Edge-Localized Mode Control and Transport Generated by Externally Applied Magnetic Perturbations

This article reviews the subject of edge localized mode (ELM) control using externally applied magnetic perturbations and proposes theoretical mechanisms that may be responsible for the induced transport changes. The first question that must be addressed is: what is the structure of magnetic field w...

Full description

Saved in:
Bibliographic Details
Published inContributions to plasma physics (1988) Vol. 52; no. 5-6; pp. 326 - 347
Main Author Joseph, I.
Format Journal Article
LanguageEnglish
Published Berlin WILEY-VCH Verlag 01.06.2012
WILEY‐VCH Verlag
Subjects
Online AccessGet full text
ISSN0863-1042
1521-3986
DOI10.1002/ctpp.201210014

Cover

Abstract This article reviews the subject of edge localized mode (ELM) control using externally applied magnetic perturbations and proposes theoretical mechanisms that may be responsible for the induced transport changes. The first question that must be addressed is: what is the structure of magnetic field within the plasma? Although initial hypotheses focused on the possibility of the creation of a region of stochastic field lines at the tokamak edge, drift magnetohydrodynamics theory predicts that magnetic reconnection is strongly suppressed over the region of the pedestal with steep gradients and fast perpendicular rotation. Reconnection can only occur near the location where the perpendicular electron velocity vanishes, and hence the electron impedance nearly vanishes, or near the foot of the pedestal, where the plasma is sufficiently cold and resistive. The next question that must be addressed is: which processes are responsible for the observed transport changes, nonlinearity, turbulence, or stochasticity? Over the pedestal region where ions and electrons rotate in opposite directions relative to the perturbation, the quasilinear Lorentz force decelerates the electron fluid and accelerates the ion fluid. The quasilinear magnetic flutter flux is proportional to the force and produces an outward convective transport that can be significant. Over the pedestal region where the E × B flow and the electrons rotate in opposite directions relative to the perturbation, magnetic islands with a width on the order of the ion gyroradius can directly radiate drift waves. In addition, the combination of quasilinear electron transport and ion viscous transport can lead to a large net particle flux. Since there are many transport mechanisms that may be active simultaneously, it is important to determine which physical mechanisms are responsible for ELM control and to predict the scaling to future devices (© 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)
AbstractList This article reviews the subject of edge localized mode (ELM) control using externally applied magnetic perturbations and proposes theoretical mechanisms that may be responsible for the induced transport changes. The first question that must be addressed is: what is the structure of magnetic field within the plasma? Although initial hypotheses focused on the possibility of the creation of a region of stochastic field lines at the tokamak edge, drift magnetohydrodynamics theory predicts that magnetic reconnection is strongly suppressed over the region of the pedestal with steep gradients and fast perpendicular rotation. Reconnection can only occur near the location where the perpendicular electron velocity vanishes, and hence the electron impedance nearly vanishes, or near the foot of the pedestal, where the plasma is sufficiently cold and resistive. The next question that must be addressed is: which processes are responsible for the observed transport changes, nonlinearity, turbulence, or stochasticity? Over the pedestal region where ions and electrons rotate in opposite directions relative to the perturbation, the quasilinear Lorentz force decelerates the electron fluid and accelerates the ion fluid. The quasilinear magnetic flutter flux is proportional to the force and produces an outward convective transport that can be significant. Over the pedestal region where the E × B flow and the electrons rotate in opposite directions relative to the perturbation, magnetic islands with a width on the order of the ion gyroradius can directly radiate drift waves. In addition, the combination of quasilinear electron transport and ion viscous transport can lead to a large net particle flux. Since there are many transport mechanisms that may be active simultaneously, it is important to determine which physical mechanisms are responsible for ELM control and to predict the scaling to future devices (© 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)
This article reviews the subject of edge localized mode (ELM) control using externally applied magnetic perturbations and proposes theoretical mechanisms that may be responsible for the induced transport changes. The first question that must be addressed is: what is the structure of magnetic field within the plasma? Although initial hypotheses focused on the possibility of the creation of a region of stochastic field lines at the tokamak edge, drift magnetohydrodynamics theory predicts that magnetic reconnection is strongly suppressed over the region of the pedestal with steep gradients and fast perpendicular rotation. Reconnection can only occur near the location where the perpendicular electron velocity vanishes, and hence the electron impedance nearly vanishes, or near the foot of the pedestal, where the plasma is sufficiently cold and resistive. The next question that must be addressed is: which processes are responsible for the observed transport changes, nonlinearity, turbulence, or stochasticity? Over the pedestal region where ions and electrons rotate in opposite directions relative to the perturbation, the quasilinear Lorentz force decelerates the electron fluid and accelerates the ion fluid. The quasilinear magnetic flutter flux is proportional to the force and produces an outward convective transport that can be significant. Over the pedestal region where the E × B flow and the electrons rotate in opposite directions relative to the perturbation, magnetic islands with a width on the order of the ion gyroradius can directly radiate drift waves. In addition, the combination of quasilinear electron transport and ion viscous transport can lead to a large net particle flux. Since there are many transport mechanisms that may be active simultaneously, it is important to determine which physical mechanisms are responsible for ELM control and to predict the scaling to future devices (© 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)
Author Joseph, I.
Author_xml – sequence: 1
  givenname: I.
  surname: Joseph
  fullname: Joseph, I.
  email: joseph5@llnl.gov
  organization: Lawrence Livermore National Laboratory, P. O. Box 808, L-637, Livermore CA 94551, USA
BookMark eNqF0N9LwzAQB_AgCm7TV5_7D3QmbZq2j9vYD6FqkckeY5peRzSmJY24-tfbORkiiE_HHfc5ju8QnZraAEJXBI8JxsG1dE0zDjAJ-o7QEzQgUUD8ME3YKRrghIU-wTQ4R8O2fcYYp4ySAXqal1vws1oKrT6g9G7rErxZbZyttSdM6a2tMG1TW-ctwYAVrl8qOm--c2CN0LrzJk2j1Z6KrQGnpJeDdW-2EE7Vpr1AZ5XQLVx-1xF6XMzXs5Wf3S9vZpPMl2EQU7-SSSQqiGVCWMQYlhUNS8YCihlhkoLEgAWTEQgpWVpGBU1ZREPRz4okiKtwhOjhrrR121qouFTu6wVnhdKcYL5Pie9T4seUejb-xRqrXoXt_gbpAbwrDd0_23y2zvOf1j9Y1TrYHa2wL5zFYRzxzd2SrxYP2WaaTXkefgLhYY3t
CitedBy_id crossref_primary_10_13182_FST13_A16875
crossref_primary_10_1063_1_4917473
crossref_primary_10_1088_1741_4326_ac6c3a
crossref_primary_10_1088_0741_3335_57_9_095008
crossref_primary_10_1088_1741_4326_ad5e93
crossref_primary_10_1088_0029_5515_54_6_064005
crossref_primary_10_1088_1741_4326_acd403
crossref_primary_10_1002_ctpp_201610056
crossref_primary_10_1088_1741_4326_aafe3a
crossref_primary_10_1088_2058_6272_ac190e
crossref_primary_10_1063_1_5144445
crossref_primary_10_1109_TPS_2017_2760632
crossref_primary_10_1088_1741_4326_ab6c35
crossref_primary_10_1088_1741_4326_ab3be2
crossref_primary_10_1088_1741_4326_aa5e36
crossref_primary_10_1088_0741_3335_57_12_123001
crossref_primary_10_1016_j_jnucmat_2013_01_060
crossref_primary_10_1002_ctpp_201410010
crossref_primary_10_1002_ctpp_201410011
Cites_doi 10.1063/1.1706761
10.1063/1.862017
10.1088/0029-5515/52/7/074004
10.1063/1.3335486
10.1103/PhysRevLett.106.225004
10.1103/PhysRevLett.67.2662
10.1063/1.1449463
10.1063/1.1578489
10.1063/1.871585
10.1016/j.jnucmat.2006.12.064
10.1088/0029-5515/50/4/045010
10.1063/1.2178167
10.1088/0741-3335/47/5/R01
10.1088/0741-3335/47/12B/S18
10.1063/1.1344921
10.1063/1.2959122
10.1088/0029-5515/48/4/045009
10.13182/FST10-A9407
10.1063/1.873000
10.1088/0741-3335/52/5/055006
10.1088/0029-5515/51/8/083002
10.1063/1.871434
10.1088/0029-5515/51/7/073030
10.1088/0029-5515/50/3/034008
10.1063/1.1487383
10.1063/1.873507
10.1063/1.2901064
10.1103/PhysRevLett.98.265004
10.1063/1.3590933
10.1088/0741-3335/34/13/033
10.13182/FST11-A11699
10.1088/0741-3335/53/5/054003
10.1088/0029-5515/49/5/055025
10.1016/S0022-3115(02)01509-X
10.1088/0029-5515/6/4/008
10.1088/0741-3335/47/12B/S04
10.1088/0029-5515/51/8/083009
10.1063/1.873109
10.1088/0741-3335/35/6/002
10.1103/PhysRevLett.92.235003
10.1088/0029-5515/50/10/105005
10.1088/0029-5515/49/8/085011
10.1103/PhysRevLett.104.045001
10.1063/1.3526677
10.1103/RevModPhys.48.239
10.1103/PhysRevLett.87.215003
10.1063/1.1459058
10.1088/0029-5515/49/10/104025
10.1088/0029-5515/49/6/062001
10.1103/PhysRevLett.102.065002
10.1088/0029-5515/49/9/095013
10.1088/0029-5515/50/3/034005
10.1088/1742-6596/123/1/012014
10.1063/1.2177657
10.1088/0741-3335/50/12/124029
10.1088/0029-5515/48/2/024003
10.1088/0029-5515/48/2/024002
10.1016/j.jnucmat.2006.12.067
10.1088/0029-5515/48/2/024004
10.1063/1.1888705
10.1063/1.3574522
10.1088/0029-5515/50/5/054008
10.13182/FST06-A1090
10.1063/1.1607324
10.1088/0741-3335/53/6/065011
10.1063/1.872846
10.1088/0741-3335/51/12/124010
10.1016/0370-1573(85)90083-3
10.1088/0029-5515/50/3/034004
10.1088/0741-3335/45/9/302
10.1088/1742-6596/7/1/015
10.1002/ctpp.2150380123
10.1063/1.2732170
10.1088/0029-5515/49/6/065018
10.1063/1.1694232
10.1088/0741-3335/48/5A/S16
10.1088/0029-5515/43/4/306
10.1088/0029-5515/48/2/024005
10.1063/1.2146983
10.1088/0029-5515/50/2/025022
10.1088/0029-5515/46/4/S07
10.1103/PhysRevLett.102.045006
10.1088/0029-5515/45/5/007
10.1016/j.jnucmat.2009.01.037
10.1103/PhysRevLett.40.38
10.1063/1.3280011
10.1088/0741-3335/50/12/124030
10.1063/1.3432720
10.1103/PhysRevLett.99.195003
10.1088/0029-5515/50/3/034002
10.1088/0029-5515/45/7/007
10.1016/j.jnucmat.2009.01.221
10.1088/0029-5515/50/3/034012
10.1063/1.3008045
10.1103/PhysRevLett.86.5059
10.1063/1.3118591
10.1063/1.1491533
10.1103/PhysRevLett.47.12
10.1063/1.3191719
10.1088/0029-5515/48/11/115004
10.1088/0741-3335/45/9/301
10.1038/nphys312
10.1088/0741-3335/51/11/115007
ContentType Journal Article
Copyright Copyright © 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright_xml – notice: Copyright © 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
DBID BSCLL
AAYXX
CITATION
DOI 10.1002/ctpp.201210014
DatabaseName Istex
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1521-3986
EndPage 347
ExternalDocumentID 10_1002_ctpp_201210014
CTPP201210014
ark_67375_WNG_HFRLWBLB_P
Genre article
GroupedDBID .3N
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHQN
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABPVW
ACAHQ
ACBWZ
ACCZN
ACGFS
ACPOU
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADMLS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AIDQK
AIDYY
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
EJD
F00
F01
F04
FEDTE
G-S
G.N
GNP
GODZA
GYQRN
H.T
H.X
HF~
HGLYW
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
RNS
ROL
RX1
RYL
SAMSI
SUPJJ
UB1
W8V
W99
WBKPD
WGJPS
WIB
WIH
WIK
WOHZO
WQJ
WXSBR
WYISQ
XG1
XPP
XV2
ZZTAW
~IA
~WT
AAHHS
ACCFJ
ADZOD
AEEZP
AEQDE
AEUQT
AFPWT
AIWBW
AJBDE
RNW
RWI
WRC
AAYXX
CITATION
ID FETCH-LOGICAL-c3274-fc85afe7c8165660cf43d66240616c4ec0e0a6c5eacc69d5b496543aa6cb827f3
IEDL.DBID DR2
ISSN 0863-1042
IngestDate Wed Oct 01 03:28:05 EDT 2025
Thu Apr 24 23:01:48 EDT 2025
Wed Jan 22 16:53:40 EST 2025
Tue Sep 09 05:32:37 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 5-6
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3274-fc85afe7c8165660cf43d66240616c4ec0e0a6c5eacc69d5b496543aa6cb827f3
Notes istex:AC53F2C29D4C619EC30A17DD2370FB703ADB3D5B
ark:/67375/WNG-HFRLWBLB-P
ArticleID:CTPP201210014
PageCount 22
ParticipantIDs crossref_citationtrail_10_1002_ctpp_201210014
crossref_primary_10_1002_ctpp_201210014
wiley_primary_10_1002_ctpp_201210014_CTPP201210014
istex_primary_ark_67375_WNG_HFRLWBLB_P
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate June 2012
PublicationDateYYYYMMDD 2012-06-01
PublicationDate_xml – month: 06
  year: 2012
  text: June 2012
PublicationDecade 2010
PublicationPlace Berlin
PublicationPlace_xml – name: Berlin
PublicationTitle Contributions to plasma physics (1988)
PublicationTitleAlternate Contrib. Plasma Phys
PublicationYear 2012
Publisher WILEY-VCH Verlag
WILEY‐VCH Verlag
Publisher_xml – name: WILEY-VCH Verlag
– name: WILEY‐VCH Verlag
References P. Beyer, F. de Solminihac, M. Leconte et al., Plasma Phys. Control. Fusion 53, 054003 (2011).
J. M. Canik, R. Maingi, T. E. Evans et al., Nucl. Fusion 50, 034012 (2010).
M. W. Jakubowski, T. E. Evans, M. E. Fenstermacher et al., Nucl. Fusion 49, 095013 (2009).
I. Joseph, T. E. Evans, A. M. Runov et al., Nucl. Fusion 48, 045009 (2008).
Q. Yu and S. Günter, Nucl. Fusion 49, 062001 (2009).
M. N. Rosenbluth, R. Z. Sagdeev, J. B. Taylor and G. M. Zaslavski, Nucl. Fusion 6, 297 (1966).
M. F. Heyn, I. B. Ivanov, S. V. Kasilov et al., Nucl. Fusion 48, 024005 (2008).
T. E. Evans, R. K. W. Roeder, J. A. Carter et al., J. Phys.: Conf. Ser. 7, 174 (2005).
T. D. Rognlien and D. D. Ryutov, Contrib. Plasma Phys. 38, 152 (1998).
A. Grosman, J. M. Ané, P. Barabaschi et al., J. Nucl. Mater. 313, 1314 (2003).
H. R. Wilson and J. W. Connor, Plasma Phys. Control. Fusion 51, 115007 (2009).
F. L. Waelbroeck, J. W. Connor, and H. R. Wilson, Phys. Rev. Lett. 87, 215003 (2001).
J. Roth, E. Tsitrone, A. Loarte et al., J. Nucl. Mater. 390, 1 (2009).
T. E. Evans, I. Joseph, R. A. Moyer, J. Nucl. Mater. 363-365, 570 (2007).
S. P. Hirshman and D. J. Sigmar, Nucl. Fusion 21, 179 (1981).
I. Joseph, R. A. Moyer, T. E. Evans et al., J. Nucl. Mater. 363, 591 (2007).
W. Suttrop, T. Eich, J. C. Fuchs et al., Phys. Rev. Lett. 106, 225004 (2011).
M. Bécoulet, G. Huysmans, X. Garbet et al., Nucl. Fusion 49, 085011 (2009).
R. Fitzpatrick, Phys. Plasmas 2, 825 (1995).
Ph. Ghendrih, H. Capes, C. DeMichelis et al., Plasma Phys. Control. Fusion 34, 27 (1992).
E. Nardon, A. Kirk, R. Akers et al., Plasma Phys. Control. Fusion 51, 124010 (2009).
V. Rozhansky, E. Kaveeva, P. Molchanov et al., Nucl. Fusion 50, 034005 (2010).
A. Cole and R. Fitzpatrick, Phys. Plasmas 13, 032503 (2006).
M. Leconte, P. Beyer, X. Garbet, and S. Benkadda, Phys. Rev. Lett. 102, 045006 (2009).
M. J. Schaffer, J. E. Menard, M. P. Aldan, et al. Nucl. Fusion 48, 024004 (2008).
M. F. Heyn, I. B. Ivanov, S. V. Kasilov, and W. Kernbichler, Nucl. Fusion 46, S159 (2006).
A. Loarte, G. Saibene, R. Sartori et al., Plasma Phys. Control. Fusion 45, 1549 (2003).
Y. Liang, H. R. Koslowski, P. R. Thomas et al., Phys. Rev. Lett. 98, 265004 (2007).
Y. Liang, Fusion Sci. Tech. 59, 586 (2011).
Y. Miura, M. Mori, T. Shoji et al., Fusion Sci. Tech. 49, 96 (2006).
H. R. Wilson, Trans. Fusion Sci. Tech. 57, 164 (2010).
J.-K. Park, A. H. Boozer, and J. E. Menard, Phys. Rev. Lett. 102, 065002 (2009).
R. Fitzpatrick, Nucl. Fusion 33, 149 (1993).
T. E. Evans, R. A. Moyer, P. R. Thomas et al., Phys. Rev. Lett. 92, 235003 (2004).
N. Oyama, P. Gohil, L. D. Horton et al., Plasma Phys. Control. Fusion 48, A171 (2006).
H. P. Furth, J. Killeen, and M. N. Rosenbluth, Phys. Fluids 6, 459 (1963).
A. Cole and R. Fitzpatrick, Phys. Plasmas 18, 055711 (2011).
A. Zagorodny and J. Weiland, Phys. Plasmas 6, 2359 (1999).
O. Schmitz, T. E. Evans, M. E. Fenstermacher et al., Plasma Phys. Control. Fusion 50, 124029 (2008)
V. A. Izzo and I. Joseph, Nucl. Fusion 48, 115004 (2008).
A. H. Boozer and C. Nuehrenberg, Phys. Plasmas 13, 102501 (2006).
H. R. Strauss, L. Sugiyama, G. Y. Park, et al, Nucl. Fusion 49, 055025 (2009).
C. Nuhrenberg and A. H. Boozer, Phys. Plasmas 10, 2840 (2003).
A. M. Runov, D. Reiter, S. V. Kasilov et al., Phys. Plasmas 8, 916 (2001).
R. Fitzpatrick, Phys. Plasmas 5, 3325 (1998).
R. Fitzpatrick and F. L. Waelbroeck, Phys. Plasmas 12, 122511 (2005).
P. B. Snyder et al., Phys. Plasmas 9, 237 (2002).
M. Bécoulet, E. Nardon, G. Huysmans, et al., Nucl. Fusion 48, 024003 (2008).
R. Fitzpatrick and F. L. Waelbroeck, Plasma Phys. Control. Fusion 52, 055006 (2010).
D. Whyte, A. E. Hubbard, J. W. Hughes, Nucl. Fusion, 50, 15005 (2010).
R. A. Moyer, T. E. Evans, T. H. Osborne, Phys. Plasmas 12, 056119 (2005).
T. E. Evans, R. A. Moyer, K. H. Burrell et al., Nature Phys. 2, 419 (2006).
J-W. Ahn, R. Maingi, J. M. Canik et al., Phys. Plasmas 18, 056108 (2011).
R. Fitzpatrick and F. L. Waelbroeck, Phys. Plasmas 17, 062503 (2010).
J. M. Canik, R. Maingi, T. E. Evans et al., Phys. Rev. Lett. 104, 045001 (2010).
M. Leconte, P. Beyer, X. Garbet, and S. Benkadda, Nucl. Fusion 50, 054008 (2010).
A. I. Smolyakov, Plasma Phys. Control. Fusion 35, (1993) 657.
Y.-Q. Liu, A. Kirk, and E. Nardon, Phys. Plasmas 17, 122502 (2010).
T. E. Evans, R. A. Moyer, J. G. Watkins et al., Nucl. Fusion 45, 595 (2005).
A. Kirk, Yueqiang Liu, E. Nardon et al., Plasma Phys. Control. Fusion 53, 065011 (2011).
J. F. Drake and Y. C. Lee, Phys. Fluids 20, 1341 (1977).
F. Militello and F. L. Waelbroeck, Nucl. Fusion 49, 065018 (2009).
H. R. Wilson et al., Phys. Plasmas 9, 1277 (2002).
F. L. Waelbroeck, Nucl. Fusion 49, 14025 (2009).
E. Nardon, P. Tamain, M. Bécoulet et al., Nucl. Fusion 50, 034002 (2010).
V. Rozhansky, E. Kaveeva, and S. Voskoboynikov, et. al, Phys. Plasmas 9, 3385 (2002).
P. H. Diamond, S.-I. Itoh, K. Itoh and T. S. Hahm, Plasma Phys. Control. Fusion 47, R35 (2005).
H. Frerichs, D. Reiter, O. Schmitz et al., Nucl. Fusion 50, 034004 (2010).
J.-W. Ahn, J. M. Canik, V. A. Soukhanovskii et al., Nucl. Fusion 50, 045010 (2010).
G. Federici, A. Loarte and G. Strohmayer, Plasma Phys. Control. Fusion 45, 1523 (2003).
H. Zohm, Plasma Phys. Control. Fusion 38, 15 (1996).
R. D. Hazeltine and J. D. Meiss, Phys. Rep. 121, 1 (1985).
A. H. Boozer, Phys. Rev. Lett. 86, 559 (2001).
C. C. Hegna, Phys. Plasmas 6, 1767 (1998).
T. E. Evans, K. H. Burrell, M. E. Fenstermacher et al., Phys. Plasmas 13, 056121 (2006).
J.-K. Park, M. J. Schaffer, J. E. Menard and A. H. Boozer, Phys. Rev. Lett. 99, 195003 (2007).
J. D. Callen, C. C. Hegna, and A. J. Cole, Phys. Plasmas 17, 056113 (2010).
A. H. Boozer, Phys. Plasmas 3, 4620 (1996).
A. Kirk, E. Nardon, R. Akers et al., Nucl. Fusion 50, 034008 (2010).
P. H. Rutherford, Phys. Fluids 16, 1903 (1973).
M. Z. Tokar, T. R. Singh, and B. Unterberg, Phys. Plasmas 15, 072515 (2008).
Q. Yu and S. Günter, Nucl. Fusion 51, 073030 (2010).
Yueqiang Liu, M. S. Chu, I. T. Chapman and T. C. Hender, Phys. Plasmas 15, 112503 (2008).
R. W. Harvey, M. G. McCoy, J. Y. Hsu and A. A. Mirin, Phys. Rev. Lett. 47, 12 (1981).
J. G. Watkins, T. E. Evans, M. W. Jakubowski, J. Nucl. Mater. 390-391, 839 (2009).
K. C. Shaing, Nucl. Fusion 50, 025022 (2010).
J. C. Vallet, L. Poutchy, M. S. Mohamed-Benkadda, Phys. Rev. Lett. 67, 2662 (1991).
M. Lehnen, S. Abdullaev, W. Biel et al., Plasma Phys. Control. Fusion 47, B237 (2005).
L. M. Kovrizhnikh, Sov. Phys. JETP 29, 475 (1969).
M. E. Fenstermacher, T. E. Evans, T. H. Osborne et al., Phys. Plasmas 15, 056122 (2008).
J.-K. Park, A. H. Boozer, and A. H. Glasser, Phys. Plasmas 14, 052110 (2007).
I. Kaganovich and V. Rozhansky, Phys. Plasmas 5, 3901 (1998).
G. Park, C. S. Chang, I. Joseph, and R. A. Moyer, Phys. Plasmas 17, 12503 (2010).
K. C. Shaing, Nucl. Fusion 43, 253 (2003).
H. Reimerdes, J. Bialek, M. S. Chance et al., Nucl. Fusion 45, 368 (2005).
K. H. Burrell, T. E. Evans, E. J. Doyle et al., Plasma Phys. Control. Fusion 47, B37 (2005).
A. H. Boozer, Rev. Mod. Phys. 76, 171 (2004).
A. H. Boozer, Phys. Plasmas 16, 052505 (2009).
V. Rozhansky, P. Molchanov, E. Kaveeva et al., Nucl. Fusion 51, 083009 (2011).
R. Fitzpatrick and F. L. Waelbroeck, Phys. Plasmas 16, 072507 (2009).
K. C. Shaing, Phys. Plasmas 9, 3470 (2002).
M. P. Gryaznevich, T. C. Hender, D. F. Howell et al., Plasma Phys. Controlled Fusion 50, 124030 (2008).
A. H. Glasser and M. S. Chance, Bull. Am. Phys. Soc. 42, 1848 (1997).
A. B. Rechester and M. N. Rosenbluth, Phys. Rev. Lett. 40, 38 (1978).
Y.-Q. Liu, A. Kirk, and Y. Gribov et al., Nucl. Fusion 51, 083002 (2011).
F. L. Hinton and R. D. Hazeltine, Rev. Mod. Phys. 48, 239 (1976).
T. E. Evans, M. E. Fenstermacher, R. A. Moyer et al., Nucl. Fusion 48, 024002 (2008).
T. H. Osborne, P. B. Snyder, K. H. Burrell, et. al, J. Phys.: Conf. Ser. 123, 012014 (2008).
F. L. Waelbroeck, Phys. Plasmas 10, 440 (2003).
2010; 57
1997; 42
2010; 17
2010; 104
1973; 16
2011; 53
1981; 47
1977; 20
2011; 59
2003; 313
1996; 38
2011; 18
2009; 49
2003; 10
1985; 121
2001; 86
2001; 87
2004; 76
13
1993; 35
2009; 51
2007; 363‐365
1993; 33
1996; 3
2009; 16
2003; 43
2003; 45
2002; 9
2006; 13
2007; 363
1966; 6
2008; 15
2006; 2
2008; 123
2008; 50
1995; 2
2007; 98
2007; 99
1999; 6
1992; 34
1976; 48
1981; 21
2005; 45
2007; 14
2009; 390‐391
2005; 47
1998; 38
2004; 92
2011; 106
1991; 67
2006; 46
2009; 390
1963; 6
2006; 49
1978; 40
2011; 51
2006; 48
2001; 8
2008; 48
2005; 7
2009; 102
1969; 29
1998; 6
1998; 5
2010; 52
2005; 12
2010; 51
2010; 50
Boozer A. H. (e_1_2_1_68_2); 13
e_1_2_1_111_2
e_1_2_1_81_2
e_1_2_1_66_2
e_1_2_1_20_2
e_1_2_1_43_2
e_1_2_1_62_2
e_1_2_1_85_2
e_1_2_1_24_2
e_1_2_1_47_2
Wilson H. R. (e_1_2_1_89_2) 2010; 57
e_1_2_1_28_2
e_1_2_1_107_2
e_1_2_1_92_2
e_1_2_1_103_2
e_1_2_1_54_2
e_1_2_1_4_2
e_1_2_1_77_2
e_1_2_1_50_2
e_1_2_1_96_2
e_1_2_1_31_2
e_1_2_1_73_2
e_1_2_1_16_2
e_1_2_1_35_2
e_1_2_1_58_2
e_1_2_1_8_2
Miura Y. (e_1_2_1_12_2) 2006; 49
e_1_2_1_39_2
e_1_2_1_110_2
e_1_2_1_114_2
e_1_2_1_40_2
e_1_2_1_86_2
e_1_2_1_67_2
e_1_2_1_44_2
e_1_2_1_82_2
e_1_2_1_21_2
e_1_2_1_63_2
e_1_2_1_48_2
e_1_2_1_25_2
e_1_2_1_29_2
e_1_2_1_102_2
e_1_2_1_106_2
e_1_2_1_7_2
e_1_2_1_55_2
e_1_2_1_78_2
e_1_2_1_97_2
e_1_2_1_3_2
e_1_2_1_32_2
e_1_2_1_51_2
e_1_2_1_74_2
e_1_2_1_93_2
e_1_2_1_13_2
e_1_2_1_36_2
e_1_2_1_17_2
Fitzpatrick R. (e_1_2_1_88_2) 1993; 33
e_1_2_1_113_2
e_1_2_1_41_2
e_1_2_1_64_2
e_1_2_1_87_2
e_1_2_1_22_2
e_1_2_1_45_2
e_1_2_1_60_2
e_1_2_1_83_2
Hirshman S. P. (e_1_2_1_94_2) 1981; 21
e_1_2_1_26_2
e_1_2_1_49_2
e_1_2_1_109_2
e_1_2_1_90_2
e_1_2_1_101_2
e_1_2_1_105_2
e_1_2_1_6_2
e_1_2_1_75_2
e_1_2_1_56_2
e_1_2_1_33_2
e_1_2_1_71_2
e_1_2_1_10_2
e_1_2_1_52_2
e_1_2_1_37_2
e_1_2_1_14_2
e_1_2_1_79_2
e_1_2_1_18_2
Boozer A. H. (e_1_2_1_59_2) 2004; 76
Kovrizhnikh L. M. (e_1_2_1_98_2) 1969; 29
e_1_2_1_80_2
e_1_2_1_112_2
e_1_2_1_65_2
e_1_2_1_23_2
e_1_2_1_61_2
e_1_2_1_42_2
e_1_2_1_84_2
e_1_2_1_27_2
e_1_2_1_46_2
e_1_2_1_69_2
Glasser A. H. (e_1_2_1_70_2) 1997; 42
e_1_2_1_108_2
e_1_2_1_91_2
e_1_2_1_100_2
Zohm H. (e_1_2_1_2_2) 1996; 38
e_1_2_1_104_2
e_1_2_1_30_2
e_1_2_1_53_2
e_1_2_1_76_2
e_1_2_1_99_2
e_1_2_1_5_2
e_1_2_1_11_2
e_1_2_1_34_2
e_1_2_1_72_2
e_1_2_1_95_2
e_1_2_1_15_2
e_1_2_1_38_2
e_1_2_1_19_2
e_1_2_1_57_2
e_1_2_1_9_2
References_xml – reference: T. E. Evans, M. E. Fenstermacher, R. A. Moyer et al., Nucl. Fusion 48, 024002 (2008).
– reference: H. R. Wilson, Trans. Fusion Sci. Tech. 57, 164 (2010).
– reference: T. E. Evans, R. A. Moyer, J. G. Watkins et al., Nucl. Fusion 45, 595 (2005).
– reference: A. I. Smolyakov, Plasma Phys. Control. Fusion 35, (1993) 657.
– reference: Ph. Ghendrih, H. Capes, C. DeMichelis et al., Plasma Phys. Control. Fusion 34, 27 (1992).
– reference: J. Roth, E. Tsitrone, A. Loarte et al., J. Nucl. Mater. 390, 1 (2009).
– reference: J.-W. Ahn, J. M. Canik, V. A. Soukhanovskii et al., Nucl. Fusion 50, 045010 (2010).
– reference: A. B. Rechester and M. N. Rosenbluth, Phys. Rev. Lett. 40, 38 (1978).
– reference: Y.-Q. Liu, A. Kirk, and Y. Gribov et al., Nucl. Fusion 51, 083002 (2011).
– reference: A. H. Boozer, Phys. Plasmas 16, 052505 (2009).
– reference: M. F. Heyn, I. B. Ivanov, S. V. Kasilov, and W. Kernbichler, Nucl. Fusion 46, S159 (2006).
– reference: J.-K. Park, A. H. Boozer, and J. E. Menard, Phys. Rev. Lett. 102, 065002 (2009).
– reference: R. Fitzpatrick, Phys. Plasmas 2, 825 (1995).
– reference: F. L. Waelbroeck, J. W. Connor, and H. R. Wilson, Phys. Rev. Lett. 87, 215003 (2001).
– reference: E. Nardon, P. Tamain, M. Bécoulet et al., Nucl. Fusion 50, 034002 (2010).
– reference: J-W. Ahn, R. Maingi, J. M. Canik et al., Phys. Plasmas 18, 056108 (2011).
– reference: R. Fitzpatrick, Phys. Plasmas 5, 3325 (1998).
– reference: T. D. Rognlien and D. D. Ryutov, Contrib. Plasma Phys. 38, 152 (1998).
– reference: T. E. Evans, R. K. W. Roeder, J. A. Carter et al., J. Phys.: Conf. Ser. 7, 174 (2005).
– reference: M. W. Jakubowski, T. E. Evans, M. E. Fenstermacher et al., Nucl. Fusion 49, 095013 (2009).
– reference: K. C. Shaing, Nucl. Fusion 43, 253 (2003).
– reference: A. Cole and R. Fitzpatrick, Phys. Plasmas 13, 032503 (2006).
– reference: T. E. Evans, I. Joseph, R. A. Moyer, J. Nucl. Mater. 363-365, 570 (2007).
– reference: Y. Liang, Fusion Sci. Tech. 59, 586 (2011).
– reference: M. Leconte, P. Beyer, X. Garbet, and S. Benkadda, Nucl. Fusion 50, 054008 (2010).
– reference: J.-K. Park, A. H. Boozer, and A. H. Glasser, Phys. Plasmas 14, 052110 (2007).
– reference: G. Federici, A. Loarte and G. Strohmayer, Plasma Phys. Control. Fusion 45, 1523 (2003).
– reference: Y. Liang, H. R. Koslowski, P. R. Thomas et al., Phys. Rev. Lett. 98, 265004 (2007).
– reference: T. E. Evans, R. A. Moyer, K. H. Burrell et al., Nature Phys. 2, 419 (2006).
– reference: M. Bécoulet, E. Nardon, G. Huysmans, et al., Nucl. Fusion 48, 024003 (2008).
– reference: H. Frerichs, D. Reiter, O. Schmitz et al., Nucl. Fusion 50, 034004 (2010).
– reference: H. Reimerdes, J. Bialek, M. S. Chance et al., Nucl. Fusion 45, 368 (2005).
– reference: R. A. Moyer, T. E. Evans, T. H. Osborne, Phys. Plasmas 12, 056119 (2005).
– reference: A. M. Runov, D. Reiter, S. V. Kasilov et al., Phys. Plasmas 8, 916 (2001).
– reference: V. A. Izzo and I. Joseph, Nucl. Fusion 48, 115004 (2008).
– reference: M. Lehnen, S. Abdullaev, W. Biel et al., Plasma Phys. Control. Fusion 47, B237 (2005).
– reference: R. D. Hazeltine and J. D. Meiss, Phys. Rep. 121, 1 (1985).
– reference: I. Kaganovich and V. Rozhansky, Phys. Plasmas 5, 3901 (1998).
– reference: F. Militello and F. L. Waelbroeck, Nucl. Fusion 49, 065018 (2009).
– reference: A. H. Boozer, Phys. Rev. Lett. 86, 559 (2001).
– reference: R. Fitzpatrick and F. L. Waelbroeck, Phys. Plasmas 16, 072507 (2009).
– reference: P. Beyer, F. de Solminihac, M. Leconte et al., Plasma Phys. Control. Fusion 53, 054003 (2011).
– reference: M. P. Gryaznevich, T. C. Hender, D. F. Howell et al., Plasma Phys. Controlled Fusion 50, 124030 (2008).
– reference: M. Leconte, P. Beyer, X. Garbet, and S. Benkadda, Phys. Rev. Lett. 102, 045006 (2009).
– reference: R. Fitzpatrick and F. L. Waelbroeck, Plasma Phys. Control. Fusion 52, 055006 (2010).
– reference: Y. Miura, M. Mori, T. Shoji et al., Fusion Sci. Tech. 49, 96 (2006).
– reference: Yueqiang Liu, M. S. Chu, I. T. Chapman and T. C. Hender, Phys. Plasmas 15, 112503 (2008).
– reference: J. C. Vallet, L. Poutchy, M. S. Mohamed-Benkadda, Phys. Rev. Lett. 67, 2662 (1991).
– reference: T. H. Osborne, P. B. Snyder, K. H. Burrell, et. al, J. Phys.: Conf. Ser. 123, 012014 (2008).
– reference: H. R. Wilson and J. W. Connor, Plasma Phys. Control. Fusion 51, 115007 (2009).
– reference: H. R. Strauss, L. Sugiyama, G. Y. Park, et al, Nucl. Fusion 49, 055025 (2009).
– reference: W. Suttrop, T. Eich, J. C. Fuchs et al., Phys. Rev. Lett. 106, 225004 (2011).
– reference: Q. Yu and S. Günter, Nucl. Fusion 49, 062001 (2009).
– reference: I. Joseph, T. E. Evans, A. M. Runov et al., Nucl. Fusion 48, 045009 (2008).
– reference: R. W. Harvey, M. G. McCoy, J. Y. Hsu and A. A. Mirin, Phys. Rev. Lett. 47, 12 (1981).
– reference: H. Zohm, Plasma Phys. Control. Fusion 38, 15 (1996).
– reference: K. C. Shaing, Nucl. Fusion 50, 025022 (2010).
– reference: J. G. Watkins, T. E. Evans, M. W. Jakubowski, J. Nucl. Mater. 390-391, 839 (2009).
– reference: Q. Yu and S. Günter, Nucl. Fusion 51, 073030 (2010).
– reference: K. C. Shaing, Phys. Plasmas 9, 3470 (2002).
– reference: J. M. Canik, R. Maingi, T. E. Evans et al., Nucl. Fusion 50, 034012 (2010).
– reference: A. H. Boozer, Phys. Plasmas 3, 4620 (1996).
– reference: C. Nuhrenberg and A. H. Boozer, Phys. Plasmas 10, 2840 (2003).
– reference: J. F. Drake and Y. C. Lee, Phys. Fluids 20, 1341 (1977).
– reference: T. E. Evans, R. A. Moyer, P. R. Thomas et al., Phys. Rev. Lett. 92, 235003 (2004).
– reference: M. N. Rosenbluth, R. Z. Sagdeev, J. B. Taylor and G. M. Zaslavski, Nucl. Fusion 6, 297 (1966).
– reference: P. H. Diamond, S.-I. Itoh, K. Itoh and T. S. Hahm, Plasma Phys. Control. Fusion 47, R35 (2005).
– reference: A. Loarte, G. Saibene, R. Sartori et al., Plasma Phys. Control. Fusion 45, 1549 (2003).
– reference: A. Kirk, Yueqiang Liu, E. Nardon et al., Plasma Phys. Control. Fusion 53, 065011 (2011).
– reference: G. Park, C. S. Chang, I. Joseph, and R. A. Moyer, Phys. Plasmas 17, 12503 (2010).
– reference: F. L. Waelbroeck, Nucl. Fusion 49, 14025 (2009).
– reference: A. Zagorodny and J. Weiland, Phys. Plasmas 6, 2359 (1999).
– reference: M. Bécoulet, G. Huysmans, X. Garbet et al., Nucl. Fusion 49, 085011 (2009).
– reference: P. B. Snyder et al., Phys. Plasmas 9, 237 (2002).
– reference: J. M. Canik, R. Maingi, T. E. Evans et al., Phys. Rev. Lett. 104, 045001 (2010).
– reference: E. Nardon, A. Kirk, R. Akers et al., Plasma Phys. Control. Fusion 51, 124010 (2009).
– reference: C. C. Hegna, Phys. Plasmas 6, 1767 (1998).
– reference: O. Schmitz, T. E. Evans, M. E. Fenstermacher et al., Plasma Phys. Control. Fusion 50, 124029 (2008)
– reference: K. H. Burrell, T. E. Evans, E. J. Doyle et al., Plasma Phys. Control. Fusion 47, B37 (2005).
– reference: R. Fitzpatrick and F. L. Waelbroeck, Phys. Plasmas 17, 062503 (2010).
– reference: J.-K. Park, M. J. Schaffer, J. E. Menard and A. H. Boozer, Phys. Rev. Lett. 99, 195003 (2007).
– reference: A. Kirk, E. Nardon, R. Akers et al., Nucl. Fusion 50, 034008 (2010).
– reference: M. F. Heyn, I. B. Ivanov, S. V. Kasilov et al., Nucl. Fusion 48, 024005 (2008).
– reference: V. Rozhansky, P. Molchanov, E. Kaveeva et al., Nucl. Fusion 51, 083009 (2011).
– reference: Y.-Q. Liu, A. Kirk, and E. Nardon, Phys. Plasmas 17, 122502 (2010).
– reference: R. Fitzpatrick and F. L. Waelbroeck, Phys. Plasmas 12, 122511 (2005).
– reference: J. D. Callen, C. C. Hegna, and A. J. Cole, Phys. Plasmas 17, 056113 (2010).
– reference: M. E. Fenstermacher, T. E. Evans, T. H. Osborne et al., Phys. Plasmas 15, 056122 (2008).
– reference: H. R. Wilson et al., Phys. Plasmas 9, 1277 (2002).
– reference: H. P. Furth, J. Killeen, and M. N. Rosenbluth, Phys. Fluids 6, 459 (1963).
– reference: S. P. Hirshman and D. J. Sigmar, Nucl. Fusion 21, 179 (1981).
– reference: N. Oyama, P. Gohil, L. D. Horton et al., Plasma Phys. Control. Fusion 48, A171 (2006).
– reference: P. H. Rutherford, Phys. Fluids 16, 1903 (1973).
– reference: R. Fitzpatrick, Nucl. Fusion 33, 149 (1993).
– reference: T. E. Evans, K. H. Burrell, M. E. Fenstermacher et al., Phys. Plasmas 13, 056121 (2006).
– reference: L. M. Kovrizhnikh, Sov. Phys. JETP 29, 475 (1969).
– reference: V. Rozhansky, E. Kaveeva, P. Molchanov et al., Nucl. Fusion 50, 034005 (2010).
– reference: F. L. Hinton and R. D. Hazeltine, Rev. Mod. Phys. 48, 239 (1976).
– reference: I. Joseph, R. A. Moyer, T. E. Evans et al., J. Nucl. Mater. 363, 591 (2007).
– reference: A. H. Boozer, Rev. Mod. Phys. 76, 171 (2004).
– reference: A. H. Glasser and M. S. Chance, Bull. Am. Phys. Soc. 42, 1848 (1997).
– reference: F. L. Waelbroeck, Phys. Plasmas 10, 440 (2003).
– reference: M. Z. Tokar, T. R. Singh, and B. Unterberg, Phys. Plasmas 15, 072515 (2008).
– reference: M. J. Schaffer, J. E. Menard, M. P. Aldan, et al. Nucl. Fusion 48, 024004 (2008).
– reference: D. Whyte, A. E. Hubbard, J. W. Hughes, Nucl. Fusion, 50, 15005 (2010).
– reference: A. Cole and R. Fitzpatrick, Phys. Plasmas 18, 055711 (2011).
– reference: V. Rozhansky, E. Kaveeva, and S. Voskoboynikov, et. al, Phys. Plasmas 9, 3385 (2002).
– reference: A. H. Boozer and C. Nuehrenberg, Phys. Plasmas 13, 102501 (2006).
– reference: A. Grosman, J. M. Ané, P. Barabaschi et al., J. Nucl. Mater. 313, 1314 (2003).
– volume: 98
  start-page: 265004
  year: 2007
  publication-title: Phys. Rev. Lett.
– volume: 12
  start-page: 122511
  year: 2005
  publication-title: Phys. Plasmas
– volume: 51
  start-page: 124010
  year: 2009
  publication-title: Plasma Phys. Control. Fusion
– volume: 102
  start-page: 065002
  year: 2009
  publication-title: Phys. Rev. Lett.
– volume: 48
  start-page: 115004
  year: 2008
  publication-title: Nucl. Fusion
– volume: 50
  start-page: 034004
  year: 2010
  publication-title: Nucl. Fusion
– volume: 51
  start-page: 083009
  year: 2011
  publication-title: Nucl. Fusion
– volume: 16
  start-page: 052505
  year: 2009
  publication-title: Phys. Plasmas
– volume: 35
  start-page: 657
  year: 1993
  publication-title: Plasma Phys. Control. Fusion
– volume: 99
  start-page: 195003
  year: 2007
  publication-title: Phys. Rev. Lett.
– volume: 33
  start-page: 149
  year: 1993
  publication-title: Nucl. Fusion
– volume: 106
  start-page: 225004
  year: 2011
  publication-title: Phys. Rev. Lett.
– volume: 12
  start-page: 056119
  year: 2005
  publication-title: Phys. Plasmas
– volume: 48
  start-page: 239
  year: 1976
  publication-title: Rev. Mod. Phys.
– volume: 390
  start-page: 1
  year: 2009
  publication-title: J. Nucl. Mater.
– volume: 48
  start-page: 024004
  year: 2008
  publication-title: Nucl. Fusion
– volume: 49
  start-page: 095013
  year: 2009
  publication-title: Nucl. Fusion
– volume: 48
  start-page: 045009
  year: 2008
  publication-title: Nucl. Fusion
– volume: 17
  start-page: 062503
  year: 2010
  publication-title: Phys. Plasmas
– volume: 46
  start-page: S159
  year: 2006
  publication-title: Nucl. Fusion
– volume: 16
  start-page: 1903
  year: 1973
  publication-title: Phys. Fluids
– volume: 15
  start-page: 112503
  year: 2008
  publication-title: Phys. Plasmas
– volume: 123
  start-page: 012014
  year: 2008
  publication-title: J. Phys.: Conf. Ser.
– volume: 17
  start-page: 056113
  year: 2010
  publication-title: Phys. Plasmas
– volume: 45
  start-page: 595
  year: 2005
  publication-title: Nucl. Fusion
– volume: 49
  start-page: 96
  year: 2006
  publication-title: Fusion Sci. Tech.
– volume: 5
  start-page: 3901
  year: 1998
  publication-title: Phys. Plasmas
– volume: 51
  start-page: 073030
  year: 2010
  publication-title: Nucl. Fusion
– volume: 10
  start-page: 440
  year: 2003
  publication-title: Phys. Plasmas
– volume: 76
  start-page: 171
  year: 2004
  publication-title: Rev. Mod. Phys.
– volume: 52
  start-page: 055006
  year: 2010
  publication-title: Plasma Phys. Control. Fusion
– volume: 8
  start-page: 916
  year: 2001
  publication-title: Phys. Plasmas
– volume: 49
  start-page: 065018
  year: 2009
  publication-title: Nucl. Fusion
– volume: 10
  start-page: 2840
  year: 2003
  publication-title: Phys. Plasmas
– volume: 45
  start-page: 1523
  year: 2003
  publication-title: Plasma Phys. Control. Fusion
– volume: 49
  start-page: 14025
  year: 2009
  publication-title: Nucl. Fusion
– volume: 47
  start-page: R35
  year: 2005
  publication-title: Plasma Phys. Control. Fusion
– volume: 53
  start-page: 065011
  year: 2011
  publication-title: Plasma Phys. Control. Fusion
– volume: 16
  start-page: 072507
  year: 2009
  publication-title: Phys. Plasmas
– volume: 5
  start-page: 3325
  year: 1998
  publication-title: Phys. Plasmas
– volume: 50
  start-page: 034002
  year: 2010
  publication-title: Nucl. Fusion
– volume: 121
  start-page: 1
  year: 1985
  publication-title: Phys. Rep.
– volume: 3
  start-page: 4620
  year: 1996
  publication-title: Phys. Plasmas
– volume: 6
  start-page: 297
  year: 1966
  publication-title: Nucl. Fusion
– volume: 47
  start-page: 12
  year: 1981
  publication-title: Phys. Rev. Lett.
– volume: 48
  start-page: 024002
  year: 2008
  publication-title: Nucl. Fusion
– volume: 47
  start-page: B237
  year: 2005
  publication-title: Plasma Phys. Control. Fusion
– volume: 9
  start-page: 1277
  year: 2002
  publication-title: Phys. Plasmas
– volume: 6
  start-page: 1767
  year: 1998
  publication-title: Phys. Plasmas
– volume: 49
  start-page: 085011
  year: 2009
  publication-title: Nucl. Fusion
– volume: 59
  start-page: 586
  year: 2011
  publication-title: Fusion Sci. Tech.
– volume: 14
  start-page: 052110
  year: 2007
  publication-title: Phys. Plasmas
– volume: 67
  start-page: 2662
  year: 1991
  publication-title: Phys. Rev. Lett.
– volume: 49
  start-page: 055025
  year: 2009
  publication-title: Nucl. Fusion
– volume: 42
  start-page: 1848
  year: 1997
  publication-title: Bull. Am. Phys. Soc.
– volume: 50
  start-page: 034005
  year: 2010
  publication-title: Nucl. Fusion
– volume: 48
  start-page: A171
  year: 2006
  publication-title: Plasma Phys. Control. Fusion
– volume: 6
  start-page: 459
  year: 1963
  publication-title: Phys. Fluids
– volume: 13
  start-page: 056121
  year: 2006
  publication-title: Phys. Plasmas
– volume: 48
  start-page: 024005
  year: 2008
  publication-title: Nucl. Fusion
– volume: 13
  start-page: 032503
  year: 2006
  publication-title: Phys. Plasmas
– volume: 57
  start-page: 164
  year: 2010
  publication-title: Trans. Fusion Sci. Tech.
– volume: 50
  start-page: 025022
  year: 2010
  publication-title: Nucl. Fusion
– volume: 51
  start-page: 115007
  year: 2009
  publication-title: Plasma Phys. Control. Fusion
– volume: 92
  start-page: 235003
  year: 2004
  publication-title: Phys. Rev. Lett.
– volume: 102
  start-page: 045006
  year: 2009
  publication-title: Phys. Rev. Lett.
– volume: 15
  start-page: 072515
  year: 2008
  publication-title: Phys. Plasmas
– volume: 2
  start-page: 825
  year: 1995
  publication-title: Phys. Plasmas
– volume: 50
  start-page: 034008
  year: 2010
  publication-title: Nucl. Fusion
– volume: 7
  start-page: 174
  year: 2005
  publication-title: J. Phys.: Conf. Ser.
– volume: 50
  start-page: 124030
  year: 2008
  publication-title: Plasma Phys. Controlled Fusion
– volume: 51
  start-page: 083002
  year: 2011
  publication-title: Nucl. Fusion
– volume: 9
  start-page: 237
  year: 2002
  publication-title: Phys. Plasmas
– volume: 13
  publication-title: Phys. Plasmas
– volume: 21
  start-page: 179
  year: 1981
  publication-title: Nucl. Fusion
– volume: 50
  start-page: 054008
  year: 2010
  publication-title: Nucl. Fusion
– volume: 18
  start-page: 056108
  year: 2011
  publication-title: Phys. Plasmas
– volume: 18
  start-page: 055711
  year: 2011
  publication-title: Phys. Plasmas
– volume: 2
  start-page: 419
  year: 2006
  publication-title: Nature Phys.
– volume: 45
  start-page: 1549
  year: 2003
  publication-title: Plasma Phys. Control. Fusion
– volume: 9
  start-page: 3385
  year: 2002
  publication-title: Phys. Plasmas
– volume: 86
  start-page: 559
  year: 2001
  publication-title: Phys. Rev. Lett.
– volume: 38
  start-page: 15
  year: 1996
  publication-title: Plasma Phys. Control. Fusion
– volume: 50
  start-page: 15005
  year: 2010
  publication-title: Nucl. Fusion,
– volume: 390‐391
  start-page: 839
  year: 2009
  publication-title: J. Nucl. Mater.
– volume: 9
  start-page: 3470
  year: 2002
  publication-title: Phys. Plasmas
– volume: 87
  start-page: 215003
  year: 2001
  publication-title: Phys. Rev. Lett.
– volume: 48
  start-page: 024003
  year: 2008
  publication-title: Nucl. Fusion
– volume: 29
  start-page: 475
  year: 1969
  publication-title: Sov. Phys. JETP
– volume: 50
  start-page: 124029
  year: 2008
  publication-title: Plasma Phys. Control. Fusion
– volume: 17
  start-page: 122502
  year: 2010
  publication-title: Phys. Plasmas
– volume: 43
  start-page: 253
  year: 2003
  publication-title: Nucl. Fusion
– volume: 38
  start-page: 152
  year: 1998
  publication-title: Contrib. Plasma Phys.
– volume: 49
  start-page: 062001
  year: 2009
  publication-title: Nucl. Fusion
– volume: 50
  start-page: 045010
  year: 2010
  publication-title: Nucl. Fusion
– volume: 34
  start-page: 27
  year: 1992
  publication-title: Plasma Phys. Control. Fusion
– volume: 363
  start-page: 591
  year: 2007
  publication-title: J. Nucl. Mater.
– volume: 40
  start-page: 38
  year: 1978
  publication-title: Phys. Rev. Lett.
– volume: 313
  start-page: 1314
  year: 2003
  publication-title: J. Nucl. Mater.
– volume: 47
  start-page: B37
  year: 2005
  publication-title: Plasma Phys. Control. Fusion
– volume: 6
  start-page: 2359
  year: 1999
  publication-title: Phys. Plasmas
– volume: 53
  start-page: 054003
  year: 2011
  publication-title: Plasma Phys. Control. Fusion
– volume: 15
  start-page: 056122
  year: 2008
  publication-title: Phys. Plasmas
– volume: 20
  start-page: 1341
  year: 1977
  publication-title: Phys. Fluids
– volume: 363‐365
  start-page: 570
  year: 2007
  publication-title: J. Nucl. Mater.
– volume: 17
  start-page: 12503
  year: 2010
  publication-title: Phys. Plasmas
– volume: 104
  start-page: 045001
  year: 2010
  publication-title: Phys. Rev. Lett.
– volume: 45
  start-page: 368
  year: 2005
  publication-title: Nucl. Fusion
– volume: 50
  start-page: 034012
  year: 2010
  publication-title: Nucl. Fusion
– ident: e_1_2_1_62_2
  doi: 10.1063/1.1706761
– ident: e_1_2_1_87_2
  doi: 10.1063/1.862017
– ident: e_1_2_1_38_2
  doi: 10.1088/0029-5515/52/7/074004
– ident: e_1_2_1_21_2
  doi: 10.1063/1.3335486
– ident: e_1_2_1_11_2
  doi: 10.1103/PhysRevLett.106.225004
– ident: e_1_2_1_25_2
  doi: 10.1103/PhysRevLett.67.2662
– ident: e_1_2_1_45_2
  doi: 10.1063/1.1449463
– ident: e_1_2_1_67_2
  doi: 10.1063/1.1578489
– ident: e_1_2_1_63_2
  doi: 10.1063/1.871585
– ident: e_1_2_1_47_2
  doi: 10.1016/j.jnucmat.2006.12.064
– ident: e_1_2_1_57_2
  doi: 10.1088/0029-5515/50/4/045010
– ident: e_1_2_1_76_2
  doi: 10.1063/1.2178167
– ident: e_1_2_1_113_2
  doi: 10.1088/0741-3335/47/5/R01
– ident: e_1_2_1_27_2
  doi: 10.1088/0741-3335/47/12B/S18
– ident: e_1_2_1_105_2
  doi: 10.1063/1.1344921
– ident: e_1_2_1_39_2
  doi: 10.1063/1.2959122
– ident: e_1_2_1_30_2
  doi: 10.1088/0029-5515/48/4/045009
– volume: 57
  start-page: 164
  year: 2010
  ident: e_1_2_1_89_2
  publication-title: Trans. Fusion Sci. Tech.
  doi: 10.13182/FST10-A9407
– ident: e_1_2_1_23_2
  doi: 10.1063/1.873000
– ident: e_1_2_1_79_2
  doi: 10.1088/0741-3335/52/5/055006
– ident: e_1_2_1_73_2
  doi: 10.1088/0029-5515/51/8/083002
– ident: e_1_2_1_82_2
  doi: 10.1063/1.871434
– ident: e_1_2_1_85_2
  doi: 10.1088/0029-5515/51/7/073030
– ident: e_1_2_1_99_2
– ident: e_1_2_1_55_2
  doi: 10.1088/0029-5515/50/3/034008
– ident: e_1_2_1_97_2
  doi: 10.1063/1.1487383
– ident: e_1_2_1_114_2
  doi: 10.1063/1.873507
– ident: e_1_2_1_22_2
  doi: 10.1063/1.2901064
– ident: e_1_2_1_50_2
  doi: 10.1103/PhysRevLett.98.265004
– ident: e_1_2_1_101_2
  doi: 10.1063/1.3590933
– ident: e_1_2_1_26_2
  doi: 10.1088/0741-3335/34/13/033
– ident: e_1_2_1_17_2
  doi: 10.13182/FST11-A11699
– ident: e_1_2_1_112_2
  doi: 10.1088/0741-3335/53/5/054003
– ident: e_1_2_1_35_2
  doi: 10.1088/0029-5515/49/5/055025
– ident: e_1_2_1_28_2
  doi: 10.1016/S0022-3115(02)01509-X
– ident: e_1_2_1_102_2
  doi: 10.1088/0029-5515/6/4/008
– ident: e_1_2_1_7_2
  doi: 10.1088/0741-3335/47/12B/S04
– ident: e_1_2_1_41_2
  doi: 10.1088/0029-5515/51/8/083009
– ident: e_1_2_1_104_2
  doi: 10.1063/1.873109
– ident: e_1_2_1_80_2
  doi: 10.1088/0741-3335/35/6/002
– ident: e_1_2_1_10_2
  doi: 10.1103/PhysRevLett.92.235003
– ident: e_1_2_1_19_2
  doi: 10.1088/0029-5515/50/10/105005
– ident: e_1_2_1_36_2
  doi: 10.1088/0029-5515/49/8/085011
– ident: e_1_2_1_13_2
  doi: 10.1103/PhysRevLett.104.045001
– volume: 76
  start-page: 171
  year: 2004
  ident: e_1_2_1_59_2
  publication-title: Rev. Mod. Phys.
– ident: e_1_2_1_72_2
  doi: 10.1063/1.3526677
– ident: e_1_2_1_95_2
  doi: 10.1103/RevModPhys.48.239
– ident: e_1_2_1_107_2
  doi: 10.1103/PhysRevLett.87.215003
– ident: e_1_2_1_44_2
  doi: 10.1063/1.1459058
– ident: e_1_2_1_74_2
  doi: 10.1088/0029-5515/49/10/104025
– ident: e_1_2_1_84_2
  doi: 10.1088/0029-5515/49/6/062001
– ident: e_1_2_1_91_2
  doi: 10.1103/PhysRevLett.102.065002
– ident: e_1_2_1_54_2
  doi: 10.1088/0029-5515/49/9/095013
– ident: e_1_2_1_40_2
  doi: 10.1088/0029-5515/50/3/034005
– ident: e_1_2_1_52_2
  doi: 10.1088/1742-6596/123/1/012014
– ident: e_1_2_1_43_2
  doi: 10.1063/1.2177657
– ident: e_1_2_1_53_2
  doi: 10.1088/0741-3335/50/12/124029
– ident: e_1_2_1_15_2
  doi: 10.1088/0029-5515/48/2/024003
– ident: e_1_2_1_9_2
  doi: 10.1088/0029-5515/48/2/024002
– ident: e_1_2_1_29_2
  doi: 10.1016/j.jnucmat.2006.12.067
– ident: e_1_2_1_16_2
  doi: 10.1088/0029-5515/48/2/024004
– ident: e_1_2_1_42_2
  doi: 10.1063/1.1888705
– ident: e_1_2_1_58_2
  doi: 10.1063/1.3574522
– ident: e_1_2_1_111_2
  doi: 10.1088/0029-5515/50/5/054008
– volume: 49
  start-page: 96
  year: 2006
  ident: e_1_2_1_12_2
  publication-title: Fusion Sci. Tech.
  doi: 10.13182/FST06-A1090
– ident: e_1_2_1_75_2
  doi: 10.1063/1.1607324
– ident: e_1_2_1_51_2
  doi: 10.1088/0741-3335/53/6/065011
– ident: e_1_2_1_83_2
  doi: 10.1063/1.872846
– ident: e_1_2_1_56_2
  doi: 10.1088/0741-3335/51/12/124010
– ident: e_1_2_1_48_2
– ident: e_1_2_1_61_2
  doi: 10.1016/0370-1573(85)90083-3
– ident: e_1_2_1_31_2
  doi: 10.1088/0029-5515/50/3/034004
– ident: e_1_2_1_3_2
  doi: 10.1088/0741-3335/45/9/302
– ident: e_1_2_1_46_2
  doi: 10.1088/1742-6596/7/1/015
– ident: e_1_2_1_96_2
  doi: 10.1002/ctpp.2150380123
– ident: e_1_2_1_69_2
  doi: 10.1063/1.2732170
– ident: e_1_2_1_109_2
  doi: 10.1088/0029-5515/49/6/065018
– ident: e_1_2_1_86_2
  doi: 10.1063/1.1694232
– ident: e_1_2_1_18_2
  doi: 10.1088/0741-3335/48/5A/S16
– ident: e_1_2_1_93_2
  doi: 10.1088/0029-5515/43/4/306
– ident: e_1_2_1_33_2
  doi: 10.1088/0029-5515/48/2/024005
– ident: e_1_2_1_108_2
  doi: 10.1063/1.2146983
– volume: 42
  start-page: 1848
  year: 1997
  ident: e_1_2_1_70_2
  publication-title: Bull. Am. Phys. Soc.
– ident: e_1_2_1_90_2
  doi: 10.1088/0029-5515/50/2/025022
– volume: 29
  start-page: 475
  year: 1969
  ident: e_1_2_1_98_2
  publication-title: Sov. Phys. JETP
– ident: e_1_2_1_81_2
  doi: 10.1088/0029-5515/46/4/S07
– ident: e_1_2_1_110_2
  doi: 10.1103/PhysRevLett.102.045006
– volume: 13
  ident: e_1_2_1_68_2
  publication-title: Phys. Plasmas
– ident: e_1_2_1_65_2
  doi: 10.1088/0029-5515/45/5/007
– volume: 21
  start-page: 179
  year: 1981
  ident: e_1_2_1_94_2
  publication-title: Nucl. Fusion
– volume: 33
  start-page: 149
  year: 1993
  ident: e_1_2_1_88_2
  publication-title: Nucl. Fusion
– ident: e_1_2_1_5_2
  doi: 10.1016/j.jnucmat.2009.01.037
– ident: e_1_2_1_24_2
  doi: 10.1103/PhysRevLett.40.38
– volume: 38
  start-page: 15
  year: 1996
  ident: e_1_2_1_2_2
  publication-title: Plasma Phys. Control. Fusion
– ident: e_1_2_1_60_2
– ident: e_1_2_1_32_2
  doi: 10.1063/1.3280011
– ident: e_1_2_1_66_2
  doi: 10.1088/0741-3335/50/12/124030
– ident: e_1_2_1_78_2
  doi: 10.1063/1.3432720
– ident: e_1_2_1_71_2
  doi: 10.1103/PhysRevLett.99.195003
– ident: e_1_2_1_37_2
  doi: 10.1088/0029-5515/50/3/034002
– ident: e_1_2_1_6_2
  doi: 10.1088/0029-5515/45/7/007
– ident: e_1_2_1_49_2
  doi: 10.1016/j.jnucmat.2009.01.221
– ident: e_1_2_1_14_2
  doi: 10.1088/0029-5515/50/3/034012
– ident: e_1_2_1_100_2
  doi: 10.1063/1.3008045
– ident: e_1_2_1_64_2
  doi: 10.1103/PhysRevLett.86.5059
– ident: e_1_2_1_20_2
  doi: 10.1063/1.3118591
– ident: e_1_2_1_92_2
  doi: 10.1063/1.1491533
– ident: e_1_2_1_103_2
  doi: 10.1103/PhysRevLett.47.12
– ident: e_1_2_1_77_2
  doi: 10.1063/1.3191719
– ident: e_1_2_1_34_2
  doi: 10.1088/0029-5515/48/11/115004
– ident: e_1_2_1_4_2
  doi: 10.1088/0741-3335/45/9/301
– ident: e_1_2_1_8_2
  doi: 10.1038/nphys312
– ident: e_1_2_1_106_2
  doi: 10.1088/0741-3335/51/11/115007
SSID ssj0009641
Score 2.0224788
Snippet This article reviews the subject of edge localized mode (ELM) control using externally applied magnetic perturbations and proposes theoretical mechanisms that...
SourceID crossref
wiley
istex
SourceType Enrichment Source
Index Database
Publisher
StartPage 326
SubjectTerms edge localized mode control
magnetic perturbations
quasilinear transport
Tokamak
Title Edge-Localized Mode Control and Transport Generated by Externally Applied Magnetic Perturbations
URI https://api.istex.fr/ark:/67375/WNG-HFRLWBLB-P/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fctpp.201210014
Volume 52
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1521-3986
  dateEnd: 20241102
  omitProxy: false
  ssIdentifier: ssj0009641
  issn: 0863-1042
  databaseCode: ADMLS
  dateStart: 20120601
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVWIB
  databaseName: Wiley Online Library - Core collection (SURFmarket)
  issn: 0863-1042
  databaseCode: DR2
  dateStart: 20000101
  customDbUrl:
  isFulltext: true
  eissn: 1521-3986
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009641
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1ba8IwFMfD2BjsZfcxdyMPY3uq1rRN9XGKToZKEUXfSpImMpROtML0aR9hn3GfZLnUOgdjsL21JSltLj3_k578DgC3CPnUdjiyhPpxKAcFtogUzhbiyOERpT7R65CtNm703KeBN_iyi9_wIbIFNzUz9PdaTXBCZ4U1NJQlE8WbVAAsW2eyLjpY-1SdNT-qjHXqSinbVQCWi1bURhsVNqtvWKUd1cCvm2pVm5v6ASCrBzVRJqP8PKF5tvzGcPzPmxyC_VSLwgczeI7AFo-Pwa6OCWWzE0Br0ZB_vL03lbl7XvIIqsRpsGqC2yGJI5ih0aHBV0v5CukC1lK09HgBU5ULW2QYq_2SMOBTaeWoWSg8Bb16rVttWGlKBos50n-1BCt5RHCflRS1B9tMuE6EsZYFmLmc2dwmmHnyc85wOfKowtG7DpHXaAn5wjkD2_FLzM8BjHxbalHMhONKH1W6fZGQ6qUoBMZCes0kB6xVl4Qs5ZWrtBnj0JCWUajaLczaLQfus_ITQ-r4seSd7uGsGJmOVHyb74X99mPYqHea_UqzEgY5gHS__XK_sNoNguzs4i-VLsGeOjYxaFdgO5nO-bVUOwm90SP6E04_9w4
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1bS8MwFMeDKKIv3sV5zYPoU2dN23Q-urE5tRtDJvMtJGkyRKkyJ6hPfgQ_o5_EnKTrmCCCPjYkpc2l-Z_Tk99BaJ-QWPiBIp6GH4dmUlCPG-HsEUUClQoRc-uHbLVp8zq8uIlG0YRwFsbxIQqHG6wM-72GBQ4O6aMxNVQOHwE4CQQsH1JZz4TUGCugi67GBKkTapNXGuEOIVghGXEbfXI02X5iX5qBLn6Z1Kt2w2ksIjF6VBdncld-HoqyfPtGcfzXuyyhhVyO4lM3f5bRlMpW0KwNC5VPq0jU0776fP9IYMe7fVMphtxpuObi2zHPUlzQ0bEjWBsFi8Urrud06ftXnAtd3OL9DI5M4o4amI1OOF_hGrpu1Lu1ppdnZfBkYExYT8tKxLWKZQXAPdSXOgxSSq0yoDJU0lc-pzIyX3RJT9JIAJE-DLgpExUS62AdTWcPmdpAOI19I0ep1EFozFRj-aXaCJhjrSnVxnDmJeSNxoTJHFkOmTPumYMtEwb9xop-K6HDov6jg3X8WPPADnFRjQ_uIMQtjlivfcaajaukV02qrFNCxA7cL_djtW6nU1xt_qXRHpprdlsJS87bl1toHspdSNo2mh4OntWOET9DsWun9xfViPsv
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1bS8MwFMeDKIov3sV5zYPoU7Wmbbo96tycOkcRRd9CriJKHXOC-uRH8DP6ScxJusoEEfSxISltLj3_k578DkKbhKQijDQJDPw4tJOCBtwK54BoEmklRMrdPuRZh7Yu45PrZBBNCGdhPB-i3HCDleG-17DAdVeZ3S9qqOx3ATgJBKwQUlmPxUmtClF9h-dfBKkadckrrXCHEKyYDLiNIdkdbj9kl8agi5-H9aozOM1pJAaP6uNM7nae-mJHvn6jOP7rXWbQVCFH8b6fP7NoROdzaNyFhcrHeSQa6kZ_vL23weLdvmqFIXcarvv4dsxzhUs6OvYEa6tgsXjBjYIuff-CC6GLz_hNDkcmcaZ71tAJv1e4gC6bjYt6KyiyMgQysi5sYGQ14UansgrgHhpKE0eKUqcMqIy1DHXIqUzsF13SmkoEEOnjiNsyUSWpiRbRaP6Q6yWEVRpaOUqliWLrplrPTxkrYPaModRYx5lXUDAYEyYLZDlkzrhnHrZMGPQbK_utgrbL-l0P6_ix5pYb4rIa791BiFuasKvOEWs1z9tXB-0DllUQcQP3y_1Y_SLLyqvlvzTaQBPZYZO1jzunK2gSin1E2ioa7fee9JrVPn2x7mb3J4LE-rM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Edge%E2%80%90Localized+Mode+Control+and+Transport+Generated+by+Externally+Applied+Magnetic+Perturbations&rft.jtitle=Contributions+to+plasma+physics+%281988%29&rft.au=Joseph%2C+I.&rft.date=2012-06-01&rft.issn=0863-1042&rft.eissn=1521-3986&rft.volume=52&rft.issue=5-6&rft.spage=326&rft.epage=347&rft_id=info:doi/10.1002%2Fctpp.201210014&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_ctpp_201210014
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0863-1042&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0863-1042&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0863-1042&client=summon