The sector coupling concept: A critical review

Pursued climate goals require reduced greenhouse gas emissions by substituting fossil fuels with energy from renewable sources in all energy‐consuming processes. On a large‐scale, this can mainly be achieved through electricity from wind and sun, which are subject to intermittency. To efficiently in...

Full description

Saved in:
Bibliographic Details
Published inWiley interdisciplinary reviews. Energy and environment Vol. 10; no. 4; pp. e396 - n/a
Main Authors Ramsebner, Jasmine, Haas, Reinhard, Ajanovic, Amela, Wietschel, Martin
Format Journal Article
LanguageEnglish
Published Hoboken, USA John Wiley & Sons, Inc 01.07.2021
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text
ISSN2041-8396
2041-840X
DOI10.1002/wene.396

Cover

Abstract Pursued climate goals require reduced greenhouse gas emissions by substituting fossil fuels with energy from renewable sources in all energy‐consuming processes. On a large‐scale, this can mainly be achieved through electricity from wind and sun, which are subject to intermittency. To efficiently integrate this variable energy, a coupling of the power sector to the residential, transport, industry, and commercial/trade sector is often promoted, called sector coupling (SC). Nevertheless, our literature review indicates that SC is frequently misinterpreted and its scope varies among available research, from exclusively considering the use of excess renewable electricity to a rather holistic view of integrated energy systems, including excess heat or even biomass sources. The core objective of this article is to provide a thorough understanding of the SC concept through an analysis of its origin and its main purpose, as described in the current literature. We provide a structured categorization of SC, derived from our findings, and critically discuss its remaining challenges as well as its value for renewable energy systems. We find that SC is rooted in the increasing use of variable renewable energy sources, and its main assets are the flexibility it provides for renewable energy systems, decarbonization potential for fossil‐fuel‐based end‐consumption sectors, and consequently, reduced dependency on oil and gas extracting countries. However, the enabling technologies face great challenges in their economic feasibility because of the uncertain future development of competing solutions. This article is categorized under: Energy Systems Economics > Economics and Policy Energy Systems Economics > Systems and Infrastructure Technical sector coupling pathways: Using renewable electricity in all end‐consumption sectors.
AbstractList Pursued climate goals require reduced greenhouse gas emissions by substituting fossil fuels with energy from renewable sources in all energy‐consuming processes. On a large‐scale, this can mainly be achieved through electricity from wind and sun, which are subject to intermittency. To efficiently integrate this variable energy, a coupling of the power sector to the residential, transport, industry, and commercial/trade sector is often promoted, called sector coupling (SC). Nevertheless, our literature review indicates that SC is frequently misinterpreted and its scope varies among available research, from exclusively considering the use of excess renewable electricity to a rather holistic view of integrated energy systems, including excess heat or even biomass sources. The core objective of this article is to provide a thorough understanding of the SC concept through an analysis of its origin and its main purpose, as described in the current literature. We provide a structured categorization of SC, derived from our findings, and critically discuss its remaining challenges as well as its value for renewable energy systems. We find that SC is rooted in the increasing use of variable renewable energy sources, and its main assets are the flexibility it provides for renewable energy systems, decarbonization potential for fossil‐fuel‐based end‐consumption sectors, and consequently, reduced dependency on oil and gas extracting countries. However, the enabling technologies face great challenges in their economic feasibility because of the uncertain future development of competing solutions. This article is categorized under: Energy Systems Economics > Economics and Policy Energy Systems Economics > Systems and Infrastructure
Pursued climate goals require reduced greenhouse gas emissions by substituting fossil fuels with energy from renewable sources in all energy‐consuming processes. On a large‐scale, this can mainly be achieved through electricity from wind and sun, which are subject to intermittency. To efficiently integrate this variable energy, a coupling of the power sector to the residential, transport, industry, and commercial/trade sector is often promoted, called sector coupling (SC). Nevertheless, our literature review indicates that SC is frequently misinterpreted and its scope varies among available research, from exclusively considering the use of excess renewable electricity to a rather holistic view of integrated energy systems, including excess heat or even biomass sources. The core objective of this article is to provide a thorough understanding of the SC concept through an analysis of its origin and its main purpose, as described in the current literature. We provide a structured categorization of SC, derived from our findings, and critically discuss its remaining challenges as well as its value for renewable energy systems. We find that SC is rooted in the increasing use of variable renewable energy sources, and its main assets are the flexibility it provides for renewable energy systems, decarbonization potential for fossil‐fuel‐based end‐consumption sectors, and consequently, reduced dependency on oil and gas extracting countries. However, the enabling technologies face great challenges in their economic feasibility because of the uncertain future development of competing solutions. This article is categorized under: Energy Systems Economics > Economics and Policy Energy Systems Economics > Systems and Infrastructure Technical sector coupling pathways: Using renewable electricity in all end‐consumption sectors.
Pursued climate goals require reduced greenhouse gas emissions by substituting fossil fuels with energy from renewable sources in all energy‐consuming processes. On a large‐scale, this can mainly be achieved through electricity from wind and sun, which are subject to intermittency. To efficiently integrate this variable energy, a coupling of the power sector to the residential, transport, industry, and commercial/trade sector is often promoted, called sector coupling (SC). Nevertheless, our literature review indicates that SC is frequently misinterpreted and its scope varies among available research, from exclusively considering the use of excess renewable electricity to a rather holistic view of integrated energy systems, including excess heat or even biomass sources. The core objective of this article is to provide a thorough understanding of the SC concept through an analysis of its origin and its main purpose, as described in the current literature. We provide a structured categorization of SC, derived from our findings, and critically discuss its remaining challenges as well as its value for renewable energy systems. We find that SC is rooted in the increasing use of variable renewable energy sources, and its main assets are the flexibility it provides for renewable energy systems, decarbonization potential for fossil‐fuel‐based end‐consumption sectors, and consequently, reduced dependency on oil and gas extracting countries. However, the enabling technologies face great challenges in their economic feasibility because of the uncertain future development of competing solutions.This article is categorized under:Energy Systems Economics > Economics and PolicyEnergy Systems Economics > Systems and Infrastructure
Author Ajanovic, Amela
Haas, Reinhard
Ramsebner, Jasmine
Wietschel, Martin
Author_xml – sequence: 1
  givenname: Jasmine
  orcidid: 0000-0002-4154-8131
  surname: Ramsebner
  fullname: Ramsebner, Jasmine
  email: ramsebner@eeg.tuwien.ac.at
  organization: Technische Universität Wien (TU WIEN)
– sequence: 2
  givenname: Reinhard
  surname: Haas
  fullname: Haas, Reinhard
  organization: Technische Universität Wien (TU WIEN)
– sequence: 3
  givenname: Amela
  surname: Ajanovic
  fullname: Ajanovic, Amela
  organization: Technische Universität Wien (TU WIEN)
– sequence: 4
  givenname: Martin
  surname: Wietschel
  fullname: Wietschel, Martin
  organization: Fraunhofer‐Institut für System‐ und Innovationsforschung ISI
BookMark eNp1kE1LAzEQhoNUsNaCP2HBi5dd87FNst5KqR9Q9FLRW0izs5qyZtcktfTfm1K9iM5lXobnnWHeUzRwnQOEzgkuCMb0agsOClbxIzSkuCS5LPHL4Een-Qkah7DGqSThZcmHqFi-QRbAxM5nptv0rXWvSTgDfbzOppnxNlqj28zDp4XtGTpudBtg_N1H6Olmvpzd5YvH2_vZdJEbRgXPDa-4ENJIXEuNV1LWhmpgNRWE1OWK1BUVuhEcBFCgleETzspGGywazJq6YiN0cdjb--5jAyGqdbfxLp1UdML4hFVSykQVB8r4LgQPjTI26mg7F722rSJY7WNR-1hUej8ZLn8Zem_ftd_9heYHdGtb2P3Lqef5w3zPfwHCHXJb
CitedBy_id crossref_primary_10_1016_j_energy_2023_128095
crossref_primary_10_3390_su152115555
crossref_primary_10_1051_rees_2021042
crossref_primary_10_1002_wene_536
crossref_primary_10_3390_en16010462
crossref_primary_10_1016_j_rser_2022_112587
crossref_primary_10_1016_j_rser_2022_113038
crossref_primary_10_1515_eng_2024_0024
crossref_primary_10_1016_j_renene_2024_121412
crossref_primary_10_1016_j_adapen_2023_100129
crossref_primary_10_1021_acsaem_2c00888
crossref_primary_10_1016_j_esr_2024_101425
crossref_primary_10_1038_s44333_024_00019_z
crossref_primary_10_1016_j_ijhydene_2024_08_054
crossref_primary_10_1186_s42162_024_00464_7
crossref_primary_10_4236_epe_2024_162003
crossref_primary_10_1016_j_renene_2022_05_145
crossref_primary_10_3389_fenrg_2024_1443506
crossref_primary_10_3390_en18020404
crossref_primary_10_1016_j_apenergy_2024_125003
crossref_primary_10_1016_j_segy_2022_100093
crossref_primary_10_1016_j_apenergy_2024_123225
crossref_primary_10_1016_j_est_2024_114347
crossref_primary_10_3390_en17153813
crossref_primary_10_1021_acsami_2c20731
crossref_primary_10_1016_j_erss_2023_103210
crossref_primary_10_5194_gmd_16_4977_2023
crossref_primary_10_1016_j_xcrp_2024_102175
crossref_primary_10_1016_j_ijhydene_2023_08_200
crossref_primary_10_1002_cssc_202200007
crossref_primary_10_1016_j_apenergy_2023_121508
crossref_primary_10_1016_j_rset_2024_100082
crossref_primary_10_1109_TSTE_2022_3189838
crossref_primary_10_3390_en14061576
crossref_primary_10_3390_polym13081292
crossref_primary_10_1016_j_ifacol_2023_10_195
crossref_primary_10_1016_j_ijhydene_2024_02_167
crossref_primary_10_1016_j_enconman_2022_116534
crossref_primary_10_1016_j_fuel_2023_127763
crossref_primary_10_1016_j_energy_2024_133902
crossref_primary_10_1016_j_erss_2024_103822
crossref_primary_10_1016_j_jclepro_2023_138419
crossref_primary_10_1016_j_energy_2025_135452
crossref_primary_10_3390_en14113183
crossref_primary_10_1109_ACCESS_2023_3334397
crossref_primary_10_3390_en16135226
crossref_primary_10_1016_j_enpol_2023_113830
crossref_primary_10_3390_en17194813
crossref_primary_10_1016_j_rset_2024_100094
crossref_primary_10_12688_openreseurope_16693_1
crossref_primary_10_1109_ACCESS_2024_3375336
crossref_primary_10_12688_openreseurope_16693_2
crossref_primary_10_1049_rpg2_12399
crossref_primary_10_1016_j_ref_2023_04_008
crossref_primary_10_1016_j_erss_2023_103282
crossref_primary_10_1016_j_renene_2022_05_123
crossref_primary_10_3390_wevj14030077
crossref_primary_10_1007_s00502_023_01145_1
crossref_primary_10_1155_2024_8812115
crossref_primary_10_1016_j_ecmx_2024_100624
crossref_primary_10_1016_j_enpol_2024_114472
crossref_primary_10_3390_en15134712
crossref_primary_10_1016_j_segy_2024_100149
crossref_primary_10_1002_stab_202400059
crossref_primary_10_1039_D1EE00627D
Cites_doi 10.15344/2456-351X/2017/139
10.1016/j.apenergy.2019.01.101
10.1016/j.energy.2014.02.089
10.1016/j.fuel.2017.05.061
10.1016/j.apenergy.2020.115100
10.1016/j.apenergy.2018.06.001
10.1016/j.apenergy.2019.114101
10.1016/j.apenergy.2015.01.075
10.1016/j.apenergy.2017.12.017
10.1016/j.erss.2020.101513
10.1016/j.procs.2017.09.008
10.1016/j.energy.2020.117408
10.1016/j.apenergy.2020.115134
10.1016/j.energy.2012.04.003
10.1016/B978-0-08-102074-6.00026-7
10.1016/j.egypro.2015.11.446
10.1016/j.apenergy.2017.10.117
10.3390/en10070956
10.1016/j.energy.2018.06.222
10.1016/j.rser.2018.12.059
10.1016/j.ijhydene.2018.05.169
10.1016/j.energy.2017.05.123
10.1016/j.energy.2020.117062
10.3390/en10070957
10.1016/j.rser.2019.06.030
10.1016/j.jclepro.2015.05.117
10.1016/j.apenergy.2020.114571
10.1016/j.apenergy.2018.03.092
10.1016/j.energy.2019.06.016
10.1016/j.rser.2017.09.003
10.1016/j.apenergy.2020.114521
10.1049/iet-rpg:20080049
10.1016/j.energy.2018.06.198
10.1016/j.apenergy.2015.08.115
10.1016/j.ijhydene.2015.01.123
10.1016/j.esr.2019.100389
10.5220/0005481100660071
10.1016/j.apenergy.2020.114500
10.1016/j.apenergy.2017.12.073
10.1016/j.tej.2012.09.017
10.1049/iet-esi.2019.0061
10.1016/j.energy.2013.10.041
10.1016/j.apenergy.2019.113820
10.1016/j.jenvman.2020.110090
10.1016/j.enpol.2020.111609
10.1007/s40684-014-0034-z
10.1016/j.rser.2020.110057
10.1109/EEM.2017.7982024
10.14512/tatup.29.2.38
10.1016/j.ijhydene.2019.03.183
10.1016/j.rser.2016.02.025
10.1016/j.eneco.2020.104708
ContentType Journal Article
Copyright 2021 The Authors. published by Wiley Periodicals LLC.
2021. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2021 The Authors. published by Wiley Periodicals LLC.
– notice: 2021. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
7ST
C1K
SOI
DOI 10.1002/wene.396
DatabaseName Wiley Online Library Open Access
CrossRef
Environment Abstracts
Environmental Sciences and Pollution Management
Environment Abstracts
DatabaseTitle CrossRef
Environment Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList CrossRef

Environment Abstracts
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Economics
EISSN 2041-840X
EndPage n/a
ExternalDocumentID 10_1002_wene_396
WENE396
Genre reviewArticle
GroupedDBID 05W
0R~
1OC
1VH
24P
33P
8-0
8-1
A00
AAESR
AAHBH
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AASGY
AAXRX
AAYCA
AAZKR
ABCUV
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACRPL
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADKYN
ADMGS
ADNMO
ADOZA
ADZMN
AEEZP
AEIGN
AEQDE
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
AUFTA
AVWKF
AZFZN
AZVAB
BDRZF
BHBCM
BMNLL
BRXPI
D-A
D-B
DCZOG
DRFUL
DRSTM
EBS
EDH
EJD
G-S
GODZA
HGLYW
HZ~
LATKE
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
MY.
MY~
O66
O9-
P2W
PQQKQ
ROL
SUPJJ
WBKPD
WIH
WIK
WOHZO
WUPDE
WXSBR
WYISQ
WYJ
ZZTAW
AAYXX
ADMLS
AEYWJ
AGQPQ
AGYGG
CITATION
7ST
C1K
SOI
ID FETCH-LOGICAL-c3276-c696778c80d8a0b88dc2ae3d2711d4b1d927af76e7e2e29c65634fac07f03fd93
IEDL.DBID 24P
ISSN 2041-8396
IngestDate Sun Jul 13 04:14:55 EDT 2025
Tue Jul 01 00:57:50 EDT 2025
Thu Apr 24 23:12:49 EDT 2025
Wed Jan 22 16:30:19 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License Attribution
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3276-c696778c80d8a0b88dc2ae3d2711d4b1d927af76e7e2e29c65634fac07f03fd93
Notes Peter Lund, Co‐Editor‐in‐Chief
Edited by
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-4154-8131
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fwene.396
PQID 2536539888
PQPubID 2034622
PageCount 27
ParticipantIDs proquest_journals_2536539888
crossref_citationtrail_10_1002_wene_396
crossref_primary_10_1002_wene_396
wiley_primary_10_1002_wene_396_WENE396
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate July/August 2021
2021-07-00
20210701
PublicationDateYYYYMMDD 2021-07-01
PublicationDate_xml – month: 07
  year: 2021
  text: July/August 2021
PublicationDecade 2020
PublicationPlace Hoboken, USA
PublicationPlace_xml – name: Hoboken, USA
– name: Hoboken
PublicationTitle Wiley interdisciplinary reviews. Energy and environment
PublicationYear 2021
Publisher John Wiley & Sons, Inc
Wiley Subscription Services, Inc
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley Subscription Services, Inc
References 2018; 160
2017; 2
2016b
2016a
2015; 145
2014; 68
2015; 80
2018; 82
2017; 114
2014; 65
2014; 1
2018; 210
2020; 2
2015; 40
2020; 132
2018; 212
2019; 26
2020b
2020; 258
2020a
2019; 239
2018; 71
2012; 25
2019; 112
2017; 205
2018; 220
2020; 86
2020; 262
2020; 143
2018; 228
2020; 260
2019; 104
2016; 167
2007
2020; 266
1994
2020; 267
2019; 182
2017; 137
2020; 196
2019; 44
2020
2017; 10
2020; 270
2019
2018
2017
2016
2020; 199
2016; 60
2020; 67
2015
2014
2014; 39
2013
2009; 3
2019; 255
2012; 42
2020; 29
e_1_2_13_24_1
e_1_2_13_49_1
e_1_2_13_26_1
e_1_2_13_47_1
e_1_2_13_68_1
Scorza S. A. (e_1_2_13_78_1) 2018; 71
e_1_2_13_20_1
e_1_2_13_45_1
e_1_2_13_66_1
e_1_2_13_87_1
e_1_2_13_22_1
e_1_2_13_43_1
e_1_2_13_64_1
e_1_2_13_85_1
e_1_2_13_8_1
e_1_2_13_41_1
e_1_2_13_62_1
e_1_2_13_60_1
e_1_2_13_6_1
e_1_2_13_81_1
e_1_2_13_17_1
e_1_2_13_19_1
e_1_2_13_13_1
e_1_2_13_36_1
e_1_2_13_59_1
e_1_2_13_15_1
e_1_2_13_38_1
e_1_2_13_57_1
e_1_2_13_55_1
e_1_2_13_11_1
e_1_2_13_34_1
e_1_2_13_53_1
e_1_2_13_76_1
e_1_2_13_51_1
e_1_2_13_74_1
e_1_2_13_30_1
e_1_2_13_70_1
e_1_2_13_4_1
e_1_2_13_2_1
Lund H. (e_1_2_13_48_1) 2014; 39
e_1_2_13_88_1
e_1_2_13_29_1
e_1_2_13_25_1
Warner J. T. (e_1_2_13_83_1) 2015
e_1_2_13_27_1
e_1_2_13_46_1
e_1_2_13_69_1
e_1_2_13_21_1
e_1_2_13_44_1
e_1_2_13_67_1
e_1_2_13_23_1
e_1_2_13_42_1
e_1_2_13_65_1
e_1_2_13_86_1
e_1_2_13_9_1
e_1_2_13_40_1
e_1_2_13_63_1
e_1_2_13_84_1
e_1_2_13_7_1
e_1_2_13_61_1
e_1_2_13_82_1
e_1_2_13_80_1
e_1_2_13_18_1
e_1_2_13_39_1
e_1_2_13_14_1
e_1_2_13_35_1
e_1_2_13_16_1
e_1_2_13_37_1
e_1_2_13_58_1
e_1_2_13_79_1
e_1_2_13_10_1
e_1_2_13_31_1
e_1_2_13_56_1
e_1_2_13_77_1
e_1_2_13_12_1
e_1_2_13_33_1
e_1_2_13_54_1
e_1_2_13_75_1
e_1_2_13_52_1
e_1_2_13_73_1
e_1_2_13_50_1
e_1_2_13_71_1
e_1_2_13_5_1
e_1_2_13_3_1
Foy J. H. (e_1_2_13_32_1) 1994
Schaber K. (e_1_2_13_72_1) 2013
e_1_2_13_28_1
References_xml – year: 2016b
– volume: 266
  year: 2020
  article-title: Flexible electricity use for heating in markets with renewable energy
  publication-title: Applied Energy
– volume: 3
  start-page: 190
  issue: 2
  year: 2009
  end-page: 204
  article-title: Comparative analyses of seven technologies to facilitate the integration of fluctuating renewable energy sources
  publication-title: IET Renewable Power Generation
– volume: 2
  issue: 2
  year: 2017
  article-title: Exergy as measure of sustainability of energy system
  publication-title: International Journal of Earth & Environmental Sciences
– start-page: 1
  year: 2017
  end-page: 7
– volume: 160
  start-page: 122
  year: 2018
  end-page: 141
  article-title: The optimal structure planning and energy management strategies of smart multi energy systems
  publication-title: Energy
– volume: 220
  start-page: 231
  year: 2018
  end-page: 241
  article-title: Performance based approach for electricity generation in smart grids
  publication-title: Applied Energy
– year: 2018
– year: 2014
– year: 1994
– volume: 86
  year: 2020
  article-title: The welfare and price effects of sector coupling with power‐to‐gas
  publication-title: Energy Economics
– volume: 71
  start-page: 49
  issue: 10
  year: 2018
  end-page: 53
  article-title: Kurz zum Klima: “Sektorkopplung”—Ansätze und Implikationen der Dekarbonisierung des Energiesystems
  publication-title: ifo Schnelldienst
– volume: 112
  start-page: 775
  year: 2019
  end-page: 787
  article-title: Power‐to‐gas: Electrolysis and methanation status review
  publication-title: Renewable and Sustainable Energy Reviews
– volume: 196
  year: 2020
  article-title: Electrification of transport and residential heating sectors in support of renewable penetration: Scenarios for the Italian energy system
  publication-title: Energy
– year: 2016a
– volume: 182
  start-page: 729
  year: 2019
  end-page: 738
  article-title: A method for technical assessment of power‐to‐heat use cases to couple local district heating and electrical distribution grids
  publication-title: Energy
– volume: 199
  year: 2020
  article-title: Analysis on electrofuels in future energy systems: A 2050 case study
  publication-title: Energy
– volume: 160
  start-page: 720
  year: 2018
  end-page: 739
  article-title: Synergies of sector coupling and transmission reinforcement in a cost‐optimised, highly renewable European energy system
  publication-title: Energy
– volume: 82
  start-page: 2440
  year: 2018
  end-page: 2454
  article-title: Current status of water electrolysis for energy storage, grid balancing and sector coupling via power‐to‐gas and power‐to‐liquids: A review
  publication-title: Renewable and Sustainable Energy Reviews
– volume: 270
  year: 2020
  article-title: Coupling the heating and power sectors: The role of centralised combined heat and power plants and district heat in a European decarbonised power system
  publication-title: Applied Energy
– volume: 25
  start-page: 7
  issue: 8
  year: 2012
  end-page: 15
  article-title: Serving electricity and heat requirements efficiently and with appropriate energy quality via microgrids
  publication-title: The Electricity Journal
– volume: 67
  year: 2020
  article-title: Transforming or tinkering at the margins? Assessing policy strategies for heating decarbonisation in Germany and the United Kingdom
  publication-title: Energy Research & Social Science
– volume: 40
  start-page: 4285
  issue: 12
  year: 2015
  end-page: 4294
  article-title: Power to gas: Technological overview, systems analysis and economic assessment for a case study in Germany
  publication-title: International Journal of Hydrogen Energy
– year: 2019
– volume: 167
  start-page: 189
  year: 2016
  end-page: 200
  article-title: Economic valuation of heat pumps and electric boilers in the Danish energy system
  publication-title: Applied Energy
– volume: 44
  start-page: 19089
  issue: 35
  year: 2019
  end-page: 19101
  article-title: Efficient hydrogen production for industry and electricity storage via high‐temperature electrolysis
  publication-title: International Journal of Hydrogen Energy
– year: 2015
– volume: 80
  start-page: 422
  year: 2015
  end-page: 432
  article-title: Determining the economic value of offshore wind power plants in the changing energy system
  publication-title: Energy Procedia
– volume: 104
  start-page: 504
  year: 2019
  end-page: 522
  article-title: 5th generation district heating and cooling systems: A review of existing cases in Europe
  publication-title: Renewable and Sustainable Energy Reviews
– volume: 2
  start-page: 69
  issue: 2
  year: 2020
  end-page: 79
  article-title: Role of thermal technologies for enhancing flexibility in multi‐energy systems through sector coupling: Technical suitability and expected developments
  publication-title: IET Energy Systems Integration
– volume: 137
  start-page: 556
  year: 2017
  end-page: 565
  article-title: Smart energy and smart energy systems
  publication-title: Energy
– start-page: 1
  year: 2015
  end-page: 6
– volume: 267
  year: 2020
  article-title: The potential of sector coupling in future European energy systems: Soft linking between the Dispa‐SET and JRC‐EU‐TIMES models
  publication-title: Applied Energy
– volume: 44
  start-page: 12918
  issue: 26
  year: 2019
  end-page: 12930
  article-title: Flexible sector coupling with hydrogen: A climate‐friendly fuel supply for road transport
  publication-title: International Journal of Hydrogen Energy
– year: 2007
– volume: 1
  start-page: 283
  issue: 4
  year: 2014
  end-page: 292
  article-title: Sustainability in manufacturing and factories of the future
  publication-title: International Journal of Precision Engineering and Manufacturing‐Green Technology
– volume: 262
  year: 2020
  article-title: Impact of climatic, technical and economic uncertainties on the optimal design of a coupled fossil‐free electricity, heating and cooling system in Europe
  publication-title: Applied Energy
– volume: 266
  start-page: 114521
  year: 2020
  article-title: An integrated model of coupled heat and power sectors for large‐scale energy system analyses
  publication-title: Applied Energy
– volume: 26
  year: 2019
  article-title: Influence of heat pumps on renewable electricity integration: Germany in a European context
  publication-title: Energy Strategy Reviews
– year: 2020a
– volume: 239
  start-page: 560
  year: 2019
  end-page: 580
  article-title: Impacts of heat sector transformation on Germany's power system through increased use of power‐to‐heat
  publication-title: Applied Energy
– year: 2016
– volume: 132
  year: 2020
  article-title: Power‐to‐methane, coupling CO capture with fuel production: An overview
  publication-title: Renewable and Sustainable Energy Reviews
– volume: 255
  year: 2019
  article-title: Decarbonizing China's energy system—Modeling the transformation of the electricity, transportation, heat, and industrial sectors
  publication-title: Applied Energy
– volume: 145
  start-page: 139
  year: 2015
  end-page: 154
  article-title: Smart energy systems for coherent 100% renewable energy and transport solutions
  publication-title: Applied Energy
– volume: 228
  start-page: 57
  year: 2018
  end-page: 67
  article-title: Opportunities of power‐to‐gas technology in different energy systems architectures
  publication-title: Applied Energy
– volume: 68
  start-page: 1
  year: 2014
  end-page: 11
  article-title: 4th generation district heating (4GDH)
  publication-title: Energy
– volume: 212
  start-page: 1611
  year: 2018
  end-page: 1626
  article-title: Power‐to‐heat for renewable energy integration: A review of technologies, modeling approaches, and flexibility potentials
  publication-title: Applied Energy
– volume: 258
  year: 2020
  article-title: Assessment of flexible electric vehicle charging in a sector coupling energy system model—Modelling approach and case study
  publication-title: Applied Energy
– volume: 212
  start-page: 386
  year: 2018
  end-page: 400
  article-title: The future role of power‐to‐gas in the energy transition: Regional and local techno‐economic analyses in Baden‐Württemberg
  publication-title: Applied Energy
– start-page: 225
  year: 2018
  end-page: 244
– year: 2020
– volume: 114
  start-page: 433
  year: 2017
  end-page: 440
  article-title: Design the capacity of onsite generation system with renewable sources for manufacturing plant
  publication-title: Procedia Computer Science
– volume: 210
  start-page: 182
  year: 2018
  end-page: 197
  article-title: Power‐to‐gas: Electrolyzers as an alternative to network expansion—An example from a distribution system operator
  publication-title: Applied Energy
– volume: 205
  start-page: 198
  year: 2017
  end-page: 221
  article-title: Power‐to‐fuel as a key to sustainable transport systems—An analysis of diesel fuels produced from CO 2 and renewable electricity
  publication-title: Fuel
– year: 2017
– year: 2020b
– volume: 60
  start-page: 1634
  year: 2016
  end-page: 1653
  article-title: Smart energy Europe: The technical and economic impact of one potential 100% renewable energy scenario for the European Union
  publication-title: Renewable and Sustainable Energy Reviews
– volume: 39
  start-page: 1
  year: 2014
  end-page: 6
  article-title: Renewable energy systems—A smart energy systems approach to the choice and modelling of 100% renewable solutions
  publication-title: Chemical Engineering Transactions
– volume: 143
  year: 2020
  article-title: Energy systems integration: Implications for public policy
  publication-title: Energy Policy
– volume: 260
  year: 2020
  article-title: Deep decarbonization of urban energy systems through renewable energy and sector‐coupling flexibility strategies
  publication-title: Journal of Environmental Management
– volume: 29
  start-page: 38
  issue: 2
  year: 2020
  end-page: 44
  article-title: Sector coupling of renewable energy in an experimental setting
  publication-title: TATuP—Zeitschrift Für Technikfolgenabschätzung in Theorie Und Praxis
– volume: 42
  start-page: 96
  issue: 1
  year: 2012
  end-page: 102
  article-title: From electricity smart grids to smart energy systems—A market operation based approach and understanding
  publication-title: Energy
– volume: 65
  start-page: 1
  year: 2014
  end-page: 17
  article-title: MES (multi‐energy systems): An overview of concepts and evaluation models
  publication-title: Energy
– volume: 10
  start-page: 957ff
  issue: 7
  year: 2017
  article-title: Linking the power and transport sectors—Part 2: Modelling a sector coupling scenario for Germany
  publication-title: Energies
– year: 2013
– ident: e_1_2_13_24_1
– volume-title: Integration of variable renewable energies in the European power system: A model‐based analysis of transmission grid extensions and energy sector coupling
  year: 2013
  ident: e_1_2_13_72_1
– ident: e_1_2_13_60_1
  doi: 10.15344/2456-351X/2017/139
– ident: e_1_2_13_38_1
– ident: e_1_2_13_9_1
  doi: 10.1016/j.apenergy.2019.01.101
– ident: e_1_2_13_50_1
  doi: 10.1016/j.energy.2014.02.089
– ident: e_1_2_13_16_1
– ident: e_1_2_13_40_1
– ident: e_1_2_13_77_1
– ident: e_1_2_13_85_1
– ident: e_1_2_13_74_1
  doi: 10.1016/j.fuel.2017.05.061
– ident: e_1_2_13_15_1
– ident: e_1_2_13_63_1
  doi: 10.1016/j.apenergy.2020.115100
– ident: e_1_2_13_46_1
  doi: 10.1016/j.apenergy.2018.06.001
– ident: e_1_2_13_80_1
  doi: 10.1016/j.apenergy.2019.114101
– ident: e_1_2_13_29_1
– volume-title: The handbook of lithium‐ion battery pack design: Chemistry, components, types and terminology
  year: 2015
  ident: e_1_2_13_83_1
– ident: e_1_2_13_55_1
  doi: 10.1016/j.apenergy.2015.01.075
– ident: e_1_2_13_57_1
  doi: 10.1016/j.apenergy.2017.12.017
– ident: e_1_2_13_5_1
– ident: e_1_2_13_33_1
  doi: 10.1016/j.erss.2020.101513
– volume: 39
  start-page: 1
  year: 2014
  ident: e_1_2_13_48_1
  article-title: Renewable energy systems—A smart energy systems approach to the choice and modelling of 100% renewable solutions
  publication-title: Chemical Engineering Transactions
– ident: e_1_2_13_87_1
  doi: 10.1016/j.procs.2017.09.008
– ident: e_1_2_13_31_1
– ident: e_1_2_13_23_1
– ident: e_1_2_13_45_1
  doi: 10.1016/j.energy.2020.117408
– ident: e_1_2_13_84_1
– ident: e_1_2_13_43_1
  doi: 10.1016/j.apenergy.2020.115134
– ident: e_1_2_13_47_1
  doi: 10.1016/j.energy.2012.04.003
– ident: e_1_2_13_79_1
  doi: 10.1016/B978-0-08-102074-6.00026-7
– ident: e_1_2_13_6_1
– ident: e_1_2_13_14_1
– volume-title: Foy, J: American Home Life 1880–1930
  year: 1994
  ident: e_1_2_13_32_1
– ident: e_1_2_13_39_1
– ident: e_1_2_13_66_1
  doi: 10.1016/j.egypro.2015.11.446
– ident: e_1_2_13_22_1
– ident: e_1_2_13_71_1
  doi: 10.1016/j.apenergy.2017.10.117
– ident: e_1_2_13_25_1
– ident: e_1_2_13_82_1
– ident: e_1_2_13_70_1
  doi: 10.3390/en10070956
– ident: e_1_2_13_28_1
– ident: e_1_2_13_41_1
– ident: e_1_2_13_3_1
– ident: e_1_2_13_11_1
  doi: 10.1016/j.energy.2018.06.222
– ident: e_1_2_13_12_1
  doi: 10.1016/j.rser.2018.12.059
– ident: e_1_2_13_64_1
  doi: 10.1016/j.ijhydene.2018.05.169
– ident: e_1_2_13_49_1
  doi: 10.1016/j.energy.2017.05.123
– ident: e_1_2_13_2_1
– ident: e_1_2_13_21_1
– ident: e_1_2_13_13_1
– ident: e_1_2_13_7_1
  doi: 10.1016/j.energy.2020.117062
– ident: e_1_2_13_69_1
  doi: 10.3390/en10070957
– ident: e_1_2_13_81_1
  doi: 10.1016/j.rser.2019.06.030
– ident: e_1_2_13_67_1
  doi: 10.1016/j.jclepro.2015.05.117
– ident: e_1_2_13_76_1
  doi: 10.1016/j.apenergy.2020.114571
– ident: e_1_2_13_59_1
  doi: 10.1016/j.apenergy.2018.03.092
– ident: e_1_2_13_61_1
– ident: e_1_2_13_44_1
  doi: 10.1016/j.energy.2019.06.016
– ident: e_1_2_13_26_1
– ident: e_1_2_13_65_1
– ident: e_1_2_13_18_1
  doi: 10.1016/j.rser.2017.09.003
– ident: e_1_2_13_30_1
  doi: 10.1016/j.apenergy.2020.114521
– ident: e_1_2_13_54_1
  doi: 10.1049/iet-rpg:20080049
– ident: e_1_2_13_73_1
– ident: e_1_2_13_51_1
  doi: 10.1016/j.energy.2018.06.198
– ident: e_1_2_13_58_1
  doi: 10.1016/j.apenergy.2015.08.115
– ident: e_1_2_13_75_1
  doi: 10.1016/j.ijhydene.2015.01.123
– ident: e_1_2_13_8_1
  doi: 10.1016/j.esr.2019.100389
– ident: e_1_2_13_42_1
  doi: 10.5220/0005481100660071
– ident: e_1_2_13_88_1
  doi: 10.1016/j.apenergy.2020.114500
– ident: e_1_2_13_34_1
– ident: e_1_2_13_10_1
  doi: 10.1016/j.apenergy.2017.12.073
– ident: e_1_2_13_53_1
  doi: 10.1016/j.tej.2012.09.017
– ident: e_1_2_13_86_1
  doi: 10.1049/iet-esi.2019.0061
– ident: e_1_2_13_52_1
  doi: 10.1016/j.energy.2013.10.041
– ident: e_1_2_13_17_1
  doi: 10.1016/j.apenergy.2019.113820
– ident: e_1_2_13_56_1
– ident: e_1_2_13_4_1
  doi: 10.1016/j.jenvman.2020.110090
– ident: e_1_2_13_19_1
  doi: 10.1016/j.enpol.2020.111609
– ident: e_1_2_13_35_1
  doi: 10.1007/s40684-014-0034-z
– ident: e_1_2_13_36_1
  doi: 10.1016/j.rser.2020.110057
– volume: 71
  start-page: 49
  issue: 10
  year: 2018
  ident: e_1_2_13_78_1
  article-title: Kurz zum Klima: “Sektorkopplung”—Ansätze und Implikationen der Dekarbonisierung des Energiesystems
  publication-title: ifo Schnelldienst
– ident: e_1_2_13_37_1
  doi: 10.1109/EEM.2017.7982024
– ident: e_1_2_13_62_1
  doi: 10.14512/tatup.29.2.38
– ident: e_1_2_13_27_1
  doi: 10.1016/j.ijhydene.2019.03.183
– ident: e_1_2_13_20_1
  doi: 10.1016/j.rser.2016.02.025
– ident: e_1_2_13_68_1
  doi: 10.1016/j.eneco.2020.104708
SSID ssj0000816446
Score 2.5650382
SecondaryResourceType review_article
Snippet Pursued climate goals require reduced greenhouse gas emissions by substituting fossil fuels with energy from renewable sources in all energy‐consuming...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage e396
SubjectTerms Alternative energy sources
Coupling
decarbonisation
Decarbonization
Economics
Electricity
electrification
Emissions control
Fossil fuels
Greenhouse gases
hydrogen
Integrated energy systems
Literature reviews
power to × (P2X)
Renewable energy sources
renewable energy systems
Renewable resources
sector coupling
Transportation industry
variable renewable energy
Title The sector coupling concept: A critical review
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fwene.396
https://www.proquest.com/docview/2536539888
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEB60vehBfGK1lhVET9HtJPvyVrSliC2CFntb8vQirdgW_75JdretoOApOUwuk0zyZZjvG4CLUGnFhVAENUsIw5ATzjkSllHNQ8GFMY47PBjG_RF7GEfjsqrScWEKfYhlws1Fhr-vXYBzMbtZiYZ-2bvA_tjjTahbTE_d6Ub2tMyvuIYSzPN0MGRtYnFAXGnPhnhTLf75Gq0g5jpQ9S9Nbxd2SogYdIo93YMNPdmH7TXhwAO4trsbzHzCPZDThWPVvtmJZyDeBp1Alg0MgoKZcgijXvflrk_KzgdEUkxiIuPMCbvJNFSp9ViaKolcU4VJu62YaKsME26SWCcaNWbSgjLKDJdhYkJqVEaPoDaZTvQxBMw42CaFlDJjJuUCTaZMRKVSaWTHBlxVHshlKQvuulO854WgMebOV7n1VQPOl5YfhRTGLzbNyol5GQyzHCPqBHDtX7sBl96xf67PX7vDrh1P_mt4Clvoqkx8AW0TavPPhT6zMGEuWv48tKDeuR88Pn8DzFO8aQ
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3LTgIxFL1BXKgL4zOiqGNidFXttGUeuiIGggrEBUR2TZ9uDBiB-Pu28wBMNHHVWbSb07ntuTc95wJcYm20kFIjYliMGMECCSEIYik1AkshrfXa4V4_6gzZ06gxqsB9qYXJ_SEWBTcfGdl57QPcF6Rvl66hX-4wcCl7tAbrLHKZi7d1Zi-LAovvKMEyoQ7BLESOCESl-Swmt-Xin9fRkmOuMtXsqmnvwHbBEYNmvqm7UDHjPdhacQ7chxu3vcE0q7gHajL3sto395FJEO-CZqCKDgZBLk05gGG7NXjooKL1AVKUxBFSUeqd3VSCdeIgSxKtiDBUkzgMNZOhTkksbByZ2BBDUuVYGWVWKBxbTK1O6SFUx5OxOYKAWc_blFRKpcwmQhKbatugSuuk4cYaXJcIcFX4gvv2FO88dzQm3GPFHVY1uFjM_Mi9MH6ZUy9B5EU0TDlpUO-A65LtGlxlwP65nr-2-i03Hv934jlsdAa9Lu8-9p9PYJP4JyfZa9o6VGefc3PqOMNMnmX_xjcJC747
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEB60guhBfGK16gqip7XZJPvyVrSlvkoPFnsLeXqRttgW_75JdrdVUPCUHCaXSSb5Msz3DcAFUlpxIVSINU1DihEPOec4pDnRHAkujHHc4ede0h3Qh2E8LKsqHRem0IdYJNxcZPj72gX4RJnmUjT0094F9seerMIatcfOnW5M-4v8imsoQT1PByMahRYHJJX2LMLNavHP12gJMb8DVf_SdLZhq4SIQavY0x1Y0aNd2PwmHLgH13Z3g6lPuAdyPHes2jc78QzEm6AVyLKBQVAwU_Zh0Gm_3HbDsvNBKAlOk1AmuRN2kxlSmfVYlimJuSYKp1GkqIhUjlNu0kSnGmucSwvKCDVcotQgYlRODqA2Go_0IQTUONgmhZQypybjAptcmZhIpbLYjnW4qjzAZCkL7rpTvLNC0Bgz5ytmfVWH84XlpJDC-MWmUTmRlcEwZTgmTgDX_rXrcOkd--d69trute149F_DM1jv33XY033v8Rg2sCs48bW0DajNPub6xCKGmTj1R-MLOy-9dg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+sector+coupling+concept%3A+A+critical+review&rft.jtitle=Wiley+interdisciplinary+reviews.+Energy+and+environment&rft.au=Ramsebner%2C+Jasmine&rft.au=Haas%2C+Reinhard&rft.au=Ajanovic%2C+Amela&rft.au=Wietschel%2C+Martin&rft.date=2021-07-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=2041-8396&rft.eissn=2041-840X&rft.volume=10&rft.issue=4&rft.spage=e396&rft_id=info:doi/10.1002%2Fwene.396&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-8396&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-8396&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-8396&client=summon