Edge-Localized Mode Control and Transport Generated by Externally Applied Magnetic Perturbations
This article reviews the subject of edge localized mode (ELM) control using externally applied magnetic perturbations and proposes theoretical mechanisms that may be responsible for the induced transport changes. The first question that must be addressed is: what is the structure of magnetic field w...
Saved in:
| Published in | Contributions to plasma physics (1988) Vol. 52; no. 5-6; pp. 326 - 347 |
|---|---|
| Main Author | |
| Format | Journal Article |
| Language | English |
| Published |
Berlin
WILEY-VCH Verlag
01.06.2012
WILEY‐VCH Verlag |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0863-1042 1521-3986 |
| DOI | 10.1002/ctpp.201210014 |
Cover
| Abstract | This article reviews the subject of edge localized mode (ELM) control using externally applied magnetic perturbations and proposes theoretical mechanisms that may be responsible for the induced transport changes. The first question that must be addressed is: what is the structure of magnetic field within the plasma? Although initial hypotheses focused on the possibility of the creation of a region of stochastic field lines at the tokamak edge, drift magnetohydrodynamics theory predicts that magnetic reconnection is strongly suppressed over the region of the pedestal with steep gradients and fast perpendicular rotation. Reconnection can only occur near the location where the perpendicular electron velocity vanishes, and hence the electron impedance nearly vanishes, or near the foot of the pedestal, where the plasma is sufficiently cold and resistive. The next question that must be addressed is: which processes are responsible for the observed transport changes, nonlinearity, turbulence, or stochasticity? Over the pedestal region where ions and electrons rotate in opposite directions relative to the perturbation, the quasilinear Lorentz force decelerates the electron fluid and accelerates the ion fluid. The quasilinear magnetic flutter flux is proportional to the force and produces an outward convective transport that can be significant. Over the pedestal region where the E × B flow and the electrons rotate in opposite directions relative to the perturbation, magnetic islands with a width on the order of the ion gyroradius can directly radiate drift waves. In addition, the combination of quasilinear electron transport and ion viscous transport can lead to a large net particle flux. Since there are many transport mechanisms that may be active simultaneously, it is important to determine which physical mechanisms are responsible for ELM control and to predict the scaling to future devices (© 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim) |
|---|---|
| AbstractList | This article reviews the subject of edge localized mode (ELM) control using externally applied magnetic perturbations and proposes theoretical mechanisms that may be responsible for the induced transport changes. The first question that must be addressed is: what is the structure of magnetic field within the plasma? Although initial hypotheses focused on the possibility of the creation of a region of stochastic field lines at the tokamak edge, drift magnetohydrodynamics theory predicts that magnetic reconnection is strongly suppressed over the region of the pedestal with steep gradients and fast perpendicular rotation. Reconnection can only occur near the location where the perpendicular electron velocity vanishes, and hence the electron impedance nearly vanishes, or near the foot of the pedestal, where the plasma is sufficiently cold and resistive. The next question that must be addressed is: which processes are responsible for the observed transport changes, nonlinearity, turbulence, or stochasticity? Over the pedestal region where ions and electrons rotate in opposite directions relative to the perturbation, the quasilinear Lorentz force decelerates the electron fluid and accelerates the ion fluid. The quasilinear magnetic flutter flux is proportional to the force and produces an outward convective transport that can be significant. Over the pedestal region where the E × B flow and the electrons rotate in opposite directions relative to the perturbation, magnetic islands with a width on the order of the ion gyroradius can directly radiate drift waves. In addition, the combination of quasilinear electron transport and ion viscous transport can lead to a large net particle flux. Since there are many transport mechanisms that may be active simultaneously, it is important to determine which physical mechanisms are responsible for ELM control and to predict the scaling to future devices (© 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim) This article reviews the subject of edge localized mode (ELM) control using externally applied magnetic perturbations and proposes theoretical mechanisms that may be responsible for the induced transport changes. The first question that must be addressed is: what is the structure of magnetic field within the plasma? Although initial hypotheses focused on the possibility of the creation of a region of stochastic field lines at the tokamak edge, drift magnetohydrodynamics theory predicts that magnetic reconnection is strongly suppressed over the region of the pedestal with steep gradients and fast perpendicular rotation. Reconnection can only occur near the location where the perpendicular electron velocity vanishes, and hence the electron impedance nearly vanishes, or near the foot of the pedestal, where the plasma is sufficiently cold and resistive. The next question that must be addressed is: which processes are responsible for the observed transport changes, nonlinearity, turbulence, or stochasticity? Over the pedestal region where ions and electrons rotate in opposite directions relative to the perturbation, the quasilinear Lorentz force decelerates the electron fluid and accelerates the ion fluid. The quasilinear magnetic flutter flux is proportional to the force and produces an outward convective transport that can be significant. Over the pedestal region where the E × B flow and the electrons rotate in opposite directions relative to the perturbation, magnetic islands with a width on the order of the ion gyroradius can directly radiate drift waves. In addition, the combination of quasilinear electron transport and ion viscous transport can lead to a large net particle flux. Since there are many transport mechanisms that may be active simultaneously, it is important to determine which physical mechanisms are responsible for ELM control and to predict the scaling to future devices (© 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim) |
| Author | Joseph, I. |
| Author_xml | – sequence: 1 givenname: I. surname: Joseph fullname: Joseph, I. email: joseph5@llnl.gov organization: Lawrence Livermore National Laboratory, P. O. Box 808, L-637, Livermore CA 94551, USA |
| BookMark | eNqF0N9LwzAQB_AgCm7TV5_7D3QmbZq2j9vYD6FqkckeY5peRzSmJY24-tfbORkiiE_HHfc5ju8QnZraAEJXBI8JxsG1dE0zDjAJ-o7QEzQgUUD8ME3YKRrghIU-wTQ4R8O2fcYYp4ySAXqal1vws1oKrT6g9G7rErxZbZyttSdM6a2tMG1TW-ctwYAVrl8qOm--c2CN0LrzJk2j1Z6KrQGnpJeDdW-2EE7Vpr1AZ5XQLVx-1xF6XMzXs5Wf3S9vZpPMl2EQU7-SSSQqiGVCWMQYlhUNS8YCihlhkoLEgAWTEQgpWVpGBU1ZREPRz4okiKtwhOjhrrR121qouFTu6wVnhdKcYL5Pie9T4seUejb-xRqrXoXt_gbpAbwrDd0_23y2zvOf1j9Y1TrYHa2wL5zFYRzxzd2SrxYP2WaaTXkefgLhYY3t |
| CitedBy_id | crossref_primary_10_13182_FST13_A16875 crossref_primary_10_1063_1_4917473 crossref_primary_10_1088_1741_4326_ac6c3a crossref_primary_10_1088_0741_3335_57_9_095008 crossref_primary_10_1088_1741_4326_ad5e93 crossref_primary_10_1088_0029_5515_54_6_064005 crossref_primary_10_1088_1741_4326_acd403 crossref_primary_10_1002_ctpp_201610056 crossref_primary_10_1088_1741_4326_aafe3a crossref_primary_10_1088_2058_6272_ac190e crossref_primary_10_1063_1_5144445 crossref_primary_10_1109_TPS_2017_2760632 crossref_primary_10_1088_1741_4326_ab6c35 crossref_primary_10_1088_1741_4326_ab3be2 crossref_primary_10_1088_1741_4326_aa5e36 crossref_primary_10_1088_0741_3335_57_12_123001 crossref_primary_10_1016_j_jnucmat_2013_01_060 crossref_primary_10_1002_ctpp_201410010 crossref_primary_10_1002_ctpp_201410011 |
| Cites_doi | 10.1063/1.1706761 10.1063/1.862017 10.1088/0029-5515/52/7/074004 10.1063/1.3335486 10.1103/PhysRevLett.106.225004 10.1103/PhysRevLett.67.2662 10.1063/1.1449463 10.1063/1.1578489 10.1063/1.871585 10.1016/j.jnucmat.2006.12.064 10.1088/0029-5515/50/4/045010 10.1063/1.2178167 10.1088/0741-3335/47/5/R01 10.1088/0741-3335/47/12B/S18 10.1063/1.1344921 10.1063/1.2959122 10.1088/0029-5515/48/4/045009 10.13182/FST10-A9407 10.1063/1.873000 10.1088/0741-3335/52/5/055006 10.1088/0029-5515/51/8/083002 10.1063/1.871434 10.1088/0029-5515/51/7/073030 10.1088/0029-5515/50/3/034008 10.1063/1.1487383 10.1063/1.873507 10.1063/1.2901064 10.1103/PhysRevLett.98.265004 10.1063/1.3590933 10.1088/0741-3335/34/13/033 10.13182/FST11-A11699 10.1088/0741-3335/53/5/054003 10.1088/0029-5515/49/5/055025 10.1016/S0022-3115(02)01509-X 10.1088/0029-5515/6/4/008 10.1088/0741-3335/47/12B/S04 10.1088/0029-5515/51/8/083009 10.1063/1.873109 10.1088/0741-3335/35/6/002 10.1103/PhysRevLett.92.235003 10.1088/0029-5515/50/10/105005 10.1088/0029-5515/49/8/085011 10.1103/PhysRevLett.104.045001 10.1063/1.3526677 10.1103/RevModPhys.48.239 10.1103/PhysRevLett.87.215003 10.1063/1.1459058 10.1088/0029-5515/49/10/104025 10.1088/0029-5515/49/6/062001 10.1103/PhysRevLett.102.065002 10.1088/0029-5515/49/9/095013 10.1088/0029-5515/50/3/034005 10.1088/1742-6596/123/1/012014 10.1063/1.2177657 10.1088/0741-3335/50/12/124029 10.1088/0029-5515/48/2/024003 10.1088/0029-5515/48/2/024002 10.1016/j.jnucmat.2006.12.067 10.1088/0029-5515/48/2/024004 10.1063/1.1888705 10.1063/1.3574522 10.1088/0029-5515/50/5/054008 10.13182/FST06-A1090 10.1063/1.1607324 10.1088/0741-3335/53/6/065011 10.1063/1.872846 10.1088/0741-3335/51/12/124010 10.1016/0370-1573(85)90083-3 10.1088/0029-5515/50/3/034004 10.1088/0741-3335/45/9/302 10.1088/1742-6596/7/1/015 10.1002/ctpp.2150380123 10.1063/1.2732170 10.1088/0029-5515/49/6/065018 10.1063/1.1694232 10.1088/0741-3335/48/5A/S16 10.1088/0029-5515/43/4/306 10.1088/0029-5515/48/2/024005 10.1063/1.2146983 10.1088/0029-5515/50/2/025022 10.1088/0029-5515/46/4/S07 10.1103/PhysRevLett.102.045006 10.1088/0029-5515/45/5/007 10.1016/j.jnucmat.2009.01.037 10.1103/PhysRevLett.40.38 10.1063/1.3280011 10.1088/0741-3335/50/12/124030 10.1063/1.3432720 10.1103/PhysRevLett.99.195003 10.1088/0029-5515/50/3/034002 10.1088/0029-5515/45/7/007 10.1016/j.jnucmat.2009.01.221 10.1088/0029-5515/50/3/034012 10.1063/1.3008045 10.1103/PhysRevLett.86.5059 10.1063/1.3118591 10.1063/1.1491533 10.1103/PhysRevLett.47.12 10.1063/1.3191719 10.1088/0029-5515/48/11/115004 10.1088/0741-3335/45/9/301 10.1038/nphys312 10.1088/0741-3335/51/11/115007 |
| ContentType | Journal Article |
| Copyright | Copyright © 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim |
| Copyright_xml | – notice: Copyright © 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim |
| DBID | BSCLL AAYXX CITATION |
| DOI | 10.1002/ctpp.201210014 |
| DatabaseName | Istex CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | CrossRef |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Physics |
| EISSN | 1521-3986 |
| EndPage | 347 |
| ExternalDocumentID | 10_1002_ctpp_201210014 CTPP201210014 ark_67375_WNG_HFRLWBLB_P |
| Genre | article |
| GroupedDBID | .3N .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 31~ 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHQN AAMMB AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABPVW ACAHQ ACBWZ ACCZN ACGFS ACPOU ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADMLS ADNMO ADOZA ADXAS ADZMN AEFGJ AEIGN AEIMD AENEX AEUYR AEYWJ AFBPY AFFPM AFGKR AFWVQ AFZJQ AGHNM AGQPQ AGXDD AGYGG AHBTC AIDQK AIDYY AITYG AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS EJD F00 F01 F04 FEDTE G-S G.N GNP GODZA GYQRN H.T H.X HF~ HGLYW HVGLF HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG P2P P2W P2X P4D PALCI Q.N Q11 QB0 QRW R.K RIWAO RJQFR RNS ROL RX1 RYL SAMSI SUPJJ UB1 W8V W99 WBKPD WGJPS WIB WIH WIK WOHZO WQJ WXSBR WYISQ XG1 XPP XV2 ZZTAW ~IA ~WT AAHHS ACCFJ ADZOD AEEZP AEQDE AEUQT AFPWT AIWBW AJBDE RNW RWI WRC AAYXX CITATION |
| ID | FETCH-LOGICAL-c3274-fc85afe7c8165660cf43d66240616c4ec0e0a6c5eacc69d5b496543aa6cb827f3 |
| IEDL.DBID | DR2 |
| ISSN | 0863-1042 |
| IngestDate | Wed Oct 01 03:28:05 EDT 2025 Thu Apr 24 23:01:48 EDT 2025 Wed Jan 22 16:53:40 EST 2025 Tue Sep 09 05:32:37 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 5-6 |
| Language | English |
| License | http://onlinelibrary.wiley.com/termsAndConditions#vor |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c3274-fc85afe7c8165660cf43d66240616c4ec0e0a6c5eacc69d5b496543aa6cb827f3 |
| Notes | istex:AC53F2C29D4C619EC30A17DD2370FB703ADB3D5B ark:/67375/WNG-HFRLWBLB-P ArticleID:CTPP201210014 |
| PageCount | 22 |
| ParticipantIDs | crossref_citationtrail_10_1002_ctpp_201210014 crossref_primary_10_1002_ctpp_201210014 wiley_primary_10_1002_ctpp_201210014_CTPP201210014 istex_primary_ark_67375_WNG_HFRLWBLB_P |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | June 2012 |
| PublicationDateYYYYMMDD | 2012-06-01 |
| PublicationDate_xml | – month: 06 year: 2012 text: June 2012 |
| PublicationDecade | 2010 |
| PublicationPlace | Berlin |
| PublicationPlace_xml | – name: Berlin |
| PublicationTitle | Contributions to plasma physics (1988) |
| PublicationTitleAlternate | Contrib. Plasma Phys |
| PublicationYear | 2012 |
| Publisher | WILEY-VCH Verlag WILEY‐VCH Verlag |
| Publisher_xml | – name: WILEY-VCH Verlag – name: WILEY‐VCH Verlag |
| References | P. Beyer, F. de Solminihac, M. Leconte et al., Plasma Phys. Control. Fusion 53, 054003 (2011). J. M. Canik, R. Maingi, T. E. Evans et al., Nucl. Fusion 50, 034012 (2010). M. W. Jakubowski, T. E. Evans, M. E. Fenstermacher et al., Nucl. Fusion 49, 095013 (2009). I. Joseph, T. E. Evans, A. M. Runov et al., Nucl. Fusion 48, 045009 (2008). Q. Yu and S. Günter, Nucl. Fusion 49, 062001 (2009). M. N. Rosenbluth, R. Z. Sagdeev, J. B. Taylor and G. M. Zaslavski, Nucl. Fusion 6, 297 (1966). M. F. Heyn, I. B. Ivanov, S. V. Kasilov et al., Nucl. Fusion 48, 024005 (2008). T. E. Evans, R. K. W. Roeder, J. A. Carter et al., J. Phys.: Conf. Ser. 7, 174 (2005). T. D. Rognlien and D. D. Ryutov, Contrib. Plasma Phys. 38, 152 (1998). A. Grosman, J. M. Ané, P. Barabaschi et al., J. Nucl. Mater. 313, 1314 (2003). H. R. Wilson and J. W. Connor, Plasma Phys. Control. Fusion 51, 115007 (2009). F. L. Waelbroeck, J. W. Connor, and H. R. Wilson, Phys. Rev. Lett. 87, 215003 (2001). J. Roth, E. Tsitrone, A. Loarte et al., J. Nucl. Mater. 390, 1 (2009). T. E. Evans, I. Joseph, R. A. Moyer, J. Nucl. Mater. 363-365, 570 (2007). S. P. Hirshman and D. J. Sigmar, Nucl. Fusion 21, 179 (1981). I. Joseph, R. A. Moyer, T. E. Evans et al., J. Nucl. Mater. 363, 591 (2007). W. Suttrop, T. Eich, J. C. Fuchs et al., Phys. Rev. Lett. 106, 225004 (2011). M. Bécoulet, G. Huysmans, X. Garbet et al., Nucl. Fusion 49, 085011 (2009). R. Fitzpatrick, Phys. Plasmas 2, 825 (1995). Ph. Ghendrih, H. Capes, C. DeMichelis et al., Plasma Phys. Control. Fusion 34, 27 (1992). E. Nardon, A. Kirk, R. Akers et al., Plasma Phys. Control. Fusion 51, 124010 (2009). V. Rozhansky, E. Kaveeva, P. Molchanov et al., Nucl. Fusion 50, 034005 (2010). A. Cole and R. Fitzpatrick, Phys. Plasmas 13, 032503 (2006). M. Leconte, P. Beyer, X. Garbet, and S. Benkadda, Phys. Rev. Lett. 102, 045006 (2009). M. J. Schaffer, J. E. Menard, M. P. Aldan, et al. Nucl. Fusion 48, 024004 (2008). M. F. Heyn, I. B. Ivanov, S. V. Kasilov, and W. Kernbichler, Nucl. Fusion 46, S159 (2006). A. Loarte, G. Saibene, R. Sartori et al., Plasma Phys. Control. Fusion 45, 1549 (2003). Y. Liang, H. R. Koslowski, P. R. Thomas et al., Phys. Rev. Lett. 98, 265004 (2007). Y. Liang, Fusion Sci. Tech. 59, 586 (2011). Y. Miura, M. Mori, T. Shoji et al., Fusion Sci. Tech. 49, 96 (2006). H. R. Wilson, Trans. Fusion Sci. Tech. 57, 164 (2010). J.-K. Park, A. H. Boozer, and J. E. Menard, Phys. Rev. Lett. 102, 065002 (2009). R. Fitzpatrick, Nucl. Fusion 33, 149 (1993). T. E. Evans, R. A. Moyer, P. R. Thomas et al., Phys. Rev. Lett. 92, 235003 (2004). N. Oyama, P. Gohil, L. D. Horton et al., Plasma Phys. Control. Fusion 48, A171 (2006). H. P. Furth, J. Killeen, and M. N. Rosenbluth, Phys. Fluids 6, 459 (1963). A. Cole and R. Fitzpatrick, Phys. Plasmas 18, 055711 (2011). A. Zagorodny and J. Weiland, Phys. Plasmas 6, 2359 (1999). O. Schmitz, T. E. Evans, M. E. Fenstermacher et al., Plasma Phys. Control. Fusion 50, 124029 (2008) V. A. Izzo and I. Joseph, Nucl. Fusion 48, 115004 (2008). A. H. Boozer and C. Nuehrenberg, Phys. Plasmas 13, 102501 (2006). H. R. Strauss, L. Sugiyama, G. Y. Park, et al, Nucl. Fusion 49, 055025 (2009). C. Nuhrenberg and A. H. Boozer, Phys. Plasmas 10, 2840 (2003). A. M. Runov, D. Reiter, S. V. Kasilov et al., Phys. Plasmas 8, 916 (2001). R. Fitzpatrick, Phys. Plasmas 5, 3325 (1998). R. Fitzpatrick and F. L. Waelbroeck, Phys. Plasmas 12, 122511 (2005). P. B. Snyder et al., Phys. Plasmas 9, 237 (2002). M. Bécoulet, E. Nardon, G. Huysmans, et al., Nucl. Fusion 48, 024003 (2008). R. Fitzpatrick and F. L. Waelbroeck, Plasma Phys. Control. Fusion 52, 055006 (2010). D. Whyte, A. E. Hubbard, J. W. Hughes, Nucl. Fusion, 50, 15005 (2010). R. A. Moyer, T. E. Evans, T. H. Osborne, Phys. Plasmas 12, 056119 (2005). T. E. Evans, R. A. Moyer, K. H. Burrell et al., Nature Phys. 2, 419 (2006). J-W. Ahn, R. Maingi, J. M. Canik et al., Phys. Plasmas 18, 056108 (2011). R. Fitzpatrick and F. L. Waelbroeck, Phys. Plasmas 17, 062503 (2010). J. M. Canik, R. Maingi, T. E. Evans et al., Phys. Rev. Lett. 104, 045001 (2010). M. Leconte, P. Beyer, X. Garbet, and S. Benkadda, Nucl. Fusion 50, 054008 (2010). A. I. Smolyakov, Plasma Phys. Control. Fusion 35, (1993) 657. Y.-Q. Liu, A. Kirk, and E. Nardon, Phys. Plasmas 17, 122502 (2010). T. E. Evans, R. A. Moyer, J. G. Watkins et al., Nucl. Fusion 45, 595 (2005). A. Kirk, Yueqiang Liu, E. Nardon et al., Plasma Phys. Control. Fusion 53, 065011 (2011). J. F. Drake and Y. C. Lee, Phys. Fluids 20, 1341 (1977). F. Militello and F. L. Waelbroeck, Nucl. Fusion 49, 065018 (2009). H. R. Wilson et al., Phys. Plasmas 9, 1277 (2002). F. L. Waelbroeck, Nucl. Fusion 49, 14025 (2009). E. Nardon, P. Tamain, M. Bécoulet et al., Nucl. Fusion 50, 034002 (2010). V. Rozhansky, E. Kaveeva, and S. Voskoboynikov, et. al, Phys. Plasmas 9, 3385 (2002). P. H. Diamond, S.-I. Itoh, K. Itoh and T. S. Hahm, Plasma Phys. Control. Fusion 47, R35 (2005). H. Frerichs, D. Reiter, O. Schmitz et al., Nucl. Fusion 50, 034004 (2010). J.-W. Ahn, J. M. Canik, V. A. Soukhanovskii et al., Nucl. Fusion 50, 045010 (2010). G. Federici, A. Loarte and G. Strohmayer, Plasma Phys. Control. Fusion 45, 1523 (2003). H. Zohm, Plasma Phys. Control. Fusion 38, 15 (1996). R. D. Hazeltine and J. D. Meiss, Phys. Rep. 121, 1 (1985). A. H. Boozer, Phys. Rev. Lett. 86, 559 (2001). C. C. Hegna, Phys. Plasmas 6, 1767 (1998). T. E. Evans, K. H. Burrell, M. E. Fenstermacher et al., Phys. Plasmas 13, 056121 (2006). J.-K. Park, M. J. Schaffer, J. E. Menard and A. H. Boozer, Phys. Rev. Lett. 99, 195003 (2007). J. D. Callen, C. C. Hegna, and A. J. Cole, Phys. Plasmas 17, 056113 (2010). A. H. Boozer, Phys. Plasmas 3, 4620 (1996). A. Kirk, E. Nardon, R. Akers et al., Nucl. Fusion 50, 034008 (2010). P. H. Rutherford, Phys. Fluids 16, 1903 (1973). M. Z. Tokar, T. R. Singh, and B. Unterberg, Phys. Plasmas 15, 072515 (2008). Q. Yu and S. Günter, Nucl. Fusion 51, 073030 (2010). Yueqiang Liu, M. S. Chu, I. T. Chapman and T. C. Hender, Phys. Plasmas 15, 112503 (2008). R. W. Harvey, M. G. McCoy, J. Y. Hsu and A. A. Mirin, Phys. Rev. Lett. 47, 12 (1981). J. G. Watkins, T. E. Evans, M. W. Jakubowski, J. Nucl. Mater. 390-391, 839 (2009). K. C. Shaing, Nucl. Fusion 50, 025022 (2010). J. C. Vallet, L. Poutchy, M. S. Mohamed-Benkadda, Phys. Rev. Lett. 67, 2662 (1991). M. Lehnen, S. Abdullaev, W. Biel et al., Plasma Phys. Control. Fusion 47, B237 (2005). L. M. Kovrizhnikh, Sov. Phys. JETP 29, 475 (1969). M. E. Fenstermacher, T. E. Evans, T. H. Osborne et al., Phys. Plasmas 15, 056122 (2008). J.-K. Park, A. H. Boozer, and A. H. Glasser, Phys. Plasmas 14, 052110 (2007). I. Kaganovich and V. Rozhansky, Phys. Plasmas 5, 3901 (1998). G. Park, C. S. Chang, I. Joseph, and R. A. Moyer, Phys. Plasmas 17, 12503 (2010). K. C. Shaing, Nucl. Fusion 43, 253 (2003). H. Reimerdes, J. Bialek, M. S. Chance et al., Nucl. Fusion 45, 368 (2005). K. H. Burrell, T. E. Evans, E. J. Doyle et al., Plasma Phys. Control. Fusion 47, B37 (2005). A. H. Boozer, Rev. Mod. Phys. 76, 171 (2004). A. H. Boozer, Phys. Plasmas 16, 052505 (2009). V. Rozhansky, P. Molchanov, E. Kaveeva et al., Nucl. Fusion 51, 083009 (2011). R. Fitzpatrick and F. L. Waelbroeck, Phys. Plasmas 16, 072507 (2009). K. C. Shaing, Phys. Plasmas 9, 3470 (2002). M. P. Gryaznevich, T. C. Hender, D. F. Howell et al., Plasma Phys. Controlled Fusion 50, 124030 (2008). A. H. Glasser and M. S. Chance, Bull. Am. Phys. Soc. 42, 1848 (1997). A. B. Rechester and M. N. Rosenbluth, Phys. Rev. Lett. 40, 38 (1978). Y.-Q. Liu, A. Kirk, and Y. Gribov et al., Nucl. Fusion 51, 083002 (2011). F. L. Hinton and R. D. Hazeltine, Rev. Mod. Phys. 48, 239 (1976). T. E. Evans, M. E. Fenstermacher, R. A. Moyer et al., Nucl. Fusion 48, 024002 (2008). T. H. Osborne, P. B. Snyder, K. H. Burrell, et. al, J. Phys.: Conf. Ser. 123, 012014 (2008). F. L. Waelbroeck, Phys. Plasmas 10, 440 (2003). 2010; 57 1997; 42 2010; 17 2010; 104 1973; 16 2011; 53 1981; 47 1977; 20 2011; 59 2003; 313 1996; 38 2011; 18 2009; 49 2003; 10 1985; 121 2001; 86 2001; 87 2004; 76 13 1993; 35 2009; 51 2007; 363‐365 1993; 33 1996; 3 2009; 16 2003; 43 2003; 45 2002; 9 2006; 13 2007; 363 1966; 6 2008; 15 2006; 2 2008; 123 2008; 50 1995; 2 2007; 98 2007; 99 1999; 6 1992; 34 1976; 48 1981; 21 2005; 45 2007; 14 2009; 390‐391 2005; 47 1998; 38 2004; 92 2011; 106 1991; 67 2006; 46 2009; 390 1963; 6 2006; 49 1978; 40 2011; 51 2006; 48 2001; 8 2008; 48 2005; 7 2009; 102 1969; 29 1998; 6 1998; 5 2010; 52 2005; 12 2010; 51 2010; 50 Boozer A. H. (e_1_2_1_68_2); 13 e_1_2_1_111_2 e_1_2_1_81_2 e_1_2_1_66_2 e_1_2_1_20_2 e_1_2_1_43_2 e_1_2_1_62_2 e_1_2_1_85_2 e_1_2_1_24_2 e_1_2_1_47_2 Wilson H. R. (e_1_2_1_89_2) 2010; 57 e_1_2_1_28_2 e_1_2_1_107_2 e_1_2_1_92_2 e_1_2_1_103_2 e_1_2_1_54_2 e_1_2_1_4_2 e_1_2_1_77_2 e_1_2_1_50_2 e_1_2_1_96_2 e_1_2_1_31_2 e_1_2_1_73_2 e_1_2_1_16_2 e_1_2_1_35_2 e_1_2_1_58_2 e_1_2_1_8_2 Miura Y. (e_1_2_1_12_2) 2006; 49 e_1_2_1_39_2 e_1_2_1_110_2 e_1_2_1_114_2 e_1_2_1_40_2 e_1_2_1_86_2 e_1_2_1_67_2 e_1_2_1_44_2 e_1_2_1_82_2 e_1_2_1_21_2 e_1_2_1_63_2 e_1_2_1_48_2 e_1_2_1_25_2 e_1_2_1_29_2 e_1_2_1_102_2 e_1_2_1_106_2 e_1_2_1_7_2 e_1_2_1_55_2 e_1_2_1_78_2 e_1_2_1_97_2 e_1_2_1_3_2 e_1_2_1_32_2 e_1_2_1_51_2 e_1_2_1_74_2 e_1_2_1_93_2 e_1_2_1_13_2 e_1_2_1_36_2 e_1_2_1_17_2 Fitzpatrick R. (e_1_2_1_88_2) 1993; 33 e_1_2_1_113_2 e_1_2_1_41_2 e_1_2_1_64_2 e_1_2_1_87_2 e_1_2_1_22_2 e_1_2_1_45_2 e_1_2_1_60_2 e_1_2_1_83_2 Hirshman S. P. (e_1_2_1_94_2) 1981; 21 e_1_2_1_26_2 e_1_2_1_49_2 e_1_2_1_109_2 e_1_2_1_90_2 e_1_2_1_101_2 e_1_2_1_105_2 e_1_2_1_6_2 e_1_2_1_75_2 e_1_2_1_56_2 e_1_2_1_33_2 e_1_2_1_71_2 e_1_2_1_10_2 e_1_2_1_52_2 e_1_2_1_37_2 e_1_2_1_14_2 e_1_2_1_79_2 e_1_2_1_18_2 Boozer A. H. (e_1_2_1_59_2) 2004; 76 Kovrizhnikh L. M. (e_1_2_1_98_2) 1969; 29 e_1_2_1_80_2 e_1_2_1_112_2 e_1_2_1_65_2 e_1_2_1_23_2 e_1_2_1_61_2 e_1_2_1_42_2 e_1_2_1_84_2 e_1_2_1_27_2 e_1_2_1_46_2 e_1_2_1_69_2 Glasser A. H. (e_1_2_1_70_2) 1997; 42 e_1_2_1_108_2 e_1_2_1_91_2 e_1_2_1_100_2 Zohm H. (e_1_2_1_2_2) 1996; 38 e_1_2_1_104_2 e_1_2_1_30_2 e_1_2_1_53_2 e_1_2_1_76_2 e_1_2_1_99_2 e_1_2_1_5_2 e_1_2_1_11_2 e_1_2_1_34_2 e_1_2_1_72_2 e_1_2_1_95_2 e_1_2_1_15_2 e_1_2_1_38_2 e_1_2_1_19_2 e_1_2_1_57_2 e_1_2_1_9_2 |
| References_xml | – reference: T. E. Evans, M. E. Fenstermacher, R. A. Moyer et al., Nucl. Fusion 48, 024002 (2008). – reference: H. R. Wilson, Trans. Fusion Sci. Tech. 57, 164 (2010). – reference: T. E. Evans, R. A. Moyer, J. G. Watkins et al., Nucl. Fusion 45, 595 (2005). – reference: A. I. Smolyakov, Plasma Phys. Control. Fusion 35, (1993) 657. – reference: Ph. Ghendrih, H. Capes, C. DeMichelis et al., Plasma Phys. Control. Fusion 34, 27 (1992). – reference: J. Roth, E. Tsitrone, A. Loarte et al., J. Nucl. Mater. 390, 1 (2009). – reference: J.-W. Ahn, J. M. Canik, V. A. Soukhanovskii et al., Nucl. Fusion 50, 045010 (2010). – reference: A. B. Rechester and M. N. Rosenbluth, Phys. Rev. Lett. 40, 38 (1978). – reference: Y.-Q. Liu, A. Kirk, and Y. Gribov et al., Nucl. Fusion 51, 083002 (2011). – reference: A. H. Boozer, Phys. Plasmas 16, 052505 (2009). – reference: M. F. Heyn, I. B. Ivanov, S. V. Kasilov, and W. Kernbichler, Nucl. Fusion 46, S159 (2006). – reference: J.-K. Park, A. H. Boozer, and J. E. Menard, Phys. Rev. Lett. 102, 065002 (2009). – reference: R. Fitzpatrick, Phys. Plasmas 2, 825 (1995). – reference: F. L. Waelbroeck, J. W. Connor, and H. R. Wilson, Phys. Rev. Lett. 87, 215003 (2001). – reference: E. Nardon, P. Tamain, M. Bécoulet et al., Nucl. Fusion 50, 034002 (2010). – reference: J-W. Ahn, R. Maingi, J. M. Canik et al., Phys. Plasmas 18, 056108 (2011). – reference: R. Fitzpatrick, Phys. Plasmas 5, 3325 (1998). – reference: T. D. Rognlien and D. D. Ryutov, Contrib. Plasma Phys. 38, 152 (1998). – reference: T. E. Evans, R. K. W. Roeder, J. A. Carter et al., J. Phys.: Conf. Ser. 7, 174 (2005). – reference: M. W. Jakubowski, T. E. Evans, M. E. Fenstermacher et al., Nucl. Fusion 49, 095013 (2009). – reference: K. C. Shaing, Nucl. Fusion 43, 253 (2003). – reference: A. Cole and R. Fitzpatrick, Phys. Plasmas 13, 032503 (2006). – reference: T. E. Evans, I. Joseph, R. A. Moyer, J. Nucl. Mater. 363-365, 570 (2007). – reference: Y. Liang, Fusion Sci. Tech. 59, 586 (2011). – reference: M. Leconte, P. Beyer, X. Garbet, and S. Benkadda, Nucl. Fusion 50, 054008 (2010). – reference: J.-K. Park, A. H. Boozer, and A. H. Glasser, Phys. Plasmas 14, 052110 (2007). – reference: G. Federici, A. Loarte and G. Strohmayer, Plasma Phys. Control. Fusion 45, 1523 (2003). – reference: Y. Liang, H. R. Koslowski, P. R. Thomas et al., Phys. Rev. Lett. 98, 265004 (2007). – reference: T. E. Evans, R. A. Moyer, K. H. Burrell et al., Nature Phys. 2, 419 (2006). – reference: M. Bécoulet, E. Nardon, G. Huysmans, et al., Nucl. Fusion 48, 024003 (2008). – reference: H. Frerichs, D. Reiter, O. Schmitz et al., Nucl. Fusion 50, 034004 (2010). – reference: H. Reimerdes, J. Bialek, M. S. Chance et al., Nucl. Fusion 45, 368 (2005). – reference: R. A. Moyer, T. E. Evans, T. H. Osborne, Phys. Plasmas 12, 056119 (2005). – reference: A. M. Runov, D. Reiter, S. V. Kasilov et al., Phys. Plasmas 8, 916 (2001). – reference: V. A. Izzo and I. Joseph, Nucl. Fusion 48, 115004 (2008). – reference: M. Lehnen, S. Abdullaev, W. Biel et al., Plasma Phys. Control. Fusion 47, B237 (2005). – reference: R. D. Hazeltine and J. D. Meiss, Phys. Rep. 121, 1 (1985). – reference: I. Kaganovich and V. Rozhansky, Phys. Plasmas 5, 3901 (1998). – reference: F. Militello and F. L. Waelbroeck, Nucl. Fusion 49, 065018 (2009). – reference: A. H. Boozer, Phys. Rev. Lett. 86, 559 (2001). – reference: R. Fitzpatrick and F. L. Waelbroeck, Phys. Plasmas 16, 072507 (2009). – reference: P. Beyer, F. de Solminihac, M. Leconte et al., Plasma Phys. Control. Fusion 53, 054003 (2011). – reference: M. P. Gryaznevich, T. C. Hender, D. F. Howell et al., Plasma Phys. Controlled Fusion 50, 124030 (2008). – reference: M. Leconte, P. Beyer, X. Garbet, and S. Benkadda, Phys. Rev. Lett. 102, 045006 (2009). – reference: R. Fitzpatrick and F. L. Waelbroeck, Plasma Phys. Control. Fusion 52, 055006 (2010). – reference: Y. Miura, M. Mori, T. Shoji et al., Fusion Sci. Tech. 49, 96 (2006). – reference: Yueqiang Liu, M. S. Chu, I. T. Chapman and T. C. Hender, Phys. Plasmas 15, 112503 (2008). – reference: J. C. Vallet, L. Poutchy, M. S. Mohamed-Benkadda, Phys. Rev. Lett. 67, 2662 (1991). – reference: T. H. Osborne, P. B. Snyder, K. H. Burrell, et. al, J. Phys.: Conf. Ser. 123, 012014 (2008). – reference: H. R. Wilson and J. W. Connor, Plasma Phys. Control. Fusion 51, 115007 (2009). – reference: H. R. Strauss, L. Sugiyama, G. Y. Park, et al, Nucl. Fusion 49, 055025 (2009). – reference: W. Suttrop, T. Eich, J. C. Fuchs et al., Phys. Rev. Lett. 106, 225004 (2011). – reference: Q. Yu and S. Günter, Nucl. Fusion 49, 062001 (2009). – reference: I. Joseph, T. E. Evans, A. M. Runov et al., Nucl. Fusion 48, 045009 (2008). – reference: R. W. Harvey, M. G. McCoy, J. Y. Hsu and A. A. Mirin, Phys. Rev. Lett. 47, 12 (1981). – reference: H. Zohm, Plasma Phys. Control. Fusion 38, 15 (1996). – reference: K. C. Shaing, Nucl. Fusion 50, 025022 (2010). – reference: J. G. Watkins, T. E. Evans, M. W. Jakubowski, J. Nucl. Mater. 390-391, 839 (2009). – reference: Q. Yu and S. Günter, Nucl. Fusion 51, 073030 (2010). – reference: K. C. Shaing, Phys. Plasmas 9, 3470 (2002). – reference: J. M. Canik, R. Maingi, T. E. Evans et al., Nucl. Fusion 50, 034012 (2010). – reference: A. H. Boozer, Phys. Plasmas 3, 4620 (1996). – reference: C. Nuhrenberg and A. H. Boozer, Phys. Plasmas 10, 2840 (2003). – reference: J. F. Drake and Y. C. Lee, Phys. Fluids 20, 1341 (1977). – reference: T. E. Evans, R. A. Moyer, P. R. Thomas et al., Phys. Rev. Lett. 92, 235003 (2004). – reference: M. N. Rosenbluth, R. Z. Sagdeev, J. B. Taylor and G. M. Zaslavski, Nucl. Fusion 6, 297 (1966). – reference: P. H. Diamond, S.-I. Itoh, K. Itoh and T. S. Hahm, Plasma Phys. Control. Fusion 47, R35 (2005). – reference: A. Loarte, G. Saibene, R. Sartori et al., Plasma Phys. Control. Fusion 45, 1549 (2003). – reference: A. Kirk, Yueqiang Liu, E. Nardon et al., Plasma Phys. Control. Fusion 53, 065011 (2011). – reference: G. Park, C. S. Chang, I. Joseph, and R. A. Moyer, Phys. Plasmas 17, 12503 (2010). – reference: F. L. Waelbroeck, Nucl. Fusion 49, 14025 (2009). – reference: A. Zagorodny and J. Weiland, Phys. Plasmas 6, 2359 (1999). – reference: M. Bécoulet, G. Huysmans, X. Garbet et al., Nucl. Fusion 49, 085011 (2009). – reference: P. B. Snyder et al., Phys. Plasmas 9, 237 (2002). – reference: J. M. Canik, R. Maingi, T. E. Evans et al., Phys. Rev. Lett. 104, 045001 (2010). – reference: E. Nardon, A. Kirk, R. Akers et al., Plasma Phys. Control. Fusion 51, 124010 (2009). – reference: C. C. Hegna, Phys. Plasmas 6, 1767 (1998). – reference: O. Schmitz, T. E. Evans, M. E. Fenstermacher et al., Plasma Phys. Control. Fusion 50, 124029 (2008) – reference: K. H. Burrell, T. E. Evans, E. J. Doyle et al., Plasma Phys. Control. Fusion 47, B37 (2005). – reference: R. Fitzpatrick and F. L. Waelbroeck, Phys. Plasmas 17, 062503 (2010). – reference: J.-K. Park, M. J. Schaffer, J. E. Menard and A. H. Boozer, Phys. Rev. Lett. 99, 195003 (2007). – reference: A. Kirk, E. Nardon, R. Akers et al., Nucl. Fusion 50, 034008 (2010). – reference: M. F. Heyn, I. B. Ivanov, S. V. Kasilov et al., Nucl. Fusion 48, 024005 (2008). – reference: V. Rozhansky, P. Molchanov, E. Kaveeva et al., Nucl. Fusion 51, 083009 (2011). – reference: Y.-Q. Liu, A. Kirk, and E. Nardon, Phys. Plasmas 17, 122502 (2010). – reference: R. Fitzpatrick and F. L. Waelbroeck, Phys. Plasmas 12, 122511 (2005). – reference: J. D. Callen, C. C. Hegna, and A. J. Cole, Phys. Plasmas 17, 056113 (2010). – reference: M. E. Fenstermacher, T. E. Evans, T. H. Osborne et al., Phys. Plasmas 15, 056122 (2008). – reference: H. R. Wilson et al., Phys. Plasmas 9, 1277 (2002). – reference: H. P. Furth, J. Killeen, and M. N. Rosenbluth, Phys. Fluids 6, 459 (1963). – reference: S. P. Hirshman and D. J. Sigmar, Nucl. Fusion 21, 179 (1981). – reference: N. Oyama, P. Gohil, L. D. Horton et al., Plasma Phys. Control. Fusion 48, A171 (2006). – reference: P. H. Rutherford, Phys. Fluids 16, 1903 (1973). – reference: R. Fitzpatrick, Nucl. Fusion 33, 149 (1993). – reference: T. E. Evans, K. H. Burrell, M. E. Fenstermacher et al., Phys. Plasmas 13, 056121 (2006). – reference: L. M. Kovrizhnikh, Sov. Phys. JETP 29, 475 (1969). – reference: V. Rozhansky, E. Kaveeva, P. Molchanov et al., Nucl. Fusion 50, 034005 (2010). – reference: F. L. Hinton and R. D. Hazeltine, Rev. Mod. Phys. 48, 239 (1976). – reference: I. Joseph, R. A. Moyer, T. E. Evans et al., J. Nucl. Mater. 363, 591 (2007). – reference: A. H. Boozer, Rev. Mod. Phys. 76, 171 (2004). – reference: A. H. Glasser and M. S. Chance, Bull. Am. Phys. Soc. 42, 1848 (1997). – reference: F. L. Waelbroeck, Phys. Plasmas 10, 440 (2003). – reference: M. Z. Tokar, T. R. Singh, and B. Unterberg, Phys. Plasmas 15, 072515 (2008). – reference: M. J. Schaffer, J. E. Menard, M. P. Aldan, et al. Nucl. Fusion 48, 024004 (2008). – reference: D. Whyte, A. E. Hubbard, J. W. Hughes, Nucl. Fusion, 50, 15005 (2010). – reference: A. Cole and R. Fitzpatrick, Phys. Plasmas 18, 055711 (2011). – reference: V. Rozhansky, E. Kaveeva, and S. Voskoboynikov, et. al, Phys. Plasmas 9, 3385 (2002). – reference: A. H. Boozer and C. Nuehrenberg, Phys. Plasmas 13, 102501 (2006). – reference: A. Grosman, J. M. Ané, P. Barabaschi et al., J. Nucl. Mater. 313, 1314 (2003). – volume: 98 start-page: 265004 year: 2007 publication-title: Phys. Rev. Lett. – volume: 12 start-page: 122511 year: 2005 publication-title: Phys. Plasmas – volume: 51 start-page: 124010 year: 2009 publication-title: Plasma Phys. Control. Fusion – volume: 102 start-page: 065002 year: 2009 publication-title: Phys. Rev. Lett. – volume: 48 start-page: 115004 year: 2008 publication-title: Nucl. Fusion – volume: 50 start-page: 034004 year: 2010 publication-title: Nucl. Fusion – volume: 51 start-page: 083009 year: 2011 publication-title: Nucl. Fusion – volume: 16 start-page: 052505 year: 2009 publication-title: Phys. Plasmas – volume: 35 start-page: 657 year: 1993 publication-title: Plasma Phys. Control. Fusion – volume: 99 start-page: 195003 year: 2007 publication-title: Phys. Rev. Lett. – volume: 33 start-page: 149 year: 1993 publication-title: Nucl. Fusion – volume: 106 start-page: 225004 year: 2011 publication-title: Phys. Rev. Lett. – volume: 12 start-page: 056119 year: 2005 publication-title: Phys. Plasmas – volume: 48 start-page: 239 year: 1976 publication-title: Rev. Mod. Phys. – volume: 390 start-page: 1 year: 2009 publication-title: J. Nucl. Mater. – volume: 48 start-page: 024004 year: 2008 publication-title: Nucl. Fusion – volume: 49 start-page: 095013 year: 2009 publication-title: Nucl. Fusion – volume: 48 start-page: 045009 year: 2008 publication-title: Nucl. Fusion – volume: 17 start-page: 062503 year: 2010 publication-title: Phys. Plasmas – volume: 46 start-page: S159 year: 2006 publication-title: Nucl. Fusion – volume: 16 start-page: 1903 year: 1973 publication-title: Phys. Fluids – volume: 15 start-page: 112503 year: 2008 publication-title: Phys. Plasmas – volume: 123 start-page: 012014 year: 2008 publication-title: J. Phys.: Conf. Ser. – volume: 17 start-page: 056113 year: 2010 publication-title: Phys. Plasmas – volume: 45 start-page: 595 year: 2005 publication-title: Nucl. Fusion – volume: 49 start-page: 96 year: 2006 publication-title: Fusion Sci. Tech. – volume: 5 start-page: 3901 year: 1998 publication-title: Phys. Plasmas – volume: 51 start-page: 073030 year: 2010 publication-title: Nucl. Fusion – volume: 10 start-page: 440 year: 2003 publication-title: Phys. Plasmas – volume: 76 start-page: 171 year: 2004 publication-title: Rev. Mod. Phys. – volume: 52 start-page: 055006 year: 2010 publication-title: Plasma Phys. Control. Fusion – volume: 8 start-page: 916 year: 2001 publication-title: Phys. Plasmas – volume: 49 start-page: 065018 year: 2009 publication-title: Nucl. Fusion – volume: 10 start-page: 2840 year: 2003 publication-title: Phys. Plasmas – volume: 45 start-page: 1523 year: 2003 publication-title: Plasma Phys. Control. Fusion – volume: 49 start-page: 14025 year: 2009 publication-title: Nucl. Fusion – volume: 47 start-page: R35 year: 2005 publication-title: Plasma Phys. Control. Fusion – volume: 53 start-page: 065011 year: 2011 publication-title: Plasma Phys. Control. Fusion – volume: 16 start-page: 072507 year: 2009 publication-title: Phys. Plasmas – volume: 5 start-page: 3325 year: 1998 publication-title: Phys. Plasmas – volume: 50 start-page: 034002 year: 2010 publication-title: Nucl. Fusion – volume: 121 start-page: 1 year: 1985 publication-title: Phys. Rep. – volume: 3 start-page: 4620 year: 1996 publication-title: Phys. Plasmas – volume: 6 start-page: 297 year: 1966 publication-title: Nucl. Fusion – volume: 47 start-page: 12 year: 1981 publication-title: Phys. Rev. Lett. – volume: 48 start-page: 024002 year: 2008 publication-title: Nucl. Fusion – volume: 47 start-page: B237 year: 2005 publication-title: Plasma Phys. Control. Fusion – volume: 9 start-page: 1277 year: 2002 publication-title: Phys. Plasmas – volume: 6 start-page: 1767 year: 1998 publication-title: Phys. Plasmas – volume: 49 start-page: 085011 year: 2009 publication-title: Nucl. Fusion – volume: 59 start-page: 586 year: 2011 publication-title: Fusion Sci. Tech. – volume: 14 start-page: 052110 year: 2007 publication-title: Phys. Plasmas – volume: 67 start-page: 2662 year: 1991 publication-title: Phys. Rev. Lett. – volume: 49 start-page: 055025 year: 2009 publication-title: Nucl. Fusion – volume: 42 start-page: 1848 year: 1997 publication-title: Bull. Am. Phys. Soc. – volume: 50 start-page: 034005 year: 2010 publication-title: Nucl. Fusion – volume: 48 start-page: A171 year: 2006 publication-title: Plasma Phys. Control. Fusion – volume: 6 start-page: 459 year: 1963 publication-title: Phys. Fluids – volume: 13 start-page: 056121 year: 2006 publication-title: Phys. Plasmas – volume: 48 start-page: 024005 year: 2008 publication-title: Nucl. Fusion – volume: 13 start-page: 032503 year: 2006 publication-title: Phys. Plasmas – volume: 57 start-page: 164 year: 2010 publication-title: Trans. Fusion Sci. Tech. – volume: 50 start-page: 025022 year: 2010 publication-title: Nucl. Fusion – volume: 51 start-page: 115007 year: 2009 publication-title: Plasma Phys. Control. Fusion – volume: 92 start-page: 235003 year: 2004 publication-title: Phys. Rev. Lett. – volume: 102 start-page: 045006 year: 2009 publication-title: Phys. Rev. Lett. – volume: 15 start-page: 072515 year: 2008 publication-title: Phys. Plasmas – volume: 2 start-page: 825 year: 1995 publication-title: Phys. Plasmas – volume: 50 start-page: 034008 year: 2010 publication-title: Nucl. Fusion – volume: 7 start-page: 174 year: 2005 publication-title: J. Phys.: Conf. Ser. – volume: 50 start-page: 124030 year: 2008 publication-title: Plasma Phys. Controlled Fusion – volume: 51 start-page: 083002 year: 2011 publication-title: Nucl. Fusion – volume: 9 start-page: 237 year: 2002 publication-title: Phys. Plasmas – volume: 13 publication-title: Phys. Plasmas – volume: 21 start-page: 179 year: 1981 publication-title: Nucl. Fusion – volume: 50 start-page: 054008 year: 2010 publication-title: Nucl. Fusion – volume: 18 start-page: 056108 year: 2011 publication-title: Phys. Plasmas – volume: 18 start-page: 055711 year: 2011 publication-title: Phys. Plasmas – volume: 2 start-page: 419 year: 2006 publication-title: Nature Phys. – volume: 45 start-page: 1549 year: 2003 publication-title: Plasma Phys. Control. Fusion – volume: 9 start-page: 3385 year: 2002 publication-title: Phys. Plasmas – volume: 86 start-page: 559 year: 2001 publication-title: Phys. Rev. Lett. – volume: 38 start-page: 15 year: 1996 publication-title: Plasma Phys. Control. Fusion – volume: 50 start-page: 15005 year: 2010 publication-title: Nucl. Fusion, – volume: 390‐391 start-page: 839 year: 2009 publication-title: J. Nucl. Mater. – volume: 9 start-page: 3470 year: 2002 publication-title: Phys. Plasmas – volume: 87 start-page: 215003 year: 2001 publication-title: Phys. Rev. Lett. – volume: 48 start-page: 024003 year: 2008 publication-title: Nucl. Fusion – volume: 29 start-page: 475 year: 1969 publication-title: Sov. Phys. JETP – volume: 50 start-page: 124029 year: 2008 publication-title: Plasma Phys. Control. Fusion – volume: 17 start-page: 122502 year: 2010 publication-title: Phys. Plasmas – volume: 43 start-page: 253 year: 2003 publication-title: Nucl. Fusion – volume: 38 start-page: 152 year: 1998 publication-title: Contrib. Plasma Phys. – volume: 49 start-page: 062001 year: 2009 publication-title: Nucl. Fusion – volume: 50 start-page: 045010 year: 2010 publication-title: Nucl. Fusion – volume: 34 start-page: 27 year: 1992 publication-title: Plasma Phys. Control. Fusion – volume: 363 start-page: 591 year: 2007 publication-title: J. Nucl. Mater. – volume: 40 start-page: 38 year: 1978 publication-title: Phys. Rev. Lett. – volume: 313 start-page: 1314 year: 2003 publication-title: J. Nucl. Mater. – volume: 47 start-page: B37 year: 2005 publication-title: Plasma Phys. Control. Fusion – volume: 6 start-page: 2359 year: 1999 publication-title: Phys. Plasmas – volume: 53 start-page: 054003 year: 2011 publication-title: Plasma Phys. Control. Fusion – volume: 15 start-page: 056122 year: 2008 publication-title: Phys. Plasmas – volume: 20 start-page: 1341 year: 1977 publication-title: Phys. Fluids – volume: 363‐365 start-page: 570 year: 2007 publication-title: J. Nucl. Mater. – volume: 17 start-page: 12503 year: 2010 publication-title: Phys. Plasmas – volume: 104 start-page: 045001 year: 2010 publication-title: Phys. Rev. Lett. – volume: 45 start-page: 368 year: 2005 publication-title: Nucl. Fusion – volume: 50 start-page: 034012 year: 2010 publication-title: Nucl. Fusion – ident: e_1_2_1_62_2 doi: 10.1063/1.1706761 – ident: e_1_2_1_87_2 doi: 10.1063/1.862017 – ident: e_1_2_1_38_2 doi: 10.1088/0029-5515/52/7/074004 – ident: e_1_2_1_21_2 doi: 10.1063/1.3335486 – ident: e_1_2_1_11_2 doi: 10.1103/PhysRevLett.106.225004 – ident: e_1_2_1_25_2 doi: 10.1103/PhysRevLett.67.2662 – ident: e_1_2_1_45_2 doi: 10.1063/1.1449463 – ident: e_1_2_1_67_2 doi: 10.1063/1.1578489 – ident: e_1_2_1_63_2 doi: 10.1063/1.871585 – ident: e_1_2_1_47_2 doi: 10.1016/j.jnucmat.2006.12.064 – ident: e_1_2_1_57_2 doi: 10.1088/0029-5515/50/4/045010 – ident: e_1_2_1_76_2 doi: 10.1063/1.2178167 – ident: e_1_2_1_113_2 doi: 10.1088/0741-3335/47/5/R01 – ident: e_1_2_1_27_2 doi: 10.1088/0741-3335/47/12B/S18 – ident: e_1_2_1_105_2 doi: 10.1063/1.1344921 – ident: e_1_2_1_39_2 doi: 10.1063/1.2959122 – ident: e_1_2_1_30_2 doi: 10.1088/0029-5515/48/4/045009 – volume: 57 start-page: 164 year: 2010 ident: e_1_2_1_89_2 publication-title: Trans. Fusion Sci. Tech. doi: 10.13182/FST10-A9407 – ident: e_1_2_1_23_2 doi: 10.1063/1.873000 – ident: e_1_2_1_79_2 doi: 10.1088/0741-3335/52/5/055006 – ident: e_1_2_1_73_2 doi: 10.1088/0029-5515/51/8/083002 – ident: e_1_2_1_82_2 doi: 10.1063/1.871434 – ident: e_1_2_1_85_2 doi: 10.1088/0029-5515/51/7/073030 – ident: e_1_2_1_99_2 – ident: e_1_2_1_55_2 doi: 10.1088/0029-5515/50/3/034008 – ident: e_1_2_1_97_2 doi: 10.1063/1.1487383 – ident: e_1_2_1_114_2 doi: 10.1063/1.873507 – ident: e_1_2_1_22_2 doi: 10.1063/1.2901064 – ident: e_1_2_1_50_2 doi: 10.1103/PhysRevLett.98.265004 – ident: e_1_2_1_101_2 doi: 10.1063/1.3590933 – ident: e_1_2_1_26_2 doi: 10.1088/0741-3335/34/13/033 – ident: e_1_2_1_17_2 doi: 10.13182/FST11-A11699 – ident: e_1_2_1_112_2 doi: 10.1088/0741-3335/53/5/054003 – ident: e_1_2_1_35_2 doi: 10.1088/0029-5515/49/5/055025 – ident: e_1_2_1_28_2 doi: 10.1016/S0022-3115(02)01509-X – ident: e_1_2_1_102_2 doi: 10.1088/0029-5515/6/4/008 – ident: e_1_2_1_7_2 doi: 10.1088/0741-3335/47/12B/S04 – ident: e_1_2_1_41_2 doi: 10.1088/0029-5515/51/8/083009 – ident: e_1_2_1_104_2 doi: 10.1063/1.873109 – ident: e_1_2_1_80_2 doi: 10.1088/0741-3335/35/6/002 – ident: e_1_2_1_10_2 doi: 10.1103/PhysRevLett.92.235003 – ident: e_1_2_1_19_2 doi: 10.1088/0029-5515/50/10/105005 – ident: e_1_2_1_36_2 doi: 10.1088/0029-5515/49/8/085011 – ident: e_1_2_1_13_2 doi: 10.1103/PhysRevLett.104.045001 – volume: 76 start-page: 171 year: 2004 ident: e_1_2_1_59_2 publication-title: Rev. Mod. Phys. – ident: e_1_2_1_72_2 doi: 10.1063/1.3526677 – ident: e_1_2_1_95_2 doi: 10.1103/RevModPhys.48.239 – ident: e_1_2_1_107_2 doi: 10.1103/PhysRevLett.87.215003 – ident: e_1_2_1_44_2 doi: 10.1063/1.1459058 – ident: e_1_2_1_74_2 doi: 10.1088/0029-5515/49/10/104025 – ident: e_1_2_1_84_2 doi: 10.1088/0029-5515/49/6/062001 – ident: e_1_2_1_91_2 doi: 10.1103/PhysRevLett.102.065002 – ident: e_1_2_1_54_2 doi: 10.1088/0029-5515/49/9/095013 – ident: e_1_2_1_40_2 doi: 10.1088/0029-5515/50/3/034005 – ident: e_1_2_1_52_2 doi: 10.1088/1742-6596/123/1/012014 – ident: e_1_2_1_43_2 doi: 10.1063/1.2177657 – ident: e_1_2_1_53_2 doi: 10.1088/0741-3335/50/12/124029 – ident: e_1_2_1_15_2 doi: 10.1088/0029-5515/48/2/024003 – ident: e_1_2_1_9_2 doi: 10.1088/0029-5515/48/2/024002 – ident: e_1_2_1_29_2 doi: 10.1016/j.jnucmat.2006.12.067 – ident: e_1_2_1_16_2 doi: 10.1088/0029-5515/48/2/024004 – ident: e_1_2_1_42_2 doi: 10.1063/1.1888705 – ident: e_1_2_1_58_2 doi: 10.1063/1.3574522 – ident: e_1_2_1_111_2 doi: 10.1088/0029-5515/50/5/054008 – volume: 49 start-page: 96 year: 2006 ident: e_1_2_1_12_2 publication-title: Fusion Sci. Tech. doi: 10.13182/FST06-A1090 – ident: e_1_2_1_75_2 doi: 10.1063/1.1607324 – ident: e_1_2_1_51_2 doi: 10.1088/0741-3335/53/6/065011 – ident: e_1_2_1_83_2 doi: 10.1063/1.872846 – ident: e_1_2_1_56_2 doi: 10.1088/0741-3335/51/12/124010 – ident: e_1_2_1_48_2 – ident: e_1_2_1_61_2 doi: 10.1016/0370-1573(85)90083-3 – ident: e_1_2_1_31_2 doi: 10.1088/0029-5515/50/3/034004 – ident: e_1_2_1_3_2 doi: 10.1088/0741-3335/45/9/302 – ident: e_1_2_1_46_2 doi: 10.1088/1742-6596/7/1/015 – ident: e_1_2_1_96_2 doi: 10.1002/ctpp.2150380123 – ident: e_1_2_1_69_2 doi: 10.1063/1.2732170 – ident: e_1_2_1_109_2 doi: 10.1088/0029-5515/49/6/065018 – ident: e_1_2_1_86_2 doi: 10.1063/1.1694232 – ident: e_1_2_1_18_2 doi: 10.1088/0741-3335/48/5A/S16 – ident: e_1_2_1_93_2 doi: 10.1088/0029-5515/43/4/306 – ident: e_1_2_1_33_2 doi: 10.1088/0029-5515/48/2/024005 – ident: e_1_2_1_108_2 doi: 10.1063/1.2146983 – volume: 42 start-page: 1848 year: 1997 ident: e_1_2_1_70_2 publication-title: Bull. Am. Phys. Soc. – ident: e_1_2_1_90_2 doi: 10.1088/0029-5515/50/2/025022 – volume: 29 start-page: 475 year: 1969 ident: e_1_2_1_98_2 publication-title: Sov. Phys. JETP – ident: e_1_2_1_81_2 doi: 10.1088/0029-5515/46/4/S07 – ident: e_1_2_1_110_2 doi: 10.1103/PhysRevLett.102.045006 – volume: 13 ident: e_1_2_1_68_2 publication-title: Phys. Plasmas – ident: e_1_2_1_65_2 doi: 10.1088/0029-5515/45/5/007 – volume: 21 start-page: 179 year: 1981 ident: e_1_2_1_94_2 publication-title: Nucl. Fusion – volume: 33 start-page: 149 year: 1993 ident: e_1_2_1_88_2 publication-title: Nucl. Fusion – ident: e_1_2_1_5_2 doi: 10.1016/j.jnucmat.2009.01.037 – ident: e_1_2_1_24_2 doi: 10.1103/PhysRevLett.40.38 – volume: 38 start-page: 15 year: 1996 ident: e_1_2_1_2_2 publication-title: Plasma Phys. Control. Fusion – ident: e_1_2_1_60_2 – ident: e_1_2_1_32_2 doi: 10.1063/1.3280011 – ident: e_1_2_1_66_2 doi: 10.1088/0741-3335/50/12/124030 – ident: e_1_2_1_78_2 doi: 10.1063/1.3432720 – ident: e_1_2_1_71_2 doi: 10.1103/PhysRevLett.99.195003 – ident: e_1_2_1_37_2 doi: 10.1088/0029-5515/50/3/034002 – ident: e_1_2_1_6_2 doi: 10.1088/0029-5515/45/7/007 – ident: e_1_2_1_49_2 doi: 10.1016/j.jnucmat.2009.01.221 – ident: e_1_2_1_14_2 doi: 10.1088/0029-5515/50/3/034012 – ident: e_1_2_1_100_2 doi: 10.1063/1.3008045 – ident: e_1_2_1_64_2 doi: 10.1103/PhysRevLett.86.5059 – ident: e_1_2_1_20_2 doi: 10.1063/1.3118591 – ident: e_1_2_1_92_2 doi: 10.1063/1.1491533 – ident: e_1_2_1_103_2 doi: 10.1103/PhysRevLett.47.12 – ident: e_1_2_1_77_2 doi: 10.1063/1.3191719 – ident: e_1_2_1_34_2 doi: 10.1088/0029-5515/48/11/115004 – ident: e_1_2_1_4_2 doi: 10.1088/0741-3335/45/9/301 – ident: e_1_2_1_8_2 doi: 10.1038/nphys312 – ident: e_1_2_1_106_2 doi: 10.1088/0741-3335/51/11/115007 |
| SSID | ssj0009641 |
| Score | 2.0224788 |
| Snippet | This article reviews the subject of edge localized mode (ELM) control using externally applied magnetic perturbations and proposes theoretical mechanisms that... |
| SourceID | crossref wiley istex |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 326 |
| SubjectTerms | edge localized mode control magnetic perturbations quasilinear transport Tokamak |
| Title | Edge-Localized Mode Control and Transport Generated by Externally Applied Magnetic Perturbations |
| URI | https://api.istex.fr/ark:/67375/WNG-HFRLWBLB-P/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fctpp.201210014 |
| Volume | 52 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1521-3986 dateEnd: 20241102 omitProxy: false ssIdentifier: ssj0009641 issn: 0863-1042 databaseCode: ADMLS dateStart: 20120601 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVWIB databaseName: Wiley Online Library - Core collection (SURFmarket) issn: 0863-1042 databaseCode: DR2 dateStart: 20000101 customDbUrl: isFulltext: true eissn: 1521-3986 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009641 providerName: Wiley-Blackwell |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1ba8IwFMfD2BjsZfcxdyMPY3uq1rRN9XGKToZKEUXfSpImMpROtML0aR9hn3GfZLnUOgdjsL21JSltLj3_k578DgC3CPnUdjiyhPpxKAcFtogUzhbiyOERpT7R65CtNm703KeBN_iyi9_wIbIFNzUz9PdaTXBCZ4U1NJQlE8WbVAAsW2eyLjpY-1SdNT-qjHXqSinbVQCWi1bURhsVNqtvWKUd1cCvm2pVm5v6ASCrBzVRJqP8PKF5tvzGcPzPmxyC_VSLwgczeI7AFo-Pwa6OCWWzE0Br0ZB_vL03lbl7XvIIqsRpsGqC2yGJI5ih0aHBV0v5CukC1lK09HgBU5ULW2QYq_2SMOBTaeWoWSg8Bb16rVttWGlKBos50n-1BCt5RHCflRS1B9tMuE6EsZYFmLmc2dwmmHnyc85wOfKowtG7DpHXaAn5wjkD2_FLzM8BjHxbalHMhONKH1W6fZGQ6qUoBMZCes0kB6xVl4Qs5ZWrtBnj0JCWUajaLczaLQfus_ITQ-r4seSd7uGsGJmOVHyb74X99mPYqHea_UqzEgY5gHS__XK_sNoNguzs4i-VLsGeOjYxaFdgO5nO-bVUOwm90SP6E04_9w4 |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1bS8MwFMeDKKIv3sV5zYPoU2dN23Q-urE5tRtDJvMtJGkyRKkyJ6hPfgQ_o5_EnKTrmCCCPjYkpc2l-Z_Tk99BaJ-QWPiBIp6GH4dmUlCPG-HsEUUClQoRc-uHbLVp8zq8uIlG0YRwFsbxIQqHG6wM-72GBQ4O6aMxNVQOHwE4CQQsH1JZz4TUGCugi67GBKkTapNXGuEOIVghGXEbfXI02X5iX5qBLn6Z1Kt2w2ksIjF6VBdncld-HoqyfPtGcfzXuyyhhVyO4lM3f5bRlMpW0KwNC5VPq0jU0776fP9IYMe7fVMphtxpuObi2zHPUlzQ0bEjWBsFi8Urrud06ftXnAtd3OL9DI5M4o4amI1OOF_hGrpu1Lu1ppdnZfBkYExYT8tKxLWKZQXAPdSXOgxSSq0yoDJU0lc-pzIyX3RJT9JIAJE-DLgpExUS62AdTWcPmdpAOI19I0ep1EFozFRj-aXaCJhjrSnVxnDmJeSNxoTJHFkOmTPumYMtEwb9xop-K6HDov6jg3X8WPPADnFRjQ_uIMQtjlivfcaajaukV02qrFNCxA7cL_djtW6nU1xt_qXRHpprdlsJS87bl1toHspdSNo2mh4OntWOET9DsWun9xfViPsv |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1bS8MwFMeDKIov3sV5zYPoU7Wmbbo96tycOkcRRd9CriJKHXOC-uRH8DP6ScxJusoEEfSxISltLj3_k578DkKbhKQijDQJDPw4tJOCBtwK54BoEmklRMrdPuRZh7Yu45PrZBBNCGdhPB-i3HCDleG-17DAdVeZ3S9qqOx3ATgJBKwQUlmPxUmtClF9h-dfBKkadckrrXCHEKyYDLiNIdkdbj9kl8agi5-H9aozOM1pJAaP6uNM7nae-mJHvn6jOP7rXWbQVCFH8b6fP7NoROdzaNyFhcrHeSQa6kZ_vL23weLdvmqFIXcarvv4dsxzhUs6OvYEa6tgsXjBjYIuff-CC6GLz_hNDkcmcaZ71tAJv1e4gC6bjYt6KyiyMgQysi5sYGQ14UansgrgHhpKE0eKUqcMqIy1DHXIqUzsF13SmkoEEOnjiNsyUSWpiRbRaP6Q6yWEVRpaOUqliWLrplrPTxkrYPaModRYx5lXUDAYEyYLZDlkzrhnHrZMGPQbK_utgrbL-l0P6_ix5pYb4rIa791BiFuasKvOEWs1z9tXB-0DllUQcQP3y_1Y_SLLyqvlvzTaQBPZYZO1jzunK2gSin1E2ioa7fee9JrVPn2x7mb3J4LE-rM |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Edge%E2%80%90Localized+Mode+Control+and+Transport+Generated+by+Externally+Applied+Magnetic+Perturbations&rft.jtitle=Contributions+to+plasma+physics+%281988%29&rft.au=Joseph%2C+I.&rft.date=2012-06-01&rft.issn=0863-1042&rft.eissn=1521-3986&rft.volume=52&rft.issue=5-6&rft.spage=326&rft.epage=347&rft_id=info:doi/10.1002%2Fctpp.201210014&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_ctpp_201210014 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0863-1042&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0863-1042&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0863-1042&client=summon |