The Regional Influence of the Arctic Oscillation and Arctic Dipole on the Wintertime Arctic Surface Radiation Budget and Sea Ice Growth
An analysis of 2000-2015 monthly Clouds and the Earth's Radiant Energy System-Energy Balanced and Filled (CERES-EBAF) and Modern-Era Retrospective Analysis for Research and Applications, Version 2 (MERRA2) data reveals statistically significant fall and wintertime relationships between Arctic s...
Saved in:
| Published in | Geophysical research letters Vol. 44; no. 9; pp. 4341 - 4350 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
Langley Research Center
American Geophysical Union
16.05.2017
John Wiley & Sons, Inc |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0094-8276 1944-8007 |
| DOI | 10.1002/2017GL073281 |
Cover
| Abstract | An analysis of 2000-2015 monthly Clouds and the Earth's Radiant Energy System-Energy Balanced and Filled (CERES-EBAF) and Modern-Era Retrospective Analysis for Research and Applications, Version 2 (MERRA2) data reveals statistically significant fall and wintertime relationships between Arctic surface longwave (LW) radiative flux anomalies and the Arctic Oscillation (AO) and Arctic Dipole (AD). Signifying a substantial regional imprint, a negative AD index corresponds with positive downwelling clear-sky LW flux anomalies (greater than10W m(exp -2)) north of western Eurasia (0 deg E-120 deg E) and reduced sea ice growth in the Barents and Kara Seas in November-February. Conversely, a positive AO index coincides with negative clear-sky LW flux anomalies and minimal sea ice growth change in October-November across the Arctic. Increased (decreased) atmospheric temperature and water vapor coincide with the largest positive (negative) clear-sky flux anomalies. Positive surface LW cloud radiative effect anomalies also accompany the negative AD index in December-February. The results highlight a potential pathway by which Arctic atmospheric variability influences the regional surface radiation budget over areas of Arctic sea ice growth. |
|---|---|
| AbstractList | An analysis of 2000–2015 monthly Clouds and the Earth's Radiant Energy System‐Energy Balanced and Filled (CERES‐EBAF) and Modern‐Era Retrospective Analysis for Research and Applications, Version 2 (MERRA2) data reveals statistically significant fall and wintertime relationships between Arctic surface longwave (LW) radiative flux anomalies and the Arctic Oscillation (AO) and Arctic Dipole (AD). Signifying a substantial regional imprint, a negative AD index corresponds with positive downwelling clear‐sky LW flux anomalies (>10 W m−2) north of western Eurasia (0°E–120°E) and reduced sea ice growth in the Barents and Kara Seas in November–February. Conversely, a positive AO index coincides with negative clear‐sky LW flux anomalies and minimal sea ice growth change in October–November across the Arctic. Increased (decreased) atmospheric temperature and water vapor coincide with the largest positive (negative) clear‐sky flux anomalies. Positive surface LW cloud radiative effect anomalies also accompany the negative AD index in December–February. The results highlight a potential pathway by which Arctic atmospheric variability influences the regional surface radiation budget over areas of Arctic sea ice growth. An analysis of 2000–2015 monthly Clouds and the Earth's Radiant Energy System‐Energy Balanced and Filled (CERES‐EBAF) and Modern‐Era Retrospective Analysis for Research and Applications, Version 2 (MERRA2) data reveals statistically significant fall and wintertime relationships between Arctic surface longwave (LW) radiative flux anomalies and the Arctic Oscillation (AO) and Arctic Dipole (AD). Signifying a substantial regional imprint, a negative AD index corresponds with positive downwelling clear‐sky LW flux anomalies (>10 W m−2) north of western Eurasia (0°E–120°E) and reduced sea ice growth in the Barents and Kara Seas in November–February. Conversely, a positive AO index coincides with negative clear‐sky LW flux anomalies and minimal sea ice growth change in October–November across the Arctic. Increased (decreased) atmospheric temperature and water vapor coincide with the largest positive (negative) clear‐sky flux anomalies. Positive surface LW cloud radiative effect anomalies also accompany the negative AD index in December–February. The results highlight a potential pathway by which Arctic atmospheric variability influences the regional surface radiation budget over areas of Arctic sea ice growth. Key Points Low‐frequency atmospheric variability in winter projects regionally onto the Arctic surface radiation budget Clear‐sky surface downwelling longwave anomalies associated with the AO and AD driven by near‐surface moisture and temperature changes Reduced November‐February sea ice growth in Barents/Kara Seas associated with negative AD pattern An analysis of 2000–2015 monthly Clouds and the Earth's Radiant Energy System‐Energy Balanced and Filled (CERES‐EBAF) and Modern‐Era Retrospective Analysis for Research and Applications, Version 2 (MERRA2) data reveals statistically significant fall and wintertime relationships between Arctic surface longwave (LW) radiative flux anomalies and the Arctic Oscillation (AO) and Arctic Dipole (AD). Signifying a substantial regional imprint, a negative AD index corresponds with positive downwelling clear‐sky LW flux anomalies (>10 W m −2 ) north of western Eurasia (0°E–120°E) and reduced sea ice growth in the Barents and Kara Seas in November–February. Conversely, a positive AO index coincides with negative clear‐sky LW flux anomalies and minimal sea ice growth change in October–November across the Arctic. Increased (decreased) atmospheric temperature and water vapor coincide with the largest positive (negative) clear‐sky flux anomalies. Positive surface LW cloud radiative effect anomalies also accompany the negative AD index in December–February. The results highlight a potential pathway by which Arctic atmospheric variability influences the regional surface radiation budget over areas of Arctic sea ice growth. Low‐frequency atmospheric variability in winter projects regionally onto the Arctic surface radiation budget Clear‐sky surface downwelling longwave anomalies associated with the AO and AD driven by near‐surface moisture and temperature changes Reduced November‐February sea ice growth in Barents/Kara Seas associated with negative AD pattern An analysis of 2000-2015 monthly Clouds and the Earth's Radiant Energy System-Energy Balanced and Filled (CERES-EBAF) and Modern-Era Retrospective Analysis for Research and Applications, Version 2 (MERRA2) data reveals statistically significant fall and wintertime relationships between Arctic surface longwave (LW) radiative flux anomalies and the Arctic Oscillation (AO) and Arctic Dipole (AD). Signifying a substantial regional imprint, a negative AD index corresponds with positive downwelling clear-sky LW flux anomalies (greater than10W m(exp -2)) north of western Eurasia (0 deg E-120 deg E) and reduced sea ice growth in the Barents and Kara Seas in November-February. Conversely, a positive AO index coincides with negative clear-sky LW flux anomalies and minimal sea ice growth change in October-November across the Arctic. Increased (decreased) atmospheric temperature and water vapor coincide with the largest positive (negative) clear-sky flux anomalies. Positive surface LW cloud radiative effect anomalies also accompany the negative AD index in December-February. The results highlight a potential pathway by which Arctic atmospheric variability influences the regional surface radiation budget over areas of Arctic sea ice growth. |
| Audience | PUBLIC |
| Author | Taylor, Patrick C. Hegyi, Bradley M. |
| Author_xml | – sequence: 1 givenname: Bradley M. surname: Hegyi fullname: Hegyi, Bradley M. organization: NASA Langley Research Center – sequence: 2 givenname: Patrick C. surname: Taylor fullname: Taylor, Patrick C. organization: NASA Langley Research Center |
| BookMark | eNqFkT9PwzAQxS1UJNrCxsgQiZXA2U7rZCz_SqVIldoixshJ7NZV6hTbUdVPwNfGNIAQA0xn3f3eO71zD3V0rQVC5xiuMQC5IYDZOAVGSYyPUBcnURTGAKyDugCJfxM2PEE9a9cAQIHiLnpbrEQwE0tVa14FEy2rRuhCBLUMnJ-MTOFUEUxtoaqKO08FXJdf7Xu1rSvP6gP7orQTxqnNt2zeGMm92YyXqhXfNuVSuIPHXPBg4odjU-_c6hQdS15ZcfZZ--j58WFx9xSm0_HkbpSGBSWMhYIwnvOS0wGLgSUgKeWFpCXOIcJEYkJFksdRyQSREcNUJjSXg3yY--SR5IL20WXruzX1ayOsy9Z1Y3x2m-EESESSKE48ddVShamtNUJmW6M23OwzDNnHqbOfp_Y4-YUXyh0CO8NV9Y9opyqx_3NBNp6lg0FMmRddtCLNLc-8vT2A_jtjNqT0HTfomY8 |
| CitedBy_id | crossref_primary_10_1088_1748_9326_ad9abb crossref_primary_10_1029_2017GL076717 crossref_primary_10_1029_2020JD032555 crossref_primary_10_1073_pnas_2120770119 crossref_primary_10_1038_s41558_019_0662_y crossref_primary_10_1007_s13131_020_1629_6 crossref_primary_10_3390_rs14040904 crossref_primary_10_1142_S2630534824500025 crossref_primary_10_1029_2022GL100051 crossref_primary_10_1002_joc_7097 crossref_primary_10_3390_atmos9020041 crossref_primary_10_1029_2020JD034409 crossref_primary_10_1088_1748_9326_ac5bb3 crossref_primary_10_5194_tc_17_3291_2023 crossref_primary_10_1088_2752_5295_acdf0f crossref_primary_10_1038_s41598_018_38109_x crossref_primary_10_5194_tc_17_4133_2023 crossref_primary_10_1016_j_atmosres_2024_107866 crossref_primary_10_2166_wcc_2020_281 crossref_primary_10_1029_2020GL090236 crossref_primary_10_1007_s13131_022_2010_8 crossref_primary_10_1016_j_atmosres_2021_105879 crossref_primary_10_1038_s41612_021_00181_y crossref_primary_10_3390_atmos13101602 crossref_primary_10_1175_JCLI_D_21_0149_1 crossref_primary_10_1038_s41467_018_07061_9 crossref_primary_10_1175_JCLI_D_19_0375_1 crossref_primary_10_12677_CCRL_2019_84055 crossref_primary_10_1007_s00382_023_06766_y |
| Cites_doi | 10.1175/JCLI-D-15-0773.1 10.1002/jgrd.50489 10.1175/BAMS‐D‐14‐00273.1 10.1016/j.rse.2012.05.006 10.1175/JCLI-D-15-0366.1 10.1002/grl.50912 10.1175/1520-0493(2003)131<0845:MGSIWA>2.0.CO;2 10.1002/2015JD023520 10.1029/1999JC900082 10.1029/2012JD017754 10.1029/JC089iC06p10615 10.1175/1520-0442(2004)017<3623:AMFTHR>2.0.CO;2 10.1175/2010JCLI3788.1 10.1029/98GL00950 10.1029/2010JC006235 10.1007/s00382-011-1196-9 10.1175/MWR-D-16-0234.1 10.1002/2016GL069330 10.1029/2008GL036706 10.1175/JCLI‐D‐12‐00436.1 10.1175/2008JCLI2366.1 10.1175/1520-0442(1996)009<2110:IOCOSR>2.0.CO;2 10.5194/tc-10-2191-2016 10.5194/acp-11-10127-2011 10.1029/2012JD017589 10.1175/1520-0450(1996)035<2067:SEFOAW>2.0.CO;2 10.1175/BAMS‐D‐15‐00267.1 10.1175/2010JCLI3492.1 10.1088/1748‐9326/9/4/044002 10.1029/2011JC007084 10.1029/2009JC005857 10.1175/2010JCLI3817.1 10.1002/2015JD024316 10.1175/JCLI-D-15-0074.1 10.1007/s00382-010-0937-5 10.1029/2011GL047493 10.1002/2013JD020669 10.1175/1520‐0442(2004)017<0616:CRFOTA>2.0.CO;2 10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2 10.1175/JCLI3619.1 10.1002/2013JC009672 10.1029/2005GL024376 10.1175/JCLI-D-15-0692.1 10.1029/JC076i006p01550 10.1002/2013GL059113 10.5067/8GQ8LZQVL0VL 10.1175/JCLI‐D‐12‐00696.1 10.1175/2008JCLI2637.1 |
| ContentType | Journal Article |
| Copyright | 2017. American Geophysical Union. All Rights Reserved. |
| Copyright_xml | – notice: 2017. American Geophysical Union. All Rights Reserved. |
| DBID | CYE CYI AAYXX CITATION 7TG 7TN 8FD F1W FR3 H8D H96 KL. KR7 L.G L7M |
| DOI | 10.1002/2017GL073281 |
| DatabaseName | NASA Scientific and Technical Information NASA Technical Reports Server CrossRef Meteorological & Geoastrophysical Abstracts Oceanic Abstracts Technology Research Database ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Meteorological & Geoastrophysical Abstracts - Academic Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef Aerospace Database Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Meteorological & Geoastrophysical Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Oceanic Abstracts Technology Research Database ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Meteorological & Geoastrophysical Abstracts - Academic |
| DatabaseTitleList | Aerospace Database CrossRef |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Geology Physics Oceanography |
| EISSN | 1944-8007 |
| EndPage | 4350 |
| ExternalDocumentID | 10_1002_2017GL073281 GRL55837 20170008763 |
| Genre | article |
| GeographicLocations | PNE, Kara Sea PNE, Barents Sea Eurasia Arctic region |
| GeographicLocations_xml | – name: Eurasia – name: PNE, Barents Sea – name: Arctic region – name: PNE, Kara Sea |
| GrantInformation | NNH12ZDA001N-IDS WBS 509496.02.08.06.93 |
| GrantInformation_xml | – fundername: NASA Postdoctoral Program – fundername: Langley Research Center funderid: NNH12ZDA001N‐IDS – fundername: Langley Research Center – fundername: NASA Interdisciplinary Studies Program funderid: NNH12ZDA001N‐IDS |
| GroupedDBID | -DZ -~X 05W 0R~ 1OB 1OC 24P 33P 50Y 5GY 5VS 702 8-1 8R4 8R5 AAESR AAFWJ AAIHA AAMMB AASGY AAXRX AAZKR ABCUV ABPPZ ACAHQ ACCZN ACGFO ACGFS ACGOD ACIWK ACNCT ACPOU ACTHY ACXBN ACXQS ADBBV ADEOM ADKYN ADMGS ADOZA ADXAS ADZMN AEFGJ AENEX AFBPY AFGKR AFPKN AFRAH AGXDD AIDQK AIDYY AIURR ALMA_UNASSIGNED_HOLDINGS ALUQN ALXUD AMYDB AVUZU AZFZN AZVAB BENPR BFHJK BMXJE BRXPI CS3 CYE CYI DCZOG DPXWK DRFUL DRSTM DU5 EBS EJD F5P G-S GODZA HZ~ LATKE LEEKS LITHE LOXES LUTES LYRES MEWTI MSFUL MSSTM MXFUL MXSTM MY~ O9- OK1 P-X P2P P2W PYCSY Q2X R.K RNS ROL SUPJJ TN5 TWZ UPT WBKPD WH7 WIN WXSBR XSW ZZTAW ~02 ~OA ~~A A00 AAHHS ACCFJ ADZOD AEEZP AEQDE AEUQT AFPWT AIWBW AJBDE WIH WYJ AAYXX CITATION 7TG 7TN 8FD F1W FR3 H8D H96 KL. KR7 L.G L7M |
| ID | FETCH-LOGICAL-c3277-e27abada35780790f33acf3d1b0412f123e9b84d7e2f4713f93bf5b6b2764fae3 |
| ISSN | 0094-8276 |
| IngestDate | Fri Jul 25 10:49:16 EDT 2025 Thu Apr 24 22:52:46 EDT 2025 Wed Oct 01 02:24:00 EDT 2025 Wed Jan 22 16:22:07 EST 2025 Sat Oct 18 19:02:31 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 9 |
| Language | English |
| License | http://onlinelibrary.wiley.com/termsAndConditions#vor |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c3277-e27abada35780790f33acf3d1b0412f123e9b84d7e2f4713f93bf5b6b2764fae3 |
| Notes | E-ISSN: 1944-8007 Report Number: NF1676L-25952 LaRC Langley Research Center ISSN: 0094-8276 NF1676L-25952 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-7076-7299 0000-0002-8098-8447 |
| PQID | 1902429489 |
| PQPubID | 54723 |
| PageCount | 10 |
| ParticipantIDs | proquest_journals_1902429489 crossref_primary_10_1002_2017GL073281 crossref_citationtrail_10_1002_2017GL073281 wiley_primary_10_1002_2017GL073281_GRL55837 nasa_ntrs_20170008763 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 16 May 2017 |
| PublicationDateYYYYMMDD | 2017-05-16 |
| PublicationDate_xml | – month: 05 year: 2017 text: 16 May 2017 day: 16 |
| PublicationDecade | 2010 |
| PublicationPlace | Langley Research Center |
| PublicationPlace_xml | – name: Langley Research Center – name: Washington |
| PublicationTitle | Geophysical research letters |
| PublicationYear | 2017 |
| Publisher | American Geophysical Union John Wiley & Sons, Inc |
| Publisher_xml | – name: American Geophysical Union – name: John Wiley & Sons, Inc |
| References | 2011; 116 2014; 119 2009; 22 2013; 26 2012; 124 2006; 38 2013; 40 1984; 89 2015; 120 2016; 10 2016; 144 1996 2011; 11 2016; 121 2006; 19 2012; 39 2011; 37 1996; 35 1999; 104 1998; 25 2003; 131 1996; 77 2010; 23 2009; 36 2017; 30 1971; 76 2015; 28 2014b; 119 2004; 17 2010; 115 2013; 118 2016; 43 2005; 32 2016 2008; 21 2011; 24 2015 2014a; 41 2016; 29 2014; 9 2012; 117 1996; 9 e_1_2_6_51_1 e_1_2_6_32_1 e_1_2_6_30_1 e_1_2_6_19_1 e_1_2_6_13_1 e_1_2_6_36_1 e_1_2_6_11_1 e_1_2_6_34_1 e_1_2_6_17_1 e_1_2_6_15_1 e_1_2_6_38_1 e_1_2_6_43_1 e_1_2_6_20_1 e_1_2_6_41_1 e_1_2_6_9_1 e_1_2_6_5_1 e_1_2_6_7_1 e_1_2_6_24_1 e_1_2_6_49_1 e_1_2_6_3_1 e_1_2_6_22_1 e_1_2_6_28_1 e_1_2_6_45_1 e_1_2_6_26_1 e_1_2_6_47_1 e_1_2_6_52_1 e_1_2_6_10_1 e_1_2_6_31_1 e_1_2_6_50_1 e_1_2_6_14_1 e_1_2_6_35_1 e_1_2_6_12_1 e_1_2_6_33_1 e_1_2_6_18_1 e_1_2_6_39_1 e_1_2_6_16_1 e_1_2_6_37_1 e_1_2_6_42_1 e_1_2_6_21_1 e_1_2_6_40_1 e_1_2_6_8_1 e_1_2_6_4_1 e_1_2_6_6_1 e_1_2_6_25_1 e_1_2_6_48_1 e_1_2_6_23_1 e_1_2_6_2_1 e_1_2_6_29_1 e_1_2_6_44_1 e_1_2_6_27_1 e_1_2_6_46_1 |
| References_xml | – volume: 121 start-page: 2178 year: 2016 end-page: 2187 article-title: The influence of winter cloud on summer sea ice in the Arctic, 1983–2013 publication-title: J. Geophys. Res. Atmos. – volume: 9 start-page: 2110 year: 1996 end-page: 2123 article-title: Impact of clouds on surface radiative fluxes and snowmelt in the Arctic and subarctic publication-title: J. Clim. – volume: 117 year: 2012 article-title: Arctic synoptic regimes: Comparing domain‐wide Arctic cloud observations with CAM4 and CAM5 during similar dynamics publication-title: J. Geophys. Res. – volume: 38 year: 2006 article-title: Water vapor intrusions into the High Arctic during winter publication-title: Geophys. Res. Lett. – volume: 35 start-page: 2067 year: 1996 end-page: 2079 article-title: Surface energy fluxes of Arctic winter sea ice in Barrow Strait publication-title: J. Appl. Meteorol. – volume: 131 start-page: 845 year: 2003 end-page: 861 article-title: Modeling global sea ice with a thickness and enthalpy distribution model in generalized curvilinear coordinates publication-title: Mon. Weather Rev. – volume: 23 start-page: 4216 year: 2010 end-page: 4231 article-title: Interannual variation of Arctic cloud types in relation to sea ice publication-title: J. Clim. – volume: 117 year: 2012 article-title: Clear‐sky thermodynamic and radiative anomalies over a sea ice sensitive region of the Arctic publication-title: J. Geophys. Res. – volume: 77 start-page: 437 issue: 3 year: 1996 end-page: 471 article-title: The NCEP/NCAR 40‐year reanalysis project publication-title: Bull. Am. Meteorol. Soc. – volume: 9 year: 2014 article-title: Less winter cloud aids summer 2013 Arctic sea ice return from 2012 minimum publication-title: Environ. Res. Lett. – volume: 120 start-page: 12,656 year: 2015 end-page: 12,678 article-title: Covariance between Arctic sea ice and clouds within atmospheric state regimes at the satellite footprint level publication-title: J. Geophys. Res. Atmos. – volume: 29 start-page: 4723 year: 2016 end-page: 4740 article-title: Observed signatures of the barotropic and baroclinic annular modes in cloud vertical structure and cloud radiative effects publication-title: J. Clim. – volume: 144 start-page: 4279 year: 2016 end-page: 4286 article-title: The impact of the extreme winter 2015/16 Arctic cyclone on the Barents‐Kara Seas publication-title: Mon. Weather Rev. – volume: 116 year: 2011 article-title: Observations of recent Arctic sea ice volume loss and its impact on ocean‐atmosphere energy exchange and ice production publication-title: J. Geophys. Res. – volume: 41 start-page: 1681 year: 2014a end-page: 1688 article-title: Observed linkages between the northern annular mode/North Atlantic Oscillation, cloud incidence, and cloud radiative forcing publication-title: Geophys. Res. Lett. – year: 2016 article-title: Arctic observation and reanalysis integrated system: A new data product for validation and climate study publication-title: Bull. Am. Meteorol. Soc. – volume: 39 start-page: 1349 year: 2012 end-page: 1371 article-title: Onset and end of the summer melt season over sea ice: Thermal structure and surface energy perspective from SHEBA publication-title: Clim Dyn – volume: 25 start-page: 1297 year: 1998 end-page: 1300 article-title: The Arctic oscillation signature in the wintertime geopotential height and temperature fields publication-title: Geophys. Res. Lett. – volume: 37 start-page: 1643 year: 2011 end-page: 1660 article-title: A transitioning Arctic surface energy budget: The impacts of solar zenith angle, surface albedo and cloud radiative forcing publication-title: Clim Dyn. – volume: 119 start-page: 3679 year: 2014 end-page: 3693 article-title: Surface energy budget of landfast sea ice during the transitions from winter to snowmelt and melt pond onset: The importance of net longwave radiation and cyclone forcings publication-title: J. Geophys. Res. Oceans – volume: 32 year: 2005 article-title: Clues to variability in Arctic minimum sea ice extent publication-title: Geophys. Res. Lett. – volume: 10 start-page: 2191 year: 2016 end-page: 2202 article-title: Mechanism of seasonal Arctic sea ice evolution and Arctic amplification publication-title: Cryosphere – volume: 28 start-page: 5030 year: 2015 end-page: 5040 article-title: The impact of poleward moisture and sensible heat flux on Arctic winter sea ice variability publication-title: J. Clim. – year: 2016 article-title: “The stippling shows statistically significant gridpoints”: How research results are routinely overstated and over‐interpreted, and what to do about it publication-title: Bull. Am. Meteorol. Soc. – volume: 40 start-page: 4717 year: 2013 end-page: 4721 article-title: Large‐scale circulation associated with moisture intrusions into the Arctic during winter publication-title: Geophys. Res. Lett. – volume: 116 year: 2011 article-title: Uncertainty in modeled Arctic sea ice volume publication-title: J. Geophys. Res. – year: 2015 – volume: 124 start-page: 159 year: 2012 end-page: 173 article-title: Arctic cloud macrophysical characteristics from CloudSat and CALIPSO publication-title: Rem. Sens. Environ. – volume: 17 start-page: 3623 year: 2004 end-page: 3632 article-title: A mechanism for the high rate of sea ice thinning in the Arctic Ocean publication-title: J. Clim. – volume: 26 start-page: 7023 year: 2013 end-page: 7043 article-title: A decomposition of feedback contributions to polar warming amplification publication-title: J. Clim. – volume: 24 start-page: 1747 year: 2011 end-page: 1762 article-title: Synoptically driven Arctic winter states publication-title: J. Clim. – volume: 11 start-page: 10,127 year: 2011 end-page: 10,148 article-title: Moisture and dynamical interactions maintaining decoupled Arctic mixed‐phase stratocumulus in the presence of a humidity inversion publication-title: Atmos. Chem. Phys. – volume: 29 start-page: 4473 year: 2016 end-page: 4485 article-title: The role of moist intrusions in winter Arctic warming and sea ice decline publication-title: J. Clim. – volume: 43 start-page: 6636 year: 2016 end-page: 6642 article-title: Melt onset over Arctic sea ice controlled by atmospheric moisture transport publication-title: Geophys. Res. Lett. – year: 1996 – volume: 89 start-page: 10,615 year: 1984 end-page: 10,622 article-title: The sensitivity of a one‐dimensional thermodynamic sea ice model to changes in cloudiness publication-title: J. Geophys. Res. – volume: 19 start-page: 210 year: 2006 end-page: 225 article-title: Dipole anomaly in the winter Arctic atmosphere and its association with sea ice motion publication-title: J. Clim. – volume: 17 start-page: 616 issue: 3 year: 2004 end-page: 628 article-title: Cloud radiative forcing of the Arctic surface: The influence of cloud properties, surface albedo, and solar zenith angle publication-title: J. Clim. – volume: 115 year: 2010 article-title: A thermodynamic model for estimating sea and lake ice thickness with optical satellite data publication-title: J. Geophys. Res. – volume: 26 start-page: 2719 year: 2013 end-page: 2740 article-title: Surface irradiances consistent with CERES‐derived top‐of‐atmosphere shortwave and longwave irradiances publication-title: J. Clim. – volume: 76 start-page: 1550 year: 1971 end-page: 1575 article-title: Some results from a time‐dependent thermodynamic model of sea ice publication-title: J. Geophys. Res. – volume: 36 year: 2009 article-title: Is the Dipole Anomaly a major driver to record lows in Arctic summer sea ice extent? publication-title: Geophys. Res. Lett. – volume: 118 start-page: 7219 year: 2013 end-page: 7236 article-title: Observational constraints on Arctic Ocean clouds and radiative fluxes during the early 21st century publication-title: J. Geophys. Res. Atmos. – volume: 119 start-page: 3770 year: 2014b end-page: 3792 article-title: A global survey of the instantaneous linkages between cloud vertical structure and large‐scale climate publication-title: J. Geophys. Res. Atmos. – volume: 104 start-page: 20,837 year: 1999 end-page: 20,856 article-title: Arctic sea ice extents, areas, and trends, 1978–1996 publication-title: J. Geophys. Res. – volume: 21 start-page: 5777 year: 2008 end-page: 5796 article-title: Arctic climate change as manifest in cyclone behavior publication-title: J. Clim. – volume: 30 start-page: 865 year: 2017 end-page: 883 article-title: Dynamical and thermodynamical impacts of high and low frequency atmospheric eddies on the initial melt of Arctic sea ice publication-title: J. Clim. – volume: 24 start-page: 2737 year: 2011 end-page: 2753 article-title: Geographic distribution of climate feedbacks in the NCAR CCSM3.0 publication-title: J. Clim. – volume: 22 start-page: 748 year: 2009 end-page: 766 article-title: Toward optimal closure of the Earth's top‐of‐atmosphere radiation budget publication-title: J. Clim. – ident: e_1_2_6_48_1 doi: 10.1175/JCLI-D-15-0773.1 – ident: e_1_2_6_15_1 doi: 10.1002/jgrd.50489 – ident: e_1_2_6_7_1 doi: 10.1175/BAMS‐D‐14‐00273.1 – ident: e_1_2_6_24_1 doi: 10.1016/j.rse.2012.05.006 – ident: e_1_2_6_12_1 doi: 10.1175/JCLI-D-15-0366.1 – ident: e_1_2_6_49_1 doi: 10.1002/grl.50912 – ident: e_1_2_6_51_1 doi: 10.1175/1520-0493(2003)131<0845:MGSIWA>2.0.CO;2 – ident: e_1_2_6_43_1 doi: 10.1002/2015JD023520 – ident: e_1_2_6_29_1 doi: 10.1029/1999JC900082 – ident: e_1_2_6_33_1 doi: 10.1029/2012JD017754 – ident: e_1_2_6_35_1 doi: 10.1029/JC089iC06p10615 – ident: e_1_2_6_3_1 doi: 10.1175/1520-0442(2004)017<3623:AMFTHR>2.0.CO;2 – ident: e_1_2_6_41_1 doi: 10.1175/2010JCLI3788.1 – ident: e_1_2_6_44_1 doi: 10.1029/98GL00950 – ident: e_1_2_6_18_1 doi: 10.1029/2010JC006235 – ident: e_1_2_6_31_1 doi: 10.1007/s00382-011-1196-9 – ident: e_1_2_6_4_1 doi: 10.1175/MWR-D-16-0234.1 – ident: e_1_2_6_27_1 doi: 10.1002/2016GL069330 – ident: e_1_2_6_45_1 doi: 10.1029/2008GL036706 – ident: e_1_2_6_14_1 doi: 10.1175/JCLI‐D‐12‐00436.1 – ident: e_1_2_6_37_1 doi: 10.1175/2008JCLI2366.1 – ident: e_1_2_6_52_1 doi: 10.1175/1520-0442(1996)009<2110:IOCOSR>2.0.CO;2 – ident: e_1_2_6_17_1 doi: 10.5194/tc-10-2191-2016 – ident: e_1_2_6_38_1 doi: 10.5194/acp-11-10127-2011 – ident: e_1_2_6_2_1 doi: 10.1029/2012JD017589 – ident: e_1_2_6_39_1 doi: 10.1175/1520-0450(1996)035<2067:SEFOAW>2.0.CO;2 – ident: e_1_2_6_47_1 doi: 10.1175/BAMS‐D‐15‐00267.1 – ident: e_1_2_6_9_1 doi: 10.1175/2010JCLI3492.1 – ident: e_1_2_6_23_1 doi: 10.1088/1748‐9326/9/4/044002 – ident: e_1_2_6_32_1 doi: 10.1029/2011JC007084 – ident: e_1_2_6_46_1 doi: 10.1029/2009JC005857 – ident: e_1_2_6_40_1 doi: 10.1175/2010JCLI3817.1 – ident: e_1_2_6_19_1 doi: 10.1002/2015JD024316 – ident: e_1_2_6_28_1 doi: 10.1175/JCLI-D-15-0074.1 – ident: e_1_2_6_34_1 doi: 10.1007/s00382-010-0937-5 – ident: e_1_2_6_5_1 – ident: e_1_2_6_30_1 – ident: e_1_2_6_8_1 doi: 10.1029/2011GL047493 – ident: e_1_2_6_22_1 doi: 10.1002/2013JD020669 – ident: e_1_2_6_36_1 doi: 10.1175/1520‐0442(2004)017<0616:CRFOTA>2.0.CO;2 – ident: e_1_2_6_16_1 – ident: e_1_2_6_13_1 doi: 10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2 – ident: e_1_2_6_50_1 doi: 10.1175/JCLI3619.1 – ident: e_1_2_6_10_1 doi: 10.1002/2013JC009672 – ident: e_1_2_6_11_1 doi: 10.1029/2005GL024376 – ident: e_1_2_6_20_1 doi: 10.1175/JCLI-D-15-0692.1 – ident: e_1_2_6_26_1 doi: 10.1029/JC076i006p01550 – ident: e_1_2_6_21_1 doi: 10.1002/2013GL059113 – ident: e_1_2_6_6_1 doi: 10.5067/8GQ8LZQVL0VL – ident: e_1_2_6_42_1 doi: 10.1175/JCLI‐D‐12‐00696.1 – ident: e_1_2_6_25_1 doi: 10.1175/2008JCLI2637.1 |
| SSID | ssj0003031 |
| Score | 2.3783002 |
| Snippet | An analysis of 2000-2015 monthly Clouds and the Earth's Radiant Energy System-Energy Balanced and Filled (CERES-EBAF) and Modern-Era Retrospective Analysis for... An analysis of 2000–2015 monthly Clouds and the Earth's Radiant Energy System‐Energy Balanced and Filled (CERES‐EBAF) and Modern‐Era Retrospective Analysis for... |
| SourceID | proquest crossref wiley nasa |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 4341 |
| SubjectTerms | Anomalies Arctic Oscillation Arctic radiation Arctic sea ice Atmosphere Atmospheric temperature Atmospheric variability cloud radiative effect Clouds Dipoles Downwelling Energy Energy balance Fluctuations Flux large‐scale atmospheric variability longwave surface fluxes Meteorological satellites Ocean-atmosphere interaction Oceanography Oscillations Radiation Radiation budget Sea ice Sea ice growth Sky Statistical analysis Temperature Terrestrial radiation Water temperature Water vapor winter |
| Title | The Regional Influence of the Arctic Oscillation and Arctic Dipole on the Wintertime Arctic Surface Radiation Budget and Sea Ice Growth |
| URI | https://ntrs.nasa.gov/citations/20170008763 https://onlinelibrary.wiley.com/doi/abs/10.1002%2F2017GL073281 https://www.proquest.com/docview/1902429489 |
| Volume | 44 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: KBPluse Wiley Online Library: Open Access customDbUrl: eissn: 1944-8007 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0003031 issn: 0094-8276 databaseCode: AVUZU dateStart: 19740101 isFulltext: true titleUrlDefault: https://www.kbplus.ac.uk/kbplus7/publicExport/pkg/559 providerName: Wiley-Blackwell |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELdKJyReJj6GKBvID_BUpbiJncaP1YBWaAMJrWjiJbITu4tW2qofQuMf4B_gD-b8lWZiTIyXKHKcU5r79e4c3_0OoVeU0sJusqaaphEtWRlJIVTEOBNEJEylzBQnn35MxxP64Zydt1q_GllL243sFT9urCv5H63CGOjVVMneQbO1UBiAc9AvHEHDcPxnHZvOCvZrXhXajYRt_-HK1D91P4GTm7mMN7tT4IffVkubWOjSHL9XNjmg-lbftt6utABhK0NeYG-W23KqXEK6ra-Ei1NYxG8umgHuSC2WQfWeSOiiO7M1Q3X0PlbTq8oBS5TGKJ32_vyA4HoHXHaPe80PE-DsDKdp2jS2nEZZPPBM186-cgpjxDW6DQbYEUB6oPGGNaWJI8XynhkiO3Kj1XcssuYZRifEsA_1d94t7OjX89htM61jH30-YQwW7vfQHjx9TNpob_hl8nVSe3hw-64To_-BvqACxL9pir4W6rTnYi2uLWOaiyEbzZw9RPt-GYKHDlOPUEvNH6P7I9vm-QrObGJwsX6CfgLGcMAYrjGGFxoDbrADC25gDAM-wrDDGIZBM3eHsXDdYwzXGMMOY1YGYAcDxrDD2AGavH93djyOfPOOqEhMWoCKB0KKUhg2JTLgRCeJKHRS9qVheNMQMCkuM1oOVKwhQEo0T6RmMpXwPqkWKnkKr2wxV88QzgxBkFQlS0hG-1RxkWpChOBSpUqncQd1w3vOC89sbxqszHLHyR3nTa100Ot69tIxuvxl3oFRWQ6i1vYCcfSNHXQUdJh7W7DOIayGWJfTjMPDWL3eKjsPEHt-p9mH6MHuj3aE2pvVVr2AmHgjX3qI_gbycK_Q |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fT9swELZQEYIXtDEQHd3mB3hCEWn8I_VjtY120DIJUYT2EtmJXSp1adWkmvYX7N_enZN27cOQeIuS8yXy5Xyf7fN3hJxzzlO_ySodlwHPRBYYrW0glNChZsJKgYeTh3eyP-I3T-KprnOKZ2Eqfoj1ght6hh-v0cFxQfrqH2sovCLuDUJkm4Hpz67AyNQgu93H0Y_RejCGEboqmqd40IliWee-g4arzfZbUamR60JvIc5N3OoDz_UbclgjRtqtTPyW7Nj8iOz1fEXe33DlczjT4h35AyanWGgBwTWdrKqP0JmjgPJAAR6Hot8h5k2rBDiq82x1-8tkPpuCbO5lf018rsDk57pZsVw4DcoWyGXgG5tlNral1wHuQmHAoWOY05fPx2R0_fXhcz-o6ywEKcMdXBvF2uhMI_FNGKvQMaZTx7K2QTIuB7HNKtPhWWwjB7GMOcWME0Ya6E_utGUn0GWz3J4SiuXT28ZmgoUd3uZWaenCUGtlrLRORk1yuernJK1JyLEWxjSp6JOjZNMqTXKxlp5X5Bv_kTtGkyWgqvAPwoppr0laKxsmtWsWCSAggCWKdxR8jLfri7qT3v1ACJjGv3-V9Cey338YDpLBt7vbM3KAMphz0JYt0igXS_sBoExpPta_618Jw-fE |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fT9swELZQEdNeEGNMK7DND-xpinDjH6kf0VjLoGMTohPiJbJjGyqVtGpaof0F-7d356RdeWDS3qLkfIl8ubvPyfk7Qo6EEEX8yaqCUIlw0iXWGJ9ILQ0zXHolcXPyt0t1NhTnN_Km6XOKe2FqfojVBzf0jBiv0cH91IXjv6yhcIusP2DINgPLn01I5Uy0yObJz-HtcBWMIULXTfO0SLpppprad9BwvD7-SVZqlaYyTxDnOm6Niae3Q7YbxEhPahO_Ihu-3CVb_diR9xccxRrOonpNfoPJKTZaQHBNR8vuI3QSKKA8UIDboeh3yHnjugCOmtItT5-OppMxyJZR9nEUawVGD6th1WIWDCibIZdBHGwX7s7Pow5wFwoBh97Bmn5-v0eGvS_Xn8-Sps9CUnD8g-vTzFjjDBLfsEyzwLkpAncdi2RcAXKb17YrXObTALmMB81tkFZZmE8RjOdvYMompX9LKLZP71jvJGdd0RFeGxUYM0Zbr3xQaZt8Ws5zXjQk5NgLY5zX9Mlpvm6VNvm4kp7W5BvPyO2hyXJQVcULrGbaa5PDpQ3zxjWrHBAQwBItuhoeJtr1n7rz_tVASljG7_-X9Afy4sdpLx98vbw4IC9RBEsOOuqQtOazhX8HSGZu3zdv6x_g7udT |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+regional+influence+of+the+Arctic+Oscillation+and+Arctic+Dipole+on+the+wintertime+Arctic+surface+radiation+budget+and+sea+ice+growth&rft.jtitle=Geophysical+research+letters&rft.au=Hegyi%2C+Bradley+M.&rft.au=Taylor%2C+Patrick+C.&rft.date=2017-05-16&rft.issn=0094-8276&rft.eissn=1944-8007&rft.volume=44&rft.issue=9&rft.spage=4341&rft.epage=4350&rft_id=info:doi/10.1002%2F2017GL073281&rft.externalDBID=10.1002%252F2017GL073281&rft.externalDocID=GRL55837 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0094-8276&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0094-8276&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0094-8276&client=summon |