Adaptive‐optimal control under time‐varying stochastic uncertainty using past learning
Summary An adaptive‐optimal control architecture is presented for adaptive control of constrained aerospace systems with matched uncertainties that are subject to dynamic stochastic change. The architecture brings together three key elements, ie, model predictive control–based reference command shap...
        Saved in:
      
    
          | Published in | International journal of adaptive control and signal processing Vol. 33; no. 12; pp. 1803 - 1824 | 
|---|---|
| Main Authors | , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        Bognor Regis
          Wiley Subscription Services, Inc
    
        01.12.2019
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 0890-6327 1099-1115 1099-1115  | 
| DOI | 10.1002/acs.3061 | 
Cover
| Abstract | Summary
An adaptive‐optimal control architecture is presented for adaptive control of constrained aerospace systems with matched uncertainties that are subject to dynamic stochastic change. The architecture brings together three key elements, ie, model predictive control–based reference command shaping, Gaussian process (GP)–based Bayesian nonparametric model reference adaptive control (MRAC), and online GP clustering over nonstationary GPs. Model predictive control optimizes reference model and its shaped output is passed into GP–based MRAC, which is used to learn the model in presence of significant time‐varying stochastic uncertainty while maintaining stability. Based on a likelihood ratio test, the changepoints are detected and learned. Lastly, the models are created and clustered by non‐Bayesian clustering algorithm. The key salient feature of our architecture is that not only can it detect changes but also it uses online GP clustering to enable the controller to utilize past learning of similar models to significantly reduce learning transients. Furthermore, persistence of excitation conditions are significantly relaxed due to the use of GP‐MRAC. Stability of the architecture is argued theoretically and performance is validated empirically on different scenarios for wing rock dynamics. | 
    
|---|---|
| AbstractList | An adaptive‐optimal control architecture is presented for adaptive control of constrained aerospace systems with matched uncertainties that are subject to dynamic stochastic change. The architecture brings together three key elements, ie, model predictive control–based reference command shaping, Gaussian process (GP)–based Bayesian nonparametric model reference adaptive control (MRAC), and online GP clustering over nonstationary GPs. Model predictive control optimizes reference model and its shaped output is passed into GP–based MRAC, which is used to learn the model in presence of significant time‐varying stochastic uncertainty while maintaining stability. Based on a likelihood ratio test, the changepoints are detected and learned. Lastly, the models are created and clustered by non‐Bayesian clustering algorithm. The key salient feature of our architecture is that not only can it detect changes but also it uses online GP clustering to enable the controller to utilize past learning of similar models to significantly reduce learning transients. Furthermore, persistence of excitation conditions are significantly relaxed due to the use of GP‐MRAC. Stability of the architecture is argued theoretically and performance is validated empirically on different scenarios for wing rock dynamics. Summary An adaptive‐optimal control architecture is presented for adaptive control of constrained aerospace systems with matched uncertainties that are subject to dynamic stochastic change. The architecture brings together three key elements, ie, model predictive control–based reference command shaping, Gaussian process (GP)–based Bayesian nonparametric model reference adaptive control (MRAC), and online GP clustering over nonstationary GPs. Model predictive control optimizes reference model and its shaped output is passed into GP–based MRAC, which is used to learn the model in presence of significant time‐varying stochastic uncertainty while maintaining stability. Based on a likelihood ratio test, the changepoints are detected and learned. Lastly, the models are created and clustered by non‐Bayesian clustering algorithm. The key salient feature of our architecture is that not only can it detect changes but also it uses online GP clustering to enable the controller to utilize past learning of similar models to significantly reduce learning transients. Furthermore, persistence of excitation conditions are significantly relaxed due to the use of GP‐MRAC. Stability of the architecture is argued theoretically and performance is validated empirically on different scenarios for wing rock dynamics.  | 
    
| Author | Chowdhary, Girish Abdollahi, Ali  | 
    
| Author_xml | – sequence: 1 givenname: Ali orcidid: 0000-0001-7908-9148 surname: Abdollahi fullname: Abdollahi, Ali email: ali.abdollahi@okstate.edu organization: Oklahoma State University – sequence: 2 givenname: Girish surname: Chowdhary fullname: Chowdhary, Girish organization: University of Illinios Urbana‐Champagne  | 
    
| BookMark | eNp9kL1OwzAYRS0EEm1B4hEiscCQ8jmmsTNWFX9SJQZgYbEc24FUxgm20yobj8Az8iQ4lAkBk3_O8afrO0a7trEaoSMMUwyQnQnppwRyvINGGIoixRjPdtEIWAFpTjK6j8berwAiw2SEHudKtKFe64-39yZuXoRJZGODa0zSWaVdEu8GuBaur-1T4kMjn4UPtYxcahdEbUOfdH6AbQSJ0cLZeDpAe5UwXh9-rxP0cHlxv7hOl7dXN4v5MpUxDk4ZgVJRWpSFFnnFBMuYOs9zBiVAPitLWsKMEqYEYbkUmkiQWlOgJVWkUqoiE3S6ndvZVvQbYQxvXfyI6zkGPpTCYyl8KCW6x1u3dc1rp33gq6ZzNsbjGclwlmXAaLSmW0u6xnunKy7rIEI99CJq89vYkx8P_kmQbtVNbXT_p8fni7sv_xOqt5JO | 
    
| CitedBy_id | crossref_primary_10_3389_frobt_2020_558027 crossref_primary_10_1002_acs_3407 crossref_primary_10_1002_acs_3075 crossref_primary_10_1007_s12555_024_0033_y crossref_primary_10_1155_2020_2096302 crossref_primary_10_3390_machines10100943 crossref_primary_10_1016_j_ast_2024_109070  | 
    
| Cites_doi | 10.1007/BFb0109870 10.1016/j.sysconle.2008.12.002 10.1007/978-3-0348-8407-5_1 10.1016/j.automatica.2006.08.026 10.1109/ICRA.2012.6225035 10.1023/A:1023696221899 10.1007/s10514-011-9248-x 10.1109/CDC.2004.1428788 10.1109/ACC.2000.876624 10.1002/0471459100 10.1007/978-3-642-38253-6_3 10.7551/mitpress/3206.001.0001 10.23919/ACC.1993.4792861 10.1002/acs.2297 10.1162/089976602317250933 10.1109/CDC.2013.6759991 10.1109/MCS.2018.2851010 10.1080/00207179.2014.880128 10.1016/S0005-1098(02)00250-9 10.1109/72.165588 10.1109/ICRA.2013.6631353 10.1016/j.automatica.2003.11.014 10.1109/ICRA.2014.6907000 10.1016/S0005-1098(01)00174-1 10.1109/9.35278 10.1109/TNNLS.2014.2319052 10.1016/0005-1098(85)90058-5 10.1109/TNNLS.2012.2198889 10.1109/TAC.2009.2031580 10.1007/978-3-0348-8407-5_2 10.1002/acs.4480030206 10.1109/CDC.2010.5717148 10.2514/6.2015-1574 10.1016/j.automatica.2013.02.003 10.2514/6.2013-4932  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2019 John Wiley & Sons, Ltd. | 
    
| Copyright_xml | – notice: 2019 John Wiley & Sons, Ltd. | 
    
| DBID | AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D ADTOC UNPAY  | 
    
| DOI | 10.1002/acs.3061 | 
    
| DatabaseName | CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts  Academic Computer and Information Systems Abstracts Professional Unpaywall for CDI: Periodical Content Unpaywall  | 
    
| DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional  | 
    
| DatabaseTitleList | CrossRef Technology Research Database  | 
    
| Database_xml | – sequence: 1 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Engineering Architecture  | 
    
| EISSN | 1099-1115 | 
    
| EndPage | 1824 | 
    
| ExternalDocumentID | 10.1002/acs.3061 10_1002_acs_3061 ACS3061  | 
    
| Genre | article | 
    
| GrantInformation_xml | – fundername: Air Force Office of Scientific Research funderid: FA9550-14-1-0399 – fundername: University of Oklahoma NASA Cooperative Agreement funderid: NNX13AB21A  | 
    
| GroupedDBID | -~X .3N .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 31~ 33P 3EH 3SF 3WU 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAYOK AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ACAHQ ACBWZ ACCFJ ACCZN ACGFO ACGFS ACIWK ACPOU ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AIAGR AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CMOOK CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS EJD F00 F01 F04 F5P FEDTE G-S G.N GNP GODZA H.T H.X HBH HF~ HGLYW HHY HHZ HVGLF HZ~ I-F IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M59 MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K RIWAO RJQFR ROL RWI RX1 SAMSI SUPJJ TUS UB1 V2E W8V W99 WBKPD WIH WIK WJL WLBEL WOHZO WQJ WRC WWI WXSBR WYISQ XG1 XPP XV2 ZZTAW ~IA ~WT AAMMB AAYXX AEFGJ AEYWJ AGHNM AGQPQ AGXDD AGYGG AIDQK AIDYY AIQQE AMVHM CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D ADTOC UNPAY  | 
    
| ID | FETCH-LOGICAL-c3271-830bd779b9ea6f8a828d46680b0065bb7b05738da386cae3c0cee707b7d3fddf3 | 
    
| IEDL.DBID | DR2 | 
    
| ISSN | 0890-6327 1099-1115  | 
    
| IngestDate | Tue Aug 19 19:49:35 EDT 2025 Fri Jul 25 12:05:34 EDT 2025 Wed Oct 01 04:19:56 EDT 2025 Thu Apr 24 23:07:48 EDT 2025 Wed Jan 22 16:41:18 EST 2025  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 12 | 
    
| Language | English | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c3271-830bd779b9ea6f8a828d46680b0065bb7b05738da386cae3c0cee707b7d3fddf3 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14  | 
    
| ORCID | 0000-0001-7908-9148 | 
    
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/acs.3061 | 
    
| PQID | 2321222087 | 
    
| PQPubID | 996374 | 
    
| PageCount | 22 | 
    
| ParticipantIDs | unpaywall_primary_10_1002_acs_3061 proquest_journals_2321222087 crossref_citationtrail_10_1002_acs_3061 crossref_primary_10_1002_acs_3061 wiley_primary_10_1002_acs_3061_ACS3061  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | December 2019 2019-12-00 20191201  | 
    
| PublicationDateYYYYMMDD | 2019-12-01 | 
    
| PublicationDate_xml | – month: 12 year: 2019 text: December 2019  | 
    
| PublicationDecade | 2010 | 
    
| PublicationPlace | Bognor Regis | 
    
| PublicationPlace_xml | – name: Bognor Regis | 
    
| PublicationTitle | International journal of adaptive control and signal processing | 
    
| PublicationYear | 2019 | 
    
| Publisher | Wiley Subscription Services, Inc | 
    
| Publisher_xml | – name: Wiley Subscription Services, Inc | 
    
| References | 2002; 38 2002; 14 2004; 40 2003; 117 2013; 49 2013; 27 2012 2010 2017; 28 2011; 31 2009 2014; 26 1997 2005 2003; 39 2004 1993 2003 1985; 21 2014; 87 1999 2009; 58 1989; 34 2009; 54 2000 2016 2015 2014 2013 2007; 43 2012; 23 2018; 38 1992; 3 1989 e_1_2_9_30_1 e_1_2_9_31_1 Camacho EF (e_1_2_9_41_1) 2013 e_1_2_9_11_1 e_1_2_9_34_1 e_1_2_9_10_1 e_1_2_9_35_1 e_1_2_9_13_1 e_1_2_9_32_1 e_1_2_9_12_1 e_1_2_9_33_1 Wang L (e_1_2_9_42_1) 2009 Åström KJ (e_1_2_9_6_1) 2013 e_1_2_9_15_1 e_1_2_9_38_1 e_1_2_9_14_1 e_1_2_9_39_1 e_1_2_9_17_1 e_1_2_9_36_1 e_1_2_9_16_1 e_1_2_9_37_1 e_1_2_9_19_1 e_1_2_9_18_1 e_1_2_9_20_1 e_1_2_9_40_1 e_1_2_9_22_1 e_1_2_9_21_1 e_1_2_9_46_1 e_1_2_9_43_1 e_1_2_9_23_1 e_1_2_9_44_1 e_1_2_9_8_1 e_1_2_9_7_1 e_1_2_9_5_1 e_1_2_9_4_1 Grande RC (e_1_2_9_24_1) 2017; 28 e_1_2_9_3_1 e_1_2_9_2_1 e_1_2_9_9_1 e_1_2_9_26_1 e_1_2_9_49_1 e_1_2_9_25_1 e_1_2_9_28_1 e_1_2_9_47_1 e_1_2_9_27_1 e_1_2_9_48_1 e_1_2_9_29_1 Rasmussen CE (e_1_2_9_45_1) 2003  | 
    
| References_xml | – volume: 26 start-page: 537 issue: 3 year: 2014 end-page: 550 article-title: Bayesian nonparametric adaptive control using Gaussian processes publication-title: IEEE Trans Neural Netw Learn Syst – year: 2009 – start-page: 207 year: 1999 end-page: 226 – year: 2005 – volume: 28 start-page: 2115 issue: 9 year: 2017 end-page: 2128 article-title: Online regression for data with changepoints using gaussian processes and reusable models publication-title: IEEE Trans Neural Netw Learn Syst – volume: 21 start-page: 247 issue: 3 year: 1985 end-page: 258 article-title: Adaptive systems, lack of persistency of excitation and bursting phenomena publication-title: Automatica – volume: 34 start-page: 1071 issue: 10 year: 1989 end-page: 1075 article-title: Combined direct and indirect approach to adaptive control publication-title: IEEE Trans Autom Control – year: 1989 – volume: 14 start-page: 641 issue: 3 year: 2002 end-page: 668 article-title: Sparse on‐line gaussian processes publication-title: Neural Computation – year: 2003 – volume: 87 start-page: 1583 issue: 8 year: 2014 end-page: 1603 article-title: Exponential parameter and tracking error convergence guarantees for adaptive controllers without persistency of excitation publication-title: Int J Control – year: 2000 – start-page: 23 year: 2000 end-page: 44 – year: 2016 – volume: 58 start-page: 320 issue: 5 year: 2009 end-page: 326 article-title: Adaptive model predictive control for constrained nonlinear systems publication-title: Syst Control Lett – year: 2014 – year: 2010 – year: 2012 – volume: 54 start-page: 2692 issue: 11 year: 2009 article-title: Combined/composite model reference adaptive control publication-title: IEEE Trans Autom Control – volume: 23 start-page: 1130 issue: 7 year: 2012 end-page: 1141 article-title: Reproducing kernel hilbert space approach for the online update of radial bases in neuro‐adaptive control publication-title: IEEE Trans Neural Netw Learn Syst – volume: 39 start-page: 489 issue: 3 year: 2003 end-page: 497 article-title: An algorithm for multi‐parametric quadratic programming and explicit MPC solutions publication-title: Automatica – volume: 43 start-page: 301 issue: 2 year: 2007 end-page: 308 article-title: Adaptive model predictive control for a class of constrained linear systems based on the comparison model publication-title: Automatica – volume: 38 start-page: 53 issue: 5 year: 2018 end-page: 86 article-title: Gaussian processes for learning and control: a tutorial with examples publication-title: IEEE Control Syst Mag – volume: 31 start-page: 383 issue: 4 year: 2011 end-page: 400 article-title: A Bayesian nonparametric approach to modeling motion patterns publication-title: Autonomous Robots – year: 2004 – volume: 3 start-page: 837 issue: 6 year: 1992 end-page: 863 article-title: Gaussian networks for direct adaptive control publication-title: IEEE Trans Neural Netw – year: 1997 – start-page: 1574 year: 2015 – volume: 38 start-page: 3 issue: 1 year: 2002 end-page: 20 article-title: The explicit linear quadratic regulator for constrained systems publication-title: Automatica – volume: 117 start-page: 9 issue: 1 year: 2003 end-page: 38 article-title: Suboptimal explicit receding horizon control via approximate multiparametric quadratic programming publication-title: J Optim Theory Appl – volume: 27 start-page: 280 issue: 4 year: 2013 end-page: 301 article-title: Concurrent learning adaptive control of linear systems with exponentially convergent bounds publication-title: Int J Adapt Control Signal Process – year: 1993 – volume: 40 start-page: 701 issue: 4 year: 2004 end-page: 708 article-title: Computation of the constrained infinite time linear quadratic regulator publication-title: Automatica – start-page: 29 year: 2013 end-page: 47 – year: 2015 – volume: 49 start-page: 1216 issue: 5 year: 2013 end-page: 1226 article-title: Provably safe and robust learning‐based model predictive control publication-title: Automatica – year: 2013 – ident: e_1_2_9_3_1 doi: 10.1007/BFb0109870 – ident: e_1_2_9_8_1 doi: 10.1016/j.sysconle.2008.12.002 – ident: e_1_2_9_4_1 doi: 10.1007/978-3-0348-8407-5_1 – ident: e_1_2_9_10_1 doi: 10.1016/j.automatica.2006.08.026 – ident: e_1_2_9_34_1 doi: 10.1109/ICRA.2012.6225035 – ident: e_1_2_9_25_1 – ident: e_1_2_9_27_1 doi: 10.1023/A:1023696221899 – ident: e_1_2_9_39_1 doi: 10.1007/s10514-011-9248-x – ident: e_1_2_9_31_1 doi: 10.1109/CDC.2004.1428788 – ident: e_1_2_9_28_1 doi: 10.1109/ACC.2000.876624 – ident: e_1_2_9_44_1 doi: 10.1002/0471459100 – ident: e_1_2_9_17_1 doi: 10.1007/978-3-642-38253-6_3 – ident: e_1_2_9_20_1 doi: 10.7551/mitpress/3206.001.0001 – ident: e_1_2_9_49_1 doi: 10.23919/ACC.1993.4792861 – volume-title: Model Predictive Control year: 2013 ident: e_1_2_9_41_1 – ident: e_1_2_9_16_1 doi: 10.1002/acs.2297 – ident: e_1_2_9_19_1 doi: 10.1162/089976602317250933 – ident: e_1_2_9_35_1 doi: 10.1109/CDC.2013.6759991 – ident: e_1_2_9_22_1 doi: 10.1109/MCS.2018.2851010 – ident: e_1_2_9_36_1 doi: 10.1080/00207179.2014.880128 – volume: 28 start-page: 2115 issue: 9 year: 2017 ident: e_1_2_9_24_1 article-title: Online regression for data with changepoints using gaussian processes and reusable models publication-title: IEEE Trans Neural Netw Learn Syst – ident: e_1_2_9_40_1 – ident: e_1_2_9_32_1 doi: 10.1016/S0005-1098(02)00250-9 – ident: e_1_2_9_46_1 doi: 10.1109/72.165588 – ident: e_1_2_9_38_1 – ident: e_1_2_9_2_1 doi: 10.1109/ICRA.2013.6631353 – ident: e_1_2_9_5_1 – ident: e_1_2_9_30_1 doi: 10.1016/j.automatica.2003.11.014 – ident: e_1_2_9_37_1 doi: 10.1109/ICRA.2014.6907000 – volume-title: Summer School on Machine Learning year: 2003 ident: e_1_2_9_45_1 – ident: e_1_2_9_29_1 doi: 10.1016/S0005-1098(01)00174-1 – ident: e_1_2_9_14_1 doi: 10.1109/9.35278 – ident: e_1_2_9_21_1 doi: 10.1109/TNNLS.2014.2319052 – ident: e_1_2_9_48_1 doi: 10.1016/0005-1098(85)90058-5 – ident: e_1_2_9_47_1 doi: 10.1109/TNNLS.2012.2198889 – ident: e_1_2_9_15_1 doi: 10.1109/TAC.2009.2031580 – ident: e_1_2_9_12_1 – ident: e_1_2_9_33_1 – ident: e_1_2_9_11_1 doi: 10.1007/978-3-0348-8407-5_2 – ident: e_1_2_9_23_1 – ident: e_1_2_9_26_1 – ident: e_1_2_9_43_1 doi: 10.1002/acs.4480030206 – ident: e_1_2_9_13_1 doi: 10.1109/CDC.2010.5717148 – volume-title: Model Predictive Control System Design and Implementation Using MATLAB® year: 2009 ident: e_1_2_9_42_1 – ident: e_1_2_9_7_1 doi: 10.2514/6.2015-1574 – ident: e_1_2_9_9_1 doi: 10.1016/j.automatica.2013.02.003 – volume-title: Adaptive Control year: 2013 ident: e_1_2_9_6_1 – ident: e_1_2_9_18_1 doi: 10.2514/6.2013-4932  | 
    
| SSID | ssj0009913 | 
    
| Score | 2.271133 | 
    
| Snippet | Summary
An adaptive‐optimal control architecture is presented for adaptive control of constrained aerospace systems with matched uncertainties that are subject... An adaptive‐optimal control architecture is presented for adaptive control of constrained aerospace systems with matched uncertainties that are subject to...  | 
    
| SourceID | unpaywall proquest crossref wiley  | 
    
| SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher  | 
    
| StartPage | 1803 | 
    
| SubjectTerms | adaptive control Aerospace systems Algorithms Architecture Bayesian analysis Change detection Clustering Gaussian process Learning Likelihood ratio Model reference adaptive control Optimal control Predictive control Stability Uncertainty Wing rock  | 
    
| SummonAdditionalLinks | – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwFA6yPYgP3sXJlCqiT51dL0n6OIZj-CCCDqYvJZdmgnMrW6fMJ3-Cv9Ff4kmbzk1UxKcWcpKmOTnJl-TkOwgd-wDSpR9SW-GY2D726jagcG67ymXMcSRWLPO2uMTtjn_RDbpmw03fhcn5IWYbbtoysvFaG3giVT7Om9N994yJcQ0wL6x-yjgALF5C5c7lVeM2g44hrIu8LGarPv2xwaiDgn12LuvifPQJMpcng4RNn1m_vwhbs3mntYaiosa5u8lDbZLymnj5Qub4_19aR6sGklqNvA9toKV4sIlW5ogKt9BdQ7JED4zvr29DeHkEeePkbulbaCNLx6iHxCf4OOSwAFKKe6Y5oCFd5G4H6dTSXvY9K4EEy4Sr6G2jTuv8ptm2TVQGW0Br1m3qOVwSEvIwZlhRBks26WNMHW3AAeeEa45FKplHsWCxJxyYh4lDOJGeklJ5O6g0GA7iXWQxSogigoaKUV9Jh7mhlEEdECnDXPm4gk4L3UTCUJbryBn9KCdbdiNorUi3VgUdziSTnKbjG5lqod7IGOo4AkBZB4jkUFJBRzOV_1LGSabAHwWiRvNaP_f-UloVldLRJN4HWJPyA9N3PwBE7Px_ priority: 102 providerName: Unpaywall  | 
    
| Title | Adaptive‐optimal control under time‐varying stochastic uncertainty using past learning | 
    
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Facs.3061 https://www.proquest.com/docview/2321222087 https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/acs.3061  | 
    
| UnpaywallVersion | publishedVersion | 
    
| Volume | 33 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: EBSCOhost Mathematics Source - HOST customDbUrl: eissn: 1099-1115 dateEnd: 20241102 omitProxy: false ssIdentifier: ssj0009913 issn: 1099-1115 databaseCode: AMVHM dateStart: 20120601 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/mathematics-source providerName: EBSCOhost – providerCode: PRVWIB databaseName: Wiley Online Library - Core collection (SURFmarket) issn: 1099-1115 databaseCode: DR2 dateStart: 19960101 customDbUrl: isFulltext: true eissn: 1099-1115 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009913 providerName: Wiley-Blackwell  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LTuswELUQLOAueCPKSwEhWKU4j9rOMkKgCgmEgCK4dxGN7bhIlFLRFgQrPoFv5EsY59ECAoTuKok8jhOPxz6TjM8QshkiSNdhJFzDUu6GLPBcROHS9Y0PQKlmBrJoiyNWb4QHF7WLIqrS7oXJ-SEGH9ysZWTztTVwkN2dIWkoqG4V8a71fLyAZd7UyZA5CmFP9nNZROgdBT4veWepv1NW_LgSDeHleL_dgccHaLU-AtZsxdmfIv_KZ80DTa6r_Z6sqqdPNI7_9zLTZLIAok6cj5wZMpK2Z8mfd_SEc-RvrKFjp8PX55dbPLlB-SK03bF7z-4cm5keC--xYazhIJBUV2CZn7Fc5cEGvUfHxtY3nQ4WOEWSiuY8aezvne3W3SIXg6uw9zxXBFRqziMZpcCMAHTUdMiYoNZsa1JyaZkVhYZAMAVpoCiuvpxyyXVgtDbBAhlt37bTReKA4NxwJSIDIjSagh9pXfMQhwKTJmQVsl3qJVEFUbnNl9FKcoplP8HeSmxvVcj6QLKTk3N8IbNSqjYpzLObIIz0EBhRwStkY6DuH-6xlSnvW4Ek3j21x6XfCi6TCUReUR4Xs0JGe3f9dBXRTU-ukbH48Lx-uJaNZ7xqHB3Hl2_epP0j | 
    
| linkProvider | Wiley-Blackwell | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwEB0hOAAHdkShQEAITmndJLUdcaoQqKwHFgkhpMhLDBKlVNCCyolP4Bv5EsZZWkCAEKdE8jhxPB77jTN-A7AWIEjXQchdQ2PmBtSvuIjCpesZTwhCNDUiibY4ovWzYO-8ej4Am_lZmJQforfhZi0jma-tgdsN6XKfNVSohxICXnR9hgKKbopFRMd97igEPsnvZR6if-R7LGeeJV45r_l5LeoDzOFOsyW6T6LR-AxZkzVnZxwu89amoSY3pU5bltTzFyLHf37OBIxlWNSppYNnEgbi5hSMfmAonIaLmhYtOyO-vbze4c0tymfR7Y49fnbv2OT0WPiIb8YaDmJJdS0s-TOWqzTeoN11bHj9ldPCAifLU3E1A2c726dbdTdLx-Aq7L6Ky30iNWOhDGNBDRfoq-mAUk6s5ValZNKSK3ItfE6ViH1FcAFmhEmmfaO18WdhsHnXjOfAEZwxwxQPjeCB0UR4odbVCkJRQaUJaAE2csVEKuMqtykzGlHKsuxF2FuR7a0CrPQkWyk_xzcyxVy3UWahDxEiyQpiI8JZAVZ7-v7lGeuJ9n4UiGpbJ_Y6_1fBZRiunx4eRAe7R_sLMIJALEzDZIow2L7vxIsIdtpyKRnU77wP_fg | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bT9swFD5CIG3wAGOAKHRbmBA8pXWT1HbEUwWruExoGiAhhBT5EheJ0ka9MHVP_AR-I7-E41zaMQFCPCWSj3Px8bE_J5-_A7AZIEjXQchdQ2PmBtSvuYjCpesZTwhCNDUiZVsc0_2z4PC8fj4FO8VemEwfYvzBzUZGOl7bAI8TbaoT1VCh-hUEvLj0mQnqIbd8vr3fE-0oBD7p72Ue4vrI91ihPEu8alHz6Vw0AZgfh51EjP6IdvspZE3nnOYCXBZPm1FNrivDgayov_8JOb7zdT7BfI5FnUbWeRZhKu58hrl_FAqX4KKhRWJHxIe7-y6e3KB9zm537PaznmOT02PhLd4ZaziIJdWVsOLPWK4yvsFg5Fh6fctJsMDJ81S0luGs-eN0d9_N0zG4Cpuv5nKfSM1YKMNYUMMFrtV0QCknNnLrUjJpxRW5Fj6nSsS-IjgBM8Ik077R2vgrMN3pduJVcARnzDDFQyN4YDQRXqh1vYZQVFBpAlqC7cIxkcq1ym3KjHaUqSx7EbZWZFurBBtjyyTT53jGplz4NsojtB8hkqwhNiKcleD72N-vXGMr9d6LBlFj98Qe195q-A0-_NprRj8Pjo_WYRZxWJixZMowPegN4y-IdQbya9qnHwFo8v18 | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwFA6yPYgP3sXJlCqiT51dL0n6OIZj-CCCDqYvJZdmgnMrW6fMJ3-Cv9Ff4kmbzk1UxKcWcpKmOTnJl-TkOwgd-wDSpR9SW-GY2D726jagcG67ymXMcSRWLPO2uMTtjn_RDbpmw03fhcn5IWYbbtoysvFaG3giVT7Om9N994yJcQ0wL6x-yjgALF5C5c7lVeM2g44hrIu8LGarPv2xwaiDgn12LuvifPQJMpcng4RNn1m_vwhbs3mntYaiosa5u8lDbZLymnj5Qub4_19aR6sGklqNvA9toKV4sIlW5ogKt9BdQ7JED4zvr29DeHkEeePkbulbaCNLx6iHxCf4OOSwAFKKe6Y5oCFd5G4H6dTSXvY9K4EEy4Sr6G2jTuv8ptm2TVQGW0Br1m3qOVwSEvIwZlhRBks26WNMHW3AAeeEa45FKplHsWCxJxyYh4lDOJGeklJ5O6g0GA7iXWQxSogigoaKUV9Jh7mhlEEdECnDXPm4gk4L3UTCUJbryBn9KCdbdiNorUi3VgUdziSTnKbjG5lqod7IGOo4AkBZB4jkUFJBRzOV_1LGSabAHwWiRvNaP_f-UloVldLRJN4HWJPyA9N3PwBE7Px_ | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Adaptive%E2%80%90optimal+control+under+time%E2%80%90varying+stochastic+uncertainty+using+past+learning&rft.jtitle=International+journal+of+adaptive+control+and+signal+processing&rft.au=Abdollahi%2C+Ali&rft.au=Chowdhary%2C+Girish&rft.date=2019-12-01&rft.issn=0890-6327&rft.eissn=1099-1115&rft.volume=33&rft.issue=12&rft.spage=1803&rft.epage=1824&rft_id=info:doi/10.1002%2Facs.3061&rft.externalDBID=10.1002%252Facs.3061&rft.externalDocID=ACS3061 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0890-6327&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0890-6327&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0890-6327&client=summon |