Forehead and In-Ear EEG Acquisition and Processing: Biomarker Analysis and Memory-Efficient Deep Learning Algorithm for Sleep Staging with Optimized Feature Dimensionality

Advancements in electroencephalography (EEG) technology and feature extraction methods have paved the way for wearable, non-invasive systems that enable continuous sleep monitoring outside clinical environments. This study presents the development and evaluation of an EEG-based acquisition system fo...

Full description

Saved in:
Bibliographic Details
Published inSensors (Basel, Switzerland) Vol. 25; no. 19; p. 6021
Main Authors De Fazio, Roberto, Yalçınkaya, Şule Esma, Cascella, Ilaria, Del-Valle-Soto, Carolina, De Vittorio, Massimo, Visconti, Paolo
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 01.10.2025
Subjects
Online AccessGet full text
ISSN1424-8220
1424-8220
DOI10.3390/s25196021

Cover

More Information
Summary:Advancements in electroencephalography (EEG) technology and feature extraction methods have paved the way for wearable, non-invasive systems that enable continuous sleep monitoring outside clinical environments. This study presents the development and evaluation of an EEG-based acquisition system for sleep staging, which can be adapted for wearable applications. The system utilizes a custom experimental setup with the ADS1299EEG-FE-PDK evaluation board to acquire EEG signals from the forehead and in-ear regions under various conditions, including visual and auditory stimuli. Afterward, the acquired signals were processed to extract a wide range of features in time, frequency, and non-linear domains, selected based on their physiological relevance to sleep stages and disorders. The feature set was reduced using the Minimum Redundancy Maximum Relevance (mRMR) algorithm and Principal Component Analysis (PCA), resulting in a compact and informative subset of principal components. Experiments were conducted on the Bitbrain Open Access Sleep (BOAS) dataset to validate the selected features and assess their robustness across subjects. The feature set extracted from a single EEG frontal derivation (F4-F3) was then used to train and test a two-step deep learning model that combines Long Short-Term Memory (LSTM) and dense layers for 5-class sleep stage classification, utilizing attention and augmentation mechanisms to mitigate the natural imbalance of the feature set. The results—overall accuracies of 93.5% and 94.7% using the reduced feature sets (94% and 98% cumulative explained variance, respectively) and 97.9% using the complete feature set—demonstrate the feasibility of obtaining a reliable classification using a single EEG derivation, mainly for unobtrusive, home-based sleep monitoring systems.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:1424-8220
1424-8220
DOI:10.3390/s25196021