A flexible, leak crew focused localization model using a maximum coverage search area algorithm

Buried watermains are deteriorating and pipe failure is increasing in many cities. In response, advanced leak location models have been developed to help identify where a leak is occurring – which allows utilities to react quickly to pipe bursts and reduce the impact of the leak. This paper develops...

Full description

Saved in:
Bibliographic Details
Published inIOP conference series. Earth and environmental science Vol. 1136; no. 1; pp. 12042 - 12051
Main Authors Snider, Brett, Lewis, Gareth, Chen, Albert, Vamvakeridou, Lydia, Savić, Dragan
Format Journal Article
LanguageEnglish
Published Bristol IOP Publishing 01.01.2023
Subjects
Online AccessGet full text
ISSN1755-1307
1755-1315
1755-1315
DOI10.1088/1755-1315/1136/1/012042

Cover

Abstract Buried watermains are deteriorating and pipe failure is increasing in many cities. In response, advanced leak location models have been developed to help identify where a leak is occurring – which allows utilities to react quickly to pipe bursts and reduce the impact of the leak. This paper develops a new leak location model that is designed to identify optimal search areas for leak crews using a random forest classification model and the maximum coverage location problem algorithm. The model, when compared with other machine learning and clustering localization predictions, reduces the search space by over 35%, allowing utilities to confirm leak location and mitigate its impact more efficiently. The new model is also highly customizable, able to adjust the number of search areas and search size quickly and easily to meet leak crews’ requirements.
AbstractList Buried watermains are deteriorating and pipe failure is increasing in many cities. In response, advanced leak location models have been developed to help identify where a leak is occurring – which allows utilities to react quickly to pipe bursts and reduce the impact of the leak. This paper develops a new leak location model that is designed to identify optimal search areas for leak crews using a random forest classification model and the maximum coverage location problem algorithm. The model, when compared with other machine learning and clustering localization predictions, reduces the search space by over 35%, allowing utilities to confirm leak location and mitigate its impact more efficiently. The new model is also highly customizable, able to adjust the number of search areas and search size quickly and easily to meet leak crews’ requirements.
Author Savić, Dragan
Vamvakeridou, Lydia
Lewis, Gareth
Chen, Albert
Snider, Brett
Author_xml – sequence: 1
  givenname: Brett
  surname: Snider
  fullname: Snider, Brett
  organization: Centre for Water Systems, University of Exeter , UK
– sequence: 2
  givenname: Gareth
  surname: Lewis
  fullname: Lewis, Gareth
  organization: Centre for Water Systems, University of Exeter , UK
– sequence: 3
  givenname: Albert
  surname: Chen
  fullname: Chen, Albert
  organization: Centre for Water Systems, University of Exeter , UK
– sequence: 4
  givenname: Lydia
  surname: Vamvakeridou
  fullname: Vamvakeridou, Lydia
  organization: KWR Research Institute , Netherlands
– sequence: 5
  givenname: Dragan
  surname: Savić
  fullname: Savić, Dragan
  organization: KWR Research Institute , Netherlands
BookMark eNqNkF1r2zAUhkVJYf3Yb5igV4Wm0YdtKRe7KCVtB4VdbLsWJ_Jxqk62XMlukv76OvPo6BgsVxLofc559RyTSRMaJOQTZ5ecaT3jKs-nXPJ8xrksZnzGuGCZOCBHby-TtztTH8hxSo-MFSqT8yNirmjlceOWHi-oR_hJbcQ1rYLtE5bUBwvevUDnQkPrUKKnfXLNigKtYePqvqY2PGOEFdKEEO0DhYhAwa9CdN1DfUoOK_AJP_4-T8iPm8X367vp_dfbL9dX91MrhRJTZEqwSkCOXGtQkoml1qUqeDnPLYhlyatC2yE0_ENZAZm1UqsMoQS75BnKE6LHuX3TwnYN3ps2uhri1nBmdqLMToHZ6TA7UYabUdSAno1oG8NTj6kzj6GPzdDWCDVo0oWY50Pq85iyMaQUsTLWdb-8dBGc32OL-ovfv58cSRfaP9X-T53_g1osvr3Pmbas5CsqRalR
CitedBy_id crossref_primary_10_1061_JWRMD5_WRENG_6263
crossref_primary_10_1007_s13762_024_05823_1
Cites_doi 10.1007/BF01942293
10.1016/j.jher.2009.02.003
10.1109/JCN.2019.000005
10.1023/A:1010933404324
10.1061/(ASCE)WR.1943-5452.0000661
10.1109/ACCESS.2018.2885444
10.1016/J.JLP.2012.05.010
10.3390/MATH9060672
10.2166/WS.2021.101
10.1080/1573062X.2020.1797832
10.1007/978-3-030-93420-0_32
10.1177/1475921720950470
10.1061/(ASCE)WR1943-5452.0001079
10.1109/ACCESS.2017.2752802
ContentType Journal Article
Copyright Published under licence by IOP Publishing Ltd
Published under licence by IOP Publishing Ltd. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: Published under licence by IOP Publishing Ltd
– notice: Published under licence by IOP Publishing Ltd. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID O3W
TSCCA
AAYXX
CITATION
ABUWG
AEUYN
AFKRA
ATCPS
AZQEC
BENPR
BHPHI
CCPQU
DWQXO
GNUQQ
HCIFZ
PATMY
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
PYCSY
ADTOC
UNPAY
DOI 10.1088/1755-1315/1136/1/012042
DatabaseName Institute of Physics Open Access Journal Titles
IOPscience (Open Access)
CrossRef
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Agricultural & Environmental Science Collection
ProQuest Central Essentials
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central
ProQuest Central Student
SciTech Premium Collection (via ProQuest)
Environmental Science Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Environmental Science Collection
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
Environmental Science Collection
ProQuest One Sustainability
ProQuest One Academic UKI Edition
Natural Science Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
Environmental Science Database
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Publicly Available Content Database
CrossRef
Database_xml – sequence: 1
  dbid: O3W
  name: Institute of Physics Open Access Journal Titles
  url: http://iopscience.iop.org/
  sourceTypes:
    Enrichment Source
    Publisher
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Geology
EISSN 1755-1315
ExternalDocumentID 10.1088/1755-1315/1136/1/012042
10_1088_1755_1315_1136_1_012042
EES_1136_1_012042
GroupedDBID 1JI
2WC
4.4
5B3
5GY
5VS
AAFWJ
AAJIO
AAJKP
ABHWH
ACAFW
ACHIP
AEFHF
AEJGL
AFKRA
AFYNE
AHSEE
AIYBF
AKPSB
ALMA_UNASSIGNED_HOLDINGS
ASPBG
ATCPS
ATQHT
AVWKF
AZFZN
BENPR
BHPHI
CCPQU
CEBXE
CJUJL
CRLBU
CS3
DU5
EDWGO
EQZZN
HCIFZ
IJHAN
IOP
IZVLO
KNG
KQ8
N5L
O3W
OK1
PATMY
PIMPY
PJBAE
PYCSY
RIN
SY9
T37
TR2
TSCCA
W28
AAYXX
AEINN
AEUYN
CITATION
PHGZM
PHGZT
PUEGO
ABUWG
AZQEC
DWQXO
GNUQQ
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
02O
1WK
5PX
AALHV
ACARI
ADTOC
AERVB
AGQPQ
ARNYC
BBWZM
C1A
EJD
FEDTE
HVGLF
JCGBZ
M48
Q02
UNPAY
ID FETCH-LOGICAL-c3272-e0720f2a5e188a7302b88d761d95ca2bd1f68c0721757c2a4cc3874eadacb14e3
IEDL.DBID UNPAY
ISSN 1755-1307
1755-1315
IngestDate Sun Sep 07 11:24:07 EDT 2025
Mon Jun 30 06:39:40 EDT 2025
Thu Apr 24 23:11:53 EDT 2025
Wed Oct 01 00:28:11 EDT 2025
Tue Jan 24 23:15:48 EST 2023
Wed Aug 21 03:31:55 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3272-e0720f2a5e188a7302b88d761d95ca2bd1f68c0721757c2a4cc3874eadacb14e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://proxy.k.utb.cz/login?url=https://doi.org/10.1088/1755-1315/1136/1/012042
PQID 2767486295
PQPubID 4998669
PageCount 10
ParticipantIDs crossref_citationtrail_10_1088_1755_1315_1136_1_012042
unpaywall_primary_10_1088_1755_1315_1136_1_012042
crossref_primary_10_1088_1755_1315_1136_1_012042
iop_journals_10_1088_1755_1315_1136_1_012042
proquest_journals_2767486295
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20230101
2023-01-01
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – month: 01
  year: 2023
  text: 20230101
  day: 01
PublicationDecade 2020
PublicationPlace Bristol
PublicationPlace_xml – name: Bristol
PublicationTitle IOP conference series. Earth and environmental science
PublicationTitleAlternate IOP Conf. Ser.: Earth Environ. Sci
PublicationYear 2023
Publisher IOP Publishing
Publisher_xml – name: IOP Publishing
References Shekofteh (EES_1136_1_012042bib12) 2020; 17
EES_1136_1_012042bib16
EES_1136_1_012042bib2
Murvay (EES_1136_1_012042bib8) 2012; 25
Zhang (EES_1136_1_012042bib10) 2016; 142
Colombo (EES_1136_1_012042bib6) 2009; 2
Lucin (EES_1136_1_012042bib13) 2021; 9
Elhabyan (EES_1136_1_012042bib15) 2019; 21
Sophocleous (EES_1136_1_012042bib17) 2019; 145
Ares-Milián (EES_1136_1_012042bib9) 2021; 12702
Breiman (EES_1136_1_012042bib14) 2001; 45
Folkman (EES_1136_1_012042bib1) 2018; 174
Chen (EES_1136_1_012042bib11) 2020; 20
Adedeji (EES_1136_1_012042bib5) 2017; 5
Hu (EES_1136_1_012042bib4) 2021; 21
Church (EES_1136_1_012042bib3) 1974; 32
Chan (EES_1136_1_012042bib7) 2019; 6
References_xml – ident: EES_1136_1_012042bib2
– volume: 174
  year: 2018
  ident: EES_1136_1_012042bib1
  article-title: Water main break rates in the USA and Canada: A comprehensive study
  publication-title: Mech. Aerosp. Eng. Fac. Publ.
– volume: 32
  start-page: 101
  year: 1974
  ident: EES_1136_1_012042bib3
  publication-title: The maximal covering location problem Pap. Reg. Sci.
  doi: 10.1007/BF01942293
– volume: 2
  start-page: 212
  year: 2009
  ident: EES_1136_1_012042bib6
  article-title: A selective literature review of transient-based leak detection methods
  publication-title: J. Hydro-Environment Res.
  doi: 10.1016/j.jher.2009.02.003
– volume: 21
  start-page: 45
  year: 2019
  ident: EES_1136_1_012042bib15
  article-title: Coverage protocols for wireless sensor networks: Review and future directions
  publication-title: J. Commun. Networks
  doi: 10.1109/JCN.2019.000005
– volume: 45
  start-page: 5
  year: 2001
  ident: EES_1136_1_012042bib14
  article-title: Random Forests
  publication-title: Machine Learning
  doi: 10.1023/A:1010933404324
– ident: EES_1136_1_012042bib16
– volume: 142
  start-page: 04016042
  year: 2016
  ident: EES_1136_1_012042bib10
  article-title: Leakage zone identification in large-scale water distribution systems using multiclass support vector machines
  publication-title: J. Water Resour. Plan. Manag.
  doi: 10.1061/(ASCE)WR.1943-5452.0000661
– volume: 6
  start-page: 78846
  year: 2019
  ident: EES_1136_1_012042bib7
  publication-title: Review of current technologies and proposed intelligent methodologies for water distributed network leakage detection IEEE Access
  doi: 10.1109/ACCESS.2018.2885444
– volume: 25
  start-page: 966
  year: 2012
  ident: EES_1136_1_012042bib8
  article-title: A survey on gas leak detection and localization techniques
  publication-title: J. Loss Prev. Process Ind.
  doi: 10.1016/J.JLP.2012.05.010
– volume: 9
  year: 2021
  ident: EES_1136_1_012042bib13
  article-title: Data-driven leak localization in urban water distribution networks using big data for random forest classifier
  publication-title: Mathematics
  doi: 10.3390/MATH9060672
– volume: 21
  start-page: 3282
  year: 2021
  ident: EES_1136_1_012042bib4
  publication-title: Review of model-based and data-driven approaches for leak detection and location in water distribution systems Water Supply
  doi: 10.2166/WS.2021.101
– volume: 17
  start-page: 525
  year: 2020
  ident: EES_1136_1_012042bib12
  article-title: A methodology for leak detection in water distribution networks using graph theory and artificial neural network
  publication-title: Urban Water J.
  doi: 10.1080/1573062X.2020.1797832
– volume: 12702
  start-page: 340
  year: 2021
  ident: EES_1136_1_012042bib9
  article-title: Clustering-based partitioning of water distribution networks for leak zone location
  publication-title: Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell Lect. Notes Bioinformatics)
  doi: 10.1007/978-3-030-93420-0_32
– volume: 20
  start-page: 1938
  year: 2020
  ident: EES_1136_1_012042bib11
  article-title: An iterative method for leakage zone identification in water distribution networks based on machine learning
  publication-title: Structural Health Monitoring
  doi: 10.1177/1475921720950470
– volume: 145
  start-page: 04019024
  year: 2019
  ident: EES_1136_1_012042bib17
  article-title: Leak localization in a real water distribution network based on search-space reduction
  publication-title: J. Water Resour. Plan. Manag.
  doi: 10.1061/(ASCE)WR1943-5452.0001079
– volume: 5
  start-page: 20272
  year: 2017
  ident: EES_1136_1_012042bib5
  publication-title: Towards achieving a reliable leakage detection and localization algorithm for application in water piping networks: An overview IEEE Access
  doi: 10.1109/ACCESS.2017.2752802
SSID ssj0067439
Score 2.2422998
Snippet Buried watermains are deteriorating and pipe failure is increasing in many cities. In response, advanced leak location models have been developed to help...
SourceID unpaywall
proquest
crossref
iop
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 12042
SubjectTerms Algorithms
Clustering
Crews
Localization
Machine learning
Pipes
Searching
Utilities
SummonAdditionalLinks – databaseName: IOP Science Platform
  dbid: IOP
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dT9RAEN8ohuiLimA8RbMhPtK77rbb7j0Sc0hMVBIk4W0zne4iofcRuAbxr3emH8iZGDC-9WGm2Z2dr3ZnfiPEe1CB8_gk8t6mEXnJNLKYmwgotKBNyP4Kbk7-_CU7OE4_nZiT270w80Xn-of02AIFtyLsCuLsiAKeiVSizIjnkYzUiPs_U3LDjxJL-TE38X097L0x19iPm6bIhinO-xqvv79oJUI9pFWsJJ-P69kCrq-gqm7Fof1nAvsdtOUn58N6WQzx5x_gjv-3xefiaZemyr2WY0M88LMXYv1jMwb4elO4PRkYSbOo_K6sPJxLSj6vZJhjfelL2QTIrsFTNrN2JNfXn0qQU_hxNq2nErl0lHyZbE1NAiWvEqrT-cXZ8vt0SxzvT759OIi6UQ0RJjrXkY9zHQcNxitrgbyGLqwt80yVY4Ogi1KFzCJjseUmRw0pIulBSmoMWKjUJy_F2mw-86-E1MiXgyHDjJFrcgBTeB9CmTGMOGA8EFl_PA47HHMep1G55j7dWsfScyw9x9JzyrXSG4j4hnHRQnnczbJLR-Q6s768m3xnhXwyOVolcIsyDMR2r02_KTVjKtHH5dgMhLrRsPsu8_W_LfONeKIpVWt_JG2LteVF7d9SarUs3jW28ws4uA3p
  priority: 102
  providerName: IOP Publishing
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LTxsxEB5BUNVeqgKtGkqRhThiJXbWu84BIUChqFIjxEPiZs167YC6SbaQCPj3ePYB5FK4rsar1YznsfbM9wHsoPBUx_e4czriIUpGXNtEcQypxepe8L-UhpP_DOOTy-j3lbpagmEzC0NtlU1MLAN1NrV0Rt6RhDoTyu--2i_-cWKNotvVhkIDa2qFbK-EGFuGFUnIWC1YORwMT8-a2Ewd9_1yRFIpHqJ30nR8hd_A-plQHaI56YgOjZVGciFfLd9Mi4VS9ON8UuDjPeb5q6x0_AU-1-UkO6jsvwpLbrIGH36VdL2P62AOmCfEyzR3uyx3-JeFIvGe-amd37mMlYmsHsRkJScOoz74EUM2xoeb8XzMLLV4hpjDKpdgGIpMhvkoqGZ2Pf4Kl8eDi6MTXlMqcNuTieSum8iul6ic0BqDd8tU6yyJRdZXFmWaCR9rS5hpiUqsxMjaYK8obDe0qYhc7xu0JtOJ-w5MWrrE87GNCWEmQVSpc95nMcF9o-22IW4UZ2yNN060F7kp7721NqRxQxo3pHEjTKXxNnSfFxYV5MbbS3aDZUztfndvi28viA8G54sCpsh8GzYbO79IvuzCNohn27_3Mzf-_8of8InI7KsDnk1ozW7n7mcoeWbpVr2PnwAc6_Rt
  priority: 102
  providerName: ProQuest
Title A flexible, leak crew focused localization model using a maximum coverage search area algorithm
URI https://iopscience.iop.org/article/10.1088/1755-1315/1136/1/012042
https://www.proquest.com/docview/2767486295
https://doi.org/10.1088/1755-1315/1136/1/012042
UnpaywallVersion publishedVersion
Volume 1136
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1755-1315
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0067439
  issn: 1755-1307
  databaseCode: KQ8
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVIOP
  databaseName: Institute of Physics Open Access Journal Titles
  customDbUrl:
  eissn: 1755-1315
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0067439
  issn: 1755-1307
  databaseCode: O3W
  dateStart: 20080501
  isFulltext: true
  titleUrlDefault: http://iopscience.iop.org/
  providerName: IOP Publishing
– providerCode: PRVIOP
  databaseName: IOP Science Platform
  customDbUrl:
  eissn: 1755-1315
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0067439
  issn: 1755-1307
  databaseCode: IOP
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://iopscience.iop.org/
  providerName: IOP Publishing
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1755-1315
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0067439
  issn: 1755-1307
  databaseCode: BENPR
  dateStart: 20080501
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED9trRBPfCOKRmUhHpe1duLEeyyoYyDRVUDFeLIujr1VSz-0NRrjr-ecj0KQ0ICXPN1Zzvm-LN_9DuAVcufz-DCwVkUBeckoUCaRAVJoMSok-0t9c_KHSXw8i96fytMdGDS9MK33e7qcUXSTAQ-5HPjhIwM-8M2eEfncbiwp-e5AdzaZjr6WbY8lZdkgveVqKrr-vFIrHu3OV-tWqnm3WK7x5hrz_Jeoc3Qfps1-q2KTi4Nikx6Y779BOf7DDz2Ae3UGykaVyjyEHbt8BHfelhN-bx6DHjHnQTLT3O6z3OIFo7zymrmVKa5sxsrYV_dusnKMDvOl82cM2QK_zRfFghlfFUpuilVWxJDyUob52epyvjlfPIHZ0fjzm-OgnsIQmFAkIrDDRAydQGm5UkgOQaRKZUnMs0NpUKQZd7EyHmYtkYkRGBlDRxyRhqJJeWTDp9BZrpb2GTBh_Lufi03sQWkSRJla61wWe4RwNMMexM1ZaFNDlPtJGbkun8qV0l562ktPe-lprivp9WC4ZVxXKB23s-zTYevaYq9uJ3_ZIh-PP7UJ9DpzPdhrVOcnpfBwSXRvPJQ94Ft1-tttPv8Pnj3obC4L-4KypU3ah-7r8WT6sQ-7706m9D0Jv_Rrq_kBKn0DAA
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB71oapcEE8RKLBC5dZV4vWuvTlUqEBK-ooqaKXelvV6XSqcxJBEIX-O38aMHy25UC69WrMre2Z25hvvPAC2bZARjg-591pytJKSaxcrbtG1OB3i-UuoOPlkEPXP5eGFuliB300tDKVVNjaxNNTp2NE_8ragrjMIv7vqXfGD09Qoul1tRmjYerRCulu2GKsLO478Yo4h3GT34CPK-60Q-72zD31eTxngLhSx4L4Ti04mrPKB1hYVXiRapxjdp13lrEjSIIu0ozZisYqdsNI5_ASJErAuCaQPcd9VWJeh7GLwt_6-Nzj93PgCyvDvliWZSnH0FnGTYYZhZ_0sUG0aq9IO2lTGKsWSf1y9GhdL0HdzNirsYm7z_C8vuP8A7tfwle1V-vYQVvzoEWx8KscDLx6D2WMZddhMcr_Dcm-_MwSlc5aN3WziU1Y6zrrwk5UzeBjl3V8yy4b219VwNmSOUkrRxrGKt8wiqGU2v0RRTL8Nn8D5nTD3KayNxiP_DJhwdGmYRS6ijjaxtSrxPsvSiNqLW9dpQdQwzri6vzmN2chNec-utSGOG-K4IY6bwFQcb0HnemFRtfi4fckOSsbUx31yO_mbJfJe78sygSnSrAVbjZxvKG-0vgXBtez_9zWf_3vL17DZPzs5NscHg6MXcE8gfKt-Lm3B2vTnzL9EuDVNXtU6zeDrXR-jP5lJMPg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Zb9QwEB61RRwv5SpiaQEL8dhsYidOvI9V2aVcpRJU6pvlOPZSNXuo3aiUX9-ZHAuLhAriLQ8zkT2eK_HMNwCvDfeUx8eBcyoJ0EsmgbKZDAyGFqtitL-cmpM_HaYHx8n7E3myBqNlL8xs3rr-Pj42QMGNCNuCOBViwJMBj7kMaR5JyEPq_0xEOC_8Otyq4Uqoke_zUeeRqc5-UDdG1oxR1tV5_fllK1FqHVeykoDeraZzc3VpyvKXWDS6D-NuF00Jylm_WuR9--M3gMf_3-YD2GzTVbbXcD2ENTd9BLff1uOArx6D3mOeEDXz0u2y0pkzhknoJfMzW124gtWBsm30ZPXMHUZ19mNm2MR8P51UE2aphBR9GmtMjhlMYpkpx7Pz08W3yRYcj4Zf9w-CdmRDYGORicBFmYi8MNJxpQx6D5ErVWQpLwbSGpEX3KfKEiZbJjMrTGIt6kOC6mxszhMXP4GN6WzqngITli4JfWpTQrDJjJG5c94XKcGJGxv1IO2OSNsWz5zGapS6vldXSpMENUlQkwQ1140EexAtGecNpMfNLLt4TLo174ubyV-tkA-HX1YJNB5iD3Y6jfpJKQhbCT8yB7IHfKllf7vMZ_-2zJdw5-jNSH98d_hhG-4JzN6af0s7sLE4r9xzzLYW-YvalK4BAYUTSg
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9swED-6hLGnfY-mtEOMPsZJJFu2-hhKsjBYCKyB7kmcZSkLsZOQxHTtXz_JH9k8GN32fmfk032Ju_sdwCVS4_J439NaBJ71koEnVMQ9tKFFCd_aX-yGkz9Pw8k8-HTLb0-gX8_CNOr39nFmoxv3qE953y0f6dO-G_YMrM9th9wm3y1oz6ez4ddi7LGgLAakj1x1R9efv9SIR0-Wm20j1XyWr7d4f4dp-kvUGb-AWX3estlk1csPcU89_Abl-A8_9BKeVxkoGZYq8wpO9Po1PP1YbPi9fwNySIwDyYxT3SWpxhWxeeUdMRuV73VCithXzW6SYo0Oca3zC4Ikw-_LLM-Icl2h1k2R0ooI2ryUYLrY7JaHb9lbmI9HN9cTr9rC4CmfRczTg4gNDEOuqRBoHQKLhUiikCZXXCGLE2pCoRzMWsQjxTBQyl5xYDUUVUwD7b-D1nqz1qdAmHJ1PxOq0IHSRIg81tqYJHQI4agGHQjru5Cqgih3mzJSWZTKhZBOetJJTzrpSSpL6XVgcGTcligdj7N07WXLymL3j5N_aJCPRl-aBHKbmA6c16rzk5I5uCT7brziHaBHdfrbY579B885tA67XF_YbOkQv68s5AcX8P9U
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+flexible%2C+leak+crew+focused+localization+model+using+a+maximum+coverage+search+area+algorithm&rft.jtitle=IOP+conference+series.+Earth+and+environmental+science&rft.au=Snider%2C+Brett&rft.au=Lewis%2C+Gareth&rft.au=Chen%2C+Albert&rft.au=Vamvakeridou%2C+Lydia&rft.date=2023-01-01&rft.pub=IOP+Publishing&rft.issn=1755-1307&rft.eissn=1755-1315&rft.volume=1136&rft.issue=1&rft_id=info:doi/10.1088%2F1755-1315%2F1136%2F1%2F012042&rft.externalDocID=EES_1136_1_012042
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1755-1307&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1755-1307&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1755-1307&client=summon