The sector coupling concept: A critical review
Pursued climate goals require reduced greenhouse gas emissions by substituting fossil fuels with energy from renewable sources in all energy‐consuming processes. On a large‐scale, this can mainly be achieved through electricity from wind and sun, which are subject to intermittency. To efficiently in...
Saved in:
Published in | Wiley interdisciplinary reviews. Energy and environment Vol. 10; no. 4; pp. e396 - n/a |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken, USA
John Wiley & Sons, Inc
01.07.2021
Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
ISSN | 2041-8396 2041-840X |
DOI | 10.1002/wene.396 |
Cover
Abstract | Pursued climate goals require reduced greenhouse gas emissions by substituting fossil fuels with energy from renewable sources in all energy‐consuming processes. On a large‐scale, this can mainly be achieved through electricity from wind and sun, which are subject to intermittency. To efficiently integrate this variable energy, a coupling of the power sector to the residential, transport, industry, and commercial/trade sector is often promoted, called sector coupling (SC). Nevertheless, our literature review indicates that SC is frequently misinterpreted and its scope varies among available research, from exclusively considering the use of excess renewable electricity to a rather holistic view of integrated energy systems, including excess heat or even biomass sources. The core objective of this article is to provide a thorough understanding of the SC concept through an analysis of its origin and its main purpose, as described in the current literature. We provide a structured categorization of SC, derived from our findings, and critically discuss its remaining challenges as well as its value for renewable energy systems. We find that SC is rooted in the increasing use of variable renewable energy sources, and its main assets are the flexibility it provides for renewable energy systems, decarbonization potential for fossil‐fuel‐based end‐consumption sectors, and consequently, reduced dependency on oil and gas extracting countries. However, the enabling technologies face great challenges in their economic feasibility because of the uncertain future development of competing solutions.
This article is categorized under:
Energy Systems Economics > Economics and Policy
Energy Systems Economics > Systems and Infrastructure
Technical sector coupling pathways: Using renewable electricity in all end‐consumption sectors. |
---|---|
AbstractList | Pursued climate goals require reduced greenhouse gas emissions by substituting fossil fuels with energy from renewable sources in all energy‐consuming processes. On a large‐scale, this can mainly be achieved through electricity from wind and sun, which are subject to intermittency. To efficiently integrate this variable energy, a coupling of the power sector to the residential, transport, industry, and commercial/trade sector is often promoted, called sector coupling (SC). Nevertheless, our literature review indicates that SC is frequently misinterpreted and its scope varies among available research, from exclusively considering the use of excess renewable electricity to a rather holistic view of integrated energy systems, including excess heat or even biomass sources. The core objective of this article is to provide a thorough understanding of the SC concept through an analysis of its origin and its main purpose, as described in the current literature. We provide a structured categorization of SC, derived from our findings, and critically discuss its remaining challenges as well as its value for renewable energy systems. We find that SC is rooted in the increasing use of variable renewable energy sources, and its main assets are the flexibility it provides for renewable energy systems, decarbonization potential for fossil‐fuel‐based end‐consumption sectors, and consequently, reduced dependency on oil and gas extracting countries. However, the enabling technologies face great challenges in their economic feasibility because of the uncertain future development of competing solutions.
This article is categorized under:
Energy Systems Economics > Economics and Policy
Energy Systems Economics > Systems and Infrastructure Pursued climate goals require reduced greenhouse gas emissions by substituting fossil fuels with energy from renewable sources in all energy‐consuming processes. On a large‐scale, this can mainly be achieved through electricity from wind and sun, which are subject to intermittency. To efficiently integrate this variable energy, a coupling of the power sector to the residential, transport, industry, and commercial/trade sector is often promoted, called sector coupling (SC). Nevertheless, our literature review indicates that SC is frequently misinterpreted and its scope varies among available research, from exclusively considering the use of excess renewable electricity to a rather holistic view of integrated energy systems, including excess heat or even biomass sources. The core objective of this article is to provide a thorough understanding of the SC concept through an analysis of its origin and its main purpose, as described in the current literature. We provide a structured categorization of SC, derived from our findings, and critically discuss its remaining challenges as well as its value for renewable energy systems. We find that SC is rooted in the increasing use of variable renewable energy sources, and its main assets are the flexibility it provides for renewable energy systems, decarbonization potential for fossil‐fuel‐based end‐consumption sectors, and consequently, reduced dependency on oil and gas extracting countries. However, the enabling technologies face great challenges in their economic feasibility because of the uncertain future development of competing solutions. This article is categorized under: Energy Systems Economics > Economics and Policy Energy Systems Economics > Systems and Infrastructure Technical sector coupling pathways: Using renewable electricity in all end‐consumption sectors. Pursued climate goals require reduced greenhouse gas emissions by substituting fossil fuels with energy from renewable sources in all energy‐consuming processes. On a large‐scale, this can mainly be achieved through electricity from wind and sun, which are subject to intermittency. To efficiently integrate this variable energy, a coupling of the power sector to the residential, transport, industry, and commercial/trade sector is often promoted, called sector coupling (SC). Nevertheless, our literature review indicates that SC is frequently misinterpreted and its scope varies among available research, from exclusively considering the use of excess renewable electricity to a rather holistic view of integrated energy systems, including excess heat or even biomass sources. The core objective of this article is to provide a thorough understanding of the SC concept through an analysis of its origin and its main purpose, as described in the current literature. We provide a structured categorization of SC, derived from our findings, and critically discuss its remaining challenges as well as its value for renewable energy systems. We find that SC is rooted in the increasing use of variable renewable energy sources, and its main assets are the flexibility it provides for renewable energy systems, decarbonization potential for fossil‐fuel‐based end‐consumption sectors, and consequently, reduced dependency on oil and gas extracting countries. However, the enabling technologies face great challenges in their economic feasibility because of the uncertain future development of competing solutions.This article is categorized under:Energy Systems Economics > Economics and PolicyEnergy Systems Economics > Systems and Infrastructure |
Author | Ajanovic, Amela Haas, Reinhard Ramsebner, Jasmine Wietschel, Martin |
Author_xml | – sequence: 1 givenname: Jasmine orcidid: 0000-0002-4154-8131 surname: Ramsebner fullname: Ramsebner, Jasmine email: ramsebner@eeg.tuwien.ac.at organization: Technische Universität Wien (TU WIEN) – sequence: 2 givenname: Reinhard surname: Haas fullname: Haas, Reinhard organization: Technische Universität Wien (TU WIEN) – sequence: 3 givenname: Amela surname: Ajanovic fullname: Ajanovic, Amela organization: Technische Universität Wien (TU WIEN) – sequence: 4 givenname: Martin surname: Wietschel fullname: Wietschel, Martin organization: Fraunhofer‐Institut für System‐ und Innovationsforschung ISI |
BookMark | eNp1kE1LAzEQhoNUsNaCP2HBi5dd87FNst5KqR9Q9FLRW0izs5qyZtcktfTfm1K9iM5lXobnnWHeUzRwnQOEzgkuCMb0agsOClbxIzSkuCS5LPHL4Een-Qkah7DGqSThZcmHqFi-QRbAxM5nptv0rXWvSTgDfbzOppnxNlqj28zDp4XtGTpudBtg_N1H6Olmvpzd5YvH2_vZdJEbRgXPDa-4ENJIXEuNV1LWhmpgNRWE1OWK1BUVuhEcBFCgleETzspGGywazJq6YiN0cdjb--5jAyGqdbfxLp1UdML4hFVSykQVB8r4LgQPjTI26mg7F722rSJY7WNR-1hUej8ZLn8Zem_ftd_9heYHdGtb2P3Lqef5w3zPfwHCHXJb |
CitedBy_id | crossref_primary_10_1016_j_energy_2023_128095 crossref_primary_10_3390_su152115555 crossref_primary_10_1051_rees_2021042 crossref_primary_10_1002_wene_536 crossref_primary_10_3390_en16010462 crossref_primary_10_1016_j_rser_2022_112587 crossref_primary_10_1016_j_rser_2022_113038 crossref_primary_10_1515_eng_2024_0024 crossref_primary_10_1016_j_renene_2024_121412 crossref_primary_10_1016_j_adapen_2023_100129 crossref_primary_10_1021_acsaem_2c00888 crossref_primary_10_1016_j_esr_2024_101425 crossref_primary_10_1038_s44333_024_00019_z crossref_primary_10_1016_j_ijhydene_2024_08_054 crossref_primary_10_1186_s42162_024_00464_7 crossref_primary_10_4236_epe_2024_162003 crossref_primary_10_1016_j_renene_2022_05_145 crossref_primary_10_3389_fenrg_2024_1443506 crossref_primary_10_3390_en18020404 crossref_primary_10_1016_j_apenergy_2024_125003 crossref_primary_10_1016_j_segy_2022_100093 crossref_primary_10_1016_j_apenergy_2024_123225 crossref_primary_10_1016_j_est_2024_114347 crossref_primary_10_3390_en17153813 crossref_primary_10_1021_acsami_2c20731 crossref_primary_10_1016_j_erss_2023_103210 crossref_primary_10_5194_gmd_16_4977_2023 crossref_primary_10_1016_j_xcrp_2024_102175 crossref_primary_10_1016_j_ijhydene_2023_08_200 crossref_primary_10_1002_cssc_202200007 crossref_primary_10_1016_j_apenergy_2023_121508 crossref_primary_10_1016_j_rset_2024_100082 crossref_primary_10_1109_TSTE_2022_3189838 crossref_primary_10_3390_en14061576 crossref_primary_10_3390_polym13081292 crossref_primary_10_1016_j_ifacol_2023_10_195 crossref_primary_10_1016_j_ijhydene_2024_02_167 crossref_primary_10_1016_j_enconman_2022_116534 crossref_primary_10_1016_j_fuel_2023_127763 crossref_primary_10_1016_j_energy_2024_133902 crossref_primary_10_1016_j_erss_2024_103822 crossref_primary_10_1016_j_jclepro_2023_138419 crossref_primary_10_1016_j_energy_2025_135452 crossref_primary_10_3390_en14113183 crossref_primary_10_1109_ACCESS_2023_3334397 crossref_primary_10_3390_en16135226 crossref_primary_10_1016_j_enpol_2023_113830 crossref_primary_10_3390_en17194813 crossref_primary_10_1016_j_rset_2024_100094 crossref_primary_10_12688_openreseurope_16693_1 crossref_primary_10_1109_ACCESS_2024_3375336 crossref_primary_10_12688_openreseurope_16693_2 crossref_primary_10_1049_rpg2_12399 crossref_primary_10_1016_j_ref_2023_04_008 crossref_primary_10_1016_j_erss_2023_103282 crossref_primary_10_1016_j_renene_2022_05_123 crossref_primary_10_3390_wevj14030077 crossref_primary_10_1007_s00502_023_01145_1 crossref_primary_10_1155_2024_8812115 crossref_primary_10_1016_j_ecmx_2024_100624 crossref_primary_10_1016_j_enpol_2024_114472 crossref_primary_10_3390_en15134712 crossref_primary_10_1016_j_segy_2024_100149 crossref_primary_10_1002_stab_202400059 crossref_primary_10_1039_D1EE00627D |
Cites_doi | 10.15344/2456-351X/2017/139 10.1016/j.apenergy.2019.01.101 10.1016/j.energy.2014.02.089 10.1016/j.fuel.2017.05.061 10.1016/j.apenergy.2020.115100 10.1016/j.apenergy.2018.06.001 10.1016/j.apenergy.2019.114101 10.1016/j.apenergy.2015.01.075 10.1016/j.apenergy.2017.12.017 10.1016/j.erss.2020.101513 10.1016/j.procs.2017.09.008 10.1016/j.energy.2020.117408 10.1016/j.apenergy.2020.115134 10.1016/j.energy.2012.04.003 10.1016/B978-0-08-102074-6.00026-7 10.1016/j.egypro.2015.11.446 10.1016/j.apenergy.2017.10.117 10.3390/en10070956 10.1016/j.energy.2018.06.222 10.1016/j.rser.2018.12.059 10.1016/j.ijhydene.2018.05.169 10.1016/j.energy.2017.05.123 10.1016/j.energy.2020.117062 10.3390/en10070957 10.1016/j.rser.2019.06.030 10.1016/j.jclepro.2015.05.117 10.1016/j.apenergy.2020.114571 10.1016/j.apenergy.2018.03.092 10.1016/j.energy.2019.06.016 10.1016/j.rser.2017.09.003 10.1016/j.apenergy.2020.114521 10.1049/iet-rpg:20080049 10.1016/j.energy.2018.06.198 10.1016/j.apenergy.2015.08.115 10.1016/j.ijhydene.2015.01.123 10.1016/j.esr.2019.100389 10.5220/0005481100660071 10.1016/j.apenergy.2020.114500 10.1016/j.apenergy.2017.12.073 10.1016/j.tej.2012.09.017 10.1049/iet-esi.2019.0061 10.1016/j.energy.2013.10.041 10.1016/j.apenergy.2019.113820 10.1016/j.jenvman.2020.110090 10.1016/j.enpol.2020.111609 10.1007/s40684-014-0034-z 10.1016/j.rser.2020.110057 10.1109/EEM.2017.7982024 10.14512/tatup.29.2.38 10.1016/j.ijhydene.2019.03.183 10.1016/j.rser.2016.02.025 10.1016/j.eneco.2020.104708 |
ContentType | Journal Article |
Copyright | 2021 The Authors. published by Wiley Periodicals LLC. 2021. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2021 The Authors. published by Wiley Periodicals LLC. – notice: 2021. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 24P AAYXX CITATION 7ST C1K SOI |
DOI | 10.1002/wene.396 |
DatabaseName | Wiley Online Library Open Access CrossRef Environment Abstracts Environmental Sciences and Pollution Management Environment Abstracts |
DatabaseTitle | CrossRef Environment Abstracts Environmental Sciences and Pollution Management |
DatabaseTitleList | CrossRef Environment Abstracts |
Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Economics |
EISSN | 2041-840X |
EndPage | n/a |
ExternalDocumentID | 10_1002_wene_396 WENE396 |
Genre | reviewArticle |
GroupedDBID | 05W 0R~ 1OC 1VH 24P 33P 8-0 8-1 A00 AAESR AAHBH AAHHS AAHQN AAMNL AANHP AANLZ AASGY AAXRX AAYCA AAZKR ABCUV ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACIWK ACPOU ACRPL ACXBN ACXQS ACYXJ ADBBV ADEOM ADKYN ADMGS ADNMO ADOZA ADZMN AEEZP AEIGN AEQDE AEUYR AFBPY AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG AUFTA AVWKF AZFZN AZVAB BDRZF BHBCM BMNLL BRXPI D-A D-B DCZOG DRFUL DRSTM EBS EDH EJD G-S GODZA HGLYW HZ~ LATKE LEEKS LITHE LOXES LUTES LYRES MEWTI MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM MY. MY~ O66 O9- P2W PQQKQ ROL SUPJJ WBKPD WIH WIK WOHZO WUPDE WXSBR WYISQ WYJ ZZTAW AAYXX ADMLS AEYWJ AGQPQ AGYGG CITATION 7ST C1K SOI |
ID | FETCH-LOGICAL-c3276-c696778c80d8a0b88dc2ae3d2711d4b1d927af76e7e2e29c65634fac07f03fd93 |
IEDL.DBID | 24P |
ISSN | 2041-8396 |
IngestDate | Sun Jul 13 04:14:55 EDT 2025 Tue Jul 01 00:57:50 EDT 2025 Thu Apr 24 23:12:49 EDT 2025 Wed Jan 22 16:30:19 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
License | Attribution |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3276-c696778c80d8a0b88dc2ae3d2711d4b1d927af76e7e2e29c65634fac07f03fd93 |
Notes | Peter Lund, Co‐Editor‐in‐Chief Edited by ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-4154-8131 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fwene.396 |
PQID | 2536539888 |
PQPubID | 2034622 |
PageCount | 27 |
ParticipantIDs | proquest_journals_2536539888 crossref_citationtrail_10_1002_wene_396 crossref_primary_10_1002_wene_396 wiley_primary_10_1002_wene_396_WENE396 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | July/August 2021 2021-07-00 20210701 |
PublicationDateYYYYMMDD | 2021-07-01 |
PublicationDate_xml | – month: 07 year: 2021 text: July/August 2021 |
PublicationDecade | 2020 |
PublicationPlace | Hoboken, USA |
PublicationPlace_xml | – name: Hoboken, USA – name: Hoboken |
PublicationTitle | Wiley interdisciplinary reviews. Energy and environment |
PublicationYear | 2021 |
Publisher | John Wiley & Sons, Inc Wiley Subscription Services, Inc |
Publisher_xml | – name: John Wiley & Sons, Inc – name: Wiley Subscription Services, Inc |
References | 2018; 160 2017; 2 2016b 2016a 2015; 145 2014; 68 2015; 80 2018; 82 2017; 114 2014; 65 2014; 1 2018; 210 2020; 2 2015; 40 2020; 132 2018; 212 2019; 26 2020b 2020; 258 2020a 2019; 239 2018; 71 2012; 25 2019; 112 2017; 205 2018; 220 2020; 86 2020; 262 2020; 143 2018; 228 2020; 260 2019; 104 2016; 167 2007 2020; 266 1994 2020; 267 2019; 182 2017; 137 2020; 196 2019; 44 2020 2017; 10 2020; 270 2019 2018 2017 2016 2020; 199 2016; 60 2020; 67 2015 2014 2014; 39 2013 2009; 3 2019; 255 2012; 42 2020; 29 e_1_2_13_24_1 e_1_2_13_49_1 e_1_2_13_26_1 e_1_2_13_47_1 e_1_2_13_68_1 Scorza S. A. (e_1_2_13_78_1) 2018; 71 e_1_2_13_20_1 e_1_2_13_45_1 e_1_2_13_66_1 e_1_2_13_87_1 e_1_2_13_22_1 e_1_2_13_43_1 e_1_2_13_64_1 e_1_2_13_85_1 e_1_2_13_8_1 e_1_2_13_41_1 e_1_2_13_62_1 e_1_2_13_60_1 e_1_2_13_6_1 e_1_2_13_81_1 e_1_2_13_17_1 e_1_2_13_19_1 e_1_2_13_13_1 e_1_2_13_36_1 e_1_2_13_59_1 e_1_2_13_15_1 e_1_2_13_38_1 e_1_2_13_57_1 e_1_2_13_55_1 e_1_2_13_11_1 e_1_2_13_34_1 e_1_2_13_53_1 e_1_2_13_76_1 e_1_2_13_51_1 e_1_2_13_74_1 e_1_2_13_30_1 e_1_2_13_70_1 e_1_2_13_4_1 e_1_2_13_2_1 Lund H. (e_1_2_13_48_1) 2014; 39 e_1_2_13_88_1 e_1_2_13_29_1 e_1_2_13_25_1 Warner J. T. (e_1_2_13_83_1) 2015 e_1_2_13_27_1 e_1_2_13_46_1 e_1_2_13_69_1 e_1_2_13_21_1 e_1_2_13_44_1 e_1_2_13_67_1 e_1_2_13_23_1 e_1_2_13_42_1 e_1_2_13_65_1 e_1_2_13_86_1 e_1_2_13_9_1 e_1_2_13_40_1 e_1_2_13_63_1 e_1_2_13_84_1 e_1_2_13_7_1 e_1_2_13_61_1 e_1_2_13_82_1 e_1_2_13_80_1 e_1_2_13_18_1 e_1_2_13_39_1 e_1_2_13_14_1 e_1_2_13_35_1 e_1_2_13_16_1 e_1_2_13_37_1 e_1_2_13_58_1 e_1_2_13_79_1 e_1_2_13_10_1 e_1_2_13_31_1 e_1_2_13_56_1 e_1_2_13_77_1 e_1_2_13_12_1 e_1_2_13_33_1 e_1_2_13_54_1 e_1_2_13_75_1 e_1_2_13_52_1 e_1_2_13_73_1 e_1_2_13_50_1 e_1_2_13_71_1 e_1_2_13_5_1 e_1_2_13_3_1 Foy J. H. (e_1_2_13_32_1) 1994 Schaber K. (e_1_2_13_72_1) 2013 e_1_2_13_28_1 |
References_xml | – year: 2016b – volume: 266 year: 2020 article-title: Flexible electricity use for heating in markets with renewable energy publication-title: Applied Energy – volume: 3 start-page: 190 issue: 2 year: 2009 end-page: 204 article-title: Comparative analyses of seven technologies to facilitate the integration of fluctuating renewable energy sources publication-title: IET Renewable Power Generation – volume: 2 issue: 2 year: 2017 article-title: Exergy as measure of sustainability of energy system publication-title: International Journal of Earth & Environmental Sciences – start-page: 1 year: 2017 end-page: 7 – volume: 160 start-page: 122 year: 2018 end-page: 141 article-title: The optimal structure planning and energy management strategies of smart multi energy systems publication-title: Energy – volume: 220 start-page: 231 year: 2018 end-page: 241 article-title: Performance based approach for electricity generation in smart grids publication-title: Applied Energy – year: 2018 – year: 2014 – year: 1994 – volume: 86 year: 2020 article-title: The welfare and price effects of sector coupling with power‐to‐gas publication-title: Energy Economics – volume: 71 start-page: 49 issue: 10 year: 2018 end-page: 53 article-title: Kurz zum Klima: “Sektorkopplung”—Ansätze und Implikationen der Dekarbonisierung des Energiesystems publication-title: ifo Schnelldienst – volume: 112 start-page: 775 year: 2019 end-page: 787 article-title: Power‐to‐gas: Electrolysis and methanation status review publication-title: Renewable and Sustainable Energy Reviews – volume: 196 year: 2020 article-title: Electrification of transport and residential heating sectors in support of renewable penetration: Scenarios for the Italian energy system publication-title: Energy – year: 2016a – volume: 182 start-page: 729 year: 2019 end-page: 738 article-title: A method for technical assessment of power‐to‐heat use cases to couple local district heating and electrical distribution grids publication-title: Energy – volume: 199 year: 2020 article-title: Analysis on electrofuels in future energy systems: A 2050 case study publication-title: Energy – volume: 160 start-page: 720 year: 2018 end-page: 739 article-title: Synergies of sector coupling and transmission reinforcement in a cost‐optimised, highly renewable European energy system publication-title: Energy – volume: 82 start-page: 2440 year: 2018 end-page: 2454 article-title: Current status of water electrolysis for energy storage, grid balancing and sector coupling via power‐to‐gas and power‐to‐liquids: A review publication-title: Renewable and Sustainable Energy Reviews – volume: 270 year: 2020 article-title: Coupling the heating and power sectors: The role of centralised combined heat and power plants and district heat in a European decarbonised power system publication-title: Applied Energy – volume: 25 start-page: 7 issue: 8 year: 2012 end-page: 15 article-title: Serving electricity and heat requirements efficiently and with appropriate energy quality via microgrids publication-title: The Electricity Journal – volume: 67 year: 2020 article-title: Transforming or tinkering at the margins? Assessing policy strategies for heating decarbonisation in Germany and the United Kingdom publication-title: Energy Research & Social Science – volume: 40 start-page: 4285 issue: 12 year: 2015 end-page: 4294 article-title: Power to gas: Technological overview, systems analysis and economic assessment for a case study in Germany publication-title: International Journal of Hydrogen Energy – year: 2019 – volume: 167 start-page: 189 year: 2016 end-page: 200 article-title: Economic valuation of heat pumps and electric boilers in the Danish energy system publication-title: Applied Energy – volume: 44 start-page: 19089 issue: 35 year: 2019 end-page: 19101 article-title: Efficient hydrogen production for industry and electricity storage via high‐temperature electrolysis publication-title: International Journal of Hydrogen Energy – year: 2015 – volume: 80 start-page: 422 year: 2015 end-page: 432 article-title: Determining the economic value of offshore wind power plants in the changing energy system publication-title: Energy Procedia – volume: 104 start-page: 504 year: 2019 end-page: 522 article-title: 5th generation district heating and cooling systems: A review of existing cases in Europe publication-title: Renewable and Sustainable Energy Reviews – volume: 2 start-page: 69 issue: 2 year: 2020 end-page: 79 article-title: Role of thermal technologies for enhancing flexibility in multi‐energy systems through sector coupling: Technical suitability and expected developments publication-title: IET Energy Systems Integration – volume: 137 start-page: 556 year: 2017 end-page: 565 article-title: Smart energy and smart energy systems publication-title: Energy – start-page: 1 year: 2015 end-page: 6 – volume: 267 year: 2020 article-title: The potential of sector coupling in future European energy systems: Soft linking between the Dispa‐SET and JRC‐EU‐TIMES models publication-title: Applied Energy – volume: 44 start-page: 12918 issue: 26 year: 2019 end-page: 12930 article-title: Flexible sector coupling with hydrogen: A climate‐friendly fuel supply for road transport publication-title: International Journal of Hydrogen Energy – year: 2007 – volume: 1 start-page: 283 issue: 4 year: 2014 end-page: 292 article-title: Sustainability in manufacturing and factories of the future publication-title: International Journal of Precision Engineering and Manufacturing‐Green Technology – volume: 262 year: 2020 article-title: Impact of climatic, technical and economic uncertainties on the optimal design of a coupled fossil‐free electricity, heating and cooling system in Europe publication-title: Applied Energy – volume: 266 start-page: 114521 year: 2020 article-title: An integrated model of coupled heat and power sectors for large‐scale energy system analyses publication-title: Applied Energy – volume: 26 year: 2019 article-title: Influence of heat pumps on renewable electricity integration: Germany in a European context publication-title: Energy Strategy Reviews – year: 2020a – volume: 239 start-page: 560 year: 2019 end-page: 580 article-title: Impacts of heat sector transformation on Germany's power system through increased use of power‐to‐heat publication-title: Applied Energy – year: 2016 – volume: 132 year: 2020 article-title: Power‐to‐methane, coupling CO capture with fuel production: An overview publication-title: Renewable and Sustainable Energy Reviews – volume: 255 year: 2019 article-title: Decarbonizing China's energy system—Modeling the transformation of the electricity, transportation, heat, and industrial sectors publication-title: Applied Energy – volume: 145 start-page: 139 year: 2015 end-page: 154 article-title: Smart energy systems for coherent 100% renewable energy and transport solutions publication-title: Applied Energy – volume: 228 start-page: 57 year: 2018 end-page: 67 article-title: Opportunities of power‐to‐gas technology in different energy systems architectures publication-title: Applied Energy – volume: 68 start-page: 1 year: 2014 end-page: 11 article-title: 4th generation district heating (4GDH) publication-title: Energy – volume: 212 start-page: 1611 year: 2018 end-page: 1626 article-title: Power‐to‐heat for renewable energy integration: A review of technologies, modeling approaches, and flexibility potentials publication-title: Applied Energy – volume: 258 year: 2020 article-title: Assessment of flexible electric vehicle charging in a sector coupling energy system model—Modelling approach and case study publication-title: Applied Energy – volume: 212 start-page: 386 year: 2018 end-page: 400 article-title: The future role of power‐to‐gas in the energy transition: Regional and local techno‐economic analyses in Baden‐Württemberg publication-title: Applied Energy – start-page: 225 year: 2018 end-page: 244 – year: 2020 – volume: 114 start-page: 433 year: 2017 end-page: 440 article-title: Design the capacity of onsite generation system with renewable sources for manufacturing plant publication-title: Procedia Computer Science – volume: 210 start-page: 182 year: 2018 end-page: 197 article-title: Power‐to‐gas: Electrolyzers as an alternative to network expansion—An example from a distribution system operator publication-title: Applied Energy – volume: 205 start-page: 198 year: 2017 end-page: 221 article-title: Power‐to‐fuel as a key to sustainable transport systems—An analysis of diesel fuels produced from CO 2 and renewable electricity publication-title: Fuel – year: 2017 – year: 2020b – volume: 60 start-page: 1634 year: 2016 end-page: 1653 article-title: Smart energy Europe: The technical and economic impact of one potential 100% renewable energy scenario for the European Union publication-title: Renewable and Sustainable Energy Reviews – volume: 39 start-page: 1 year: 2014 end-page: 6 article-title: Renewable energy systems—A smart energy systems approach to the choice and modelling of 100% renewable solutions publication-title: Chemical Engineering Transactions – volume: 143 year: 2020 article-title: Energy systems integration: Implications for public policy publication-title: Energy Policy – volume: 260 year: 2020 article-title: Deep decarbonization of urban energy systems through renewable energy and sector‐coupling flexibility strategies publication-title: Journal of Environmental Management – volume: 29 start-page: 38 issue: 2 year: 2020 end-page: 44 article-title: Sector coupling of renewable energy in an experimental setting publication-title: TATuP—Zeitschrift Für Technikfolgenabschätzung in Theorie Und Praxis – volume: 42 start-page: 96 issue: 1 year: 2012 end-page: 102 article-title: From electricity smart grids to smart energy systems—A market operation based approach and understanding publication-title: Energy – volume: 65 start-page: 1 year: 2014 end-page: 17 article-title: MES (multi‐energy systems): An overview of concepts and evaluation models publication-title: Energy – volume: 10 start-page: 957ff issue: 7 year: 2017 article-title: Linking the power and transport sectors—Part 2: Modelling a sector coupling scenario for Germany publication-title: Energies – year: 2013 – ident: e_1_2_13_24_1 – volume-title: Integration of variable renewable energies in the European power system: A model‐based analysis of transmission grid extensions and energy sector coupling year: 2013 ident: e_1_2_13_72_1 – ident: e_1_2_13_60_1 doi: 10.15344/2456-351X/2017/139 – ident: e_1_2_13_38_1 – ident: e_1_2_13_9_1 doi: 10.1016/j.apenergy.2019.01.101 – ident: e_1_2_13_50_1 doi: 10.1016/j.energy.2014.02.089 – ident: e_1_2_13_16_1 – ident: e_1_2_13_40_1 – ident: e_1_2_13_77_1 – ident: e_1_2_13_85_1 – ident: e_1_2_13_74_1 doi: 10.1016/j.fuel.2017.05.061 – ident: e_1_2_13_15_1 – ident: e_1_2_13_63_1 doi: 10.1016/j.apenergy.2020.115100 – ident: e_1_2_13_46_1 doi: 10.1016/j.apenergy.2018.06.001 – ident: e_1_2_13_80_1 doi: 10.1016/j.apenergy.2019.114101 – ident: e_1_2_13_29_1 – volume-title: The handbook of lithium‐ion battery pack design: Chemistry, components, types and terminology year: 2015 ident: e_1_2_13_83_1 – ident: e_1_2_13_55_1 doi: 10.1016/j.apenergy.2015.01.075 – ident: e_1_2_13_57_1 doi: 10.1016/j.apenergy.2017.12.017 – ident: e_1_2_13_5_1 – ident: e_1_2_13_33_1 doi: 10.1016/j.erss.2020.101513 – volume: 39 start-page: 1 year: 2014 ident: e_1_2_13_48_1 article-title: Renewable energy systems—A smart energy systems approach to the choice and modelling of 100% renewable solutions publication-title: Chemical Engineering Transactions – ident: e_1_2_13_87_1 doi: 10.1016/j.procs.2017.09.008 – ident: e_1_2_13_31_1 – ident: e_1_2_13_23_1 – ident: e_1_2_13_45_1 doi: 10.1016/j.energy.2020.117408 – ident: e_1_2_13_84_1 – ident: e_1_2_13_43_1 doi: 10.1016/j.apenergy.2020.115134 – ident: e_1_2_13_47_1 doi: 10.1016/j.energy.2012.04.003 – ident: e_1_2_13_79_1 doi: 10.1016/B978-0-08-102074-6.00026-7 – ident: e_1_2_13_6_1 – ident: e_1_2_13_14_1 – volume-title: Foy, J: American Home Life 1880–1930 year: 1994 ident: e_1_2_13_32_1 – ident: e_1_2_13_39_1 – ident: e_1_2_13_66_1 doi: 10.1016/j.egypro.2015.11.446 – ident: e_1_2_13_22_1 – ident: e_1_2_13_71_1 doi: 10.1016/j.apenergy.2017.10.117 – ident: e_1_2_13_25_1 – ident: e_1_2_13_82_1 – ident: e_1_2_13_70_1 doi: 10.3390/en10070956 – ident: e_1_2_13_28_1 – ident: e_1_2_13_41_1 – ident: e_1_2_13_3_1 – ident: e_1_2_13_11_1 doi: 10.1016/j.energy.2018.06.222 – ident: e_1_2_13_12_1 doi: 10.1016/j.rser.2018.12.059 – ident: e_1_2_13_64_1 doi: 10.1016/j.ijhydene.2018.05.169 – ident: e_1_2_13_49_1 doi: 10.1016/j.energy.2017.05.123 – ident: e_1_2_13_2_1 – ident: e_1_2_13_21_1 – ident: e_1_2_13_13_1 – ident: e_1_2_13_7_1 doi: 10.1016/j.energy.2020.117062 – ident: e_1_2_13_69_1 doi: 10.3390/en10070957 – ident: e_1_2_13_81_1 doi: 10.1016/j.rser.2019.06.030 – ident: e_1_2_13_67_1 doi: 10.1016/j.jclepro.2015.05.117 – ident: e_1_2_13_76_1 doi: 10.1016/j.apenergy.2020.114571 – ident: e_1_2_13_59_1 doi: 10.1016/j.apenergy.2018.03.092 – ident: e_1_2_13_61_1 – ident: e_1_2_13_44_1 doi: 10.1016/j.energy.2019.06.016 – ident: e_1_2_13_26_1 – ident: e_1_2_13_65_1 – ident: e_1_2_13_18_1 doi: 10.1016/j.rser.2017.09.003 – ident: e_1_2_13_30_1 doi: 10.1016/j.apenergy.2020.114521 – ident: e_1_2_13_54_1 doi: 10.1049/iet-rpg:20080049 – ident: e_1_2_13_73_1 – ident: e_1_2_13_51_1 doi: 10.1016/j.energy.2018.06.198 – ident: e_1_2_13_58_1 doi: 10.1016/j.apenergy.2015.08.115 – ident: e_1_2_13_75_1 doi: 10.1016/j.ijhydene.2015.01.123 – ident: e_1_2_13_8_1 doi: 10.1016/j.esr.2019.100389 – ident: e_1_2_13_42_1 doi: 10.5220/0005481100660071 – ident: e_1_2_13_88_1 doi: 10.1016/j.apenergy.2020.114500 – ident: e_1_2_13_34_1 – ident: e_1_2_13_10_1 doi: 10.1016/j.apenergy.2017.12.073 – ident: e_1_2_13_53_1 doi: 10.1016/j.tej.2012.09.017 – ident: e_1_2_13_86_1 doi: 10.1049/iet-esi.2019.0061 – ident: e_1_2_13_52_1 doi: 10.1016/j.energy.2013.10.041 – ident: e_1_2_13_17_1 doi: 10.1016/j.apenergy.2019.113820 – ident: e_1_2_13_56_1 – ident: e_1_2_13_4_1 doi: 10.1016/j.jenvman.2020.110090 – ident: e_1_2_13_19_1 doi: 10.1016/j.enpol.2020.111609 – ident: e_1_2_13_35_1 doi: 10.1007/s40684-014-0034-z – ident: e_1_2_13_36_1 doi: 10.1016/j.rser.2020.110057 – volume: 71 start-page: 49 issue: 10 year: 2018 ident: e_1_2_13_78_1 article-title: Kurz zum Klima: “Sektorkopplung”—Ansätze und Implikationen der Dekarbonisierung des Energiesystems publication-title: ifo Schnelldienst – ident: e_1_2_13_37_1 doi: 10.1109/EEM.2017.7982024 – ident: e_1_2_13_62_1 doi: 10.14512/tatup.29.2.38 – ident: e_1_2_13_27_1 doi: 10.1016/j.ijhydene.2019.03.183 – ident: e_1_2_13_20_1 doi: 10.1016/j.rser.2016.02.025 – ident: e_1_2_13_68_1 doi: 10.1016/j.eneco.2020.104708 |
SSID | ssj0000816446 |
Score | 2.5650382 |
SecondaryResourceType | review_article |
Snippet | Pursued climate goals require reduced greenhouse gas emissions by substituting fossil fuels with energy from renewable sources in all energy‐consuming... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | e396 |
SubjectTerms | Alternative energy sources Coupling decarbonisation Decarbonization Economics Electricity electrification Emissions control Fossil fuels Greenhouse gases hydrogen Integrated energy systems Literature reviews power to × (P2X) Renewable energy sources renewable energy systems Renewable resources sector coupling Transportation industry variable renewable energy |
Title | The sector coupling concept: A critical review |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fwene.396 https://www.proquest.com/docview/2536539888 |
Volume | 10 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEB60vehBfGK1lhVET9HtJPvyVrSliC2CFntb8vQirdgW_75JdretoOApOUwuk0zyZZjvG4CLUGnFhVAENUsIw5ATzjkSllHNQ8GFMY47PBjG_RF7GEfjsqrScWEKfYhlws1Fhr-vXYBzMbtZiYZ-2bvA_tjjTahbTE_d6Ub2tMyvuIYSzPN0MGRtYnFAXGnPhnhTLf75Gq0g5jpQ9S9Nbxd2SogYdIo93YMNPdmH7TXhwAO4trsbzHzCPZDThWPVvtmJZyDeBp1Alg0MgoKZcgijXvflrk_KzgdEUkxiIuPMCbvJNFSp9ViaKolcU4VJu62YaKsME26SWCcaNWbSgjLKDJdhYkJqVEaPoDaZTvQxBMw42CaFlDJjJuUCTaZMRKVSaWTHBlxVHshlKQvuulO854WgMebOV7n1VQPOl5YfhRTGLzbNyol5GQyzHCPqBHDtX7sBl96xf67PX7vDrh1P_mt4Clvoqkx8AW0TavPPhT6zMGEuWv48tKDeuR88Pn8DzFO8aQ |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3LTgIxFL1BXKgL4zOiqGNidFXttGUeuiIGggrEBUR2TZ9uDBiB-Pu28wBMNHHVWbSb07ntuTc95wJcYm20kFIjYliMGMECCSEIYik1AkshrfXa4V4_6gzZ06gxqsB9qYXJ_SEWBTcfGdl57QPcF6Rvl66hX-4wcCl7tAbrLHKZi7d1Zi-LAovvKMEyoQ7BLESOCESl-Swmt-Xin9fRkmOuMtXsqmnvwHbBEYNmvqm7UDHjPdhacQ7chxu3vcE0q7gHajL3sto395FJEO-CZqCKDgZBLk05gGG7NXjooKL1AVKUxBFSUeqd3VSCdeIgSxKtiDBUkzgMNZOhTkksbByZ2BBDUuVYGWVWKBxbTK1O6SFUx5OxOYKAWc_blFRKpcwmQhKbatugSuuk4cYaXJcIcFX4gvv2FO88dzQm3GPFHVY1uFjM_Mi9MH6ZUy9B5EU0TDlpUO-A65LtGlxlwP65nr-2-i03Hv934jlsdAa9Lu8-9p9PYJP4JyfZa9o6VGefc3PqOMNMnmX_xjcJC747 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEB60guhBfGK16gqip7XZJPvyVrSlvkoPFnsLeXqRttgW_75JdrdVUPCUHCaXSSb5Msz3DcAFUlpxIVSINU1DihEPOec4pDnRHAkujHHc4ede0h3Qh2E8LKsqHRem0IdYJNxcZPj72gX4RJnmUjT0094F9seerMIatcfOnW5M-4v8imsoQT1PByMahRYHJJX2LMLNavHP12gJMb8DVf_SdLZhq4SIQavY0x1Y0aNd2PwmHLgH13Z3g6lPuAdyPHes2jc78QzEm6AVyLKBQVAwU_Zh0Gm_3HbDsvNBKAlOk1AmuRN2kxlSmfVYlimJuSYKp1GkqIhUjlNu0kSnGmucSwvKCDVcotQgYlRODqA2Go_0IQTUONgmhZQypybjAptcmZhIpbLYjnW4qjzAZCkL7rpTvLNC0Bgz5ytmfVWH84XlpJDC-MWmUTmRlcEwZTgmTgDX_rXrcOkd--d69trute149F_DM1jv33XY033v8Rg2sCs48bW0DajNPub6xCKGmTj1R-MLOy-9dg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+sector+coupling+concept%3A+A+critical+review&rft.jtitle=Wiley+interdisciplinary+reviews.+Energy+and+environment&rft.au=Ramsebner%2C+Jasmine&rft.au=Haas%2C+Reinhard&rft.au=Ajanovic%2C+Amela&rft.au=Wietschel%2C+Martin&rft.date=2021-07-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=2041-8396&rft.eissn=2041-840X&rft.volume=10&rft.issue=4&rft.spage=e396&rft_id=info:doi/10.1002%2Fwene.396&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-8396&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-8396&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-8396&client=summon |