The Regional Influence of the Arctic Oscillation and Arctic Dipole on the Wintertime Arctic Surface Radiation Budget and Sea Ice Growth

An analysis of 2000-2015 monthly Clouds and the Earth's Radiant Energy System-Energy Balanced and Filled (CERES-EBAF) and Modern-Era Retrospective Analysis for Research and Applications, Version 2 (MERRA2) data reveals statistically significant fall and wintertime relationships between Arctic s...

Full description

Saved in:
Bibliographic Details
Published inGeophysical research letters Vol. 44; no. 9; pp. 4341 - 4350
Main Authors Hegyi, Bradley M., Taylor, Patrick C.
Format Journal Article
LanguageEnglish
Published Langley Research Center American Geophysical Union 16.05.2017
John Wiley & Sons, Inc
Subjects
Online AccessGet full text
ISSN0094-8276
1944-8007
DOI10.1002/2017GL073281

Cover

Abstract An analysis of 2000-2015 monthly Clouds and the Earth's Radiant Energy System-Energy Balanced and Filled (CERES-EBAF) and Modern-Era Retrospective Analysis for Research and Applications, Version 2 (MERRA2) data reveals statistically significant fall and wintertime relationships between Arctic surface longwave (LW) radiative flux anomalies and the Arctic Oscillation (AO) and Arctic Dipole (AD). Signifying a substantial regional imprint, a negative AD index corresponds with positive downwelling clear-sky LW flux anomalies (greater than10W m(exp -2)) north of western Eurasia (0 deg E-120 deg E) and reduced sea ice growth in the Barents and Kara Seas in November-February. Conversely, a positive AO index coincides with negative clear-sky LW flux anomalies and minimal sea ice growth change in October-November across the Arctic. Increased (decreased) atmospheric temperature and water vapor coincide with the largest positive (negative) clear-sky flux anomalies. Positive surface LW cloud radiative effect anomalies also accompany the negative AD index in December-February. The results highlight a potential pathway by which Arctic atmospheric variability influences the regional surface radiation budget over areas of Arctic sea ice growth.
AbstractList An analysis of 2000–2015 monthly Clouds and the Earth's Radiant Energy System‐Energy Balanced and Filled (CERES‐EBAF) and Modern‐Era Retrospective Analysis for Research and Applications, Version 2 (MERRA2) data reveals statistically significant fall and wintertime relationships between Arctic surface longwave (LW) radiative flux anomalies and the Arctic Oscillation (AO) and Arctic Dipole (AD). Signifying a substantial regional imprint, a negative AD index corresponds with positive downwelling clear‐sky LW flux anomalies (>10 W m−2) north of western Eurasia (0°E–120°E) and reduced sea ice growth in the Barents and Kara Seas in November–February. Conversely, a positive AO index coincides with negative clear‐sky LW flux anomalies and minimal sea ice growth change in October–November across the Arctic. Increased (decreased) atmospheric temperature and water vapor coincide with the largest positive (negative) clear‐sky flux anomalies. Positive surface LW cloud radiative effect anomalies also accompany the negative AD index in December–February. The results highlight a potential pathway by which Arctic atmospheric variability influences the regional surface radiation budget over areas of Arctic sea ice growth.
An analysis of 2000–2015 monthly Clouds and the Earth's Radiant Energy System‐Energy Balanced and Filled (CERES‐EBAF) and Modern‐Era Retrospective Analysis for Research and Applications, Version 2 (MERRA2) data reveals statistically significant fall and wintertime relationships between Arctic surface longwave (LW) radiative flux anomalies and the Arctic Oscillation (AO) and Arctic Dipole (AD). Signifying a substantial regional imprint, a negative AD index corresponds with positive downwelling clear‐sky LW flux anomalies (>10 W m−2) north of western Eurasia (0°E–120°E) and reduced sea ice growth in the Barents and Kara Seas in November–February. Conversely, a positive AO index coincides with negative clear‐sky LW flux anomalies and minimal sea ice growth change in October–November across the Arctic. Increased (decreased) atmospheric temperature and water vapor coincide with the largest positive (negative) clear‐sky flux anomalies. Positive surface LW cloud radiative effect anomalies also accompany the negative AD index in December–February. The results highlight a potential pathway by which Arctic atmospheric variability influences the regional surface radiation budget over areas of Arctic sea ice growth. Key Points Low‐frequency atmospheric variability in winter projects regionally onto the Arctic surface radiation budget Clear‐sky surface downwelling longwave anomalies associated with the AO and AD driven by near‐surface moisture and temperature changes Reduced November‐February sea ice growth in Barents/Kara Seas associated with negative AD pattern
An analysis of 2000–2015 monthly Clouds and the Earth's Radiant Energy System‐Energy Balanced and Filled (CERES‐EBAF) and Modern‐Era Retrospective Analysis for Research and Applications, Version 2 (MERRA2) data reveals statistically significant fall and wintertime relationships between Arctic surface longwave (LW) radiative flux anomalies and the Arctic Oscillation (AO) and Arctic Dipole (AD). Signifying a substantial regional imprint, a negative AD index corresponds with positive downwelling clear‐sky LW flux anomalies (>10 W m −2 ) north of western Eurasia (0°E–120°E) and reduced sea ice growth in the Barents and Kara Seas in November–February. Conversely, a positive AO index coincides with negative clear‐sky LW flux anomalies and minimal sea ice growth change in October–November across the Arctic. Increased (decreased) atmospheric temperature and water vapor coincide with the largest positive (negative) clear‐sky flux anomalies. Positive surface LW cloud radiative effect anomalies also accompany the negative AD index in December–February. The results highlight a potential pathway by which Arctic atmospheric variability influences the regional surface radiation budget over areas of Arctic sea ice growth. Low‐frequency atmospheric variability in winter projects regionally onto the Arctic surface radiation budget Clear‐sky surface downwelling longwave anomalies associated with the AO and AD driven by near‐surface moisture and temperature changes Reduced November‐February sea ice growth in Barents/Kara Seas associated with negative AD pattern
An analysis of 2000-2015 monthly Clouds and the Earth's Radiant Energy System-Energy Balanced and Filled (CERES-EBAF) and Modern-Era Retrospective Analysis for Research and Applications, Version 2 (MERRA2) data reveals statistically significant fall and wintertime relationships between Arctic surface longwave (LW) radiative flux anomalies and the Arctic Oscillation (AO) and Arctic Dipole (AD). Signifying a substantial regional imprint, a negative AD index corresponds with positive downwelling clear-sky LW flux anomalies (greater than10W m(exp -2)) north of western Eurasia (0 deg E-120 deg E) and reduced sea ice growth in the Barents and Kara Seas in November-February. Conversely, a positive AO index coincides with negative clear-sky LW flux anomalies and minimal sea ice growth change in October-November across the Arctic. Increased (decreased) atmospheric temperature and water vapor coincide with the largest positive (negative) clear-sky flux anomalies. Positive surface LW cloud radiative effect anomalies also accompany the negative AD index in December-February. The results highlight a potential pathway by which Arctic atmospheric variability influences the regional surface radiation budget over areas of Arctic sea ice growth.
Audience PUBLIC
Author Taylor, Patrick C.
Hegyi, Bradley M.
Author_xml – sequence: 1
  givenname: Bradley M.
  surname: Hegyi
  fullname: Hegyi, Bradley M.
  organization: NASA Langley Research Center
– sequence: 2
  givenname: Patrick C.
  surname: Taylor
  fullname: Taylor, Patrick C.
  organization: NASA Langley Research Center
BookMark eNqFkT9PwzAQxS1UJNrCxsgQiZXA2U7rZCz_SqVIldoixshJ7NZV6hTbUdVPwNfGNIAQA0xn3f3eO71zD3V0rQVC5xiuMQC5IYDZOAVGSYyPUBcnURTGAKyDugCJfxM2PEE9a9cAQIHiLnpbrEQwE0tVa14FEy2rRuhCBLUMnJ-MTOFUEUxtoaqKO08FXJdf7Xu1rSvP6gP7orQTxqnNt2zeGMm92YyXqhXfNuVSuIPHXPBg4odjU-_c6hQdS15ZcfZZ--j58WFx9xSm0_HkbpSGBSWMhYIwnvOS0wGLgSUgKeWFpCXOIcJEYkJFksdRyQSREcNUJjSXg3yY--SR5IL20WXruzX1ayOsy9Z1Y3x2m-EESESSKE48ddVShamtNUJmW6M23OwzDNnHqbOfp_Y4-YUXyh0CO8NV9Y9opyqx_3NBNp6lg0FMmRddtCLNLc-8vT2A_jtjNqT0HTfomY8
CitedBy_id crossref_primary_10_1088_1748_9326_ad9abb
crossref_primary_10_1029_2017GL076717
crossref_primary_10_1029_2020JD032555
crossref_primary_10_1073_pnas_2120770119
crossref_primary_10_1038_s41558_019_0662_y
crossref_primary_10_1007_s13131_020_1629_6
crossref_primary_10_3390_rs14040904
crossref_primary_10_1142_S2630534824500025
crossref_primary_10_1029_2022GL100051
crossref_primary_10_1002_joc_7097
crossref_primary_10_3390_atmos9020041
crossref_primary_10_1029_2020JD034409
crossref_primary_10_1088_1748_9326_ac5bb3
crossref_primary_10_5194_tc_17_3291_2023
crossref_primary_10_1088_2752_5295_acdf0f
crossref_primary_10_1038_s41598_018_38109_x
crossref_primary_10_5194_tc_17_4133_2023
crossref_primary_10_1016_j_atmosres_2024_107866
crossref_primary_10_2166_wcc_2020_281
crossref_primary_10_1029_2020GL090236
crossref_primary_10_1007_s13131_022_2010_8
crossref_primary_10_1016_j_atmosres_2021_105879
crossref_primary_10_1038_s41612_021_00181_y
crossref_primary_10_3390_atmos13101602
crossref_primary_10_1175_JCLI_D_21_0149_1
crossref_primary_10_1038_s41467_018_07061_9
crossref_primary_10_1175_JCLI_D_19_0375_1
crossref_primary_10_12677_CCRL_2019_84055
crossref_primary_10_1007_s00382_023_06766_y
Cites_doi 10.1175/JCLI-D-15-0773.1
10.1002/jgrd.50489
10.1175/BAMS‐D‐14‐00273.1
10.1016/j.rse.2012.05.006
10.1175/JCLI-D-15-0366.1
10.1002/grl.50912
10.1175/1520-0493(2003)131<0845:MGSIWA>2.0.CO;2
10.1002/2015JD023520
10.1029/1999JC900082
10.1029/2012JD017754
10.1029/JC089iC06p10615
10.1175/1520-0442(2004)017<3623:AMFTHR>2.0.CO;2
10.1175/2010JCLI3788.1
10.1029/98GL00950
10.1029/2010JC006235
10.1007/s00382-011-1196-9
10.1175/MWR-D-16-0234.1
10.1002/2016GL069330
10.1029/2008GL036706
10.1175/JCLI‐D‐12‐00436.1
10.1175/2008JCLI2366.1
10.1175/1520-0442(1996)009<2110:IOCOSR>2.0.CO;2
10.5194/tc-10-2191-2016
10.5194/acp-11-10127-2011
10.1029/2012JD017589
10.1175/1520-0450(1996)035<2067:SEFOAW>2.0.CO;2
10.1175/BAMS‐D‐15‐00267.1
10.1175/2010JCLI3492.1
10.1088/1748‐9326/9/4/044002
10.1029/2011JC007084
10.1029/2009JC005857
10.1175/2010JCLI3817.1
10.1002/2015JD024316
10.1175/JCLI-D-15-0074.1
10.1007/s00382-010-0937-5
10.1029/2011GL047493
10.1002/2013JD020669
10.1175/1520‐0442(2004)017<0616:CRFOTA>2.0.CO;2
10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2
10.1175/JCLI3619.1
10.1002/2013JC009672
10.1029/2005GL024376
10.1175/JCLI-D-15-0692.1
10.1029/JC076i006p01550
10.1002/2013GL059113
10.5067/8GQ8LZQVL0VL
10.1175/JCLI‐D‐12‐00696.1
10.1175/2008JCLI2637.1
ContentType Journal Article
Copyright 2017. American Geophysical Union. All Rights Reserved.
Copyright_xml – notice: 2017. American Geophysical Union. All Rights Reserved.
DBID CYE
CYI
AAYXX
CITATION
7TG
7TN
8FD
F1W
FR3
H8D
H96
KL.
KR7
L.G
L7M
DOI 10.1002/2017GL073281
DatabaseName NASA Scientific and Technical Information
NASA Technical Reports Server
CrossRef
Meteorological & Geoastrophysical Abstracts
Oceanic Abstracts
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Meteorological & Geoastrophysical Abstracts - Academic
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Meteorological & Geoastrophysical Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Oceanic Abstracts
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Meteorological & Geoastrophysical Abstracts - Academic
DatabaseTitleList Aerospace Database

CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Geology
Physics
Oceanography
EISSN 1944-8007
EndPage 4350
ExternalDocumentID 10_1002_2017GL073281
GRL55837
20170008763
Genre article
GeographicLocations PNE, Kara Sea
PNE, Barents Sea
Eurasia
Arctic region
GeographicLocations_xml – name: Eurasia
– name: PNE, Barents Sea
– name: Arctic region
– name: PNE, Kara Sea
GrantInformation NNH12ZDA001N-IDS
WBS 509496.02.08.06.93
GrantInformation_xml – fundername: NASA Postdoctoral Program
– fundername: Langley Research Center
  funderid: NNH12ZDA001N‐IDS
– fundername: Langley Research Center
– fundername: NASA Interdisciplinary Studies Program
  funderid: NNH12ZDA001N‐IDS
GroupedDBID -DZ
-~X
05W
0R~
1OB
1OC
24P
33P
50Y
5GY
5VS
702
8-1
8R4
8R5
AAESR
AAFWJ
AAIHA
AAMMB
AASGY
AAXRX
AAZKR
ABCUV
ABPPZ
ACAHQ
ACCZN
ACGFO
ACGFS
ACGOD
ACIWK
ACNCT
ACPOU
ACTHY
ACXBN
ACXQS
ADBBV
ADEOM
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEFGJ
AENEX
AFBPY
AFGKR
AFPKN
AFRAH
AGXDD
AIDQK
AIDYY
AIURR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALXUD
AMYDB
AVUZU
AZFZN
AZVAB
BENPR
BFHJK
BMXJE
BRXPI
CS3
CYE
CYI
DCZOG
DPXWK
DRFUL
DRSTM
DU5
EBS
EJD
F5P
G-S
GODZA
HZ~
LATKE
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MSFUL
MSSTM
MXFUL
MXSTM
MY~
O9-
OK1
P-X
P2P
P2W
PYCSY
Q2X
R.K
RNS
ROL
SUPJJ
TN5
TWZ
UPT
WBKPD
WH7
WIN
WXSBR
XSW
ZZTAW
~02
~OA
~~A
A00
AAHHS
ACCFJ
ADZOD
AEEZP
AEQDE
AEUQT
AFPWT
AIWBW
AJBDE
WIH
WYJ
AAYXX
CITATION
7TG
7TN
8FD
F1W
FR3
H8D
H96
KL.
KR7
L.G
L7M
ID FETCH-LOGICAL-c3277-e27abada35780790f33acf3d1b0412f123e9b84d7e2f4713f93bf5b6b2764fae3
ISSN 0094-8276
IngestDate Fri Jul 25 10:49:16 EDT 2025
Thu Apr 24 22:52:46 EDT 2025
Wed Oct 01 02:24:00 EDT 2025
Wed Jan 22 16:22:07 EST 2025
Sat Oct 18 19:02:31 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c3277-e27abada35780790f33acf3d1b0412f123e9b84d7e2f4713f93bf5b6b2764fae3
Notes E-ISSN: 1944-8007
Report Number: NF1676L-25952
LaRC
Langley Research Center
ISSN: 0094-8276
NF1676L-25952
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-7076-7299
0000-0002-8098-8447
PQID 1902429489
PQPubID 54723
PageCount 10
ParticipantIDs proquest_journals_1902429489
crossref_primary_10_1002_2017GL073281
crossref_citationtrail_10_1002_2017GL073281
wiley_primary_10_1002_2017GL073281_GRL55837
nasa_ntrs_20170008763
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 16 May 2017
PublicationDateYYYYMMDD 2017-05-16
PublicationDate_xml – month: 05
  year: 2017
  text: 16 May 2017
  day: 16
PublicationDecade 2010
PublicationPlace Langley Research Center
PublicationPlace_xml – name: Langley Research Center
– name: Washington
PublicationTitle Geophysical research letters
PublicationYear 2017
Publisher American Geophysical Union
John Wiley & Sons, Inc
Publisher_xml – name: American Geophysical Union
– name: John Wiley & Sons, Inc
References 2011; 116
2014; 119
2009; 22
2013; 26
2012; 124
2006; 38
2013; 40
1984; 89
2015; 120
2016; 10
2016; 144
1996
2011; 11
2016; 121
2006; 19
2012; 39
2011; 37
1996; 35
1999; 104
1998; 25
2003; 131
1996; 77
2010; 23
2009; 36
2017; 30
1971; 76
2015; 28
2014b; 119
2004; 17
2010; 115
2013; 118
2016; 43
2005; 32
2016
2008; 21
2011; 24
2015
2014a; 41
2016; 29
2014; 9
2012; 117
1996; 9
e_1_2_6_51_1
e_1_2_6_32_1
e_1_2_6_30_1
e_1_2_6_19_1
e_1_2_6_13_1
e_1_2_6_36_1
e_1_2_6_11_1
e_1_2_6_34_1
e_1_2_6_17_1
e_1_2_6_15_1
e_1_2_6_38_1
e_1_2_6_43_1
e_1_2_6_20_1
e_1_2_6_41_1
e_1_2_6_9_1
e_1_2_6_5_1
e_1_2_6_7_1
e_1_2_6_24_1
e_1_2_6_49_1
e_1_2_6_3_1
e_1_2_6_22_1
e_1_2_6_28_1
e_1_2_6_45_1
e_1_2_6_26_1
e_1_2_6_47_1
e_1_2_6_52_1
e_1_2_6_10_1
e_1_2_6_31_1
e_1_2_6_50_1
e_1_2_6_14_1
e_1_2_6_35_1
e_1_2_6_12_1
e_1_2_6_33_1
e_1_2_6_18_1
e_1_2_6_39_1
e_1_2_6_16_1
e_1_2_6_37_1
e_1_2_6_42_1
e_1_2_6_21_1
e_1_2_6_40_1
e_1_2_6_8_1
e_1_2_6_4_1
e_1_2_6_6_1
e_1_2_6_25_1
e_1_2_6_48_1
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_29_1
e_1_2_6_44_1
e_1_2_6_27_1
e_1_2_6_46_1
References_xml – volume: 121
  start-page: 2178
  year: 2016
  end-page: 2187
  article-title: The influence of winter cloud on summer sea ice in the Arctic, 1983–2013
  publication-title: J. Geophys. Res. Atmos.
– volume: 9
  start-page: 2110
  year: 1996
  end-page: 2123
  article-title: Impact of clouds on surface radiative fluxes and snowmelt in the Arctic and subarctic
  publication-title: J. Clim.
– volume: 117
  year: 2012
  article-title: Arctic synoptic regimes: Comparing domain‐wide Arctic cloud observations with CAM4 and CAM5 during similar dynamics
  publication-title: J. Geophys. Res.
– volume: 38
  year: 2006
  article-title: Water vapor intrusions into the High Arctic during winter
  publication-title: Geophys. Res. Lett.
– volume: 35
  start-page: 2067
  year: 1996
  end-page: 2079
  article-title: Surface energy fluxes of Arctic winter sea ice in Barrow Strait
  publication-title: J. Appl. Meteorol.
– volume: 131
  start-page: 845
  year: 2003
  end-page: 861
  article-title: Modeling global sea ice with a thickness and enthalpy distribution model in generalized curvilinear coordinates
  publication-title: Mon. Weather Rev.
– volume: 23
  start-page: 4216
  year: 2010
  end-page: 4231
  article-title: Interannual variation of Arctic cloud types in relation to sea ice
  publication-title: J. Clim.
– volume: 117
  year: 2012
  article-title: Clear‐sky thermodynamic and radiative anomalies over a sea ice sensitive region of the Arctic
  publication-title: J. Geophys. Res.
– volume: 77
  start-page: 437
  issue: 3
  year: 1996
  end-page: 471
  article-title: The NCEP/NCAR 40‐year reanalysis project
  publication-title: Bull. Am. Meteorol. Soc.
– volume: 9
  year: 2014
  article-title: Less winter cloud aids summer 2013 Arctic sea ice return from 2012 minimum
  publication-title: Environ. Res. Lett.
– volume: 120
  start-page: 12,656
  year: 2015
  end-page: 12,678
  article-title: Covariance between Arctic sea ice and clouds within atmospheric state regimes at the satellite footprint level
  publication-title: J. Geophys. Res. Atmos.
– volume: 29
  start-page: 4723
  year: 2016
  end-page: 4740
  article-title: Observed signatures of the barotropic and baroclinic annular modes in cloud vertical structure and cloud radiative effects
  publication-title: J. Clim.
– volume: 144
  start-page: 4279
  year: 2016
  end-page: 4286
  article-title: The impact of the extreme winter 2015/16 Arctic cyclone on the Barents‐Kara Seas
  publication-title: Mon. Weather Rev.
– volume: 116
  year: 2011
  article-title: Observations of recent Arctic sea ice volume loss and its impact on ocean‐atmosphere energy exchange and ice production
  publication-title: J. Geophys. Res.
– volume: 41
  start-page: 1681
  year: 2014a
  end-page: 1688
  article-title: Observed linkages between the northern annular mode/North Atlantic Oscillation, cloud incidence, and cloud radiative forcing
  publication-title: Geophys. Res. Lett.
– year: 2016
  article-title: Arctic observation and reanalysis integrated system: A new data product for validation and climate study
  publication-title: Bull. Am. Meteorol. Soc.
– volume: 39
  start-page: 1349
  year: 2012
  end-page: 1371
  article-title: Onset and end of the summer melt season over sea ice: Thermal structure and surface energy perspective from SHEBA
  publication-title: Clim Dyn
– volume: 25
  start-page: 1297
  year: 1998
  end-page: 1300
  article-title: The Arctic oscillation signature in the wintertime geopotential height and temperature fields
  publication-title: Geophys. Res. Lett.
– volume: 37
  start-page: 1643
  year: 2011
  end-page: 1660
  article-title: A transitioning Arctic surface energy budget: The impacts of solar zenith angle, surface albedo and cloud radiative forcing
  publication-title: Clim Dyn.
– volume: 119
  start-page: 3679
  year: 2014
  end-page: 3693
  article-title: Surface energy budget of landfast sea ice during the transitions from winter to snowmelt and melt pond onset: The importance of net longwave radiation and cyclone forcings
  publication-title: J. Geophys. Res. Oceans
– volume: 32
  year: 2005
  article-title: Clues to variability in Arctic minimum sea ice extent
  publication-title: Geophys. Res. Lett.
– volume: 10
  start-page: 2191
  year: 2016
  end-page: 2202
  article-title: Mechanism of seasonal Arctic sea ice evolution and Arctic amplification
  publication-title: Cryosphere
– volume: 28
  start-page: 5030
  year: 2015
  end-page: 5040
  article-title: The impact of poleward moisture and sensible heat flux on Arctic winter sea ice variability
  publication-title: J. Clim.
– year: 2016
  article-title: “The stippling shows statistically significant gridpoints”: How research results are routinely overstated and over‐interpreted, and what to do about it
  publication-title: Bull. Am. Meteorol. Soc.
– volume: 40
  start-page: 4717
  year: 2013
  end-page: 4721
  article-title: Large‐scale circulation associated with moisture intrusions into the Arctic during winter
  publication-title: Geophys. Res. Lett.
– volume: 116
  year: 2011
  article-title: Uncertainty in modeled Arctic sea ice volume
  publication-title: J. Geophys. Res.
– year: 2015
– volume: 124
  start-page: 159
  year: 2012
  end-page: 173
  article-title: Arctic cloud macrophysical characteristics from CloudSat and CALIPSO
  publication-title: Rem. Sens. Environ.
– volume: 17
  start-page: 3623
  year: 2004
  end-page: 3632
  article-title: A mechanism for the high rate of sea ice thinning in the Arctic Ocean
  publication-title: J. Clim.
– volume: 26
  start-page: 7023
  year: 2013
  end-page: 7043
  article-title: A decomposition of feedback contributions to polar warming amplification
  publication-title: J. Clim.
– volume: 24
  start-page: 1747
  year: 2011
  end-page: 1762
  article-title: Synoptically driven Arctic winter states
  publication-title: J. Clim.
– volume: 11
  start-page: 10,127
  year: 2011
  end-page: 10,148
  article-title: Moisture and dynamical interactions maintaining decoupled Arctic mixed‐phase stratocumulus in the presence of a humidity inversion
  publication-title: Atmos. Chem. Phys.
– volume: 29
  start-page: 4473
  year: 2016
  end-page: 4485
  article-title: The role of moist intrusions in winter Arctic warming and sea ice decline
  publication-title: J. Clim.
– volume: 43
  start-page: 6636
  year: 2016
  end-page: 6642
  article-title: Melt onset over Arctic sea ice controlled by atmospheric moisture transport
  publication-title: Geophys. Res. Lett.
– year: 1996
– volume: 89
  start-page: 10,615
  year: 1984
  end-page: 10,622
  article-title: The sensitivity of a one‐dimensional thermodynamic sea ice model to changes in cloudiness
  publication-title: J. Geophys. Res.
– volume: 19
  start-page: 210
  year: 2006
  end-page: 225
  article-title: Dipole anomaly in the winter Arctic atmosphere and its association with sea ice motion
  publication-title: J. Clim.
– volume: 17
  start-page: 616
  issue: 3
  year: 2004
  end-page: 628
  article-title: Cloud radiative forcing of the Arctic surface: The influence of cloud properties, surface albedo, and solar zenith angle
  publication-title: J. Clim.
– volume: 115
  year: 2010
  article-title: A thermodynamic model for estimating sea and lake ice thickness with optical satellite data
  publication-title: J. Geophys. Res.
– volume: 26
  start-page: 2719
  year: 2013
  end-page: 2740
  article-title: Surface irradiances consistent with CERES‐derived top‐of‐atmosphere shortwave and longwave irradiances
  publication-title: J. Clim.
– volume: 76
  start-page: 1550
  year: 1971
  end-page: 1575
  article-title: Some results from a time‐dependent thermodynamic model of sea ice
  publication-title: J. Geophys. Res.
– volume: 36
  year: 2009
  article-title: Is the Dipole Anomaly a major driver to record lows in Arctic summer sea ice extent?
  publication-title: Geophys. Res. Lett.
– volume: 118
  start-page: 7219
  year: 2013
  end-page: 7236
  article-title: Observational constraints on Arctic Ocean clouds and radiative fluxes during the early 21st century
  publication-title: J. Geophys. Res. Atmos.
– volume: 119
  start-page: 3770
  year: 2014b
  end-page: 3792
  article-title: A global survey of the instantaneous linkages between cloud vertical structure and large‐scale climate
  publication-title: J. Geophys. Res. Atmos.
– volume: 104
  start-page: 20,837
  year: 1999
  end-page: 20,856
  article-title: Arctic sea ice extents, areas, and trends, 1978–1996
  publication-title: J. Geophys. Res.
– volume: 21
  start-page: 5777
  year: 2008
  end-page: 5796
  article-title: Arctic climate change as manifest in cyclone behavior
  publication-title: J. Clim.
– volume: 30
  start-page: 865
  year: 2017
  end-page: 883
  article-title: Dynamical and thermodynamical impacts of high and low frequency atmospheric eddies on the initial melt of Arctic sea ice
  publication-title: J. Clim.
– volume: 24
  start-page: 2737
  year: 2011
  end-page: 2753
  article-title: Geographic distribution of climate feedbacks in the NCAR CCSM3.0
  publication-title: J. Clim.
– volume: 22
  start-page: 748
  year: 2009
  end-page: 766
  article-title: Toward optimal closure of the Earth's top‐of‐atmosphere radiation budget
  publication-title: J. Clim.
– ident: e_1_2_6_48_1
  doi: 10.1175/JCLI-D-15-0773.1
– ident: e_1_2_6_15_1
  doi: 10.1002/jgrd.50489
– ident: e_1_2_6_7_1
  doi: 10.1175/BAMS‐D‐14‐00273.1
– ident: e_1_2_6_24_1
  doi: 10.1016/j.rse.2012.05.006
– ident: e_1_2_6_12_1
  doi: 10.1175/JCLI-D-15-0366.1
– ident: e_1_2_6_49_1
  doi: 10.1002/grl.50912
– ident: e_1_2_6_51_1
  doi: 10.1175/1520-0493(2003)131<0845:MGSIWA>2.0.CO;2
– ident: e_1_2_6_43_1
  doi: 10.1002/2015JD023520
– ident: e_1_2_6_29_1
  doi: 10.1029/1999JC900082
– ident: e_1_2_6_33_1
  doi: 10.1029/2012JD017754
– ident: e_1_2_6_35_1
  doi: 10.1029/JC089iC06p10615
– ident: e_1_2_6_3_1
  doi: 10.1175/1520-0442(2004)017<3623:AMFTHR>2.0.CO;2
– ident: e_1_2_6_41_1
  doi: 10.1175/2010JCLI3788.1
– ident: e_1_2_6_44_1
  doi: 10.1029/98GL00950
– ident: e_1_2_6_18_1
  doi: 10.1029/2010JC006235
– ident: e_1_2_6_31_1
  doi: 10.1007/s00382-011-1196-9
– ident: e_1_2_6_4_1
  doi: 10.1175/MWR-D-16-0234.1
– ident: e_1_2_6_27_1
  doi: 10.1002/2016GL069330
– ident: e_1_2_6_45_1
  doi: 10.1029/2008GL036706
– ident: e_1_2_6_14_1
  doi: 10.1175/JCLI‐D‐12‐00436.1
– ident: e_1_2_6_37_1
  doi: 10.1175/2008JCLI2366.1
– ident: e_1_2_6_52_1
  doi: 10.1175/1520-0442(1996)009<2110:IOCOSR>2.0.CO;2
– ident: e_1_2_6_17_1
  doi: 10.5194/tc-10-2191-2016
– ident: e_1_2_6_38_1
  doi: 10.5194/acp-11-10127-2011
– ident: e_1_2_6_2_1
  doi: 10.1029/2012JD017589
– ident: e_1_2_6_39_1
  doi: 10.1175/1520-0450(1996)035<2067:SEFOAW>2.0.CO;2
– ident: e_1_2_6_47_1
  doi: 10.1175/BAMS‐D‐15‐00267.1
– ident: e_1_2_6_9_1
  doi: 10.1175/2010JCLI3492.1
– ident: e_1_2_6_23_1
  doi: 10.1088/1748‐9326/9/4/044002
– ident: e_1_2_6_32_1
  doi: 10.1029/2011JC007084
– ident: e_1_2_6_46_1
  doi: 10.1029/2009JC005857
– ident: e_1_2_6_40_1
  doi: 10.1175/2010JCLI3817.1
– ident: e_1_2_6_19_1
  doi: 10.1002/2015JD024316
– ident: e_1_2_6_28_1
  doi: 10.1175/JCLI-D-15-0074.1
– ident: e_1_2_6_34_1
  doi: 10.1007/s00382-010-0937-5
– ident: e_1_2_6_5_1
– ident: e_1_2_6_30_1
– ident: e_1_2_6_8_1
  doi: 10.1029/2011GL047493
– ident: e_1_2_6_22_1
  doi: 10.1002/2013JD020669
– ident: e_1_2_6_36_1
  doi: 10.1175/1520‐0442(2004)017<0616:CRFOTA>2.0.CO;2
– ident: e_1_2_6_16_1
– ident: e_1_2_6_13_1
  doi: 10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2
– ident: e_1_2_6_50_1
  doi: 10.1175/JCLI3619.1
– ident: e_1_2_6_10_1
  doi: 10.1002/2013JC009672
– ident: e_1_2_6_11_1
  doi: 10.1029/2005GL024376
– ident: e_1_2_6_20_1
  doi: 10.1175/JCLI-D-15-0692.1
– ident: e_1_2_6_26_1
  doi: 10.1029/JC076i006p01550
– ident: e_1_2_6_21_1
  doi: 10.1002/2013GL059113
– ident: e_1_2_6_6_1
  doi: 10.5067/8GQ8LZQVL0VL
– ident: e_1_2_6_42_1
  doi: 10.1175/JCLI‐D‐12‐00696.1
– ident: e_1_2_6_25_1
  doi: 10.1175/2008JCLI2637.1
SSID ssj0003031
Score 2.3783002
Snippet An analysis of 2000-2015 monthly Clouds and the Earth's Radiant Energy System-Energy Balanced and Filled (CERES-EBAF) and Modern-Era Retrospective Analysis for...
An analysis of 2000–2015 monthly Clouds and the Earth's Radiant Energy System‐Energy Balanced and Filled (CERES‐EBAF) and Modern‐Era Retrospective Analysis for...
SourceID proquest
crossref
wiley
nasa
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 4341
SubjectTerms Anomalies
Arctic Oscillation
Arctic radiation
Arctic sea ice
Atmosphere
Atmospheric temperature
Atmospheric variability
cloud radiative effect
Clouds
Dipoles
Downwelling
Energy
Energy balance
Fluctuations
Flux
large‐scale atmospheric variability
longwave surface fluxes
Meteorological satellites
Ocean-atmosphere interaction
Oceanography
Oscillations
Radiation
Radiation budget
Sea ice
Sea ice growth
Sky
Statistical analysis
Temperature
Terrestrial radiation
Water temperature
Water vapor
winter
Title The Regional Influence of the Arctic Oscillation and Arctic Dipole on the Wintertime Arctic Surface Radiation Budget and Sea Ice Growth
URI https://ntrs.nasa.gov/citations/20170008763
https://onlinelibrary.wiley.com/doi/abs/10.1002%2F2017GL073281
https://www.proquest.com/docview/1902429489
Volume 44
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: KBPluse Wiley Online Library: Open Access
  customDbUrl:
  eissn: 1944-8007
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0003031
  issn: 0094-8276
  databaseCode: AVUZU
  dateStart: 19740101
  isFulltext: true
  titleUrlDefault: https://www.kbplus.ac.uk/kbplus7/publicExport/pkg/559
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELdKJyReJj6GKBvID_BUpbiJncaP1YBWaAMJrWjiJbITu4tW2qofQuMf4B_gD-b8lWZiTIyXKHKcU5r79e4c3_0OoVeU0sJusqaaphEtWRlJIVTEOBNEJEylzBQnn35MxxP64Zydt1q_GllL243sFT9urCv5H63CGOjVVMneQbO1UBiAc9AvHEHDcPxnHZvOCvZrXhXajYRt_-HK1D91P4GTm7mMN7tT4IffVkubWOjSHL9XNjmg-lbftt6utABhK0NeYG-W23KqXEK6ra-Ei1NYxG8umgHuSC2WQfWeSOiiO7M1Q3X0PlbTq8oBS5TGKJ32_vyA4HoHXHaPe80PE-DsDKdp2jS2nEZZPPBM186-cgpjxDW6DQbYEUB6oPGGNaWJI8XynhkiO3Kj1XcssuYZRifEsA_1d94t7OjX89htM61jH30-YQwW7vfQHjx9TNpob_hl8nVSe3hw-64To_-BvqACxL9pir4W6rTnYi2uLWOaiyEbzZw9RPt-GYKHDlOPUEvNH6P7I9vm-QrObGJwsX6CfgLGcMAYrjGGFxoDbrADC25gDAM-wrDDGIZBM3eHsXDdYwzXGMMOY1YGYAcDxrDD2AGavH93djyOfPOOqEhMWoCKB0KKUhg2JTLgRCeJKHRS9qVheNMQMCkuM1oOVKwhQEo0T6RmMpXwPqkWKnkKr2wxV88QzgxBkFQlS0hG-1RxkWpChOBSpUqncQd1w3vOC89sbxqszHLHyR3nTa100Ot69tIxuvxl3oFRWQ6i1vYCcfSNHXQUdJh7W7DOIayGWJfTjMPDWL3eKjsPEHt-p9mH6MHuj3aE2pvVVr2AmHgjX3qI_gbycK_Q
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fT9swELZQEYIXtDEQHd3mB3hCEWn8I_VjtY120DIJUYT2EtmJXSp1adWkmvYX7N_enZN27cOQeIuS8yXy5Xyf7fN3hJxzzlO_ySodlwHPRBYYrW0glNChZsJKgYeTh3eyP-I3T-KprnOKZ2Eqfoj1ght6hh-v0cFxQfrqH2sovCLuDUJkm4Hpz67AyNQgu93H0Y_RejCGEboqmqd40IliWee-g4arzfZbUamR60JvIc5N3OoDz_UbclgjRtqtTPyW7Nj8iOz1fEXe33DlczjT4h35AyanWGgBwTWdrKqP0JmjgPJAAR6Hot8h5k2rBDiq82x1-8tkPpuCbO5lf018rsDk57pZsVw4DcoWyGXgG5tlNral1wHuQmHAoWOY05fPx2R0_fXhcz-o6ywEKcMdXBvF2uhMI_FNGKvQMaZTx7K2QTIuB7HNKtPhWWwjB7GMOcWME0Ya6E_utGUn0GWz3J4SiuXT28ZmgoUd3uZWaenCUGtlrLRORk1yuernJK1JyLEWxjSp6JOjZNMqTXKxlp5X5Bv_kTtGkyWgqvAPwoppr0laKxsmtWsWCSAggCWKdxR8jLfri7qT3v1ACJjGv3-V9Cey338YDpLBt7vbM3KAMphz0JYt0igXS_sBoExpPta_618Jw-fE
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fT9swELZQEdNeEGNMK7DND-xpinDjH6kf0VjLoGMTohPiJbJjGyqVtGpaof0F-7d356RdeWDS3qLkfIl8ubvPyfk7Qo6EEEX8yaqCUIlw0iXWGJ9ILQ0zXHolcXPyt0t1NhTnN_Km6XOKe2FqfojVBzf0jBiv0cH91IXjv6yhcIusP2DINgPLn01I5Uy0yObJz-HtcBWMIULXTfO0SLpppprad9BwvD7-SVZqlaYyTxDnOm6Niae3Q7YbxEhPahO_Ihu-3CVb_diR9xccxRrOonpNfoPJKTZaQHBNR8vuI3QSKKA8UIDboeh3yHnjugCOmtItT5-OppMxyJZR9nEUawVGD6th1WIWDCibIZdBHGwX7s7Pow5wFwoBh97Bmn5-v0eGvS_Xn8-Sps9CUnD8g-vTzFjjDBLfsEyzwLkpAncdi2RcAXKb17YrXObTALmMB81tkFZZmE8RjOdvYMompX9LKLZP71jvJGdd0RFeGxUYM0Zbr3xQaZt8Ws5zXjQk5NgLY5zX9Mlpvm6VNvm4kp7W5BvPyO2hyXJQVcULrGbaa5PDpQ3zxjWrHBAQwBItuhoeJtr1n7rz_tVASljG7_-X9Afy4sdpLx98vbw4IC9RBEsOOuqQtOazhX8HSGZu3zdv6x_g7udT
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+regional+influence+of+the+Arctic+Oscillation+and+Arctic+Dipole+on+the+wintertime+Arctic+surface+radiation+budget+and+sea+ice+growth&rft.jtitle=Geophysical+research+letters&rft.au=Hegyi%2C+Bradley+M.&rft.au=Taylor%2C+Patrick+C.&rft.date=2017-05-16&rft.issn=0094-8276&rft.eissn=1944-8007&rft.volume=44&rft.issue=9&rft.spage=4341&rft.epage=4350&rft_id=info:doi/10.1002%2F2017GL073281&rft.externalDBID=10.1002%252F2017GL073281&rft.externalDocID=GRL55837
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0094-8276&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0094-8276&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0094-8276&client=summon