Virtual Screening of C. Sativa Constituents for the Identification of Selective Ligands for Cannabinoid Receptor 2
The selective targeting of the cannabinoid receptor 2 (CB2) is crucial for the development of peripheral system-acting cannabinoid analgesics. This work aimed at computer-assisted identification of prospective CB2-selective compounds among the constituents of Cannabis Sativa. The molecular structure...
Saved in:
Published in | International journal of molecular sciences Vol. 21; no. 15; p. 5308 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
26.07.2020
MDPI |
Subjects | |
Online Access | Get full text |
ISSN | 1422-0067 1661-6596 1422-0067 |
DOI | 10.3390/ijms21155308 |
Cover
Abstract | The selective targeting of the cannabinoid receptor 2 (CB2) is crucial for the development of peripheral system-acting cannabinoid analgesics. This work aimed at computer-assisted identification of prospective CB2-selective compounds among the constituents of Cannabis Sativa. The molecular structures and corresponding binding affinities to CB1 and CB2 receptors were collected from ChEMBL. The molecular structures of Cannabis Sativa constituents were collected from a phytochemical database. The collected records were curated and applied for the development of quantitative structure-activity relationship (QSAR) models with a machine learning approach. The validated models predicted the affinities of Cannabis Sativa constituents. Four structures of CB2 were acquired from the Protein Data Bank (PDB) and the discriminatory ability of CB2-selective ligands and two sets of decoys were tested. We succeeded in developing the QSAR model by achieving Q2 5-CV > 0.62. The QSAR models helped to identify three prospective CB2-selective molecules that are dissimilar to already tested compounds. In a complementary structure-based virtual screening study that used available PDB structures of CB2, the agonist-bound, Cryogenic Electron Microscopy structure of CB2 showed the best statistical performance in discriminating between CB2-active and non-active ligands. The same structure also performed best in discriminating between CB2-selective ligands from non-selective ligands. |
---|---|
AbstractList | The selective targeting of the cannabinoid receptor 2 (CB2) is crucial for the development of peripheral system-acting cannabinoid analgesics. This work aimed at computer-assisted identification of prospective CB2-selective compounds among the constituents of
Cannabis Sativa
. The molecular structures and corresponding binding affinities to CB1 and CB2 receptors were collected from ChEMBL. The molecular structures of
Cannabis Sativa
constituents were collected from a phytochemical database. The collected records were curated and applied for the development of quantitative structure-activity relationship (QSAR) models with a machine learning approach. The validated models predicted the affinities of
Cannabis Sativa
constituents. Four structures of CB2 were acquired from the Protein Data Bank (PDB) and the discriminatory ability of CB2-selective ligands and two sets of decoys were tested. We succeeded in developing the QSAR model by achieving Q
2
5-CV > 0.62. The QSAR models helped to identify three prospective CB2-selective molecules that are dissimilar to already tested compounds. In a complementary structure-based virtual screening study that used available PDB structures of CB2, the agonist-bound, Cryogenic Electron Microscopy structure of CB2 showed the best statistical performance in discriminating between CB2-active and non-active ligands. The same structure also performed best in discriminating between CB2-selective ligands from non-selective ligands. The selective targeting of the cannabinoid receptor 2 (CB2) is crucial for the development of peripheral system-acting cannabinoid analgesics. This work aimed at computer-assisted identification of prospective CB2-selective compounds among the constituents of . The molecular structures and corresponding binding affinities to CB1 and CB2 receptors were collected from ChEMBL. The molecular structures of constituents were collected from a phytochemical database. The collected records were curated and applied for the development of quantitative structure-activity relationship (QSAR) models with a machine learning approach. The validated models predicted the affinities of constituents. Four structures of CB2 were acquired from the Protein Data Bank (PDB) and the discriminatory ability of CB2-selective ligands and two sets of decoys were tested. We succeeded in developing the QSAR model by achieving Q 5-CV > 0.62. The QSAR models helped to identify three prospective CB2-selective molecules that are dissimilar to already tested compounds. In a complementary structure-based virtual screening study that used available PDB structures of CB2, the agonist-bound, Cryogenic Electron Microscopy structure of CB2 showed the best statistical performance in discriminating between CB2-active and non-active ligands. The same structure also performed best in discriminating between CB2-selective ligands from non-selective ligands. The selective targeting of the cannabinoid receptor 2 (CB2) is crucial for the development of peripheral system-acting cannabinoid analgesics. This work aimed at computer-assisted identification of prospective CB2-selective compounds among the constituents of Cannabis Sativa. The molecular structures and corresponding binding affinities to CB1 and CB2 receptors were collected from ChEMBL. The molecular structures of Cannabis Sativa constituents were collected from a phytochemical database. The collected records were curated and applied for the development of quantitative structure-activity relationship (QSAR) models with a machine learning approach. The validated models predicted the affinities of Cannabis Sativa constituents. Four structures of CB2 were acquired from the Protein Data Bank (PDB) and the discriminatory ability of CB2-selective ligands and two sets of decoys were tested. We succeeded in developing the QSAR model by achieving Q2 5-CV > 0.62. The QSAR models helped to identify three prospective CB2-selective molecules that are dissimilar to already tested compounds. In a complementary structure-based virtual screening study that used available PDB structures of CB2, the agonist-bound, Cryogenic Electron Microscopy structure of CB2 showed the best statistical performance in discriminating between CB2-active and non-active ligands. The same structure also performed best in discriminating between CB2-selective ligands from non-selective ligands. The selective targeting of the cannabinoid receptor 2 (CB2) is crucial for the development of peripheral system-acting cannabinoid analgesics. This work aimed at computer-assisted identification of prospective CB2-selective compounds among the constituents of Cannabis Sativa. The molecular structures and corresponding binding affinities to CB1 and CB2 receptors were collected from ChEMBL. The molecular structures of Cannabis Sativa constituents were collected from a phytochemical database. The collected records were curated and applied for the development of quantitative structure-activity relationship (QSAR) models with a machine learning approach. The validated models predicted the affinities of Cannabis Sativa constituents. Four structures of CB2 were acquired from the Protein Data Bank (PDB) and the discriminatory ability of CB2-selective ligands and two sets of decoys were tested. We succeeded in developing the QSAR model by achieving Q2 5-CV > 0.62. The QSAR models helped to identify three prospective CB2-selective molecules that are dissimilar to already tested compounds. In a complementary structure-based virtual screening study that used available PDB structures of CB2, the agonist-bound, Cryogenic Electron Microscopy structure of CB2 showed the best statistical performance in discriminating between CB2-active and non-active ligands. The same structure also performed best in discriminating between CB2-selective ligands from non-selective ligands.The selective targeting of the cannabinoid receptor 2 (CB2) is crucial for the development of peripheral system-acting cannabinoid analgesics. This work aimed at computer-assisted identification of prospective CB2-selective compounds among the constituents of Cannabis Sativa. The molecular structures and corresponding binding affinities to CB1 and CB2 receptors were collected from ChEMBL. The molecular structures of Cannabis Sativa constituents were collected from a phytochemical database. The collected records were curated and applied for the development of quantitative structure-activity relationship (QSAR) models with a machine learning approach. The validated models predicted the affinities of Cannabis Sativa constituents. Four structures of CB2 were acquired from the Protein Data Bank (PDB) and the discriminatory ability of CB2-selective ligands and two sets of decoys were tested. We succeeded in developing the QSAR model by achieving Q2 5-CV > 0.62. The QSAR models helped to identify three prospective CB2-selective molecules that are dissimilar to already tested compounds. In a complementary structure-based virtual screening study that used available PDB structures of CB2, the agonist-bound, Cryogenic Electron Microscopy structure of CB2 showed the best statistical performance in discriminating between CB2-active and non-active ligands. The same structure also performed best in discriminating between CB2-selective ligands from non-selective ligands. |
Author | Cielecka-Piontek, Judyta Mizera, Mikołaj Latek, Dorota |
AuthorAffiliation | 2 Faculty of Chemistry, University of Warsaw, 02-093 Warsaw, Poland; dlatek@chem.uw.edu.pl 1 Department of Pharmacognosy, Poznan University of Medical Sciences, 60-781 Poznań, Poland; mikolajmizera@gmail.com |
AuthorAffiliation_xml | – name: 1 Department of Pharmacognosy, Poznan University of Medical Sciences, 60-781 Poznań, Poland; mikolajmizera@gmail.com – name: 2 Faculty of Chemistry, University of Warsaw, 02-093 Warsaw, Poland; dlatek@chem.uw.edu.pl |
Author_xml | – sequence: 1 givenname: Mikołaj orcidid: 0000-0001-5465-1990 surname: Mizera fullname: Mizera, Mikołaj – sequence: 2 givenname: Dorota orcidid: 0000-0002-0429-0637 surname: Latek fullname: Latek, Dorota – sequence: 3 givenname: Judyta orcidid: 0000-0003-0891-5419 surname: Cielecka-Piontek fullname: Cielecka-Piontek, Judyta |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32722631$$D View this record in MEDLINE/PubMed |
BookMark | eNptkc1rFDEYxoNU7IfePEvAi4duzbz5mJmLUAarhQXBVa8hySTbLLPJmmQK_vdm3VbW4inJm9_z8CTPOToJMViEXjfkitKevPebbYam4ZyS7hk6axjAghDRnhztT9F5zhtCgALvX6BTCi2AoM0ZSj98KrOa8Moka4MPaxwdHq7wShV_r_AQQy6-zDaUjF1MuNxZfDvWo3feVCaGvWBlJ2uqwOKlX6swHthBhaC0D9GP-Ks1dlfqEF6i505N2b56WC_Q95uP34bPi-WXT7fD9XJharxuYaGB3jjdGaGpdjAqoTQX_dhy53ottIFOdLoBYhwzrVCs185oZjjlamwFvUAfDr67WW_taGrmpCa5S36r0i8ZlZf_3gR_J9fxXraMAhN7g3cPBin-nG0ucuuzsdOkgo1zlsCg45yRjlX07RN0E-cU6vP2VE9pS9uuUm-OE_2N8lhHBeAAmBRzTtZJ48ufT64B_SQbIvedy-POq-jyiejR97_4bz2Lr0g |
CitedBy_id | crossref_primary_10_1016_j_compbiomed_2022_106379 crossref_primary_10_1021_acs_jcim_3c00914 crossref_primary_10_1016_j_compbiomed_2023_107314 crossref_primary_10_3390_ijms22084060 crossref_primary_10_3390_pharmaceutics15020516 crossref_primary_10_3390_ijms241915009 |
Cites_doi | 10.1021/acs.jcim.6b00499 10.1016/j.pbb.2008.05.010 10.1208/s12249-019-1514-9 10.1016/j.synres.2019.100056 10.1016/j.talanta.2015.01.032 10.1111/epi.12631 10.1007/s11064-005-6978-1 10.1021/ci100176x 10.1021/acs.est.9b07747 10.1016/j.talanta.2016.11.041 10.1371/journal.pone.0210705 10.1016/S0031-9422(00)88794-4 10.3390/molecules23092183 10.1016/j.bmc.2009.07.053 10.1038/525S1a 10.1038/s41586-019-0917-9 10.1021/jm300687e 10.1371/journal.pone.0208892 10.1016/j.neuropharm.2019.107740 10.1016/j.toxlet.2016.01.001 10.1039/C5MB00860C 10.1186/s12859-019-3135-4 10.1016/j.cell.2020.01.007 10.3389/fpls.2016.00019 10.1016/j.phrs.2017.05.005 10.1038/s41589-019-0387-2 10.1016/j.jsps.2017.12.017 10.1093/nar/gkr777 10.1007/s00894-011-0986-7 10.1016/j.cell.2020.04.001 10.1021/jm050655g 10.1016/j.asoc.2017.09.040 10.1093/nar/28.1.235 10.1016/j.cell.2020.01.008 10.1016/j.cell.2018.12.011 10.1186/s13321-018-0258-y 10.1007/s00044-019-02303-x 10.1248/cpb.26.3641 10.1089/can.2019.0005 10.1146/annurev-pharmtox-010716-104615 10.1002/minf.201000061 10.1007/978-3-319-54564-6 10.1016/j.chemolab.2020.103982 10.1093/nar/gky965 10.1002/ptr.6400 10.1038/nrd1495 10.1016/j.ejps.2017.01.037 10.1021/acschemneuro.9b00696 10.3390/biom10060900 10.1016/j.lwt.2020.109149 10.1124/pr.58.3.2 10.1038/nature23272 10.1021/acs.jnatprod.5b00949 10.1021/acs.jcim.6b00129 10.1021/jm051256o |
ContentType | Journal Article |
Copyright | 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2020 by the authors. 2020 |
Copyright_xml | – notice: 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2020 by the authors. 2020 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88E 8FI 8FJ 8FK 8G5 ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH GNUQQ GUQSH K9. M0S M1P M2O MBDVC PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS Q9U 7X8 5PM |
DOI | 10.3390/ijms21155308 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Research Library ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One ProQuest Central Korea Proquest Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student Research Library Prep ProQuest Health & Medical Complete (Alumni) Health & Medical Collection (Alumni) Medical Database ProQuest research library Research Library (Corporate) ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database Research Library Prep ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing Research Library (Alumni Edition) ProQuest Central China ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Research Library ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Central Basic ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE Publicly Available Content Database CrossRef MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1422-0067 |
ExternalDocumentID | PMC7432466 32722631 10_3390_ijms21155308 |
Genre | Journal Article |
GrantInformation_xml | – fundername: Narodowe Centrum Nauki grantid: DEC-2018/28/T/NZ7/00472 |
GroupedDBID | --- 29J 2WC 53G 5GY 5VS 7X7 88E 8FE 8FG 8FH 8FI 8FJ 8G5 A8Z AADQD AAFWJ AAHBH AAYXX ABDBF ABUWG ACGFO ACIHN ACIWK ACPRK ACUHS ADBBV AEAQA AENEX AFKRA AFZYC ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BCNDV BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DIK DU5 DWQXO E3Z EBD EBS EJD ESX F5P FRP FYUFA GNUQQ GUQSH GX1 HH5 HMCUK HYE IAO IHR ITC KQ8 LK8 M1P M2O M48 MODMG O5R O5S OK1 OVT P2P PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO RNS RPM TR2 TUS UKHRP ~8M CGR CUY CVF ECM EIF NPM 3V. 7XB 8FK K9. MBDVC PJZUB PKEHL PPXIY PQEST PQUKI PRINS Q9U 7X8 ESTFP PUEGO 5PM |
ID | FETCH-LOGICAL-c3278-e2129cfb8c6b3bf2da6ab569d75ff9b6bc2868b120cf4c76a49bfcb4c535ad763 |
IEDL.DBID | M48 |
ISSN | 1422-0067 1661-6596 |
IngestDate | Thu Aug 21 14:13:59 EDT 2025 Fri Sep 05 06:34:27 EDT 2025 Fri Jul 25 20:04:05 EDT 2025 Thu Apr 03 07:04:44 EDT 2025 Tue Jul 01 04:15:28 EDT 2025 Thu Apr 24 23:05:43 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 15 |
Keywords | QSAR Cannabis Sativa endocannabinoid system |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3278-e2129cfb8c6b3bf2da6ab569d75ff9b6bc2868b120cf4c76a49bfcb4c535ad763 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-0429-0637 0000-0001-5465-1990 0000-0003-0891-5419 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/ijms21155308 |
PMID | 32722631 |
PQID | 2429337378 |
PQPubID | 2032341 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_7432466 proquest_miscellaneous_2428554084 proquest_journals_2429337378 pubmed_primary_32722631 crossref_citationtrail_10_3390_ijms21155308 crossref_primary_10_3390_ijms21155308 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20200726 |
PublicationDateYYYYMMDD | 2020-07-26 |
PublicationDate_xml | – month: 7 year: 2020 text: 20200726 day: 26 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Basel |
PublicationTitle | International journal of molecular sciences |
PublicationTitleAlternate | Int J Mol Sci |
PublicationYear | 2020 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | Grayson (ref_61) 2015; 525 Stokes (ref_19) 2020; 181 ElSohly (ref_2) 2017; 103 Hua (ref_28) 2017; 547 Rong (ref_8) 2017; 121 Donadel (ref_42) 2009; 17 Ji (ref_29) 2020; 11 ref_57 Latek (ref_17) 2011; 17 ref_55 Mizera (ref_22) 2015; 137 ref_51 Andre (ref_3) 2016; 7 Landrum (ref_48) 2013; 1 Sangiovanni (ref_66) 2019; 33 Hua (ref_30) 2020; 180 Devinsky (ref_10) 2014; 55 Russo (ref_11) 2005; 30 Zhang (ref_24) 2019; 28 Jakowiecki (ref_16) 2016; 56 Mangoato (ref_62) 2019; 9 Crombie (ref_43) 1977; 16 Moriwaki (ref_50) 2018; 10 Friesner (ref_56) 2006; 49 Paulke (ref_58) 2016; 245 ref_63 Mysinger (ref_34) 2012; 55 Pacher (ref_14) 2006; 58 Labib (ref_27) 2018; 26 Stonehouse (ref_64) 2020; 54 ref_26 Morales (ref_9) 2017; 103 Zeng (ref_45) 2019; 47 Pusztai (ref_41) 2000; 20 Tropsha (ref_33) 2010; 29 Gaulton (ref_44) 2012; 40 ref_36 ref_35 Soydaner (ref_4) 2016; 79 Berman (ref_53) 2000; 28 Chung (ref_23) 2017; 101 ref_38 Shao (ref_54) 2019; 15 Xing (ref_31) 2020; 180 Marzo (ref_13) 2004; 3 Kasabe (ref_20) 2019; 20 Volkow (ref_7) 2017; 57 Fourches (ref_47) 2016; 56 Molnar (ref_40) 1986; 33 Ancuceanu (ref_37) 2019; 17 Ghasemi (ref_60) 2018; 62 Galaj (ref_5) 2020; 167 Lyu (ref_15) 2019; 566 ref_1 Dubovy (ref_12) 2008; 90 Pedregosa (ref_52) 2011; 12 Kumar (ref_59) 2020; 200 Frassinetti (ref_65) 2020; 124 Chen (ref_25) 2006; 49 ref_49 Chohan (ref_18) 2016; 12 Shoyama (ref_39) 1978; 26 Fourches (ref_46) 2010; 50 Mizera (ref_21) 2017; 164 Li (ref_32) 2019; 176 ref_6 |
References_xml | – ident: ref_49 – ident: ref_55 – volume: 56 start-page: 2457 year: 2016 ident: ref_16 article-title: Hydrophobic ligand entry and exit pathways of the CB1 cannabinoid receptor publication-title: J. Chem. Inf. Model. doi: 10.1021/acs.jcim.6b00499 – volume: 90 start-page: 501 year: 2008 ident: ref_12 article-title: Cannabinoid receptors 1 and 2 (CB1 and CB2), their distribution, ligands and functional involvement in nervous system structures—A short review publication-title: Pharmacol. Biochem. Behav. doi: 10.1016/j.pbb.2008.05.010 – ident: ref_51 – volume: 20 start-page: 308 year: 2019 ident: ref_20 article-title: QSPR Modeling of biopharmaceutical properties of hydroxypropyl methylcellulose (cellulose ethers) tablets based on its degree of polymerization publication-title: AAPS PharmSciTech doi: 10.1208/s12249-019-1514-9 – volume: 9 start-page: 100056 year: 2019 ident: ref_62 article-title: Cannabis sativa L. Extracts can reverse drug resistance in colorectal carcinoma cells in vitro publication-title: Synergy doi: 10.1016/j.synres.2019.100056 – volume: 137 start-page: 174 year: 2015 ident: ref_22 article-title: Prediction of HPLC retention times of tebipenem pivoxyl and its degradation products in solid state by applying adaptive artificial neural network with recursive features elimination publication-title: Talanta doi: 10.1016/j.talanta.2015.01.032 – volume: 55 start-page: 791 year: 2014 ident: ref_10 article-title: Cannabidiol: Pharmacology and potential therapeutic role in epilepsy and other neuropsychiatric disorders publication-title: Epilepsia doi: 10.1111/epi.12631 – volume: 30 start-page: 1037 year: 2005 ident: ref_11 article-title: Agonistic properties of cannabidiol at 5-HT1a receptors publication-title: Neurochem. Res. doi: 10.1007/s11064-005-6978-1 – volume: 50 start-page: 1189 year: 2010 ident: ref_46 article-title: Trust, but verify: On the importance of chemical structure curation in cheminformatics and QSAR modeling research publication-title: J. Chem. Inf. Model. doi: 10.1021/ci100176x – volume: 1 start-page: 1 year: 2013 ident: ref_48 article-title: Rdkit documentation publication-title: Release – volume: 54 start-page: 4221 year: 2020 ident: ref_64 article-title: Selenium metabolism in hemp (Cannabis sativa L.)—Potential for Phytoremediation and biofortification publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.9b07747 – volume: 164 start-page: 164 year: 2017 ident: ref_21 article-title: Quantitative structure-retention relationship model for the determination of naratriptan hydrochloride and its impurities based on artificial neural networks coupled with genetic algorithm publication-title: Talanta doi: 10.1016/j.talanta.2016.11.041 – ident: ref_36 doi: 10.1371/journal.pone.0210705 – volume: 16 start-page: 1413 year: 1977 ident: ref_43 article-title: Cannabinoid acids and esters: Miniaturized synthesis and chromatographic study publication-title: Phytochemistry doi: 10.1016/S0031-9422(00)88794-4 – ident: ref_26 doi: 10.3390/molecules23092183 – volume: 17 start-page: 6251 year: 2009 ident: ref_42 article-title: Tessaric acid derivatives induce G2/M cell cycle arrest in human solid tumor cell lines publication-title: Bioorg. Med. Chem. doi: 10.1016/j.bmc.2009.07.053 – volume: 525 start-page: S1 year: 2015 ident: ref_61 article-title: Cannabis publication-title: Nature doi: 10.1038/525S1a – volume: 566 start-page: 224 year: 2019 ident: ref_15 article-title: Ultra-large library docking for discovering new chemotypes publication-title: Nature doi: 10.1038/s41586-019-0917-9 – volume: 55 start-page: 6582 year: 2012 ident: ref_34 article-title: Directory of useful decoys, enhanced (DUD-E): Better ligands and decoys for better benchmarking publication-title: J. Med. Chem. doi: 10.1021/jm300687e – ident: ref_35 doi: 10.1371/journal.pone.0208892 – volume: 167 start-page: 107740 year: 2020 ident: ref_5 article-title: Cannabidiol attenuates the rewarding effects of cocaine in rats by CB2, 5-HT1A and TRPV1 receptor mechanisms publication-title: Neuropharmacology doi: 10.1016/j.neuropharm.2019.107740 – volume: 245 start-page: 1 year: 2016 ident: ref_58 article-title: Synthetic cannabinoids: In silico prediction of the cannabinoid receptor 1 affinity by a quantitative structure-activity relationship model publication-title: Toxicol. Lett. doi: 10.1016/j.toxlet.2016.01.001 – volume: 12 start-page: 1250 year: 2016 ident: ref_18 article-title: Molecular modeling studies to characterize N-phenylpyrimidin-2-amine selectivity for CDK2 and CDK4 through 3D-QSAR and molecular dynamics simulations publication-title: Mol. Biosyst. doi: 10.1039/C5MB00860C – ident: ref_38 doi: 10.1186/s12859-019-3135-4 – volume: 180 start-page: 645 year: 2020 ident: ref_31 article-title: Cryo-EM structure of the human cannabinoid receptor CB2-Gi signaling complex publication-title: Cell doi: 10.1016/j.cell.2020.01.007 – volume: 7 start-page: 19 year: 2016 ident: ref_3 article-title: Cannabis sativa: The plant of the thousand and one molecules publication-title: Front. Plant Sci. doi: 10.3389/fpls.2016.00019 – volume: 121 start-page: 213 year: 2017 ident: ref_8 article-title: Cannabidiol in medical marijuana: Research vistas and potential opportunities publication-title: Pharmacol. Res. doi: 10.1016/j.phrs.2017.05.005 – volume: 15 start-page: 1199 year: 2019 ident: ref_54 article-title: Structure of an allosteric modulator bound to the CB1 cannabinoid receptor publication-title: Nat. Chem. Biol. doi: 10.1038/s41589-019-0387-2 – volume: 12 start-page: 2825 year: 2011 ident: ref_52 article-title: Scikit-learn: Machine learning in Python publication-title: J. Mach. Learn. Res. – volume: 26 start-page: 437 year: 2018 ident: ref_27 article-title: Secondary metabolites isolated from Pinus roxburghii and interpretation of their cannabinoid and opioid binding properties by virtual screening and in vitro studies publication-title: Saudi Pharm. J. doi: 10.1016/j.jsps.2017.12.017 – volume: 40 start-page: D1100 year: 2012 ident: ref_44 article-title: ChEMBL: A large-scale bioactivity database for drug discovery publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkr777 – volume: 17 start-page: 2353 year: 2011 ident: ref_17 article-title: Modeling of ligand binding to G protein coupled receptors: Cannabinoid CB 1, CB 2 and adrenergic β 2 AR publication-title: J. Mol. Model. doi: 10.1007/s00894-011-0986-7 – volume: 181 start-page: 475 year: 2020 ident: ref_19 article-title: A Deep Learning Approach to Antibiotic Discovery publication-title: Cell doi: 10.1016/j.cell.2020.04.001 – volume: 49 start-page: 625 year: 2006 ident: ref_25 article-title: 3D-QSAR studies of arylpyrazole antagonists of cannabinoid receptor subtypes CB1 and CB2. A combined NMR and CoMFA approach publication-title: J. Med. Chem. doi: 10.1021/jm050655g – volume: 62 start-page: 251 year: 2018 ident: ref_60 article-title: Deep neural network in QSAR studies using deep belief network publication-title: Appl. Soft. Comput. doi: 10.1016/j.asoc.2017.09.040 – volume: 28 start-page: 235 year: 2000 ident: ref_53 article-title: The Protein Data Bank publication-title: Nucleic Acids Res. doi: 10.1093/nar/28.1.235 – volume: 180 start-page: 655 year: 2020 ident: ref_30 article-title: Activation and signaling mechanism revealed by cannabinoid receptor-Gi complex structures publication-title: Cell doi: 10.1016/j.cell.2020.01.008 – volume: 176 start-page: 459 year: 2019 ident: ref_32 article-title: Crystal structure of the human cannabinoid receptor CB2 publication-title: Cell doi: 10.1016/j.cell.2018.12.011 – volume: 10 start-page: 4 year: 2018 ident: ref_50 article-title: Mordred: A molecular descriptor calculator publication-title: J. Cheminform. doi: 10.1186/s13321-018-0258-y – volume: 28 start-page: 498 year: 2019 ident: ref_24 article-title: 4D-QSAR studies of CB 2 cannabinoid receptor inverse agonists: A comparison to 3D-QSAR publication-title: Med. Chem. Res. doi: 10.1007/s00044-019-02303-x – volume: 26 start-page: 3641 year: 1978 ident: ref_39 article-title: Cannabis. XIII. Two new spiro-compounds, cannabispirol and acetyl cannabispirol publication-title: Chem. Pharm. Bull. doi: 10.1248/cpb.26.3641 – volume: 33 start-page: 221 year: 1986 ident: ref_40 article-title: The effects of cannabispiro compounds and tetrahydrocannabidiolic acid on the plasmid transfer and maintenance in Escherichia coli publication-title: Acta Microbiol. Hung. – ident: ref_6 doi: 10.1089/can.2019.0005 – volume: 57 start-page: 285 year: 2017 ident: ref_7 article-title: Don’t worry, be happy: Endocannabinoids and cannabis at the intersection of stress and reward publication-title: Annu. Rev. Pharmacol. Toxicol. doi: 10.1146/annurev-pharmtox-010716-104615 – volume: 103 start-page: 103 year: 2017 ident: ref_9 article-title: Molecular Targets of the Phytocannabinoids: A Complex Picture publication-title: Prog. Chem. Org. Nat. Prod. – volume: 29 start-page: 476 year: 2010 ident: ref_33 article-title: Best practices for QSAR model development, validation, and exploitation publication-title: Mol. Inform. doi: 10.1002/minf.201000061 – ident: ref_1 doi: 10.1007/978-3-319-54564-6 – volume: 200 start-page: 103982 year: 2020 ident: ref_59 article-title: CORAL: QSAR models of CB1 cannabinoid receptor inhibitors based on local and global SMILES attributes with the index of ideality of correlation and the correlation contradiction index publication-title: Chemom. Intell. Lab. Syst. doi: 10.1016/j.chemolab.2020.103982 – volume: 47 start-page: D1118 year: 2019 ident: ref_45 article-title: CMAUP: A database of collective molecular activities of useful plants publication-title: Nucleic Acids Res. doi: 10.1093/nar/gky965 – volume: 33 start-page: 2083 year: 2019 ident: ref_66 article-title: Cannabis sativa L. extract and cannabidiol inhibit in vitro mediators of skin inflammation and wound injury publication-title: Phytother. Res. doi: 10.1002/ptr.6400 – volume: 3 start-page: 771 year: 2004 ident: ref_13 article-title: The endocannabinoid system and its therapeutic exploitation publication-title: Nat. Rev. Drug Discov. doi: 10.1038/nrd1495 – volume: 101 start-page: 1 year: 2017 ident: ref_23 article-title: Combined CoMFA and CoMSIA 3D-QSAR study of benzimidazole and benzothiophene derivatives with selective affinity for the CB2 cannabinoid receptor publication-title: Eur. J. Pharm. Sci. doi: 10.1016/j.ejps.2017.01.037 – volume: 11 start-page: 1139 year: 2020 ident: ref_29 article-title: Prediction of the binding affinities and selectivity for CB1 and CB2 ligands using homology modeling, molecular docking, molecular dynamics simulations, and MM-PBSA binding free energy calculations publication-title: ACS Chem. Neurosci. doi: 10.1021/acschemneuro.9b00696 – ident: ref_63 doi: 10.3390/biom10060900 – volume: 124 start-page: 109149 year: 2020 ident: ref_65 article-title: Antimicrobial and antibiofilm activity of Cannabis sativa L. seeds extract against Staphylococcus aureus and growth effects on probiotic Lactobacillus spp. publication-title: LWT doi: 10.1016/j.lwt.2020.109149 – volume: 20 start-page: 861 year: 2000 ident: ref_41 article-title: Membrane associated antitumor effects of crocine-, ginsenoside- and cannabinoid derivates publication-title: Anticancer Res. – volume: 103 start-page: 1 year: 2017 ident: ref_2 article-title: Phytochemistry of Cannabis sativa L. publication-title: Prog. Chem. Org. Nat. Prod. – volume: 58 start-page: 389 year: 2006 ident: ref_14 article-title: The endocannabinoid system as an emerging target of pharmacotherapy publication-title: Pharmacol. Rev. doi: 10.1124/pr.58.3.2 – volume: 547 start-page: 468 year: 2017 ident: ref_28 article-title: Crystal structures of agonist-bound human cannabinoid receptor CB1 publication-title: Nature doi: 10.1038/nature23272 – ident: ref_57 – volume: 79 start-page: 324 year: 2016 ident: ref_4 article-title: Evolution of the cannabinoid and terpene content during the growth of Cannabis sativa plants from different chemotypes publication-title: J. Nat. Prod. doi: 10.1021/acs.jnatprod.5b00949 – volume: 17 start-page: 4188 year: 2019 ident: ref_37 article-title: Development of QSAR machine learning-based models to forecast the effect of substances on malignant melanoma cells publication-title: Oncol. Lett. – volume: 56 start-page: 1243 year: 2016 ident: ref_47 article-title: Trust, but verify II: A Practical guide to chemogenomics data curation publication-title: J. Chem. Inf. Model. doi: 10.1021/acs.jcim.6b00129 – volume: 49 start-page: 6177 year: 2006 ident: ref_56 article-title: Extra precision glide: Docking and scoring incorporating a model of hydrophobic enclosure for protein-ligand complexes publication-title: J. Med. Chem. doi: 10.1021/jm051256o |
SSID | ssj0023259 |
Score | 2.3004074 |
Snippet | The selective targeting of the cannabinoid receptor 2 (CB2) is crucial for the development of peripheral system-acting cannabinoid analgesics. This work aimed... |
SourceID | pubmedcentral proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 5308 |
SubjectTerms | Cannabidiol Cannabinoids - chemistry Cannabis - chemistry Databases, Protein Datasets Drug Evaluation, Preclinical Humans Ligands Machine learning Marijuana Models, Molecular Nervous system Pharmaceuticals Protein Domains Proteins R&D Receptor, Cannabinoid, CB2 - chemistry Research & development Structure-Activity Relationship Studies Tetrahydrocannabinol THC |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB6VrZC4oJZnaEFGghMKTZzEdg4I0VWrCsEKsRT1FvlZgiBZtu2Bf89MXnRBcM5EiTz2zPfZ4_kAnmltVRJkHgeX6jhXhselsCLm3hllU1HYrk_3-4U4Oc3fnhVnW7AY78JQWeUYE7tA7VpLe-QHmEqQe8tMqterHzGpRtHp6iihoQdpBfeqazF2A7YxJBfJDLYPjxYfPk4ULOOdfFqKWSkWRSn6UvgMif9B_fX7BbIhktFRm0nqL-T5ZwHltYx0vAO3ByjJ3vS-34Ut39yBm7245M-7sP5cr-lyCFtaqq3BFMXawOYv2ZJ6fWtGUp1UJ0CVFAyhK0MoyPp7u2HYyKMXlp1QDsZE9q4-p3vBne1cN41GUt3WjiHy9Cuk7ozfg9Pjo0_zk3hQWIhtxpE-ehyl0gb0ijCZCdxpoU0hSieLEEojjOVKKJPyxIbcSqHz0gRrcltkhXYYmu7DrGkb_xCYkBLBkNHCU92b0sZ06Kz0DiGSVy6CF-OQVnZoP04qGN8qpCHkgOq6AyJ4Plmv-rYb_7DbH71TDYvvovo9VSJ4Oj3GZUNnIbrx7VVnQwV6icojeNA7c_oQDg2C0iyNQG64eTKgltybT5r6S9eaW1KDQyEe_f-39uAWJ9qeyJiLfZhdrq_8Y8Q2l-bJMGF_AYC1-3o priority: 102 providerName: ProQuest |
Title | Virtual Screening of C. Sativa Constituents for the Identification of Selective Ligands for Cannabinoid Receptor 2 |
URI | https://www.ncbi.nlm.nih.gov/pubmed/32722631 https://www.proquest.com/docview/2429337378 https://www.proquest.com/docview/2428554084 https://pubmed.ncbi.nlm.nih.gov/PMC7432466 |
Volume | 21 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwdV3fT9swED7xQ0x9mdhgo4NVnsSeprDWSWznASFW0aFpoGmlU98i27FHEKSsgDT-e-7yS3SMl7z4nCg-O_d98ec7gF2trep7GQU-G-ggUoYHibAi4C4zyg5EbMs83Sen4ngSfZvG0yVoqo3WA3jzX2pH9aQm88u9v3_uD3DB7xPjRMr-Ob-4ukEeQwVw1DKsljtFJOKL2v0EhA1xUsnen_TowIuQS0Qh4WAxNj0BnP_qJh8FotE6vKwRJDusXP4KllzxGtaqmpL3GzD_lc_pTAgbW5LUYGRiM8-Ge2xMKb41owqdJA8gAQVDxMoQAbLquK6v_99Rh3FZHwc_hex7_puOA5e2Q10UGrn0LM8YAk53jYyd8U2YjI7OhsdBXVghsPiqKnAYrxLr0RnChMbzTAttYpFkMvY-McJYroQyA963PrJS6Cgx3prIxmGsM_wivYGVYla4LWBCSsRARgtHcjeljSlBWeIyREZOZV341Axpauus41T84jJF9kG-SB_7ogsfW-vrKtvGM3Y7jXfSZsqkCDaSMJShxOYPbTOuFtoC0YWb3ZU2pMvrq6gLbytntg9qZkEX5IKbWwPKxL3YUuTnZUZuSXkNhXj37D23ocOJqPdlwMUOrNzO79x7RDO3pgfLcirxqkZfe7D65ej0x88exZe4V07hBzvb-bU |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrRC9IN4EChiJnlBo4iROcqgQLK22dLtCbIt6S_1KCYJk2d0K9c_x25jJiy4Ibr3Gk8Ty2J5v7Jn5AF5IqRMvj0M3N750w0RxNxVauNwalWhfRLqu0304EaPj8P1JdLIGP7tcGAqr7PbEeqM2laYz8m00Jeh7x0GcvJ59d4k1im5XOwoN2VIrmJ26xFib2HFgL36gC7fY2X-H-t7ifG_3aDhyW5YBVwccXSiLm3eqc-yZUIHKuZFCqkikJo7yPFVCaZ6IRPnc03moYyHDVOVahToKImlweeJ3r8F6SAcoA1h_uzv58LF3-QJe07X5aAVdEaWiCb0PgtTbLr58W6D3RbQ9yapR_Avp_hmweckC7t2Cmy10ZW-auXYb1mx5B643ZJYXd2H-qZhTMgqbaorlQZPIqpwNX7Ep1RaXjKhBKS6BIjcYQmWG0JM1ecJ5e3BIL0xrYh7cg9m4OKM85Fp2KMtSohNfFYYh0rWzJT7k9-D4Ssb6PgzKqrQPgYk4RvClpLAUZ5dIpWo0mFqDkMwmxoGX3ZBmui13TqwbXzN0e0gB2WUFOLDVS8-aMh__kNvstJO1i32R_Z6aDjzvm3GZ0t2LLG11XstQQKCXhA48aJTZ_wiHBkFw4DsQr6i5F6AS4KstZfG5LgUeU0FFIR79v1vP4Mbo6HCcjfcnB49hg9ORgRe7XGzCYDk_t08QVy3V03byMji96vXyCzL3OhA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKKxAXxJtAASPREwqbOIntHCoE265aWlYVS1FvqZ8QBNlldyvUv8ivYiYvuiC49ZpMHvJ4PN_YM_MR8lwpIyMv0tDbWIWp1CzMueEhc1ZLE_PM1H2634353nH69iQ7WSM_u1oYTKvs1sR6obZTg3vkA3AlEHuLRMiBb9MijnZGr2bfQ2SQwpPWjk5DtTQLdrtuN9YWeRy48x8Qzi2293dA91uMjXY_DPfClnEgNAmDcMrBQp4bD3_JdaI9s4ornfHcisz7XHNtmORSxywyPjWCqzTX3ujUZEmmLJgqvPcK2RDg9SEQ3HizOz5634d_Caup22LwiCHPct6k4SdJHg3KL98WEIkhhY9cdZB_od4_kzcveMPRTXKjhbH0dTPvbpE1V90mVxtiy_M7ZP6xnGNhCp0YzOsB90inng5f0gn2GVcUaUIxRwGzOCjAZgowlDY1w77dRMQHJjVJD6zH9LD8hDXJtexQVZWCgH5aWgqo182WcJHdJceXMtb3yHo1rdwDQrkQAMS04g5z7qTSukaGubMAz5y0AXnRDWlh2tbnyMDxtYAQCBVQXFRAQLZ66VnT8uMfcpuddorW8BfF72kakGf9bTBZPIdRlZue1TKYHBjJNCD3G2X2H4KhAUCcxAERK2ruBbAd-OqdqvxctwUX2FyR84f__62n5BrYTXG4Pz54RK4z3D2IRMj4Jllfzs_cY4BYS_2knbuUnF62ufwCtQg-VA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Virtual+Screening+of+C.+Sativa+Constituents+for+the+Identification+of+Selective+Ligands+for+Cannabinoid+Receptor+2&rft.jtitle=International+journal+of+molecular+sciences&rft.au=Mizera%2C+Miko%C5%82aj&rft.au=Latek%2C+Dorota&rft.au=Cielecka-Piontek%2C+Judyta&rft.date=2020-07-26&rft.eissn=1422-0067&rft.volume=21&rft.issue=15&rft_id=info:doi/10.3390%2Fijms21155308&rft_id=info%3Apmid%2F32722631&rft.externalDocID=32722631 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1422-0067&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1422-0067&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1422-0067&client=summon |