Kernelized fuzzy attribute C-means clustering algorithm

A novel kernelized fuzzy attribute C-means clustering algorithm is proposed in this paper. Since attribute means clustering algorithm is an extension of fuzzy C-means algorithm with weighting exponent m = 2 , and fuzzy attribute C-means clustering is a general type of attribute C-means clustering wi...

Full description

Saved in:
Bibliographic Details
Published inFuzzy sets and systems Vol. 159; no. 18; pp. 2428 - 2445
Main Authors Liu, Jingwei, Xu, Meizhi
Format Journal Article
LanguageEnglish
Published Amsterdam Elsevier B.V 16.09.2008
Elsevier
Subjects
Online AccessGet full text
ISSN0165-0114
1872-6801
DOI10.1016/j.fss.2008.03.018

Cover

Abstract A novel kernelized fuzzy attribute C-means clustering algorithm is proposed in this paper. Since attribute means clustering algorithm is an extension of fuzzy C-means algorithm with weighting exponent m = 2 , and fuzzy attribute C-means clustering is a general type of attribute C-means clustering with weighting exponent m > 1 , we modify the distance in fuzzy attribute C-means clustering algorithm with kernel-induced distance, and obtain kernelized fuzzy attribute C-means clustering algorithm. Kernelized fuzzy attribute C-means clustering algorithm is a natural generalization of kernelized fuzzy C-means algorithm with stable function. Experimental results on standard Iris database and tumor/normal gene chip expression data demonstrate that kernelized fuzzy attribute C-means clustering algorithm with Gaussian radial basis kernel function and Cauchy stable function is more effective and robust than fuzzy C-means, fuzzy attribute C-means clustering and kernelized fuzzy C-means as well.
AbstractList A novel kernelized fuzzy attribute C-means clustering algorithm is proposed in this paper. Since attribute means clustering algorithm is an extension of fuzzy C-means algorithm with weighting exponent m = 2 , and fuzzy attribute C-means clustering is a general type of attribute C-means clustering with weighting exponent m > 1 , we modify the distance in fuzzy attribute C-means clustering algorithm with kernel-induced distance, and obtain kernelized fuzzy attribute C-means clustering algorithm. Kernelized fuzzy attribute C-means clustering algorithm is a natural generalization of kernelized fuzzy C-means algorithm with stable function. Experimental results on standard Iris database and tumor/normal gene chip expression data demonstrate that kernelized fuzzy attribute C-means clustering algorithm with Gaussian radial basis kernel function and Cauchy stable function is more effective and robust than fuzzy C-means, fuzzy attribute C-means clustering and kernelized fuzzy C-means as well.
Author Xu, Meizhi
Liu, Jingwei
Author_xml – sequence: 1
  givenname: Jingwei
  surname: Liu
  fullname: Liu, Jingwei
  email: jwliu@buaa.edu.cn, liujingwei03@tsinghua.org.cn
  organization: LMIB and Department of Mathematics, Beijing University of Aeronautics and Astronautics, Beijing 100083, PR China
– sequence: 2
  givenname: Meizhi
  surname: Xu
  fullname: Xu, Meizhi
  organization: Department of Mathematics, Tsinghua University, Beijing 100084, PR China
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=20538943$$DView record in Pascal Francis
BookMark eNp9kD1PwzAURS1UJFrgB7BlYUzws5PYEROq-BKVWLpbjvNcXKVOZbtI7a8nVWFh6PTucM-V3pmRiR88EnIHtAAK9cO6sDEWjFJZUF5QkBdkClKwvJYUJmQ6dqqcApRXZBbjmtIx13RKxAcGj707YJfZ3eGwz3RKwbW7hNk836D2MTP9LiYMzq8y3a-G4NLX5oZcWt1HvP2912T58rycv-WLz9f3-dMiN5yJlAM0vBWiRWZKtG3JgOu2YbSzUmjaVtyUVdVgyyQglB02IBvblZWpoRPa8mtyf5rd6mh0b4P2xkW1DW6jw14xWnHZlHzsiVPPhCHGgFYZl3Ryg09Bu14BVUdNaq1GTeqoSVGuRk0jCf_Iv_FzzOOJwfHzb4dBRePQG-xcQJNUN7gz9A_ItoJ4
CODEN FSSYD8
CitedBy_id crossref_primary_10_1016_j_fss_2009_10_014
crossref_primary_10_1007_s00500_020_04879_8
crossref_primary_10_1016_j_compbiolchem_2021_107454
crossref_primary_10_1177_0954405412446283
crossref_primary_10_1111_jfpe_12916
crossref_primary_10_1016_j_fss_2015_07_019
crossref_primary_10_1109_RBME_2010_2083647
crossref_primary_10_1109_TETCI_2020_3016302
crossref_primary_10_3923_jse_2017_172_182
crossref_primary_10_1007_s12204_013_1414_1
crossref_primary_10_1016_j_segan_2023_101013
crossref_primary_10_3390_pr9060907
crossref_primary_10_1007_s12652_020_02485_y
crossref_primary_10_1016_j_compbiomed_2013_05_011
crossref_primary_10_1016_j_eswa_2024_124087
crossref_primary_10_1016_j_energy_2019_116253
crossref_primary_10_1016_j_eswa_2012_05_038
crossref_primary_10_1016_j_isatra_2014_05_019
crossref_primary_10_3390_app14041649
crossref_primary_10_1007_s10044_020_00932_2
crossref_primary_10_1007_s11042_011_0868_0
crossref_primary_10_1016_j_asoc_2019_105838
crossref_primary_10_3390_s19071520
crossref_primary_10_1016_j_proeng_2012_07_266
crossref_primary_10_1109_TFUZZ_2013_2280141
crossref_primary_10_3390_su142113880
crossref_primary_10_1016_j_isatra_2011_10_005
crossref_primary_10_1080_17538947_2022_2083247
crossref_primary_10_1155_2012_302624
crossref_primary_10_1002_int_21723
crossref_primary_10_3390_rs16173181
crossref_primary_10_1007_s00500_014_1481_8
crossref_primary_10_1016_j_asoc_2012_12_024
crossref_primary_10_1016_j_chemolab_2012_07_007
crossref_primary_10_1007_s41060_023_00474_w
crossref_primary_10_1016_j_asoc_2023_110948
Cites_doi 10.1109/TNN.2002.1000150
10.1109/72.788641
10.1016/j.artmed.2004.01.012
10.1109/TFUZZ.2003.814839
10.1080/01969727308546046
10.1016/j.patrec.2004.10.001
10.1023/B:NEPL.0000011135.19145.1b
10.1016/S0031-3203(01)00197-2
10.1016/S0019-9958(65)90241-X
ContentType Journal Article
Copyright 2008 Elsevier B.V.
2008 INIST-CNRS
Copyright_xml – notice: 2008 Elsevier B.V.
– notice: 2008 INIST-CNRS
DBID AAYXX
CITATION
IQODW
DOI 10.1016/j.fss.2008.03.018
DatabaseName CrossRef
Pascal-Francis
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
Applied Sciences
EISSN 1872-6801
EndPage 2445
ExternalDocumentID 20538943
10_1016_j_fss_2008_03_018
S0165011408001553
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1OL
1RT
1~.
1~5
29H
4.4
457
4G.
5VS
7-5
71M
8P~
9JN
9JO
AAAKF
AAAKG
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARIN
AAXUO
AAYFN
ABAOU
ABBOA
ABEFU
ABFNM
ABJNI
ABMAC
ABUCO
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFS
ACNCT
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADGUI
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AI.
AIALX
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
APLSM
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F0J
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HAMUX
HLZ
HVGLF
HZ~
IHE
J1W
JJJVA
K-O
KOM
LG9
LY1
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SBC
SDF
SDG
SDP
SDS
SES
SEW
SPC
SPCBC
SSB
SSD
SST
SSV
SSW
SSZ
T5K
TN5
VH1
WH7
WUQ
XPP
ZMT
~02
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
AFXIZ
AGCQF
AGRNS
BNPGV
IQODW
SSH
ID FETCH-LOGICAL-c327t-1193b77be2c4efb4213ab920df87a0b53c4559eb281e14de9189fd45c61d7af3
IEDL.DBID AIKHN
ISSN 0165-0114
IngestDate Mon Jul 21 09:15:28 EDT 2025
Wed Oct 01 01:33:11 EDT 2025
Thu Apr 24 23:06:25 EDT 2025
Fri Feb 23 02:20:25 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 18
Keywords Fuzzy clustering
Fuzzy C-means
Kernelized fuzzy C-means
Attribute means clustering
Kernel function
Engineering
Experimental result
Fuzzy system
Information processing
Database
Fuzzy set
Algorithm
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c327t-1193b77be2c4efb4213ab920df87a0b53c4559eb281e14de9189fd45c61d7af3
PageCount 18
ParticipantIDs pascalfrancis_primary_20538943
crossref_citationtrail_10_1016_j_fss_2008_03_018
crossref_primary_10_1016_j_fss_2008_03_018
elsevier_sciencedirect_doi_10_1016_j_fss_2008_03_018
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2008-09-16
PublicationDateYYYYMMDD 2008-09-16
PublicationDate_xml – month: 09
  year: 2008
  text: 2008-09-16
  day: 16
PublicationDecade 2000
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Fuzzy sets and systems
PublicationYear 2008
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Vapnik (bib15) 1998
Cheng (bib2) 1998; 9
Zhang, Zhou, Jiao (bib20) 2002; 25
Chiang, Hao (bib4) 2003; 11
Sun, He, Feng (bib14) 2007; 43
Wu, Yang (bib16) 2002; 35
J.W. Liu, Statistical learning based on DTW similarity and its application in pattern recognition, Ph.D. Dissertation of Peking University, July, 2002.
Scholkopf, Mika, Burges, Knirsch, Muller, Ratsch, Smola (bib12) 1999; 10
Zadeh (bib17) 1965; 8
Shen, Wang, Fuzzy kernel clustering with outliers (bib13) 2004; 15
Zhang, Chen (bib19) 2004; 32
Liu, Xu (bib10) 2007; 33
Liu, Cheng (bib9) 2002; 38
Kim, Lee, Lee, Lee (bib7) 2005; 26
Zhang, Chen (bib18) 2003; 18
Girolami (bib6) 2002; 13
Bezdek (bib1) 1981
Roth, Steinhage (bib11) 1999
Dunn (bib5) 1974; 3
Cheng (bib3) 1993
Zadeh (10.1016/j.fss.2008.03.018_bib17) 1965; 8
Sun (10.1016/j.fss.2008.03.018_bib14) 2007; 43
Vapnik (10.1016/j.fss.2008.03.018_bib15) 1998
Liu (10.1016/j.fss.2008.03.018_bib10) 2007; 33
Kim (10.1016/j.fss.2008.03.018_bib7) 2005; 26
10.1016/j.fss.2008.03.018_bib8
Shen (10.1016/j.fss.2008.03.018_bib13) 2004; 15
Zhang (10.1016/j.fss.2008.03.018_bib18) 2003; 18
Roth (10.1016/j.fss.2008.03.018_bib11) 1999
Zhang (10.1016/j.fss.2008.03.018_bib20) 2002; 25
Liu (10.1016/j.fss.2008.03.018_bib9) 2002; 38
Wu (10.1016/j.fss.2008.03.018_bib16) 2002; 35
Zhang (10.1016/j.fss.2008.03.018_bib19) 2004; 32
Dunn (10.1016/j.fss.2008.03.018_bib5) 1974; 3
Scholkopf (10.1016/j.fss.2008.03.018_bib12) 1999; 10
Bezdek (10.1016/j.fss.2008.03.018_bib1) 1981
Cheng (10.1016/j.fss.2008.03.018_bib2) 1998; 9
Chiang (10.1016/j.fss.2008.03.018_bib4) 2003; 11
Cheng (10.1016/j.fss.2008.03.018_bib3) 1993
Girolami (10.1016/j.fss.2008.03.018_bib6) 2002; 13
References_xml – volume: 15
  start-page: 1021
  year: 2004
  end-page: 1029
  ident: bib13
  publication-title: J. Software
– volume: 43
  start-page: 82
  year: 2007
  end-page: 84
  ident: bib14
  article-title: A novel classification method—AMC–ASVM
  publication-title: Acta Sci. Natur. Univ. Pekinensis
– volume: 26
  start-page: 879
  year: 2005
  end-page: 891
  ident: bib7
  article-title: A kernel-based subtractive clustering method
  publication-title: Pattern Recognition Lett.
– volume: 32
  start-page: 37
  year: 2004
  end-page: 50
  ident: bib19
  article-title: A novel kernelized fuzzy C-means algorithm with application in medical image segmentation
  publication-title: Artificial Intelligence Med.
– reference: J.W. Liu, Statistical learning based on DTW similarity and its application in pattern recognition, Ph.D. Dissertation of Peking University, July, 2002.
– start-page: 568
  year: 1999
  end-page: 574
  ident: bib11
  article-title: Nonlinear discriminant analysis using kernel functions
  publication-title: Advances in Neural Information Processing Systems
– volume: 11
  start-page: 518
  year: 2003
  end-page: 527
  ident: bib4
  article-title: A new kernel-based fuzzy clustering approach: support vector clustering with cell growing
  publication-title: IEEE Trans. Fuzzy Systems
– volume: 25
  start-page: 587
  year: 2002
  end-page: 590
  ident: bib20
  article-title: Kernel clustering algorithm
  publication-title: Chinese J. Comput.
– volume: 8
  start-page: 338
  year: 1965
  end-page: 353
  ident: bib17
  article-title: Fuzzy sets
  publication-title: Inform. and Control
– year: 1981
  ident: bib1
  article-title: Pattern Recognition with Fuzzy Objective Function Algorithms
– volume: 10
  start-page: 1000
  year: 1999
  end-page: 1017
  ident: bib12
  article-title: Input space versus feature space in kernel-based methods
  publication-title: IEEE Trans. Neural Networks
– volume: 13
  start-page: 780
  year: 2002
  end-page: 784
  ident: bib6
  article-title: Mercer Kernel-based clustering in feature space
  publication-title: IEEE Trans. Neural Networks
– volume: 35
  start-page: 2267
  year: 2002
  end-page: 2278
  ident: bib16
  article-title: Alternative C-means clustering algorithms
  publication-title: Pattern recognition
– year: 1998
  ident: bib15
  article-title: The Nature of Statistical Learning Theory
– volume: 18
  start-page: 155
  year: 2003
  end-page: 162
  ident: bib18
  article-title: Clustering incomplete data using kernel-based fuzzy C-means algorithm
  publication-title: Neural Process. Lett.
– volume: 3
  start-page: 32
  year: 1974
  end-page: 57
  ident: bib5
  article-title: A fuzzy relative of the ISODATA process and its use in detecting compact well-separated clusters
  publication-title: J. Cybernet.
– volume: 33
  start-page: 1121
  year: 2007
  end-page: 1126
  ident: bib10
  article-title: Bezdek type fuzzy attribute C-means clustering algorithm
  publication-title: J. Beijing Univ. Aeronautics and Astronautics
– year: 1993
  ident: bib3
  article-title: Mathematical Principle of Digital Signal Processing
– volume: 38
  start-page: 611
  year: 2002
  end-page: 615
  ident: bib9
  article-title: Dynamic programming based gene chip recognition
  publication-title: Acta Sci. Natur. Univ. Pekinensis
– volume: 9
  start-page: 124
  year: 1998
  end-page: 126
  ident: bib2
  article-title: Attribute means clustering
  publication-title: Systems Engineering Theory Practice
– volume: 13
  start-page: 780
  year: 2002
  ident: 10.1016/j.fss.2008.03.018_bib6
  article-title: Mercer Kernel-based clustering in feature space
  publication-title: IEEE Trans. Neural Networks
  doi: 10.1109/TNN.2002.1000150
– volume: 33
  start-page: 1121
  year: 2007
  ident: 10.1016/j.fss.2008.03.018_bib10
  article-title: Bezdek type fuzzy attribute C-means clustering algorithm
  publication-title: J. Beijing Univ. Aeronautics and Astronautics
– volume: 10
  start-page: 1000
  year: 1999
  ident: 10.1016/j.fss.2008.03.018_bib12
  article-title: Input space versus feature space in kernel-based methods
  publication-title: IEEE Trans. Neural Networks
  doi: 10.1109/72.788641
– volume: 32
  start-page: 37
  year: 2004
  ident: 10.1016/j.fss.2008.03.018_bib19
  article-title: A novel kernelized fuzzy C-means algorithm with application in medical image segmentation
  publication-title: Artificial Intelligence Med.
  doi: 10.1016/j.artmed.2004.01.012
– year: 1981
  ident: 10.1016/j.fss.2008.03.018_bib1
– year: 1993
  ident: 10.1016/j.fss.2008.03.018_bib3
– volume: 9
  start-page: 124
  year: 1998
  ident: 10.1016/j.fss.2008.03.018_bib2
  article-title: Attribute means clustering
  publication-title: Systems Engineering Theory Practice
– volume: 11
  start-page: 518
  year: 2003
  ident: 10.1016/j.fss.2008.03.018_bib4
  article-title: A new kernel-based fuzzy clustering approach: support vector clustering with cell growing
  publication-title: IEEE Trans. Fuzzy Systems
  doi: 10.1109/TFUZZ.2003.814839
– volume: 3
  start-page: 32
  year: 1974
  ident: 10.1016/j.fss.2008.03.018_bib5
  article-title: A fuzzy relative of the ISODATA process and its use in detecting compact well-separated clusters
  publication-title: J. Cybernet.
  doi: 10.1080/01969727308546046
– ident: 10.1016/j.fss.2008.03.018_bib8
– year: 1998
  ident: 10.1016/j.fss.2008.03.018_bib15
– volume: 38
  start-page: 611
  year: 2002
  ident: 10.1016/j.fss.2008.03.018_bib9
  article-title: Dynamic programming based gene chip recognition
  publication-title: Acta Sci. Natur. Univ. Pekinensis
– start-page: 568
  year: 1999
  ident: 10.1016/j.fss.2008.03.018_bib11
  article-title: Nonlinear discriminant analysis using kernel functions
– volume: 26
  start-page: 879
  year: 2005
  ident: 10.1016/j.fss.2008.03.018_bib7
  article-title: A kernel-based subtractive clustering method
  publication-title: Pattern Recognition Lett.
  doi: 10.1016/j.patrec.2004.10.001
– volume: 18
  start-page: 155
  year: 2003
  ident: 10.1016/j.fss.2008.03.018_bib18
  article-title: Clustering incomplete data using kernel-based fuzzy C-means algorithm
  publication-title: Neural Process. Lett.
  doi: 10.1023/B:NEPL.0000011135.19145.1b
– volume: 35
  start-page: 2267
  year: 2002
  ident: 10.1016/j.fss.2008.03.018_bib16
  article-title: Alternative C-means clustering algorithms
  publication-title: Pattern recognition
  doi: 10.1016/S0031-3203(01)00197-2
– volume: 25
  start-page: 587
  year: 2002
  ident: 10.1016/j.fss.2008.03.018_bib20
  article-title: Kernel clustering algorithm
  publication-title: Chinese J. Comput.
– volume: 8
  start-page: 338
  year: 1965
  ident: 10.1016/j.fss.2008.03.018_bib17
  article-title: Fuzzy sets
  publication-title: Inform. and Control
  doi: 10.1016/S0019-9958(65)90241-X
– volume: 43
  start-page: 82
  year: 2007
  ident: 10.1016/j.fss.2008.03.018_bib14
  article-title: A novel classification method—AMC–ASVM
  publication-title: Acta Sci. Natur. Univ. Pekinensis
– volume: 15
  start-page: 1021
  year: 2004
  ident: 10.1016/j.fss.2008.03.018_bib13
  publication-title: J. Software
SSID ssj0001160
Score 2.1390972
Snippet A novel kernelized fuzzy attribute C-means clustering algorithm is proposed in this paper. Since attribute means clustering algorithm is an extension of fuzzy...
SourceID pascalfrancis
crossref
elsevier
SourceType Index Database
Enrichment Source
Publisher
StartPage 2428
SubjectTerms Applied sciences
Attribute means clustering
Circuit properties
Computer science; control theory; systems
Control theory. Systems
Digital circuits
Electric, optical and optoelectronic circuits
Electronic circuits
Electronics
Exact sciences and technology
Fuzzy C-means
Fuzzy clustering
Information, signal and communications theory
Kernelized fuzzy C-means
Mathematical methods
Miscellaneous
System theory
Telecommunications and information theory
Theoretical computing
Title Kernelized fuzzy attribute C-means clustering algorithm
URI https://dx.doi.org/10.1016/j.fss.2008.03.018
Volume 159
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier ScienceDirect
  customDbUrl:
  eissn: 1872-6801
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001160
  issn: 0165-0114
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection
  customDbUrl:
  eissn: 1872-6801
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001160
  issn: 0165-0114
  databaseCode: ACRLP
  dateStart: 19950113
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1872-6801
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001160
  issn: 0165-0114
  databaseCode: AIKHN
  dateStart: 19950113
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1872-6801
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001160
  issn: 0165-0114
  databaseCode: AKRWK
  dateStart: 19780101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB76uCgiPrE-Sg6ehLTZ7OZ1LMVSLfZihd7CZrOrkfRBmx7swd_ubrIJFqQHr2EnCd8mM7PMN_MB3HNVmsKMmwyTwCSqSEgdV5iWFXOH2ZEX8ZzlO3aHb-R56kxr0C97YRStUvv-wqfn3lpf6Wo0u8sk6b6qRhyVzqucR6nf1KEp44_vN6DZexoNx5VDRihvFlbrTWVQFjdzmpdYrzWjEncsJf3xd3g6WtK1BE0Uahe_QtDgBI517mj0itc7hRqfn8HhSzV4dX0O3oiv5jxNtjw2xGa7_TJoVmhacaNvzrgMTAZLN2o6goxZBk3fF6sk-5hdwGTwOOkPTa2NIEG1vcyUEOPIk0jajHARERthGgW2FQvfo1bkYEbkWUEem33EEYl5gPxAxMRhLoo9KvAlNOaLOb8Cw81zHuZQ36JE_t_UFWqkvRAkEDiy4xZYJSIh03PDlXxFGpYEsc9Qgqj1LHEoQWzBQ2WyLIZm7FtMSpjDnZ0PpVPfZ9be2ZLqQbZ0K2qo_PX_7nsDByUlBLm30MhWG34n844sakO9843a-uv6Ab0W1lk
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELZKGQAhxFOUR8nAhJQ2jp3XiCqqQh8LReoW2Y4NQWlaNelAB347duIUKiEG1ugcR5-du7P83X0A3HJ1NYUYNxnCgYnVJSFxXGFaVsQdZlOP8oLlO3J7L_hp4kxqoFPVwihapfb9pU8vvLV-0tZotudx3H5WhTgqnVc5j1K_2QLb2JGTyU3d-vzmeUBYlAora1OZV1ebBclLZJnmU6KWpYQ_fg9O-3OSSchEqXXxIwB1D8GBzhyN-_LjjkCNp8dgb7huu5qdAK_PFylP4hWPDLFcrT4MkpeKVtzomFMuw5LBkqXqjSAjlkGS19kizt-mp2DcfRh3eqZWRpCQ2l5uSoAR9SSONsNcUGxDRGhgW5HwPWJRBzEsTwry0OxDDnHEA-gHIsIOc2HkEYHOQD2dpfwcGG6R8TCH-BbB8u8mrlAN7YXAgUDUjhrAqhAJme4arsQrkrCih72HEkStZolCCWID3K2HzMuWGX8Z4wrmcGPdQ-nS_xrW3FiS9US2dCqqpfzF_957A3Z64-EgHDyO-pdgtyKHQPcK1PPFkl_LDCSnzWKHfQF_2Nch
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Kernelized+fuzzy+attribute+C-means+clustering+algorithm&rft.jtitle=Fuzzy+sets+and+systems&rft.au=Liu%2C+Jingwei&rft.au=Xu%2C+Meizhi&rft.date=2008-09-16&rft.issn=0165-0114&rft.volume=159&rft.issue=18&rft.spage=2428&rft.epage=2445&rft_id=info:doi/10.1016%2Fj.fss.2008.03.018&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_fss_2008_03_018
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0165-0114&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0165-0114&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0165-0114&client=summon