Kernelized fuzzy attribute C-means clustering algorithm
A novel kernelized fuzzy attribute C-means clustering algorithm is proposed in this paper. Since attribute means clustering algorithm is an extension of fuzzy C-means algorithm with weighting exponent m = 2 , and fuzzy attribute C-means clustering is a general type of attribute C-means clustering wi...
Saved in:
| Published in | Fuzzy sets and systems Vol. 159; no. 18; pp. 2428 - 2445 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
Amsterdam
Elsevier B.V
16.09.2008
Elsevier |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0165-0114 1872-6801 |
| DOI | 10.1016/j.fss.2008.03.018 |
Cover
| Abstract | A novel kernelized fuzzy attribute C-means clustering algorithm is proposed in this paper. Since attribute means clustering algorithm is an extension of fuzzy C-means algorithm with weighting exponent
m
=
2
, and fuzzy attribute C-means clustering is a general type of attribute C-means clustering with weighting exponent
m
>
1
, we modify the distance in fuzzy attribute C-means clustering algorithm with kernel-induced distance, and obtain kernelized fuzzy attribute C-means clustering algorithm. Kernelized fuzzy attribute C-means clustering algorithm is a natural generalization of kernelized fuzzy C-means algorithm with stable function. Experimental results on standard Iris database and tumor/normal gene chip expression data demonstrate that kernelized fuzzy attribute C-means clustering algorithm with Gaussian radial basis kernel function and Cauchy stable function is more effective and robust than fuzzy C-means, fuzzy attribute C-means clustering and kernelized fuzzy C-means as well. |
|---|---|
| AbstractList | A novel kernelized fuzzy attribute C-means clustering algorithm is proposed in this paper. Since attribute means clustering algorithm is an extension of fuzzy C-means algorithm with weighting exponent
m
=
2
, and fuzzy attribute C-means clustering is a general type of attribute C-means clustering with weighting exponent
m
>
1
, we modify the distance in fuzzy attribute C-means clustering algorithm with kernel-induced distance, and obtain kernelized fuzzy attribute C-means clustering algorithm. Kernelized fuzzy attribute C-means clustering algorithm is a natural generalization of kernelized fuzzy C-means algorithm with stable function. Experimental results on standard Iris database and tumor/normal gene chip expression data demonstrate that kernelized fuzzy attribute C-means clustering algorithm with Gaussian radial basis kernel function and Cauchy stable function is more effective and robust than fuzzy C-means, fuzzy attribute C-means clustering and kernelized fuzzy C-means as well. |
| Author | Xu, Meizhi Liu, Jingwei |
| Author_xml | – sequence: 1 givenname: Jingwei surname: Liu fullname: Liu, Jingwei email: jwliu@buaa.edu.cn, liujingwei03@tsinghua.org.cn organization: LMIB and Department of Mathematics, Beijing University of Aeronautics and Astronautics, Beijing 100083, PR China – sequence: 2 givenname: Meizhi surname: Xu fullname: Xu, Meizhi organization: Department of Mathematics, Tsinghua University, Beijing 100084, PR China |
| BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=20538943$$DView record in Pascal Francis |
| BookMark | eNp9kD1PwzAURS1UJFrgB7BlYUzws5PYEROq-BKVWLpbjvNcXKVOZbtI7a8nVWFh6PTucM-V3pmRiR88EnIHtAAK9cO6sDEWjFJZUF5QkBdkClKwvJYUJmQ6dqqcApRXZBbjmtIx13RKxAcGj707YJfZ3eGwz3RKwbW7hNk836D2MTP9LiYMzq8y3a-G4NLX5oZcWt1HvP2912T58rycv-WLz9f3-dMiN5yJlAM0vBWiRWZKtG3JgOu2YbSzUmjaVtyUVdVgyyQglB02IBvblZWpoRPa8mtyf5rd6mh0b4P2xkW1DW6jw14xWnHZlHzsiVPPhCHGgFYZl3Ryg09Bu14BVUdNaq1GTeqoSVGuRk0jCf_Iv_FzzOOJwfHzb4dBRePQG-xcQJNUN7gz9A_ItoJ4 |
| CODEN | FSSYD8 |
| CitedBy_id | crossref_primary_10_1016_j_fss_2009_10_014 crossref_primary_10_1007_s00500_020_04879_8 crossref_primary_10_1016_j_compbiolchem_2021_107454 crossref_primary_10_1177_0954405412446283 crossref_primary_10_1111_jfpe_12916 crossref_primary_10_1016_j_fss_2015_07_019 crossref_primary_10_1109_RBME_2010_2083647 crossref_primary_10_1109_TETCI_2020_3016302 crossref_primary_10_3923_jse_2017_172_182 crossref_primary_10_1007_s12204_013_1414_1 crossref_primary_10_1016_j_segan_2023_101013 crossref_primary_10_3390_pr9060907 crossref_primary_10_1007_s12652_020_02485_y crossref_primary_10_1016_j_compbiomed_2013_05_011 crossref_primary_10_1016_j_eswa_2024_124087 crossref_primary_10_1016_j_energy_2019_116253 crossref_primary_10_1016_j_eswa_2012_05_038 crossref_primary_10_1016_j_isatra_2014_05_019 crossref_primary_10_3390_app14041649 crossref_primary_10_1007_s10044_020_00932_2 crossref_primary_10_1007_s11042_011_0868_0 crossref_primary_10_1016_j_asoc_2019_105838 crossref_primary_10_3390_s19071520 crossref_primary_10_1016_j_proeng_2012_07_266 crossref_primary_10_1109_TFUZZ_2013_2280141 crossref_primary_10_3390_su142113880 crossref_primary_10_1016_j_isatra_2011_10_005 crossref_primary_10_1080_17538947_2022_2083247 crossref_primary_10_1155_2012_302624 crossref_primary_10_1002_int_21723 crossref_primary_10_3390_rs16173181 crossref_primary_10_1007_s00500_014_1481_8 crossref_primary_10_1016_j_asoc_2012_12_024 crossref_primary_10_1016_j_chemolab_2012_07_007 crossref_primary_10_1007_s41060_023_00474_w crossref_primary_10_1016_j_asoc_2023_110948 |
| Cites_doi | 10.1109/TNN.2002.1000150 10.1109/72.788641 10.1016/j.artmed.2004.01.012 10.1109/TFUZZ.2003.814839 10.1080/01969727308546046 10.1016/j.patrec.2004.10.001 10.1023/B:NEPL.0000011135.19145.1b 10.1016/S0031-3203(01)00197-2 10.1016/S0019-9958(65)90241-X |
| ContentType | Journal Article |
| Copyright | 2008 Elsevier B.V. 2008 INIST-CNRS |
| Copyright_xml | – notice: 2008 Elsevier B.V. – notice: 2008 INIST-CNRS |
| DBID | AAYXX CITATION IQODW |
| DOI | 10.1016/j.fss.2008.03.018 |
| DatabaseName | CrossRef Pascal-Francis |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Mathematics Applied Sciences |
| EISSN | 1872-6801 |
| EndPage | 2445 |
| ExternalDocumentID | 20538943 10_1016_j_fss_2008_03_018 S0165011408001553 |
| GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1OL 1RT 1~. 1~5 29H 4.4 457 4G. 5VS 7-5 71M 8P~ 9JN 9JO AAAKF AAAKG AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARIN AAXUO AAYFN ABAOU ABBOA ABEFU ABFNM ABJNI ABMAC ABUCO ABXDB ABYKQ ACAZW ACDAQ ACGFS ACNCT ACNNM ACRLP ACZNC ADBBV ADEZE ADGUI ADJOM ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AI. AIALX AIEXJ AIGVJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD APLSM ARUGR ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F0J FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HAMUX HLZ HVGLF HZ~ IHE J1W JJJVA K-O KOM LG9 LY1 M41 MHUIS MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SBC SDF SDG SDP SDS SES SEW SPC SPCBC SSB SSD SST SSV SSW SSZ T5K TN5 VH1 WH7 WUQ XPP ZMT ~02 ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD AFXIZ AGCQF AGRNS BNPGV IQODW SSH |
| ID | FETCH-LOGICAL-c327t-1193b77be2c4efb4213ab920df87a0b53c4559eb281e14de9189fd45c61d7af3 |
| IEDL.DBID | AIKHN |
| ISSN | 0165-0114 |
| IngestDate | Mon Jul 21 09:15:28 EDT 2025 Wed Oct 01 01:33:11 EDT 2025 Thu Apr 24 23:06:25 EDT 2025 Fri Feb 23 02:20:25 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 18 |
| Keywords | Fuzzy clustering Fuzzy C-means Kernelized fuzzy C-means Attribute means clustering Kernel function Engineering Experimental result Fuzzy system Information processing Database Fuzzy set Algorithm |
| Language | English |
| License | https://www.elsevier.com/tdm/userlicense/1.0 CC BY 4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c327t-1193b77be2c4efb4213ab920df87a0b53c4559eb281e14de9189fd45c61d7af3 |
| PageCount | 18 |
| ParticipantIDs | pascalfrancis_primary_20538943 crossref_citationtrail_10_1016_j_fss_2008_03_018 crossref_primary_10_1016_j_fss_2008_03_018 elsevier_sciencedirect_doi_10_1016_j_fss_2008_03_018 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2008-09-16 |
| PublicationDateYYYYMMDD | 2008-09-16 |
| PublicationDate_xml | – month: 09 year: 2008 text: 2008-09-16 day: 16 |
| PublicationDecade | 2000 |
| PublicationPlace | Amsterdam |
| PublicationPlace_xml | – name: Amsterdam |
| PublicationTitle | Fuzzy sets and systems |
| PublicationYear | 2008 |
| Publisher | Elsevier B.V Elsevier |
| Publisher_xml | – name: Elsevier B.V – name: Elsevier |
| References | Vapnik (bib15) 1998 Cheng (bib2) 1998; 9 Zhang, Zhou, Jiao (bib20) 2002; 25 Chiang, Hao (bib4) 2003; 11 Sun, He, Feng (bib14) 2007; 43 Wu, Yang (bib16) 2002; 35 J.W. Liu, Statistical learning based on DTW similarity and its application in pattern recognition, Ph.D. Dissertation of Peking University, July, 2002. Scholkopf, Mika, Burges, Knirsch, Muller, Ratsch, Smola (bib12) 1999; 10 Zadeh (bib17) 1965; 8 Shen, Wang, Fuzzy kernel clustering with outliers (bib13) 2004; 15 Zhang, Chen (bib19) 2004; 32 Liu, Xu (bib10) 2007; 33 Liu, Cheng (bib9) 2002; 38 Kim, Lee, Lee, Lee (bib7) 2005; 26 Zhang, Chen (bib18) 2003; 18 Girolami (bib6) 2002; 13 Bezdek (bib1) 1981 Roth, Steinhage (bib11) 1999 Dunn (bib5) 1974; 3 Cheng (bib3) 1993 Zadeh (10.1016/j.fss.2008.03.018_bib17) 1965; 8 Sun (10.1016/j.fss.2008.03.018_bib14) 2007; 43 Vapnik (10.1016/j.fss.2008.03.018_bib15) 1998 Liu (10.1016/j.fss.2008.03.018_bib10) 2007; 33 Kim (10.1016/j.fss.2008.03.018_bib7) 2005; 26 10.1016/j.fss.2008.03.018_bib8 Shen (10.1016/j.fss.2008.03.018_bib13) 2004; 15 Zhang (10.1016/j.fss.2008.03.018_bib18) 2003; 18 Roth (10.1016/j.fss.2008.03.018_bib11) 1999 Zhang (10.1016/j.fss.2008.03.018_bib20) 2002; 25 Liu (10.1016/j.fss.2008.03.018_bib9) 2002; 38 Wu (10.1016/j.fss.2008.03.018_bib16) 2002; 35 Zhang (10.1016/j.fss.2008.03.018_bib19) 2004; 32 Dunn (10.1016/j.fss.2008.03.018_bib5) 1974; 3 Scholkopf (10.1016/j.fss.2008.03.018_bib12) 1999; 10 Bezdek (10.1016/j.fss.2008.03.018_bib1) 1981 Cheng (10.1016/j.fss.2008.03.018_bib2) 1998; 9 Chiang (10.1016/j.fss.2008.03.018_bib4) 2003; 11 Cheng (10.1016/j.fss.2008.03.018_bib3) 1993 Girolami (10.1016/j.fss.2008.03.018_bib6) 2002; 13 |
| References_xml | – volume: 15 start-page: 1021 year: 2004 end-page: 1029 ident: bib13 publication-title: J. Software – volume: 43 start-page: 82 year: 2007 end-page: 84 ident: bib14 article-title: A novel classification method—AMC–ASVM publication-title: Acta Sci. Natur. Univ. Pekinensis – volume: 26 start-page: 879 year: 2005 end-page: 891 ident: bib7 article-title: A kernel-based subtractive clustering method publication-title: Pattern Recognition Lett. – volume: 32 start-page: 37 year: 2004 end-page: 50 ident: bib19 article-title: A novel kernelized fuzzy C-means algorithm with application in medical image segmentation publication-title: Artificial Intelligence Med. – reference: J.W. Liu, Statistical learning based on DTW similarity and its application in pattern recognition, Ph.D. Dissertation of Peking University, July, 2002. – start-page: 568 year: 1999 end-page: 574 ident: bib11 article-title: Nonlinear discriminant analysis using kernel functions publication-title: Advances in Neural Information Processing Systems – volume: 11 start-page: 518 year: 2003 end-page: 527 ident: bib4 article-title: A new kernel-based fuzzy clustering approach: support vector clustering with cell growing publication-title: IEEE Trans. Fuzzy Systems – volume: 25 start-page: 587 year: 2002 end-page: 590 ident: bib20 article-title: Kernel clustering algorithm publication-title: Chinese J. Comput. – volume: 8 start-page: 338 year: 1965 end-page: 353 ident: bib17 article-title: Fuzzy sets publication-title: Inform. and Control – year: 1981 ident: bib1 article-title: Pattern Recognition with Fuzzy Objective Function Algorithms – volume: 10 start-page: 1000 year: 1999 end-page: 1017 ident: bib12 article-title: Input space versus feature space in kernel-based methods publication-title: IEEE Trans. Neural Networks – volume: 13 start-page: 780 year: 2002 end-page: 784 ident: bib6 article-title: Mercer Kernel-based clustering in feature space publication-title: IEEE Trans. Neural Networks – volume: 35 start-page: 2267 year: 2002 end-page: 2278 ident: bib16 article-title: Alternative C-means clustering algorithms publication-title: Pattern recognition – year: 1998 ident: bib15 article-title: The Nature of Statistical Learning Theory – volume: 18 start-page: 155 year: 2003 end-page: 162 ident: bib18 article-title: Clustering incomplete data using kernel-based fuzzy C-means algorithm publication-title: Neural Process. Lett. – volume: 3 start-page: 32 year: 1974 end-page: 57 ident: bib5 article-title: A fuzzy relative of the ISODATA process and its use in detecting compact well-separated clusters publication-title: J. Cybernet. – volume: 33 start-page: 1121 year: 2007 end-page: 1126 ident: bib10 article-title: Bezdek type fuzzy attribute C-means clustering algorithm publication-title: J. Beijing Univ. Aeronautics and Astronautics – year: 1993 ident: bib3 article-title: Mathematical Principle of Digital Signal Processing – volume: 38 start-page: 611 year: 2002 end-page: 615 ident: bib9 article-title: Dynamic programming based gene chip recognition publication-title: Acta Sci. Natur. Univ. Pekinensis – volume: 9 start-page: 124 year: 1998 end-page: 126 ident: bib2 article-title: Attribute means clustering publication-title: Systems Engineering Theory Practice – volume: 13 start-page: 780 year: 2002 ident: 10.1016/j.fss.2008.03.018_bib6 article-title: Mercer Kernel-based clustering in feature space publication-title: IEEE Trans. Neural Networks doi: 10.1109/TNN.2002.1000150 – volume: 33 start-page: 1121 year: 2007 ident: 10.1016/j.fss.2008.03.018_bib10 article-title: Bezdek type fuzzy attribute C-means clustering algorithm publication-title: J. Beijing Univ. Aeronautics and Astronautics – volume: 10 start-page: 1000 year: 1999 ident: 10.1016/j.fss.2008.03.018_bib12 article-title: Input space versus feature space in kernel-based methods publication-title: IEEE Trans. Neural Networks doi: 10.1109/72.788641 – volume: 32 start-page: 37 year: 2004 ident: 10.1016/j.fss.2008.03.018_bib19 article-title: A novel kernelized fuzzy C-means algorithm with application in medical image segmentation publication-title: Artificial Intelligence Med. doi: 10.1016/j.artmed.2004.01.012 – year: 1981 ident: 10.1016/j.fss.2008.03.018_bib1 – year: 1993 ident: 10.1016/j.fss.2008.03.018_bib3 – volume: 9 start-page: 124 year: 1998 ident: 10.1016/j.fss.2008.03.018_bib2 article-title: Attribute means clustering publication-title: Systems Engineering Theory Practice – volume: 11 start-page: 518 year: 2003 ident: 10.1016/j.fss.2008.03.018_bib4 article-title: A new kernel-based fuzzy clustering approach: support vector clustering with cell growing publication-title: IEEE Trans. Fuzzy Systems doi: 10.1109/TFUZZ.2003.814839 – volume: 3 start-page: 32 year: 1974 ident: 10.1016/j.fss.2008.03.018_bib5 article-title: A fuzzy relative of the ISODATA process and its use in detecting compact well-separated clusters publication-title: J. Cybernet. doi: 10.1080/01969727308546046 – ident: 10.1016/j.fss.2008.03.018_bib8 – year: 1998 ident: 10.1016/j.fss.2008.03.018_bib15 – volume: 38 start-page: 611 year: 2002 ident: 10.1016/j.fss.2008.03.018_bib9 article-title: Dynamic programming based gene chip recognition publication-title: Acta Sci. Natur. Univ. Pekinensis – start-page: 568 year: 1999 ident: 10.1016/j.fss.2008.03.018_bib11 article-title: Nonlinear discriminant analysis using kernel functions – volume: 26 start-page: 879 year: 2005 ident: 10.1016/j.fss.2008.03.018_bib7 article-title: A kernel-based subtractive clustering method publication-title: Pattern Recognition Lett. doi: 10.1016/j.patrec.2004.10.001 – volume: 18 start-page: 155 year: 2003 ident: 10.1016/j.fss.2008.03.018_bib18 article-title: Clustering incomplete data using kernel-based fuzzy C-means algorithm publication-title: Neural Process. Lett. doi: 10.1023/B:NEPL.0000011135.19145.1b – volume: 35 start-page: 2267 year: 2002 ident: 10.1016/j.fss.2008.03.018_bib16 article-title: Alternative C-means clustering algorithms publication-title: Pattern recognition doi: 10.1016/S0031-3203(01)00197-2 – volume: 25 start-page: 587 year: 2002 ident: 10.1016/j.fss.2008.03.018_bib20 article-title: Kernel clustering algorithm publication-title: Chinese J. Comput. – volume: 8 start-page: 338 year: 1965 ident: 10.1016/j.fss.2008.03.018_bib17 article-title: Fuzzy sets publication-title: Inform. and Control doi: 10.1016/S0019-9958(65)90241-X – volume: 43 start-page: 82 year: 2007 ident: 10.1016/j.fss.2008.03.018_bib14 article-title: A novel classification method—AMC–ASVM publication-title: Acta Sci. Natur. Univ. Pekinensis – volume: 15 start-page: 1021 year: 2004 ident: 10.1016/j.fss.2008.03.018_bib13 publication-title: J. Software |
| SSID | ssj0001160 |
| Score | 2.1390972 |
| Snippet | A novel kernelized fuzzy attribute C-means clustering algorithm is proposed in this paper. Since attribute means clustering algorithm is an extension of fuzzy... |
| SourceID | pascalfrancis crossref elsevier |
| SourceType | Index Database Enrichment Source Publisher |
| StartPage | 2428 |
| SubjectTerms | Applied sciences Attribute means clustering Circuit properties Computer science; control theory; systems Control theory. Systems Digital circuits Electric, optical and optoelectronic circuits Electronic circuits Electronics Exact sciences and technology Fuzzy C-means Fuzzy clustering Information, signal and communications theory Kernelized fuzzy C-means Mathematical methods Miscellaneous System theory Telecommunications and information theory Theoretical computing |
| Title | Kernelized fuzzy attribute C-means clustering algorithm |
| URI | https://dx.doi.org/10.1016/j.fss.2008.03.018 |
| Volume | 159 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier ScienceDirect customDbUrl: eissn: 1872-6801 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001160 issn: 0165-0114 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection customDbUrl: eissn: 1872-6801 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001160 issn: 0165-0114 databaseCode: ACRLP dateStart: 19950113 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1872-6801 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001160 issn: 0165-0114 databaseCode: AIKHN dateStart: 19950113 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1872-6801 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001160 issn: 0165-0114 databaseCode: AKRWK dateStart: 19780101 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB76uCgiPrE-Sg6ehLTZ7OZ1LMVSLfZihd7CZrOrkfRBmx7swd_ubrIJFqQHr2EnCd8mM7PMN_MB3HNVmsKMmwyTwCSqSEgdV5iWFXOH2ZEX8ZzlO3aHb-R56kxr0C97YRStUvv-wqfn3lpf6Wo0u8sk6b6qRhyVzqucR6nf1KEp44_vN6DZexoNx5VDRihvFlbrTWVQFjdzmpdYrzWjEncsJf3xd3g6WtK1BE0Uahe_QtDgBI517mj0itc7hRqfn8HhSzV4dX0O3oiv5jxNtjw2xGa7_TJoVmhacaNvzrgMTAZLN2o6goxZBk3fF6sk-5hdwGTwOOkPTa2NIEG1vcyUEOPIk0jajHARERthGgW2FQvfo1bkYEbkWUEem33EEYl5gPxAxMRhLoo9KvAlNOaLOb8Cw81zHuZQ36JE_t_UFWqkvRAkEDiy4xZYJSIh03PDlXxFGpYEsc9Qgqj1LHEoQWzBQ2WyLIZm7FtMSpjDnZ0PpVPfZ9be2ZLqQbZ0K2qo_PX_7nsDByUlBLm30MhWG34n844sakO9843a-uv6Ab0W1lk |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELZKGQAhxFOUR8nAhJQ2jp3XiCqqQh8LReoW2Y4NQWlaNelAB347duIUKiEG1ugcR5-du7P83X0A3HJ1NYUYNxnCgYnVJSFxXGFaVsQdZlOP8oLlO3J7L_hp4kxqoFPVwihapfb9pU8vvLV-0tZotudx3H5WhTgqnVc5j1K_2QLb2JGTyU3d-vzmeUBYlAora1OZV1ebBclLZJnmU6KWpYQ_fg9O-3OSSchEqXXxIwB1D8GBzhyN-_LjjkCNp8dgb7huu5qdAK_PFylP4hWPDLFcrT4MkpeKVtzomFMuw5LBkqXqjSAjlkGS19kizt-mp2DcfRh3eqZWRpCQ2l5uSoAR9SSONsNcUGxDRGhgW5HwPWJRBzEsTwry0OxDDnHEA-gHIsIOc2HkEYHOQD2dpfwcGG6R8TCH-BbB8u8mrlAN7YXAgUDUjhrAqhAJme4arsQrkrCih72HEkStZolCCWID3K2HzMuWGX8Z4wrmcGPdQ-nS_xrW3FiS9US2dCqqpfzF_957A3Z64-EgHDyO-pdgtyKHQPcK1PPFkl_LDCSnzWKHfQF_2Nch |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Kernelized+fuzzy+attribute+C-means+clustering+algorithm&rft.jtitle=Fuzzy+sets+and+systems&rft.au=Liu%2C+Jingwei&rft.au=Xu%2C+Meizhi&rft.date=2008-09-16&rft.issn=0165-0114&rft.volume=159&rft.issue=18&rft.spage=2428&rft.epage=2445&rft_id=info:doi/10.1016%2Fj.fss.2008.03.018&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_fss_2008_03_018 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0165-0114&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0165-0114&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0165-0114&client=summon |