Virtual Screening of C. Sativa Constituents for the Identification of Selective Ligands for Cannabinoid Receptor 2

The selective targeting of the cannabinoid receptor 2 (CB2) is crucial for the development of peripheral system-acting cannabinoid analgesics. This work aimed at computer-assisted identification of prospective CB2-selective compounds among the constituents of Cannabis Sativa. The molecular structure...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of molecular sciences Vol. 21; no. 15; p. 5308
Main Authors Mizera, Mikołaj, Latek, Dorota, Cielecka-Piontek, Judyta
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 26.07.2020
MDPI
Subjects
Online AccessGet full text
ISSN1422-0067
1661-6596
1422-0067
DOI10.3390/ijms21155308

Cover

Abstract The selective targeting of the cannabinoid receptor 2 (CB2) is crucial for the development of peripheral system-acting cannabinoid analgesics. This work aimed at computer-assisted identification of prospective CB2-selective compounds among the constituents of Cannabis Sativa. The molecular structures and corresponding binding affinities to CB1 and CB2 receptors were collected from ChEMBL. The molecular structures of Cannabis Sativa constituents were collected from a phytochemical database. The collected records were curated and applied for the development of quantitative structure-activity relationship (QSAR) models with a machine learning approach. The validated models predicted the affinities of Cannabis Sativa constituents. Four structures of CB2 were acquired from the Protein Data Bank (PDB) and the discriminatory ability of CB2-selective ligands and two sets of decoys were tested. We succeeded in developing the QSAR model by achieving Q2 5-CV > 0.62. The QSAR models helped to identify three prospective CB2-selective molecules that are dissimilar to already tested compounds. In a complementary structure-based virtual screening study that used available PDB structures of CB2, the agonist-bound, Cryogenic Electron Microscopy structure of CB2 showed the best statistical performance in discriminating between CB2-active and non-active ligands. The same structure also performed best in discriminating between CB2-selective ligands from non-selective ligands.
AbstractList The selective targeting of the cannabinoid receptor 2 (CB2) is crucial for the development of peripheral system-acting cannabinoid analgesics. This work aimed at computer-assisted identification of prospective CB2-selective compounds among the constituents of Cannabis Sativa . The molecular structures and corresponding binding affinities to CB1 and CB2 receptors were collected from ChEMBL. The molecular structures of Cannabis Sativa constituents were collected from a phytochemical database. The collected records were curated and applied for the development of quantitative structure-activity relationship (QSAR) models with a machine learning approach. The validated models predicted the affinities of Cannabis Sativa constituents. Four structures of CB2 were acquired from the Protein Data Bank (PDB) and the discriminatory ability of CB2-selective ligands and two sets of decoys were tested. We succeeded in developing the QSAR model by achieving Q 2 5-CV > 0.62. The QSAR models helped to identify three prospective CB2-selective molecules that are dissimilar to already tested compounds. In a complementary structure-based virtual screening study that used available PDB structures of CB2, the agonist-bound, Cryogenic Electron Microscopy structure of CB2 showed the best statistical performance in discriminating between CB2-active and non-active ligands. The same structure also performed best in discriminating between CB2-selective ligands from non-selective ligands.
The selective targeting of the cannabinoid receptor 2 (CB2) is crucial for the development of peripheral system-acting cannabinoid analgesics. This work aimed at computer-assisted identification of prospective CB2-selective compounds among the constituents of . The molecular structures and corresponding binding affinities to CB1 and CB2 receptors were collected from ChEMBL. The molecular structures of constituents were collected from a phytochemical database. The collected records were curated and applied for the development of quantitative structure-activity relationship (QSAR) models with a machine learning approach. The validated models predicted the affinities of constituents. Four structures of CB2 were acquired from the Protein Data Bank (PDB) and the discriminatory ability of CB2-selective ligands and two sets of decoys were tested. We succeeded in developing the QSAR model by achieving Q 5-CV > 0.62. The QSAR models helped to identify three prospective CB2-selective molecules that are dissimilar to already tested compounds. In a complementary structure-based virtual screening study that used available PDB structures of CB2, the agonist-bound, Cryogenic Electron Microscopy structure of CB2 showed the best statistical performance in discriminating between CB2-active and non-active ligands. The same structure also performed best in discriminating between CB2-selective ligands from non-selective ligands.
The selective targeting of the cannabinoid receptor 2 (CB2) is crucial for the development of peripheral system-acting cannabinoid analgesics. This work aimed at computer-assisted identification of prospective CB2-selective compounds among the constituents of Cannabis Sativa. The molecular structures and corresponding binding affinities to CB1 and CB2 receptors were collected from ChEMBL. The molecular structures of Cannabis Sativa constituents were collected from a phytochemical database. The collected records were curated and applied for the development of quantitative structure-activity relationship (QSAR) models with a machine learning approach. The validated models predicted the affinities of Cannabis Sativa constituents. Four structures of CB2 were acquired from the Protein Data Bank (PDB) and the discriminatory ability of CB2-selective ligands and two sets of decoys were tested. We succeeded in developing the QSAR model by achieving Q2 5-CV > 0.62. The QSAR models helped to identify three prospective CB2-selective molecules that are dissimilar to already tested compounds. In a complementary structure-based virtual screening study that used available PDB structures of CB2, the agonist-bound, Cryogenic Electron Microscopy structure of CB2 showed the best statistical performance in discriminating between CB2-active and non-active ligands. The same structure also performed best in discriminating between CB2-selective ligands from non-selective ligands.
The selective targeting of the cannabinoid receptor 2 (CB2) is crucial for the development of peripheral system-acting cannabinoid analgesics. This work aimed at computer-assisted identification of prospective CB2-selective compounds among the constituents of Cannabis Sativa. The molecular structures and corresponding binding affinities to CB1 and CB2 receptors were collected from ChEMBL. The molecular structures of Cannabis Sativa constituents were collected from a phytochemical database. The collected records were curated and applied for the development of quantitative structure-activity relationship (QSAR) models with a machine learning approach. The validated models predicted the affinities of Cannabis Sativa constituents. Four structures of CB2 were acquired from the Protein Data Bank (PDB) and the discriminatory ability of CB2-selective ligands and two sets of decoys were tested. We succeeded in developing the QSAR model by achieving Q2 5-CV > 0.62. The QSAR models helped to identify three prospective CB2-selective molecules that are dissimilar to already tested compounds. In a complementary structure-based virtual screening study that used available PDB structures of CB2, the agonist-bound, Cryogenic Electron Microscopy structure of CB2 showed the best statistical performance in discriminating between CB2-active and non-active ligands. The same structure also performed best in discriminating between CB2-selective ligands from non-selective ligands.The selective targeting of the cannabinoid receptor 2 (CB2) is crucial for the development of peripheral system-acting cannabinoid analgesics. This work aimed at computer-assisted identification of prospective CB2-selective compounds among the constituents of Cannabis Sativa. The molecular structures and corresponding binding affinities to CB1 and CB2 receptors were collected from ChEMBL. The molecular structures of Cannabis Sativa constituents were collected from a phytochemical database. The collected records were curated and applied for the development of quantitative structure-activity relationship (QSAR) models with a machine learning approach. The validated models predicted the affinities of Cannabis Sativa constituents. Four structures of CB2 were acquired from the Protein Data Bank (PDB) and the discriminatory ability of CB2-selective ligands and two sets of decoys were tested. We succeeded in developing the QSAR model by achieving Q2 5-CV > 0.62. The QSAR models helped to identify three prospective CB2-selective molecules that are dissimilar to already tested compounds. In a complementary structure-based virtual screening study that used available PDB structures of CB2, the agonist-bound, Cryogenic Electron Microscopy structure of CB2 showed the best statistical performance in discriminating between CB2-active and non-active ligands. The same structure also performed best in discriminating between CB2-selective ligands from non-selective ligands.
Author Cielecka-Piontek, Judyta
Mizera, Mikołaj
Latek, Dorota
AuthorAffiliation 2 Faculty of Chemistry, University of Warsaw, 02-093 Warsaw, Poland; dlatek@chem.uw.edu.pl
1 Department of Pharmacognosy, Poznan University of Medical Sciences, 60-781 Poznań, Poland; mikolajmizera@gmail.com
AuthorAffiliation_xml – name: 1 Department of Pharmacognosy, Poznan University of Medical Sciences, 60-781 Poznań, Poland; mikolajmizera@gmail.com
– name: 2 Faculty of Chemistry, University of Warsaw, 02-093 Warsaw, Poland; dlatek@chem.uw.edu.pl
Author_xml – sequence: 1
  givenname: Mikołaj
  orcidid: 0000-0001-5465-1990
  surname: Mizera
  fullname: Mizera, Mikołaj
– sequence: 2
  givenname: Dorota
  orcidid: 0000-0002-0429-0637
  surname: Latek
  fullname: Latek, Dorota
– sequence: 3
  givenname: Judyta
  orcidid: 0000-0003-0891-5419
  surname: Cielecka-Piontek
  fullname: Cielecka-Piontek, Judyta
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32722631$$D View this record in MEDLINE/PubMed
BookMark eNptkc1rFDEYxoNU7IfePEvAi4duzbz5mJmLUAarhQXBVa8hySTbLLPJmmQK_vdm3VbW4inJm9_z8CTPOToJMViEXjfkitKevPebbYam4ZyS7hk6axjAghDRnhztT9F5zhtCgALvX6BTCi2AoM0ZSj98KrOa8Moka4MPaxwdHq7wShV_r_AQQy6-zDaUjF1MuNxZfDvWo3feVCaGvWBlJ2uqwOKlX6swHthBhaC0D9GP-Ks1dlfqEF6i505N2b56WC_Q95uP34bPi-WXT7fD9XJharxuYaGB3jjdGaGpdjAqoTQX_dhy53ottIFOdLoBYhwzrVCs185oZjjlamwFvUAfDr67WW_taGrmpCa5S36r0i8ZlZf_3gR_J9fxXraMAhN7g3cPBin-nG0ucuuzsdOkgo1zlsCg45yRjlX07RN0E-cU6vP2VE9pS9uuUm-OE_2N8lhHBeAAmBRzTtZJ48ufT64B_SQbIvedy-POq-jyiejR97_4bz2Lr0g
CitedBy_id crossref_primary_10_1016_j_compbiomed_2022_106379
crossref_primary_10_1021_acs_jcim_3c00914
crossref_primary_10_1016_j_compbiomed_2023_107314
crossref_primary_10_3390_ijms22084060
crossref_primary_10_3390_pharmaceutics15020516
crossref_primary_10_3390_ijms241915009
Cites_doi 10.1021/acs.jcim.6b00499
10.1016/j.pbb.2008.05.010
10.1208/s12249-019-1514-9
10.1016/j.synres.2019.100056
10.1016/j.talanta.2015.01.032
10.1111/epi.12631
10.1007/s11064-005-6978-1
10.1021/ci100176x
10.1021/acs.est.9b07747
10.1016/j.talanta.2016.11.041
10.1371/journal.pone.0210705
10.1016/S0031-9422(00)88794-4
10.3390/molecules23092183
10.1016/j.bmc.2009.07.053
10.1038/525S1a
10.1038/s41586-019-0917-9
10.1021/jm300687e
10.1371/journal.pone.0208892
10.1016/j.neuropharm.2019.107740
10.1016/j.toxlet.2016.01.001
10.1039/C5MB00860C
10.1186/s12859-019-3135-4
10.1016/j.cell.2020.01.007
10.3389/fpls.2016.00019
10.1016/j.phrs.2017.05.005
10.1038/s41589-019-0387-2
10.1016/j.jsps.2017.12.017
10.1093/nar/gkr777
10.1007/s00894-011-0986-7
10.1016/j.cell.2020.04.001
10.1021/jm050655g
10.1016/j.asoc.2017.09.040
10.1093/nar/28.1.235
10.1016/j.cell.2020.01.008
10.1016/j.cell.2018.12.011
10.1186/s13321-018-0258-y
10.1007/s00044-019-02303-x
10.1248/cpb.26.3641
10.1089/can.2019.0005
10.1146/annurev-pharmtox-010716-104615
10.1002/minf.201000061
10.1007/978-3-319-54564-6
10.1016/j.chemolab.2020.103982
10.1093/nar/gky965
10.1002/ptr.6400
10.1038/nrd1495
10.1016/j.ejps.2017.01.037
10.1021/acschemneuro.9b00696
10.3390/biom10060900
10.1016/j.lwt.2020.109149
10.1124/pr.58.3.2
10.1038/nature23272
10.1021/acs.jnatprod.5b00949
10.1021/acs.jcim.6b00129
10.1021/jm051256o
ContentType Journal Article
Copyright 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2020 by the authors. 2020
Copyright_xml – notice: 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2020 by the authors. 2020
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88E
8FI
8FJ
8FK
8G5
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
GUQSH
K9.
M0S
M1P
M2O
MBDVC
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOI 10.3390/ijms21155308
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Research Library
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One
ProQuest Central Korea
Proquest Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
Research Library Prep
ProQuest Health & Medical Complete (Alumni)
Health & Medical Collection (Alumni)
Medical Database
ProQuest research library
Research Library (Corporate)
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
Research Library Prep
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
Research Library (Alumni Edition)
ProQuest Central China
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Research Library
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Central Basic
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
MEDLINE
Publicly Available Content Database
CrossRef
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1422-0067
ExternalDocumentID PMC7432466
32722631
10_3390_ijms21155308
Genre Journal Article
GrantInformation_xml – fundername: Narodowe Centrum Nauki
  grantid: DEC-2018/28/T/NZ7/00472
GroupedDBID ---
29J
2WC
53G
5GY
5VS
7X7
88E
8FE
8FG
8FH
8FI
8FJ
8G5
A8Z
AADQD
AAFWJ
AAHBH
AAYXX
ABDBF
ABUWG
ACGFO
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
AEAQA
AENEX
AFKRA
AFZYC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BCNDV
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DIK
DU5
DWQXO
E3Z
EBD
EBS
EJD
ESX
F5P
FRP
FYUFA
GNUQQ
GUQSH
GX1
HH5
HMCUK
HYE
IAO
IHR
ITC
KQ8
LK8
M1P
M2O
M48
MODMG
O5R
O5S
OK1
OVT
P2P
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RPM
TR2
TUS
UKHRP
~8M
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7XB
8FK
K9.
MBDVC
PJZUB
PKEHL
PPXIY
PQEST
PQUKI
PRINS
Q9U
7X8
ESTFP
PUEGO
5PM
ID FETCH-LOGICAL-c3278-e2129cfb8c6b3bf2da6ab569d75ff9b6bc2868b120cf4c76a49bfcb4c535ad763
IEDL.DBID M48
ISSN 1422-0067
1661-6596
IngestDate Thu Aug 21 14:13:59 EDT 2025
Fri Sep 05 06:34:27 EDT 2025
Fri Jul 25 20:04:05 EDT 2025
Thu Apr 03 07:04:44 EDT 2025
Tue Jul 01 04:15:28 EDT 2025
Thu Apr 24 23:05:43 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 15
Keywords QSAR
Cannabis Sativa
endocannabinoid system
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3278-e2129cfb8c6b3bf2da6ab569d75ff9b6bc2868b120cf4c76a49bfcb4c535ad763
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-0429-0637
0000-0001-5465-1990
0000-0003-0891-5419
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/ijms21155308
PMID 32722631
PQID 2429337378
PQPubID 2032341
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_7432466
proquest_miscellaneous_2428554084
proquest_journals_2429337378
pubmed_primary_32722631
crossref_citationtrail_10_3390_ijms21155308
crossref_primary_10_3390_ijms21155308
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20200726
PublicationDateYYYYMMDD 2020-07-26
PublicationDate_xml – month: 7
  year: 2020
  text: 20200726
  day: 26
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle International journal of molecular sciences
PublicationTitleAlternate Int J Mol Sci
PublicationYear 2020
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Grayson (ref_61) 2015; 525
Stokes (ref_19) 2020; 181
ElSohly (ref_2) 2017; 103
Hua (ref_28) 2017; 547
Rong (ref_8) 2017; 121
Donadel (ref_42) 2009; 17
Ji (ref_29) 2020; 11
ref_57
Latek (ref_17) 2011; 17
ref_55
Mizera (ref_22) 2015; 137
ref_51
Andre (ref_3) 2016; 7
Landrum (ref_48) 2013; 1
Sangiovanni (ref_66) 2019; 33
Hua (ref_30) 2020; 180
Devinsky (ref_10) 2014; 55
Russo (ref_11) 2005; 30
Zhang (ref_24) 2019; 28
Jakowiecki (ref_16) 2016; 56
Mangoato (ref_62) 2019; 9
Crombie (ref_43) 1977; 16
Moriwaki (ref_50) 2018; 10
Friesner (ref_56) 2006; 49
Paulke (ref_58) 2016; 245
ref_63
Mysinger (ref_34) 2012; 55
Pacher (ref_14) 2006; 58
Labib (ref_27) 2018; 26
Stonehouse (ref_64) 2020; 54
ref_26
Morales (ref_9) 2017; 103
Zeng (ref_45) 2019; 47
Pusztai (ref_41) 2000; 20
Tropsha (ref_33) 2010; 29
Gaulton (ref_44) 2012; 40
ref_36
ref_35
Soydaner (ref_4) 2016; 79
Berman (ref_53) 2000; 28
Chung (ref_23) 2017; 101
ref_38
Shao (ref_54) 2019; 15
Xing (ref_31) 2020; 180
Marzo (ref_13) 2004; 3
Kasabe (ref_20) 2019; 20
Volkow (ref_7) 2017; 57
Fourches (ref_47) 2016; 56
Molnar (ref_40) 1986; 33
Ancuceanu (ref_37) 2019; 17
Ghasemi (ref_60) 2018; 62
Galaj (ref_5) 2020; 167
Lyu (ref_15) 2019; 566
ref_1
Dubovy (ref_12) 2008; 90
Pedregosa (ref_52) 2011; 12
Kumar (ref_59) 2020; 200
Frassinetti (ref_65) 2020; 124
Chen (ref_25) 2006; 49
ref_49
Chohan (ref_18) 2016; 12
Shoyama (ref_39) 1978; 26
Fourches (ref_46) 2010; 50
Mizera (ref_21) 2017; 164
Li (ref_32) 2019; 176
ref_6
References_xml – ident: ref_49
– ident: ref_55
– volume: 56
  start-page: 2457
  year: 2016
  ident: ref_16
  article-title: Hydrophobic ligand entry and exit pathways of the CB1 cannabinoid receptor
  publication-title: J. Chem. Inf. Model.
  doi: 10.1021/acs.jcim.6b00499
– volume: 90
  start-page: 501
  year: 2008
  ident: ref_12
  article-title: Cannabinoid receptors 1 and 2 (CB1 and CB2), their distribution, ligands and functional involvement in nervous system structures—A short review
  publication-title: Pharmacol. Biochem. Behav.
  doi: 10.1016/j.pbb.2008.05.010
– ident: ref_51
– volume: 20
  start-page: 308
  year: 2019
  ident: ref_20
  article-title: QSPR Modeling of biopharmaceutical properties of hydroxypropyl methylcellulose (cellulose ethers) tablets based on its degree of polymerization
  publication-title: AAPS PharmSciTech
  doi: 10.1208/s12249-019-1514-9
– volume: 9
  start-page: 100056
  year: 2019
  ident: ref_62
  article-title: Cannabis sativa L. Extracts can reverse drug resistance in colorectal carcinoma cells in vitro
  publication-title: Synergy
  doi: 10.1016/j.synres.2019.100056
– volume: 137
  start-page: 174
  year: 2015
  ident: ref_22
  article-title: Prediction of HPLC retention times of tebipenem pivoxyl and its degradation products in solid state by applying adaptive artificial neural network with recursive features elimination
  publication-title: Talanta
  doi: 10.1016/j.talanta.2015.01.032
– volume: 55
  start-page: 791
  year: 2014
  ident: ref_10
  article-title: Cannabidiol: Pharmacology and potential therapeutic role in epilepsy and other neuropsychiatric disorders
  publication-title: Epilepsia
  doi: 10.1111/epi.12631
– volume: 30
  start-page: 1037
  year: 2005
  ident: ref_11
  article-title: Agonistic properties of cannabidiol at 5-HT1a receptors
  publication-title: Neurochem. Res.
  doi: 10.1007/s11064-005-6978-1
– volume: 50
  start-page: 1189
  year: 2010
  ident: ref_46
  article-title: Trust, but verify: On the importance of chemical structure curation in cheminformatics and QSAR modeling research
  publication-title: J. Chem. Inf. Model.
  doi: 10.1021/ci100176x
– volume: 1
  start-page: 1
  year: 2013
  ident: ref_48
  article-title: Rdkit documentation
  publication-title: Release
– volume: 54
  start-page: 4221
  year: 2020
  ident: ref_64
  article-title: Selenium metabolism in hemp (Cannabis sativa L.)—Potential for Phytoremediation and biofortification
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.9b07747
– volume: 164
  start-page: 164
  year: 2017
  ident: ref_21
  article-title: Quantitative structure-retention relationship model for the determination of naratriptan hydrochloride and its impurities based on artificial neural networks coupled with genetic algorithm
  publication-title: Talanta
  doi: 10.1016/j.talanta.2016.11.041
– ident: ref_36
  doi: 10.1371/journal.pone.0210705
– volume: 16
  start-page: 1413
  year: 1977
  ident: ref_43
  article-title: Cannabinoid acids and esters: Miniaturized synthesis and chromatographic study
  publication-title: Phytochemistry
  doi: 10.1016/S0031-9422(00)88794-4
– ident: ref_26
  doi: 10.3390/molecules23092183
– volume: 17
  start-page: 6251
  year: 2009
  ident: ref_42
  article-title: Tessaric acid derivatives induce G2/M cell cycle arrest in human solid tumor cell lines
  publication-title: Bioorg. Med. Chem.
  doi: 10.1016/j.bmc.2009.07.053
– volume: 525
  start-page: S1
  year: 2015
  ident: ref_61
  article-title: Cannabis
  publication-title: Nature
  doi: 10.1038/525S1a
– volume: 566
  start-page: 224
  year: 2019
  ident: ref_15
  article-title: Ultra-large library docking for discovering new chemotypes
  publication-title: Nature
  doi: 10.1038/s41586-019-0917-9
– volume: 55
  start-page: 6582
  year: 2012
  ident: ref_34
  article-title: Directory of useful decoys, enhanced (DUD-E): Better ligands and decoys for better benchmarking
  publication-title: J. Med. Chem.
  doi: 10.1021/jm300687e
– ident: ref_35
  doi: 10.1371/journal.pone.0208892
– volume: 167
  start-page: 107740
  year: 2020
  ident: ref_5
  article-title: Cannabidiol attenuates the rewarding effects of cocaine in rats by CB2, 5-HT1A and TRPV1 receptor mechanisms
  publication-title: Neuropharmacology
  doi: 10.1016/j.neuropharm.2019.107740
– volume: 245
  start-page: 1
  year: 2016
  ident: ref_58
  article-title: Synthetic cannabinoids: In silico prediction of the cannabinoid receptor 1 affinity by a quantitative structure-activity relationship model
  publication-title: Toxicol. Lett.
  doi: 10.1016/j.toxlet.2016.01.001
– volume: 12
  start-page: 1250
  year: 2016
  ident: ref_18
  article-title: Molecular modeling studies to characterize N-phenylpyrimidin-2-amine selectivity for CDK2 and CDK4 through 3D-QSAR and molecular dynamics simulations
  publication-title: Mol. Biosyst.
  doi: 10.1039/C5MB00860C
– ident: ref_38
  doi: 10.1186/s12859-019-3135-4
– volume: 180
  start-page: 645
  year: 2020
  ident: ref_31
  article-title: Cryo-EM structure of the human cannabinoid receptor CB2-Gi signaling complex
  publication-title: Cell
  doi: 10.1016/j.cell.2020.01.007
– volume: 7
  start-page: 19
  year: 2016
  ident: ref_3
  article-title: Cannabis sativa: The plant of the thousand and one molecules
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2016.00019
– volume: 121
  start-page: 213
  year: 2017
  ident: ref_8
  article-title: Cannabidiol in medical marijuana: Research vistas and potential opportunities
  publication-title: Pharmacol. Res.
  doi: 10.1016/j.phrs.2017.05.005
– volume: 15
  start-page: 1199
  year: 2019
  ident: ref_54
  article-title: Structure of an allosteric modulator bound to the CB1 cannabinoid receptor
  publication-title: Nat. Chem. Biol.
  doi: 10.1038/s41589-019-0387-2
– volume: 12
  start-page: 2825
  year: 2011
  ident: ref_52
  article-title: Scikit-learn: Machine learning in Python
  publication-title: J. Mach. Learn. Res.
– volume: 26
  start-page: 437
  year: 2018
  ident: ref_27
  article-title: Secondary metabolites isolated from Pinus roxburghii and interpretation of their cannabinoid and opioid binding properties by virtual screening and in vitro studies
  publication-title: Saudi Pharm. J.
  doi: 10.1016/j.jsps.2017.12.017
– volume: 40
  start-page: D1100
  year: 2012
  ident: ref_44
  article-title: ChEMBL: A large-scale bioactivity database for drug discovery
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkr777
– volume: 17
  start-page: 2353
  year: 2011
  ident: ref_17
  article-title: Modeling of ligand binding to G protein coupled receptors: Cannabinoid CB 1, CB 2 and adrenergic β 2 AR
  publication-title: J. Mol. Model.
  doi: 10.1007/s00894-011-0986-7
– volume: 181
  start-page: 475
  year: 2020
  ident: ref_19
  article-title: A Deep Learning Approach to Antibiotic Discovery
  publication-title: Cell
  doi: 10.1016/j.cell.2020.04.001
– volume: 49
  start-page: 625
  year: 2006
  ident: ref_25
  article-title: 3D-QSAR studies of arylpyrazole antagonists of cannabinoid receptor subtypes CB1 and CB2. A combined NMR and CoMFA approach
  publication-title: J. Med. Chem.
  doi: 10.1021/jm050655g
– volume: 62
  start-page: 251
  year: 2018
  ident: ref_60
  article-title: Deep neural network in QSAR studies using deep belief network
  publication-title: Appl. Soft. Comput.
  doi: 10.1016/j.asoc.2017.09.040
– volume: 28
  start-page: 235
  year: 2000
  ident: ref_53
  article-title: The Protein Data Bank
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/28.1.235
– volume: 180
  start-page: 655
  year: 2020
  ident: ref_30
  article-title: Activation and signaling mechanism revealed by cannabinoid receptor-Gi complex structures
  publication-title: Cell
  doi: 10.1016/j.cell.2020.01.008
– volume: 176
  start-page: 459
  year: 2019
  ident: ref_32
  article-title: Crystal structure of the human cannabinoid receptor CB2
  publication-title: Cell
  doi: 10.1016/j.cell.2018.12.011
– volume: 10
  start-page: 4
  year: 2018
  ident: ref_50
  article-title: Mordred: A molecular descriptor calculator
  publication-title: J. Cheminform.
  doi: 10.1186/s13321-018-0258-y
– volume: 28
  start-page: 498
  year: 2019
  ident: ref_24
  article-title: 4D-QSAR studies of CB 2 cannabinoid receptor inverse agonists: A comparison to 3D-QSAR
  publication-title: Med. Chem. Res.
  doi: 10.1007/s00044-019-02303-x
– volume: 26
  start-page: 3641
  year: 1978
  ident: ref_39
  article-title: Cannabis. XIII. Two new spiro-compounds, cannabispirol and acetyl cannabispirol
  publication-title: Chem. Pharm. Bull.
  doi: 10.1248/cpb.26.3641
– volume: 33
  start-page: 221
  year: 1986
  ident: ref_40
  article-title: The effects of cannabispiro compounds and tetrahydrocannabidiolic acid on the plasmid transfer and maintenance in Escherichia coli
  publication-title: Acta Microbiol. Hung.
– ident: ref_6
  doi: 10.1089/can.2019.0005
– volume: 57
  start-page: 285
  year: 2017
  ident: ref_7
  article-title: Don’t worry, be happy: Endocannabinoids and cannabis at the intersection of stress and reward
  publication-title: Annu. Rev. Pharmacol. Toxicol.
  doi: 10.1146/annurev-pharmtox-010716-104615
– volume: 103
  start-page: 103
  year: 2017
  ident: ref_9
  article-title: Molecular Targets of the Phytocannabinoids: A Complex Picture
  publication-title: Prog. Chem. Org. Nat. Prod.
– volume: 29
  start-page: 476
  year: 2010
  ident: ref_33
  article-title: Best practices for QSAR model development, validation, and exploitation
  publication-title: Mol. Inform.
  doi: 10.1002/minf.201000061
– ident: ref_1
  doi: 10.1007/978-3-319-54564-6
– volume: 200
  start-page: 103982
  year: 2020
  ident: ref_59
  article-title: CORAL: QSAR models of CB1 cannabinoid receptor inhibitors based on local and global SMILES attributes with the index of ideality of correlation and the correlation contradiction index
  publication-title: Chemom. Intell. Lab. Syst.
  doi: 10.1016/j.chemolab.2020.103982
– volume: 47
  start-page: D1118
  year: 2019
  ident: ref_45
  article-title: CMAUP: A database of collective molecular activities of useful plants
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gky965
– volume: 33
  start-page: 2083
  year: 2019
  ident: ref_66
  article-title: Cannabis sativa L. extract and cannabidiol inhibit in vitro mediators of skin inflammation and wound injury
  publication-title: Phytother. Res.
  doi: 10.1002/ptr.6400
– volume: 3
  start-page: 771
  year: 2004
  ident: ref_13
  article-title: The endocannabinoid system and its therapeutic exploitation
  publication-title: Nat. Rev. Drug Discov.
  doi: 10.1038/nrd1495
– volume: 101
  start-page: 1
  year: 2017
  ident: ref_23
  article-title: Combined CoMFA and CoMSIA 3D-QSAR study of benzimidazole and benzothiophene derivatives with selective affinity for the CB2 cannabinoid receptor
  publication-title: Eur. J. Pharm. Sci.
  doi: 10.1016/j.ejps.2017.01.037
– volume: 11
  start-page: 1139
  year: 2020
  ident: ref_29
  article-title: Prediction of the binding affinities and selectivity for CB1 and CB2 ligands using homology modeling, molecular docking, molecular dynamics simulations, and MM-PBSA binding free energy calculations
  publication-title: ACS Chem. Neurosci.
  doi: 10.1021/acschemneuro.9b00696
– ident: ref_63
  doi: 10.3390/biom10060900
– volume: 124
  start-page: 109149
  year: 2020
  ident: ref_65
  article-title: Antimicrobial and antibiofilm activity of Cannabis sativa L. seeds extract against Staphylococcus aureus and growth effects on probiotic Lactobacillus spp.
  publication-title: LWT
  doi: 10.1016/j.lwt.2020.109149
– volume: 20
  start-page: 861
  year: 2000
  ident: ref_41
  article-title: Membrane associated antitumor effects of crocine-, ginsenoside- and cannabinoid derivates
  publication-title: Anticancer Res.
– volume: 103
  start-page: 1
  year: 2017
  ident: ref_2
  article-title: Phytochemistry of Cannabis sativa L.
  publication-title: Prog. Chem. Org. Nat. Prod.
– volume: 58
  start-page: 389
  year: 2006
  ident: ref_14
  article-title: The endocannabinoid system as an emerging target of pharmacotherapy
  publication-title: Pharmacol. Rev.
  doi: 10.1124/pr.58.3.2
– volume: 547
  start-page: 468
  year: 2017
  ident: ref_28
  article-title: Crystal structures of agonist-bound human cannabinoid receptor CB1
  publication-title: Nature
  doi: 10.1038/nature23272
– ident: ref_57
– volume: 79
  start-page: 324
  year: 2016
  ident: ref_4
  article-title: Evolution of the cannabinoid and terpene content during the growth of Cannabis sativa plants from different chemotypes
  publication-title: J. Nat. Prod.
  doi: 10.1021/acs.jnatprod.5b00949
– volume: 17
  start-page: 4188
  year: 2019
  ident: ref_37
  article-title: Development of QSAR machine learning-based models to forecast the effect of substances on malignant melanoma cells
  publication-title: Oncol. Lett.
– volume: 56
  start-page: 1243
  year: 2016
  ident: ref_47
  article-title: Trust, but verify II: A Practical guide to chemogenomics data curation
  publication-title: J. Chem. Inf. Model.
  doi: 10.1021/acs.jcim.6b00129
– volume: 49
  start-page: 6177
  year: 2006
  ident: ref_56
  article-title: Extra precision glide: Docking and scoring incorporating a model of hydrophobic enclosure for protein-ligand complexes
  publication-title: J. Med. Chem.
  doi: 10.1021/jm051256o
SSID ssj0023259
Score 2.3004074
Snippet The selective targeting of the cannabinoid receptor 2 (CB2) is crucial for the development of peripheral system-acting cannabinoid analgesics. This work aimed...
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 5308
SubjectTerms Cannabidiol
Cannabinoids - chemistry
Cannabis - chemistry
Databases, Protein
Datasets
Drug Evaluation, Preclinical
Humans
Ligands
Machine learning
Marijuana
Models, Molecular
Nervous system
Pharmaceuticals
Protein Domains
Proteins
R&D
Receptor, Cannabinoid, CB2 - chemistry
Research & development
Structure-Activity Relationship
Studies
Tetrahydrocannabinol
THC
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB6VrZC4oJZnaEFGghMKTZzEdg4I0VWrCsEKsRT1FvlZgiBZtu2Bf89MXnRBcM5EiTz2zPfZ4_kAnmltVRJkHgeX6jhXhselsCLm3hllU1HYrk_3-4U4Oc3fnhVnW7AY78JQWeUYE7tA7VpLe-QHmEqQe8tMqterHzGpRtHp6iihoQdpBfeqazF2A7YxJBfJDLYPjxYfPk4ULOOdfFqKWSkWRSn6UvgMif9B_fX7BbIhktFRm0nqL-T5ZwHltYx0vAO3ByjJ3vS-34Ut39yBm7245M-7sP5cr-lyCFtaqq3BFMXawOYv2ZJ6fWtGUp1UJ0CVFAyhK0MoyPp7u2HYyKMXlp1QDsZE9q4-p3vBne1cN41GUt3WjiHy9Cuk7ozfg9Pjo0_zk3hQWIhtxpE-ehyl0gb0ijCZCdxpoU0hSieLEEojjOVKKJPyxIbcSqHz0gRrcltkhXYYmu7DrGkb_xCYkBLBkNHCU92b0sZ06Kz0DiGSVy6CF-OQVnZoP04qGN8qpCHkgOq6AyJ4Plmv-rYb_7DbH71TDYvvovo9VSJ4Oj3GZUNnIbrx7VVnQwV6icojeNA7c_oQDg2C0iyNQG64eTKgltybT5r6S9eaW1KDQyEe_f-39uAWJ9qeyJiLfZhdrq_8Y8Q2l-bJMGF_AYC1-3o
  priority: 102
  providerName: ProQuest
Title Virtual Screening of C. Sativa Constituents for the Identification of Selective Ligands for Cannabinoid Receptor 2
URI https://www.ncbi.nlm.nih.gov/pubmed/32722631
https://www.proquest.com/docview/2429337378
https://www.proquest.com/docview/2428554084
https://pubmed.ncbi.nlm.nih.gov/PMC7432466
Volume 21
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwdV3fT9swED7xQ0x9mdhgo4NVnsSeprDWSWznASFW0aFpoGmlU98i27FHEKSsgDT-e-7yS3SMl7z4nCg-O_d98ec7gF2trep7GQU-G-ggUoYHibAi4C4zyg5EbMs83Sen4ngSfZvG0yVoqo3WA3jzX2pH9aQm88u9v3_uD3DB7xPjRMr-Ob-4ukEeQwVw1DKsljtFJOKL2v0EhA1xUsnen_TowIuQS0Qh4WAxNj0BnP_qJh8FotE6vKwRJDusXP4KllzxGtaqmpL3GzD_lc_pTAgbW5LUYGRiM8-Ge2xMKb41owqdJA8gAQVDxMoQAbLquK6v_99Rh3FZHwc_hex7_puOA5e2Q10UGrn0LM8YAk53jYyd8U2YjI7OhsdBXVghsPiqKnAYrxLr0RnChMbzTAttYpFkMvY-McJYroQyA963PrJS6Cgx3prIxmGsM_wivYGVYla4LWBCSsRARgtHcjeljSlBWeIyREZOZV341Axpauus41T84jJF9kG-SB_7ogsfW-vrKtvGM3Y7jXfSZsqkCDaSMJShxOYPbTOuFtoC0YWb3ZU2pMvrq6gLbytntg9qZkEX5IKbWwPKxL3YUuTnZUZuSXkNhXj37D23ocOJqPdlwMUOrNzO79x7RDO3pgfLcirxqkZfe7D65ej0x88exZe4V07hBzvb-bU
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrRC9IN4EChiJnlBo4iROcqgQLK22dLtCbIt6S_1KCYJk2d0K9c_x25jJiy4Ibr3Gk8Ty2J5v7Jn5AF5IqRMvj0M3N750w0RxNxVauNwalWhfRLqu0304EaPj8P1JdLIGP7tcGAqr7PbEeqM2laYz8m00Jeh7x0GcvJ59d4k1im5XOwoN2VIrmJ26xFib2HFgL36gC7fY2X-H-t7ifG_3aDhyW5YBVwccXSiLm3eqc-yZUIHKuZFCqkikJo7yPFVCaZ6IRPnc03moYyHDVOVahToKImlweeJ3r8F6SAcoA1h_uzv58LF3-QJe07X5aAVdEaWiCb0PgtTbLr58W6D3RbQ9yapR_Avp_hmweckC7t2Cmy10ZW-auXYb1mx5B643ZJYXd2H-qZhTMgqbaorlQZPIqpwNX7Ep1RaXjKhBKS6BIjcYQmWG0JM1ecJ5e3BIL0xrYh7cg9m4OKM85Fp2KMtSohNfFYYh0rWzJT7k9-D4Ssb6PgzKqrQPgYk4RvClpLAUZ5dIpWo0mFqDkMwmxoGX3ZBmui13TqwbXzN0e0gB2WUFOLDVS8-aMh__kNvstJO1i32R_Z6aDjzvm3GZ0t2LLG11XstQQKCXhA48aJTZ_wiHBkFw4DsQr6i5F6AS4KstZfG5LgUeU0FFIR79v1vP4Mbo6HCcjfcnB49hg9ORgRe7XGzCYDk_t08QVy3V03byMji96vXyCzL3OhA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKKxAXxJtAASPREwqbOIntHCoE265aWlYVS1FvqZ8QBNlldyvUv8ivYiYvuiC49ZpMHvJ4PN_YM_MR8lwpIyMv0tDbWIWp1CzMueEhc1ZLE_PM1H2634353nH69iQ7WSM_u1oYTKvs1sR6obZTg3vkA3AlEHuLRMiBb9MijnZGr2bfQ2SQwpPWjk5DtTQLdrtuN9YWeRy48x8Qzi2293dA91uMjXY_DPfClnEgNAmDcMrBQp4bD3_JdaI9s4ornfHcisz7XHNtmORSxywyPjWCqzTX3ujUZEmmLJgqvPcK2RDg9SEQ3HizOz5634d_Caup22LwiCHPct6k4SdJHg3KL98WEIkhhY9cdZB_od4_kzcveMPRTXKjhbH0dTPvbpE1V90mVxtiy_M7ZP6xnGNhCp0YzOsB90inng5f0gn2GVcUaUIxRwGzOCjAZgowlDY1w77dRMQHJjVJD6zH9LD8hDXJtexQVZWCgH5aWgqo182WcJHdJceXMtb3yHo1rdwDQrkQAMS04g5z7qTSukaGubMAz5y0AXnRDWlh2tbnyMDxtYAQCBVQXFRAQLZ66VnT8uMfcpuddorW8BfF72kakGf9bTBZPIdRlZue1TKYHBjJNCD3G2X2H4KhAUCcxAERK2ruBbAd-OqdqvxctwUX2FyR84f__62n5BrYTXG4Pz54RK4z3D2IRMj4Jllfzs_cY4BYS_2knbuUnF62ufwCtQg-VA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Virtual+Screening+of+C.+Sativa+Constituents+for+the+Identification+of+Selective+Ligands+for+Cannabinoid+Receptor+2&rft.jtitle=International+journal+of+molecular+sciences&rft.au=Mizera%2C+Miko%C5%82aj&rft.au=Latek%2C+Dorota&rft.au=Cielecka-Piontek%2C+Judyta&rft.date=2020-07-26&rft.eissn=1422-0067&rft.volume=21&rft.issue=15&rft_id=info:doi/10.3390%2Fijms21155308&rft_id=info%3Apmid%2F32722631&rft.externalDocID=32722631
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1422-0067&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1422-0067&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1422-0067&client=summon