Adaptive‐optimal control under time‐varying stochastic uncertainty using past learning

Summary An adaptive‐optimal control architecture is presented for adaptive control of constrained aerospace systems with matched uncertainties that are subject to dynamic stochastic change. The architecture brings together three key elements, ie, model predictive control–based reference command shap...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of adaptive control and signal processing Vol. 33; no. 12; pp. 1803 - 1824
Main Authors Abdollahi, Ali, Chowdhary, Girish
Format Journal Article
LanguageEnglish
Published Bognor Regis Wiley Subscription Services, Inc 01.12.2019
Subjects
Online AccessGet full text
ISSN0890-6327
1099-1115
1099-1115
DOI10.1002/acs.3061

Cover

Abstract Summary An adaptive‐optimal control architecture is presented for adaptive control of constrained aerospace systems with matched uncertainties that are subject to dynamic stochastic change. The architecture brings together three key elements, ie, model predictive control–based reference command shaping, Gaussian process (GP)–based Bayesian nonparametric model reference adaptive control (MRAC), and online GP clustering over nonstationary GPs. Model predictive control optimizes reference model and its shaped output is passed into GP–based MRAC, which is used to learn the model in presence of significant time‐varying stochastic uncertainty while maintaining stability. Based on a likelihood ratio test, the changepoints are detected and learned. Lastly, the models are created and clustered by non‐Bayesian clustering algorithm. The key salient feature of our architecture is that not only can it detect changes but also it uses online GP clustering to enable the controller to utilize past learning of similar models to significantly reduce learning transients. Furthermore, persistence of excitation conditions are significantly relaxed due to the use of GP‐MRAC. Stability of the architecture is argued theoretically and performance is validated empirically on different scenarios for wing rock dynamics.
AbstractList An adaptive‐optimal control architecture is presented for adaptive control of constrained aerospace systems with matched uncertainties that are subject to dynamic stochastic change. The architecture brings together three key elements, ie, model predictive control–based reference command shaping, Gaussian process (GP)–based Bayesian nonparametric model reference adaptive control (MRAC), and online GP clustering over nonstationary GPs. Model predictive control optimizes reference model and its shaped output is passed into GP–based MRAC, which is used to learn the model in presence of significant time‐varying stochastic uncertainty while maintaining stability. Based on a likelihood ratio test, the changepoints are detected and learned. Lastly, the models are created and clustered by non‐Bayesian clustering algorithm. The key salient feature of our architecture is that not only can it detect changes but also it uses online GP clustering to enable the controller to utilize past learning of similar models to significantly reduce learning transients. Furthermore, persistence of excitation conditions are significantly relaxed due to the use of GP‐MRAC. Stability of the architecture is argued theoretically and performance is validated empirically on different scenarios for wing rock dynamics.
Summary An adaptive‐optimal control architecture is presented for adaptive control of constrained aerospace systems with matched uncertainties that are subject to dynamic stochastic change. The architecture brings together three key elements, ie, model predictive control–based reference command shaping, Gaussian process (GP)–based Bayesian nonparametric model reference adaptive control (MRAC), and online GP clustering over nonstationary GPs. Model predictive control optimizes reference model and its shaped output is passed into GP–based MRAC, which is used to learn the model in presence of significant time‐varying stochastic uncertainty while maintaining stability. Based on a likelihood ratio test, the changepoints are detected and learned. Lastly, the models are created and clustered by non‐Bayesian clustering algorithm. The key salient feature of our architecture is that not only can it detect changes but also it uses online GP clustering to enable the controller to utilize past learning of similar models to significantly reduce learning transients. Furthermore, persistence of excitation conditions are significantly relaxed due to the use of GP‐MRAC. Stability of the architecture is argued theoretically and performance is validated empirically on different scenarios for wing rock dynamics.
Author Chowdhary, Girish
Abdollahi, Ali
Author_xml – sequence: 1
  givenname: Ali
  orcidid: 0000-0001-7908-9148
  surname: Abdollahi
  fullname: Abdollahi, Ali
  email: ali.abdollahi@okstate.edu
  organization: Oklahoma State University
– sequence: 2
  givenname: Girish
  surname: Chowdhary
  fullname: Chowdhary, Girish
  organization: University of Illinios Urbana‐Champagne
BookMark eNp9kL1OwzAYRS0EEm1B4hEiscCQ8jmmsTNWFX9SJQZgYbEc24FUxgm20yobj8Az8iQ4lAkBk3_O8afrO0a7trEaoSMMUwyQnQnppwRyvINGGIoixRjPdtEIWAFpTjK6j8berwAiw2SEHudKtKFe64-39yZuXoRJZGODa0zSWaVdEu8GuBaur-1T4kMjn4UPtYxcahdEbUOfdH6AbQSJ0cLZeDpAe5UwXh9-rxP0cHlxv7hOl7dXN4v5MpUxDk4ZgVJRWpSFFnnFBMuYOs9zBiVAPitLWsKMEqYEYbkUmkiQWlOgJVWkUqoiE3S6ndvZVvQbYQxvXfyI6zkGPpTCYyl8KCW6x1u3dc1rp33gq6ZzNsbjGclwlmXAaLSmW0u6xnunKy7rIEI99CJq89vYkx8P_kmQbtVNbXT_p8fni7sv_xOqt5JO
CitedBy_id crossref_primary_10_3389_frobt_2020_558027
crossref_primary_10_1002_acs_3407
crossref_primary_10_1002_acs_3075
crossref_primary_10_1007_s12555_024_0033_y
crossref_primary_10_1155_2020_2096302
crossref_primary_10_3390_machines10100943
crossref_primary_10_1016_j_ast_2024_109070
Cites_doi 10.1007/BFb0109870
10.1016/j.sysconle.2008.12.002
10.1007/978-3-0348-8407-5_1
10.1016/j.automatica.2006.08.026
10.1109/ICRA.2012.6225035
10.1023/A:1023696221899
10.1007/s10514-011-9248-x
10.1109/CDC.2004.1428788
10.1109/ACC.2000.876624
10.1002/0471459100
10.1007/978-3-642-38253-6_3
10.7551/mitpress/3206.001.0001
10.23919/ACC.1993.4792861
10.1002/acs.2297
10.1162/089976602317250933
10.1109/CDC.2013.6759991
10.1109/MCS.2018.2851010
10.1080/00207179.2014.880128
10.1016/S0005-1098(02)00250-9
10.1109/72.165588
10.1109/ICRA.2013.6631353
10.1016/j.automatica.2003.11.014
10.1109/ICRA.2014.6907000
10.1016/S0005-1098(01)00174-1
10.1109/9.35278
10.1109/TNNLS.2014.2319052
10.1016/0005-1098(85)90058-5
10.1109/TNNLS.2012.2198889
10.1109/TAC.2009.2031580
10.1007/978-3-0348-8407-5_2
10.1002/acs.4480030206
10.1109/CDC.2010.5717148
10.2514/6.2015-1574
10.1016/j.automatica.2013.02.003
10.2514/6.2013-4932
ContentType Journal Article
Copyright 2019 John Wiley & Sons, Ltd.
Copyright_xml – notice: 2019 John Wiley & Sons, Ltd.
DBID AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ADTOC
UNPAY
DOI 10.1002/acs.3061
DatabaseName CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList CrossRef

Technology Research Database
Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Architecture
EISSN 1099-1115
EndPage 1824
ExternalDocumentID 10.1002/acs.3061
10_1002_acs_3061
ACS3061
Genre article
GrantInformation_xml – fundername: Air Force Office of Scientific Research
  funderid: FA9550-14-1-0399
– fundername: University of Oklahoma NASA Cooperative Agreement
  funderid: NNX13AB21A
GroupedDBID -~X
.3N
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
31~
33P
3EH
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAYOK
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFO
ACGFS
ACIWK
ACPOU
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AIAGR
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CMOOK
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
EJD
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
I-F
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M59
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RWI
RX1
SAMSI
SUPJJ
TUS
UB1
V2E
W8V
W99
WBKPD
WIH
WIK
WJL
WLBEL
WOHZO
WQJ
WRC
WWI
WXSBR
WYISQ
XG1
XPP
XV2
ZZTAW
~IA
~WT
AAMMB
AAYXX
AEFGJ
AEYWJ
AGHNM
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
AIQQE
AMVHM
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ADTOC
UNPAY
ID FETCH-LOGICAL-c3271-830bd779b9ea6f8a828d46680b0065bb7b05738da386cae3c0cee707b7d3fddf3
IEDL.DBID DR2
ISSN 0890-6327
1099-1115
IngestDate Tue Aug 19 19:49:35 EDT 2025
Fri Jul 25 12:05:34 EDT 2025
Wed Oct 01 04:19:56 EDT 2025
Thu Apr 24 23:07:48 EDT 2025
Wed Jan 22 16:41:18 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3271-830bd779b9ea6f8a828d46680b0065bb7b05738da386cae3c0cee707b7d3fddf3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-7908-9148
OpenAccessLink https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/acs.3061
PQID 2321222087
PQPubID 996374
PageCount 22
ParticipantIDs unpaywall_primary_10_1002_acs_3061
proquest_journals_2321222087
crossref_citationtrail_10_1002_acs_3061
crossref_primary_10_1002_acs_3061
wiley_primary_10_1002_acs_3061_ACS3061
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate December 2019
2019-12-00
20191201
PublicationDateYYYYMMDD 2019-12-01
PublicationDate_xml – month: 12
  year: 2019
  text: December 2019
PublicationDecade 2010
PublicationPlace Bognor Regis
PublicationPlace_xml – name: Bognor Regis
PublicationTitle International journal of adaptive control and signal processing
PublicationYear 2019
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2002; 38
2002; 14
2004; 40
2003; 117
2013; 49
2013; 27
2012
2010
2017; 28
2011; 31
2009
2014; 26
1997
2005
2003; 39
2004
1993
2003
1985; 21
2014; 87
1999
2009; 58
1989; 34
2009; 54
2000
2016
2015
2014
2013
2007; 43
2012; 23
2018; 38
1992; 3
1989
e_1_2_9_30_1
e_1_2_9_31_1
Camacho EF (e_1_2_9_41_1) 2013
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_10_1
e_1_2_9_35_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_12_1
e_1_2_9_33_1
Wang L (e_1_2_9_42_1) 2009
Åström KJ (e_1_2_9_6_1) 2013
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_14_1
e_1_2_9_39_1
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_16_1
e_1_2_9_37_1
e_1_2_9_19_1
e_1_2_9_18_1
e_1_2_9_20_1
e_1_2_9_40_1
e_1_2_9_22_1
e_1_2_9_21_1
e_1_2_9_46_1
e_1_2_9_43_1
e_1_2_9_23_1
e_1_2_9_44_1
e_1_2_9_8_1
e_1_2_9_7_1
e_1_2_9_5_1
e_1_2_9_4_1
Grande RC (e_1_2_9_24_1) 2017; 28
e_1_2_9_3_1
e_1_2_9_2_1
e_1_2_9_9_1
e_1_2_9_26_1
e_1_2_9_49_1
e_1_2_9_25_1
e_1_2_9_28_1
e_1_2_9_47_1
e_1_2_9_27_1
e_1_2_9_48_1
e_1_2_9_29_1
Rasmussen CE (e_1_2_9_45_1) 2003
References_xml – volume: 26
  start-page: 537
  issue: 3
  year: 2014
  end-page: 550
  article-title: Bayesian nonparametric adaptive control using Gaussian processes
  publication-title: IEEE Trans Neural Netw Learn Syst
– year: 2009
– start-page: 207
  year: 1999
  end-page: 226
– year: 2005
– volume: 28
  start-page: 2115
  issue: 9
  year: 2017
  end-page: 2128
  article-title: Online regression for data with changepoints using gaussian processes and reusable models
  publication-title: IEEE Trans Neural Netw Learn Syst
– volume: 21
  start-page: 247
  issue: 3
  year: 1985
  end-page: 258
  article-title: Adaptive systems, lack of persistency of excitation and bursting phenomena
  publication-title: Automatica
– volume: 34
  start-page: 1071
  issue: 10
  year: 1989
  end-page: 1075
  article-title: Combined direct and indirect approach to adaptive control
  publication-title: IEEE Trans Autom Control
– year: 1989
– volume: 14
  start-page: 641
  issue: 3
  year: 2002
  end-page: 668
  article-title: Sparse on‐line gaussian processes
  publication-title: Neural Computation
– year: 2003
– volume: 87
  start-page: 1583
  issue: 8
  year: 2014
  end-page: 1603
  article-title: Exponential parameter and tracking error convergence guarantees for adaptive controllers without persistency of excitation
  publication-title: Int J Control
– year: 2000
– start-page: 23
  year: 2000
  end-page: 44
– year: 2016
– volume: 58
  start-page: 320
  issue: 5
  year: 2009
  end-page: 326
  article-title: Adaptive model predictive control for constrained nonlinear systems
  publication-title: Syst Control Lett
– year: 2014
– year: 2010
– year: 2012
– volume: 54
  start-page: 2692
  issue: 11
  year: 2009
  article-title: Combined/composite model reference adaptive control
  publication-title: IEEE Trans Autom Control
– volume: 23
  start-page: 1130
  issue: 7
  year: 2012
  end-page: 1141
  article-title: Reproducing kernel hilbert space approach for the online update of radial bases in neuro‐adaptive control
  publication-title: IEEE Trans Neural Netw Learn Syst
– volume: 39
  start-page: 489
  issue: 3
  year: 2003
  end-page: 497
  article-title: An algorithm for multi‐parametric quadratic programming and explicit MPC solutions
  publication-title: Automatica
– volume: 43
  start-page: 301
  issue: 2
  year: 2007
  end-page: 308
  article-title: Adaptive model predictive control for a class of constrained linear systems based on the comparison model
  publication-title: Automatica
– volume: 38
  start-page: 53
  issue: 5
  year: 2018
  end-page: 86
  article-title: Gaussian processes for learning and control: a tutorial with examples
  publication-title: IEEE Control Syst Mag
– volume: 31
  start-page: 383
  issue: 4
  year: 2011
  end-page: 400
  article-title: A Bayesian nonparametric approach to modeling motion patterns
  publication-title: Autonomous Robots
– year: 2004
– volume: 3
  start-page: 837
  issue: 6
  year: 1992
  end-page: 863
  article-title: Gaussian networks for direct adaptive control
  publication-title: IEEE Trans Neural Netw
– year: 1997
– start-page: 1574
  year: 2015
– volume: 38
  start-page: 3
  issue: 1
  year: 2002
  end-page: 20
  article-title: The explicit linear quadratic regulator for constrained systems
  publication-title: Automatica
– volume: 117
  start-page: 9
  issue: 1
  year: 2003
  end-page: 38
  article-title: Suboptimal explicit receding horizon control via approximate multiparametric quadratic programming
  publication-title: J Optim Theory Appl
– volume: 27
  start-page: 280
  issue: 4
  year: 2013
  end-page: 301
  article-title: Concurrent learning adaptive control of linear systems with exponentially convergent bounds
  publication-title: Int J Adapt Control Signal Process
– year: 1993
– volume: 40
  start-page: 701
  issue: 4
  year: 2004
  end-page: 708
  article-title: Computation of the constrained infinite time linear quadratic regulator
  publication-title: Automatica
– start-page: 29
  year: 2013
  end-page: 47
– year: 2015
– volume: 49
  start-page: 1216
  issue: 5
  year: 2013
  end-page: 1226
  article-title: Provably safe and robust learning‐based model predictive control
  publication-title: Automatica
– year: 2013
– ident: e_1_2_9_3_1
  doi: 10.1007/BFb0109870
– ident: e_1_2_9_8_1
  doi: 10.1016/j.sysconle.2008.12.002
– ident: e_1_2_9_4_1
  doi: 10.1007/978-3-0348-8407-5_1
– ident: e_1_2_9_10_1
  doi: 10.1016/j.automatica.2006.08.026
– ident: e_1_2_9_34_1
  doi: 10.1109/ICRA.2012.6225035
– ident: e_1_2_9_25_1
– ident: e_1_2_9_27_1
  doi: 10.1023/A:1023696221899
– ident: e_1_2_9_39_1
  doi: 10.1007/s10514-011-9248-x
– ident: e_1_2_9_31_1
  doi: 10.1109/CDC.2004.1428788
– ident: e_1_2_9_28_1
  doi: 10.1109/ACC.2000.876624
– ident: e_1_2_9_44_1
  doi: 10.1002/0471459100
– ident: e_1_2_9_17_1
  doi: 10.1007/978-3-642-38253-6_3
– ident: e_1_2_9_20_1
  doi: 10.7551/mitpress/3206.001.0001
– ident: e_1_2_9_49_1
  doi: 10.23919/ACC.1993.4792861
– volume-title: Model Predictive Control
  year: 2013
  ident: e_1_2_9_41_1
– ident: e_1_2_9_16_1
  doi: 10.1002/acs.2297
– ident: e_1_2_9_19_1
  doi: 10.1162/089976602317250933
– ident: e_1_2_9_35_1
  doi: 10.1109/CDC.2013.6759991
– ident: e_1_2_9_22_1
  doi: 10.1109/MCS.2018.2851010
– ident: e_1_2_9_36_1
  doi: 10.1080/00207179.2014.880128
– volume: 28
  start-page: 2115
  issue: 9
  year: 2017
  ident: e_1_2_9_24_1
  article-title: Online regression for data with changepoints using gaussian processes and reusable models
  publication-title: IEEE Trans Neural Netw Learn Syst
– ident: e_1_2_9_40_1
– ident: e_1_2_9_32_1
  doi: 10.1016/S0005-1098(02)00250-9
– ident: e_1_2_9_46_1
  doi: 10.1109/72.165588
– ident: e_1_2_9_38_1
– ident: e_1_2_9_2_1
  doi: 10.1109/ICRA.2013.6631353
– ident: e_1_2_9_5_1
– ident: e_1_2_9_30_1
  doi: 10.1016/j.automatica.2003.11.014
– ident: e_1_2_9_37_1
  doi: 10.1109/ICRA.2014.6907000
– volume-title: Summer School on Machine Learning
  year: 2003
  ident: e_1_2_9_45_1
– ident: e_1_2_9_29_1
  doi: 10.1016/S0005-1098(01)00174-1
– ident: e_1_2_9_14_1
  doi: 10.1109/9.35278
– ident: e_1_2_9_21_1
  doi: 10.1109/TNNLS.2014.2319052
– ident: e_1_2_9_48_1
  doi: 10.1016/0005-1098(85)90058-5
– ident: e_1_2_9_47_1
  doi: 10.1109/TNNLS.2012.2198889
– ident: e_1_2_9_15_1
  doi: 10.1109/TAC.2009.2031580
– ident: e_1_2_9_12_1
– ident: e_1_2_9_33_1
– ident: e_1_2_9_11_1
  doi: 10.1007/978-3-0348-8407-5_2
– ident: e_1_2_9_23_1
– ident: e_1_2_9_26_1
– ident: e_1_2_9_43_1
  doi: 10.1002/acs.4480030206
– ident: e_1_2_9_13_1
  doi: 10.1109/CDC.2010.5717148
– volume-title: Model Predictive Control System Design and Implementation Using MATLAB®
  year: 2009
  ident: e_1_2_9_42_1
– ident: e_1_2_9_7_1
  doi: 10.2514/6.2015-1574
– ident: e_1_2_9_9_1
  doi: 10.1016/j.automatica.2013.02.003
– volume-title: Adaptive Control
  year: 2013
  ident: e_1_2_9_6_1
– ident: e_1_2_9_18_1
  doi: 10.2514/6.2013-4932
SSID ssj0009913
Score 2.271133
Snippet Summary An adaptive‐optimal control architecture is presented for adaptive control of constrained aerospace systems with matched uncertainties that are subject...
An adaptive‐optimal control architecture is presented for adaptive control of constrained aerospace systems with matched uncertainties that are subject to...
SourceID unpaywall
proquest
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1803
SubjectTerms adaptive control
Aerospace systems
Algorithms
Architecture
Bayesian analysis
Change detection
Clustering
Gaussian process
Learning
Likelihood ratio
Model reference adaptive control
Optimal control
Predictive control
Stability
Uncertainty
Wing rock
SummonAdditionalLinks – databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwFA6yPYgP3sXJlCqiT51dL0n6OIZj-CCCDqYvJZdmgnMrW6fMJ3-Cv9Ff4kmbzk1UxKcWcpKmOTnJl-TkOwgd-wDSpR9SW-GY2D726jagcG67ymXMcSRWLPO2uMTtjn_RDbpmw03fhcn5IWYbbtoysvFaG3giVT7Om9N994yJcQ0wL6x-yjgALF5C5c7lVeM2g44hrIu8LGarPv2xwaiDgn12LuvifPQJMpcng4RNn1m_vwhbs3mntYaiosa5u8lDbZLymnj5Qub4_19aR6sGklqNvA9toKV4sIlW5ogKt9BdQ7JED4zvr29DeHkEeePkbulbaCNLx6iHxCf4OOSwAFKKe6Y5oCFd5G4H6dTSXvY9K4EEy4Sr6G2jTuv8ptm2TVQGW0Br1m3qOVwSEvIwZlhRBks26WNMHW3AAeeEa45FKplHsWCxJxyYh4lDOJGeklJ5O6g0GA7iXWQxSogigoaKUV9Jh7mhlEEdECnDXPm4gk4L3UTCUJbryBn9KCdbdiNorUi3VgUdziSTnKbjG5lqod7IGOo4AkBZB4jkUFJBRzOV_1LGSabAHwWiRvNaP_f-UloVldLRJN4HWJPyA9N3PwBE7Px_
  priority: 102
  providerName: Unpaywall
Title Adaptive‐optimal control under time‐varying stochastic uncertainty using past learning
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Facs.3061
https://www.proquest.com/docview/2321222087
https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/acs.3061
UnpaywallVersion publishedVersion
Volume 33
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: EBSCOhost Mathematics Source - HOST
  customDbUrl:
  eissn: 1099-1115
  dateEnd: 20241102
  omitProxy: false
  ssIdentifier: ssj0009913
  issn: 1099-1115
  databaseCode: AMVHM
  dateStart: 20120601
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/mathematics-source
  providerName: EBSCOhost
– providerCode: PRVWIB
  databaseName: Wiley Online Library - Core collection (SURFmarket)
  issn: 1099-1115
  databaseCode: DR2
  dateStart: 19960101
  customDbUrl:
  isFulltext: true
  eissn: 1099-1115
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009913
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LTuswELUQLOAueCPKSwEhWKU4j9rOMkKgCgmEgCK4dxGN7bhIlFLRFgQrPoFv5EsY59ECAoTuKok8jhOPxz6TjM8QshkiSNdhJFzDUu6GLPBcROHS9Y0PQKlmBrJoiyNWb4QHF7WLIqrS7oXJ-SEGH9ysZWTztTVwkN2dIWkoqG4V8a71fLyAZd7UyZA5CmFP9nNZROgdBT4veWepv1NW_LgSDeHleL_dgccHaLU-AtZsxdmfIv_KZ80DTa6r_Z6sqqdPNI7_9zLTZLIAok6cj5wZMpK2Z8mfd_SEc-RvrKFjp8PX55dbPLlB-SK03bF7z-4cm5keC--xYazhIJBUV2CZn7Fc5cEGvUfHxtY3nQ4WOEWSiuY8aezvne3W3SIXg6uw9zxXBFRqziMZpcCMAHTUdMiYoNZsa1JyaZkVhYZAMAVpoCiuvpxyyXVgtDbBAhlt37bTReKA4NxwJSIDIjSagh9pXfMQhwKTJmQVsl3qJVEFUbnNl9FKcoplP8HeSmxvVcj6QLKTk3N8IbNSqjYpzLObIIz0EBhRwStkY6DuH-6xlSnvW4Ek3j21x6XfCi6TCUReUR4Xs0JGe3f9dBXRTU-ukbH48Lx-uJaNZ7xqHB3Hl2_epP0j
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwEB0hOAAHdkShQEAITmndJLUdcaoQqKwHFgkhpMhLDBKlVNCCyolP4Bv5EsZZWkCAEKdE8jhxPB77jTN-A7AWIEjXQchdQ2PmBtSvuIjCpesZTwhCNDUiibY4ovWzYO-8ej4Am_lZmJQforfhZi0jma-tgdsN6XKfNVSohxICXnR9hgKKbopFRMd97igEPsnvZR6if-R7LGeeJV45r_l5LeoDzOFOsyW6T6LR-AxZkzVnZxwu89amoSY3pU5bltTzFyLHf37OBIxlWNSppYNnEgbi5hSMfmAonIaLmhYtOyO-vbze4c0tymfR7Y49fnbv2OT0WPiIb8YaDmJJdS0s-TOWqzTeoN11bHj9ldPCAifLU3E1A2c726dbdTdLx-Aq7L6Ky30iNWOhDGNBDRfoq-mAUk6s5ValZNKSK3ItfE6ViH1FcAFmhEmmfaO18WdhsHnXjOfAEZwxwxQPjeCB0UR4odbVCkJRQaUJaAE2csVEKuMqtykzGlHKsuxF2FuR7a0CrPQkWyk_xzcyxVy3UWahDxEiyQpiI8JZAVZ7-v7lGeuJ9n4UiGpbJ_Y6_1fBZRiunx4eRAe7R_sLMIJALEzDZIow2L7vxIsIdtpyKRnU77wP_fg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bT9swFD5CIG3wAGOAKHRbmBA8pXWT1HbEUwWruExoGiAhhBT5EheJ0ka9MHVP_AR-I7-E41zaMQFCPCWSj3Px8bE_J5-_A7AZIEjXQchdQ2PmBtSvuYjCpesZTwhCNDUiZVsc0_2z4PC8fj4FO8VemEwfYvzBzUZGOl7bAI8TbaoT1VCh-hUEvLj0mQnqIbd8vr3fE-0oBD7p72Ue4vrI91ihPEu8alHz6Vw0AZgfh51EjP6IdvspZE3nnOYCXBZPm1FNrivDgayov_8JOb7zdT7BfI5FnUbWeRZhKu58hrl_FAqX4KKhRWJHxIe7-y6e3KB9zm537PaznmOT02PhLd4ZaziIJdWVsOLPWK4yvsFg5Fh6fctJsMDJ81S0luGs-eN0d9_N0zG4Cpuv5nKfSM1YKMNYUMMFrtV0QCknNnLrUjJpxRW5Fj6nSsS-IjgBM8Ik077R2vgrMN3pduJVcARnzDDFQyN4YDQRXqh1vYZQVFBpAlqC7cIxkcq1ym3KjHaUqSx7EbZWZFurBBtjyyTT53jGplz4NsojtB8hkqwhNiKcleD72N-vXGMr9d6LBlFj98Qe195q-A0-_NprRj8Pjo_WYRZxWJixZMowPegN4y-IdQbya9qnHwFo8v18
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwFA6yPYgP3sXJlCqiT51dL0n6OIZj-CCCDqYvJZdmgnMrW6fMJ3-Cv9Ff4kmbzk1UxKcWcpKmOTnJl-TkOwgd-wDSpR9SW-GY2D726jagcG67ymXMcSRWLPO2uMTtjn_RDbpmw03fhcn5IWYbbtoysvFaG3giVT7Om9N994yJcQ0wL6x-yjgALF5C5c7lVeM2g44hrIu8LGarPv2xwaiDgn12LuvifPQJMpcng4RNn1m_vwhbs3mntYaiosa5u8lDbZLymnj5Qub4_19aR6sGklqNvA9toKV4sIlW5ogKt9BdQ7JED4zvr29DeHkEeePkbulbaCNLx6iHxCf4OOSwAFKKe6Y5oCFd5G4H6dTSXvY9K4EEy4Sr6G2jTuv8ptm2TVQGW0Br1m3qOVwSEvIwZlhRBks26WNMHW3AAeeEa45FKplHsWCxJxyYh4lDOJGeklJ5O6g0GA7iXWQxSogigoaKUV9Jh7mhlEEdECnDXPm4gk4L3UTCUJbryBn9KCdbdiNorUi3VgUdziSTnKbjG5lqod7IGOo4AkBZB4jkUFJBRzOV_1LGSabAHwWiRvNaP_f-UloVldLRJN4HWJPyA9N3PwBE7Px_
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Adaptive%E2%80%90optimal+control+under+time%E2%80%90varying+stochastic+uncertainty+using+past+learning&rft.jtitle=International+journal+of+adaptive+control+and+signal+processing&rft.au=Abdollahi%2C+Ali&rft.au=Chowdhary%2C+Girish&rft.date=2019-12-01&rft.issn=0890-6327&rft.eissn=1099-1115&rft.volume=33&rft.issue=12&rft.spage=1803&rft.epage=1824&rft_id=info:doi/10.1002%2Facs.3061&rft.externalDBID=10.1002%252Facs.3061&rft.externalDocID=ACS3061
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0890-6327&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0890-6327&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0890-6327&client=summon