGxuy3bbBq0EEluulutMiqusHeykEvwJ_jLOpkioB-Yyo-f3nkfzXqEjHzwg9IaSJaVEXXz6eFMvGWF8yTmTXPAX6JTRUhaMEXn0d6ZKnKCzlB5ILpkhVb5EJ7xShBMuT9Hvr70ZXCh2sO9DNB1edyYl1zo7wR6HFm9Hf4-_gR9cN2NfzDBA9AnfJpef-CXe1Dtc7809pA94ha_Bw2S16vsYjP2O2xBx7Rv36JrRdO4XNLPp1ejtwXHzaLrxYP4aHbemS3D21Bfo9mqzW98U28_X9Xq1LSxn1VBQ0VBD2_eUS-CKWaG4MKLh4q5lshRlSZlggpDWMmmYmYY7azMFSFWppuELdD775hV_jJAGvXfJQtcZD2FMmkkpyqoSTGXqu2fUhzBGn7fTTFEqpBD5lgtEZ5aNIaUIre6j25v4U1Oip8D0FJieAtNPgWVN9Uxj3XA4wxCN6_6rfDsrHQD88xMntCQl_wPROaK3
CODEN IJBHA9
CitedBy_id crossref_primary_10_1016_j_bios_2025_117159
crossref_primary_10_1109_TIM_2025_3534224
crossref_primary_10_1016_j_measurement_2025_117176
Cites_doi 10.1038/d41586-020-01373-x
10.21037/qims-22-70
10.1172/jci.insight.132781
10.1016/j.addr.2015.03.010
10.1016/s2213-2600(20)30105-3
10.1111/anae.14919
10.1088/0967-3334/37/6/698
10.1097/MCP.0000000000000754
10.1513/AnnalsATS.201908-613OC
10.1136/thx.51.3.277
10.1183/13993003.01499-2021
10.1136/thoraxjnl-2016-208357
10.2147/COPD.S369904
10.1038/s41598-020-79336-5
10.1080/0309190021000059687
10.1088/1361-6579/abdad6
10.1002/ppul.23444
10.1002/jmri.26799
10.1007/s00330-018-5888-y
10.1152/japplphysiol.01630.2011
10.3389/fphys.2021.762791
10.1186/s13054-021-03615-4
10.1159/000454956
10.1002/mrm.22031
10.1002/jmri.1054
10.1109/EMBC48229.2022.9871104
10.1088/0967-3334/33/5/679
10.1183/23120541.00240-2018
10.21037/atm-20-4984
10.1183/09031936.05.00035205
10.3389/fmed.2021.744958
10.1016/j.jocs.2022.101768
10.1183/13993003.01660-2018
10.1016/j.ijrobp.2014.06.006
10.1378/chest.10-0189
10.1016/j.acra.2018.10.022
10.1148/radiol.2019190450
10.4046/trd.2005.58.3.230
10.1109/TIM.2022.3192054
10.1001/jama.2022.6110
10.3389/fmed.2023.1174631
10.1152/ajplung.00463.2015
10.1089/tmj.2017.0008
10.1088/0967-3334/21/2/201
10.1109/HIBIT.2010.5478898
10.1038/s41598-021-91305-0
10.1109/PerCom45495.2020.9127380
10.1016/j.neunet.2019.08.025
10.1183/13993003.00829-2019
10.1164/rccm.201605-1055OC
10.3389/fphys.2021.749542
10.1111/jocn.16234
10.1016/S0140-6736(22)01273-9
10.1148/radiol.221488
10.1148/radiol.2018171993
10.1088/1361-6579/aab8c4
10.3389/fpubh.2022.1015876
10.3389/fdgth.2022.750226
10.1016/j.ijrobp.2022.11.026
10.1186/s13054-022-04069-y
10.3389/fmed.2022.805680
10.1038/s42256-022-00483-7
10.1109/TBME.2018.2890410
10.2147/copd.s279850
10.21037/atm-22-3597
10.1109/TIM.2022.3227600
10.1016/j.media.2020.101694
10.1002/mrm.26893
10.1088/1361-6579/38/1/77
10.3390/jcm10020192
10.1007/s00246-014-0886-6
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
DBID 97E
RIA
RIE
AAYXX
CITATION
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
NAPCQ
P64
7X8
DOI 10.1109/JBHI.2023.3328343
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
ProQuest Health & Medical Complete (Alumni)
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Nursing & Allied Health Premium
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
Materials Research Database
Civil Engineering Abstracts
Aluminium Industry Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Health & Medical Complete (Alumni)
Ceramic Abstracts
Materials Business File
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Aerospace Database
Nursing & Allied Health Premium
Engineered Materials Abstracts
Biotechnology Research Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
Materials Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 2168-2208
EndPage 378
ExternalDocumentID 10_1109_JBHI_2023_3328343
10301606
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 61971263; 62171259
  funderid: 10.13039/501100001809
– fundername: Institute for Precision Medicine
– fundername: Tsinghua University
  funderid: 10.13039/501100004147
– fundername: Biren Technology
– fundername: BGP Inc.
GroupedDBID 0R~
4.4
6IF
6IH
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACIWK
ACPRK
AENEX
AFRAH
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
HZ~
IFIPE
IPLJI
JAVBF
M43
O9-
OCL
PQQKQ
RIA
RIE
RNS
AAYXX
CITATION
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
NAPCQ
P64
7X8
ID FETCH-LOGICAL-c327t-14d1a1f5138e392c4934a4d34bf2864661242400fc28a2a00fcbcc4a4e0779dd3
IEDL.DBID RIE
ISSN 2168-2194
2168-2208
IngestDate Wed Oct 01 13:29:11 EDT 2025
Mon Jun 30 07:10:00 EDT 2025
Wed Oct 01 03:40:08 EDT 2025
Thu Apr 24 22:59:30 EDT 2025
Wed Aug 27 02:37:23 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c327t-14d1a1f5138e392c4934a4d34bf2864661242400fc28a2a00fcbcc4a4e0779dd3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-7258-6413
0000-0003-0105-8194
0000-0002-7354-8435
0009-0004-9605-8115
0000-0002-5751-0621
0000-0003-2681-2683
0009-0006-7669-3503
0009-0003-7052-8978
0000-0002-0362-4236
0000-0003-3373-6631
PMID 37903038
PQID 2911484430
PQPubID 85417
PageCount 12
ParticipantIDs crossref_primary_10_1109_JBHI_2023_3328343
proquest_miscellaneous_2884677429
proquest_journals_2911484430
crossref_citationtrail_10_1109_JBHI_2023_3328343
ieee_primary_10301606
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-01-01
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – month: 01
  year: 2024
  text: 2024-01-01
  day: 01
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE journal of biomedical and health informatics
PublicationTitleAbbrev JBHI
PublicationYear 2024
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref57
ref12
ref56
ref15
ref59
ref14
ref58
ref53
ref52
ref11
ref55
ref54
Talman (ref9) 2021; 176
ref17
ref16
ref19
ref18
Kingma (ref73) 2013
ref51
ref50
ref46
ref45
ref48
ref47
ref42
ref41
ref44
ref43
ref49
ref8
ref7
ref4
ref3
ref6
ref5
ref40
Lumb (ref67) 2018; 73
ref35
ref34
ref37
ref36
ref31
ref75
ref30
ref74
ref33
ref32
ref76
ref2
ref1
Zhu (ref10) 2012; 35
ref39
ref38
ref71
ref72
ref24
ref68
ref23
ref26
ref25
ref69
ref20
ref64
ref63
ref22
ref66
ref21
ref65
ref28
ref27
ref29
Scherzer (ref70) 2010
ref60
ref62
ref61
References_xml – ident: ref21
  doi: 10.1038/d41586-020-01373-x
– ident: ref35
  doi: 10.21037/qims-22-70
– ident: ref30
  doi: 10.1172/jci.insight.132781
– ident: ref55
  doi: 10.1016/j.addr.2015.03.010
– ident: ref2
  doi: 10.1016/s2213-2600(20)30105-3
– ident: ref68
  doi: 10.1111/anae.14919
– year: 2013
  ident: ref73
  article-title: Auto-encoding variational Bayes
– ident: ref15
  doi: 10.1088/0967-3334/37/6/698
– ident: ref7
  doi: 10.1097/MCP.0000000000000754
– ident: ref29
  doi: 10.1513/AnnalsATS.201908-613OC
– ident: ref8
  doi: 10.1136/thx.51.3.277
– ident: ref5
  doi: 10.1183/13993003.01499-2021
– ident: ref18
  doi: 10.1136/thoraxjnl-2016-208357
– volume-title: Handbook of Mathematical Methods in Imaging
  year: 2010
  ident: ref70
– ident: ref28
  doi: 10.2147/COPD.S369904
– ident: ref41
  doi: 10.1038/s41598-020-79336-5
– ident: ref11
  doi: 10.1080/0309190021000059687
– ident: ref56
  doi: 10.1088/1361-6579/abdad6
– ident: ref60
  doi: 10.1002/ppul.23444
– ident: ref43
  doi: 10.1002/jmri.26799
– ident: ref49
  doi: 10.1007/s00330-018-5888-y
– ident: ref59
  doi: 10.1152/japplphysiol.01630.2011
– ident: ref57
  doi: 10.3389/fphys.2021.762791
– ident: ref16
  doi: 10.1186/s13054-021-03615-4
– ident: ref23
  doi: 10.1159/000454956
– ident: ref48
  doi: 10.1002/mrm.22031
– ident: ref44
  doi: 10.1002/jmri.1054
– volume: 35
  start-page: 235
  issue: 3
  year: 2012
  ident: ref10
  article-title: Lung function diagnosis
  publication-title: Chin. J. Tuberculosis Respir. Dis.
– ident: ref52
  doi: 10.1109/EMBC48229.2022.9871104
– ident: ref51
  doi: 10.1088/0967-3334/33/5/679
– ident: ref62
  doi: 10.1183/23120541.00240-2018
– ident: ref12
  doi: 10.21037/atm-20-4984
– ident: ref19
  doi: 10.1183/09031936.05.00035205
– ident: ref65
  doi: 10.3389/fmed.2021.744958
– ident: ref26
  doi: 10.1016/j.jocs.2022.101768
– ident: ref20
  doi: 10.1183/13993003.01660-2018
– ident: ref46
  doi: 10.1016/j.ijrobp.2014.06.006
– ident: ref22
  doi: 10.1378/chest.10-0189
– ident: ref40
  doi: 10.1016/j.acra.2018.10.022
– ident: ref39
  doi: 10.1148/radiol.2019190450
– ident: ref6
  doi: 10.4046/trd.2005.58.3.230
– ident: ref75
  doi: 10.1109/TIM.2022.3192054
– volume: 176
  year: 2021
  ident: ref9
  article-title: Pulmonary function and health-related quality of life after COVID-19 pneumonia
  publication-title: Respir. Med.
– ident: ref4
  doi: 10.1001/jama.2022.6110
– ident: ref27
  doi: 10.3389/fmed.2023.1174631
– ident: ref58
  doi: 10.1152/ajplung.00463.2015
– ident: ref32
  doi: 10.1089/tmj.2017.0008
– ident: ref13
  doi: 10.1088/0967-3334/21/2/201
– ident: ref25
  doi: 10.1109/HIBIT.2010.5478898
– ident: ref38
  doi: 10.1038/s41598-021-91305-0
– ident: ref34
  doi: 10.1109/PerCom45495.2020.9127380
– ident: ref74
  doi: 10.1016/j.neunet.2019.08.025
– ident: ref24
  doi: 10.1183/13993003.00829-2019
– ident: ref14
  doi: 10.1164/rccm.201605-1055OC
– ident: ref64
  doi: 10.3389/fphys.2021.749542
– ident: ref1
  doi: 10.1111/jocn.16234
– ident: ref3
  doi: 10.1016/S0140-6736(22)01273-9
– ident: ref36
  doi: 10.1148/radiol.221488
– ident: ref45
  doi: 10.1148/radiol.2018171993
– ident: ref53
  doi: 10.1088/1361-6579/aab8c4
– ident: ref31
  doi: 10.3389/fpubh.2022.1015876
– ident: ref33
  doi: 10.3389/fdgth.2022.750226
– ident: ref47
  doi: 10.1016/j.ijrobp.2022.11.026
– ident: ref17
  doi: 10.1186/s13054-022-04069-y
– ident: ref69
  doi: 10.3389/fmed.2022.805680
– ident: ref42
  doi: 10.1038/s42256-022-00483-7
– ident: ref71
  doi: 10.1109/TBME.2018.2890410
– ident: ref37
  doi: 10.2147/copd.s279850
– ident: ref63
  doi: 10.21037/atm-22-3597
– volume: 73
  year: 2018
  ident: ref67
  article-title: Observational study of the effect of tracheal intubation and tracheal tube position on regional lung ventilation during general anaesthesia
  publication-title: Anaesthesia
– ident: ref72
  doi: 10.1109/TIM.2022.3227600
– ident: ref76
  doi: 10.1016/j.media.2020.101694
– ident: ref50
  doi: 10.1002/mrm.26893
– ident: ref54
  doi: 10.1088/1361-6579/38/1/77
– ident: ref61
  doi: 10.3390/jcm10020192
– ident: ref66
  doi: 10.1007/s00246-014-0886-6
SSID ssj0000816896
Score 2.4417448
Snippet The Pulmonary Function Test (PFT) is a widely utilized and rigorous classification test for evaluating lung function, serving as a comprehensive diagnostic...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 367
SubjectTerms Ablation
Artificial neural networks
Chronic obstructive pulmonary disease
Classification
Computed tomography
Electrical impedance
Electrical impedance tomography
Electrical impedance tomography (EIT)
Evaluation
Feasibility
Feature maps
Lung
lung ventilation classification
Lungs
Medical imaging
Model accuracy
Neural networks
Predictive models
pulmonary function test (PFT)
Pulmonary functions
Reliability analysis
Respiratory function
Spatial distribution
Temporal variations
Three-dimensional displays
variational autoencoder (VAE)
Ventilation
Title Spatio-Temporal Classification of Lung Ventilation Patterns Using 3D EIT Images: A General Approach for Individualized Lung Function Evaluation
URI https://ieeexplore.ieee.org/document/10301606
https://www.proquest.com/docview/2911484430
https://www.proquest.com/docview/2884677429
Volume 28
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 2168-2208
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816896
  issn: 2168-2194
  databaseCode: RIE
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fS-QwEA6eD-LL-eM8bj3viODTQWvSpG3q23q3y66oCK7iW2mTFETtirv74j9x_7IzSbaI4nFvgU6HlEky08zM9xFywLMU_JJF-vZCYUtOHdVYuFZpAzbRPGEOxPXsPBtdyZOb9CY0q7teGGutKz6zMQ5dLt9M9QKvyg6REotnCLD9KVeZb9bqLlQcg4Tj40pgEMFOlCGLyVlxeHI8GsdIFR4LAR5VIn-OyAtQiJ0pr1yS41h5dzA7bzPcIOfLefoik7t4Ma9j_fwGwvG_P2STfA5xJ-37hbJFVmy7TdbOQmb9C_l76Uqro4mHqrqnji0T64ic6ei0oadwLtBrrC7y9XP0wmFztjPq6g6o-EMH4wkdP8ARNTuifRogrWk_4JZTCJDpuOsAu322xisdgnN1Ggcd9vgOuRoOJr9HUSBriLRI8nnEpeEVb1IulIWYS8tCyEoaIesmUZmEMAAbURhrdKKqpMJBrTWIWJbnhTHiK1ltp639RqgtUptZblRilGwgBklBUGhl8qpqmFY9wpb2KnVAMkdCjfvS_dGwokRrl2jtMli7R351rzx6GI9_Ce-gyV4Jemv1yN5yVZRhp8_KpMA_SikF65H97jHsUUy8VK2dLkBGYZSXg-vf_UD1d7IOM5D-bmePrM6fFvYHRDvz-qdb5S-69_c9
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fa9swEBajg60v-9WWpu06DfY0sCtZsi33Ld0S4i4Jg6Wjb8aWZBjrnLEkL_0n9i_vTlJMWVnZm8DnQ-Yk3Vl3932EvONZCn7JIn17obAlp4kaLFyrtQGbaJ4wB-I6m2eTK3l5nV6HZnXXC2OtdcVnNsahy-Wbpd7gVdkZUmLxDAG2H6dSytS3a_VXKo5DwjFyJTCIYC_KkMfkrDi7vJiUMZKFx0KAT5XIoCPyAlRib8odp-RYVu4dzc7fjJ-T-Xamvszke7xZN7G-_QvE8b8_5QV5FiJPOvRL5SV5ZLtX5Mks5Nb3yO8vrrg6Wniwqhvq-DKxksgZjy5bOoWTgX7F-iJfQUc_O3TObkVd5QEVH-moXNDyBxxSq3M6pAHUmg4DcjmFEJmWfQ_Yt1trvNIxuFencdSjj--Tq_Fo8WESBbqGSIskX0dcGl7zNuVCWYi6tCyErKURsmkTlUkIBLAVhbFWJ6pOahw0WoOIZXleGCMOyE637OwhobZIbWa5UYlRsoUoJAVBoZXJ67plWg0I29qr0gHLHCk1bir3T8OKCq1dobWrYO0Bed-_8tMDeTwkvI8muyPorTUgJ9tVUYW9vqqSAv8ppRRsQN72j2GXYuql7uxyAzIK47wcnP_RP1S_IU8ni9m0mpbzT8dkF2Yj_U3PCdlZ_9rY1xD7rJtTt-L_ANGN-oo
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Spatio-Temporal+Classification+of+Lung+Ventilation+Patterns+Using+3D+EIT+Images%3A+A+General+Approach+for+Individualized+Lung+Function+Evaluation&rft.jtitle=IEEE+journal+of+biomedical+and+health+informatics&rft.au=Chen%2C+Shuzhe&rft.au=Li%2C+Li&rft.au=Lin%2C+Zhichao&rft.au=Zhang%2C+Ke&rft.date=2024-01-01&rft.pub=IEEE&rft.issn=2168-2194&rft.volume=28&rft.issue=1&rft.spage=367&rft.epage=378&rft_id=info:doi/10.1109%2FJBHI.2023.3328343&rft_id=info%3Apmid%2F37903038&rft.externalDocID=10301606
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2168-2194&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2168-2194&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2168-2194&client=summon