Virtual-simulation boosted neural network dose calculation engine for intensity-modulated radiation therapy

The Monte Carlo (MC) dose calculation method is widely recognized as the gold standard for precision in dose calculation. However, MC calculations are computationally intensive and time-consuming. This study aims to develop a neural network-based dose calculation engine using a virtual simulation da...

Full description

Saved in:
Bibliographic Details
Published inAustralasian physical & engineering sciences in medicine Vol. 48; no. 2; pp. 557 - 566
Main Authors Li, Zirong, Liu, Yaoying, Shang, Xuying, Sheng, Huashan, Xie, Chuanbin, Zhao, Wei, Zhang, Gaolong, Zhou, Qichao, Xu, Shouping
Format Journal Article
LanguageEnglish
Published Cham Springer International Publishing 01.06.2025
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN2662-4729
0158-9938
2662-4737
2662-4737
1879-5447
DOI10.1007/s13246-025-01523-3

Cover

Abstract The Monte Carlo (MC) dose calculation method is widely recognized as the gold standard for precision in dose calculation. However, MC calculations are computationally intensive and time-consuming. This study aims to develop a neural network-based dose calculation engine using a virtual simulation database, producing dose distributions with accuracy comparable to MC dose calculations. We established an unrestricted virtual simulation database employing specific rules and automated optimization techniques. Individual dose distributions for each beam were stored. A neural network was then constructed and trained using a 3D Dense-U-Net architecture. The model’s accuracy was validated in intensity-modulated radiation therapy (IMRT) for nasopharyngeal carcinoma, cervical carcinoma, and lung cancer. A total of 31,967 single-beam doses were collected from 2,382 virtual plans. For clinical beam doses, the gamma passing rates under the 1 mm/1% and 2 mm/2% criteria improved significantly from 13.4 ± 4.8% and 37.5 ± 9.4% to 77.5 ± 7.7% and 95.6 ± 2.5%, respectively, using the model. The mean computation time was 0.017 ± 0.002 s. We successfully developed an automated training workflow for a neural network-based dose calculation model in fixed-beam IMRT. This workflow enables the generation of a substantial training dataset from a relatively small clinical dataset, resulting in a model that excels in accuracy and speed.
AbstractList The Monte Carlo (MC) dose calculation method is widely recognized as the gold standard for precision in dose calculation. However, MC calculations are computationally intensive and time-consuming. This study aims to develop a neural network-based dose calculation engine using a virtual simulation database, producing dose distributions with accuracy comparable to MC dose calculations. We established an unrestricted virtual simulation database employing specific rules and automated optimization techniques. Individual dose distributions for each beam were stored. A neural network was then constructed and trained using a 3D Dense-U-Net architecture. The model’s accuracy was validated in intensity-modulated radiation therapy (IMRT) for nasopharyngeal carcinoma, cervical carcinoma, and lung cancer. A total of 31,967 single-beam doses were collected from 2,382 virtual plans. For clinical beam doses, the gamma passing rates under the 1 mm/1% and 2 mm/2% criteria improved significantly from 13.4 ± 4.8% and 37.5 ± 9.4% to 77.5 ± 7.7% and 95.6 ± 2.5%, respectively, using the model. The mean computation time was 0.017 ± 0.002 s. We successfully developed an automated training workflow for a neural network-based dose calculation model in fixed-beam IMRT. This workflow enables the generation of a substantial training dataset from a relatively small clinical dataset, resulting in a model that excels in accuracy and speed.
The Monte Carlo (MC) dose calculation method is widely recognized as the gold standard for precision in dose calculation. However, MC calculations are computationally intensive and time-consuming. This study aims to develop a neural network-based dose calculation engine using a virtual simulation database, producing dose distributions with accuracy comparable to MC dose calculations. We established an unrestricted virtual simulation database employing specific rules and automated optimization techniques. Individual dose distributions for each beam were stored. A neural network was then constructed and trained using a 3D Dense-U-Net architecture. The model's accuracy was validated in intensity-modulated radiation therapy (IMRT) for nasopharyngeal carcinoma, cervical carcinoma, and lung cancer. A total of 31,967 single-beam doses were collected from 2,382 virtual plans. For clinical beam doses, the gamma passing rates under the 1 mm/1% and 2 mm/2% criteria improved significantly from 13.4 ± 4.8% and 37.5 ± 9.4% to 77.5 ± 7.7% and 95.6 ± 2.5%, respectively, using the model. The mean computation time was 0.017 ± 0.002 s. We successfully developed an automated training workflow for a neural network-based dose calculation model in fixed-beam IMRT. This workflow enables the generation of a substantial training dataset from a relatively small clinical dataset, resulting in a model that excels in accuracy and speed.
The Monte Carlo (MC) dose calculation method is widely recognized as the gold standard for precision in dose calculation. However, MC calculations are computationally intensive and time-consuming. This study aims to develop a neural network-based dose calculation engine using a virtual simulation database, producing dose distributions with accuracy comparable to MC dose calculations. We established an unrestricted virtual simulation database employing specific rules and automated optimization techniques. Individual dose distributions for each beam were stored. A neural network was then constructed and trained using a 3D Dense-U-Net architecture. The model's accuracy was validated in intensity-modulated radiation therapy (IMRT) for nasopharyngeal carcinoma, cervical carcinoma, and lung cancer. A total of 31,967 single-beam doses were collected from 2,382 virtual plans. For clinical beam doses, the gamma passing rates under the 1 mm/1% and 2 mm/2% criteria improved significantly from 13.4 ± 4.8% and 37.5 ± 9.4% to 77.5 ± 7.7% and 95.6 ± 2.5%, respectively, using the model. The mean computation time was 0.017 ± 0.002 s. We successfully developed an automated training workflow for a neural network-based dose calculation model in fixed-beam IMRT. This workflow enables the generation of a substantial training dataset from a relatively small clinical dataset, resulting in a model that excels in accuracy and speed.The Monte Carlo (MC) dose calculation method is widely recognized as the gold standard for precision in dose calculation. However, MC calculations are computationally intensive and time-consuming. This study aims to develop a neural network-based dose calculation engine using a virtual simulation database, producing dose distributions with accuracy comparable to MC dose calculations. We established an unrestricted virtual simulation database employing specific rules and automated optimization techniques. Individual dose distributions for each beam were stored. A neural network was then constructed and trained using a 3D Dense-U-Net architecture. The model's accuracy was validated in intensity-modulated radiation therapy (IMRT) for nasopharyngeal carcinoma, cervical carcinoma, and lung cancer. A total of 31,967 single-beam doses were collected from 2,382 virtual plans. For clinical beam doses, the gamma passing rates under the 1 mm/1% and 2 mm/2% criteria improved significantly from 13.4 ± 4.8% and 37.5 ± 9.4% to 77.5 ± 7.7% and 95.6 ± 2.5%, respectively, using the model. The mean computation time was 0.017 ± 0.002 s. We successfully developed an automated training workflow for a neural network-based dose calculation model in fixed-beam IMRT. This workflow enables the generation of a substantial training dataset from a relatively small clinical dataset, resulting in a model that excels in accuracy and speed.
Author Zhao, Wei
Xu, Shouping
Xie, Chuanbin
Zhou, Qichao
Shang, Xuying
Li, Zirong
Liu, Yaoying
Zhang, Gaolong
Sheng, Huashan
Author_xml – sequence: 1
  givenname: Zirong
  surname: Li
  fullname: Li, Zirong
  organization: Department of Research Algorithms, Manteia Technologies Co., Ltd
– sequence: 2
  givenname: Yaoying
  surname: Liu
  fullname: Liu, Yaoying
  organization: School of Physics, Beihang University, National Clinical Research Center for Cancer, Chinese Academy of Medical Sciences and Peking Union Medical College
– sequence: 3
  givenname: Xuying
  surname: Shang
  fullname: Shang, Xuying
  organization: School of Physics, Beihang University, National Clinical Research Center for Cancer, Chinese Academy of Medical Sciences and Peking Union Medical College
– sequence: 4
  givenname: Huashan
  surname: Sheng
  fullname: Sheng, Huashan
  organization: Department of Research Algorithms, Manteia Technologies Co., Ltd
– sequence: 5
  givenname: Chuanbin
  surname: Xie
  fullname: Xie, Chuanbin
  organization: Department of Radiation Oncology, PLA General Hospital
– sequence: 6
  givenname: Wei
  surname: Zhao
  fullname: Zhao, Wei
  organization: School of Physics, Beihang University
– sequence: 7
  givenname: Gaolong
  surname: Zhang
  fullname: Zhang, Gaolong
  organization: School of Physics, Beihang University
– sequence: 8
  givenname: Qichao
  surname: Zhou
  fullname: Zhou, Qichao
  email: zhouqc@manteiatech.com
  organization: Department of Research Algorithms, Manteia Technologies Co., Ltd
– sequence: 9
  givenname: Shouping
  orcidid: 0000-0003-3189-9680
  surname: Xu
  fullname: Xu, Shouping
  email: xusp@cicams.ac.cn
  organization: National Clinical Research Center for Cancer, Chinese Academy of Medical Sciences and Peking Union Medical College
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40029538$$D View this record in MEDLINE/PubMed
BookMark eNp90ctqHiEYBmApKTnfQBdloJtubDw7LktIDxDoJnQrzvhNajKjf9Wh_Hcfk0lS6KIrFZ9XxfcEHcQUAaF3lHyihOiLQjkTChMmMaGScczfoGOmFMNCc33wOmfmCJ2XckdIo5RqJQ_RkWgLI3l_jO5_hlxXN-MSlnV2NaTYDSmVCr6LsGY3t6H-Sfm-86lAN7p5fHEQb0OEbkq5C7FCLKHu8ZL8436LZ-fDBusvyG63P0NvJzcXOH8eT9HNl6uby2_4-sfX75efr_HImap4Gt0AvfRK-n4gWnA5ek2NkQNxCoDqSfS9ZP1InWBaeSU0BTMwbibXO8NP0cft2F1Ov1co1S6hjDDPLkJai-VUc26MUKTRD__Qu7Tm2B5nOWNSCcoUber9s1qHBbzd5bC4vLcvv9gA28CYUykZpldCiX1sy25t2VaBfWrL8hbiW6g0HG8h_737P6kHqi6X3A
Cites_doi 10.1088/0031-9155/25/2/003
10.1118/1.3539725
10.4329/wjr.v6.i11.874
10.1088/0031-9155/56/22/002
10.1088/0031-9155/48/21/005
10.3389/fonc.2022.808580
10.1016/j.radonc.2024.110593
10.1016/j.zemedi.2022.10.006
10.1088/0031-9155/51/22/005
10.1007/s11548-022-02801-1
10.1118/1.595772
10.1088/0031-9155/52/3/006
10.1088/0031-9155/45/1/306
10.1088/0031-9155/47/3/303
10.1088/0031-9155/50/5/011
10.1148/129.3.787
10.1088/0031-9155/60/19/7419
10.1118/1.2745236
10.3389/fonc.2021.752007
10.3322/caac.21820
10.1088/0031-9155/50/14/013
10.1016/S0140-6736(21)00233-6
10.1088/0031-9155/50/8/009
10.1088/0031-9155/46/4/302
10.1118/1.598916
10.1088/0031-9155/45/7/303
10.1118/1.595924
10.7150/ijms.3635
10.1088/0031-9155/43/3/004
ContentType Journal Article
Copyright Australasian College of Physical Scientists and Engineers in Medicine 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
2025. Australasian College of Physical Scientists and Engineers in Medicine.
Copyright Springer Nature B.V. Jun 2025
Copyright_xml – notice: Australasian College of Physical Scientists and Engineers in Medicine 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: 2025. Australasian College of Physical Scientists and Engineers in Medicine.
– notice: Copyright Springer Nature B.V. Jun 2025
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
K9.
7X8
DOI 10.1007/s13246-025-01523-3
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitleList ProQuest Health & Medical Complete (Alumni)
MEDLINE
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2662-4737
1879-5447
EndPage 566
ExternalDocumentID 40029538
10_1007_s13246_025_01523_3
Genre Journal Article
GrantInformation_xml – fundername: Chinese Academy of Medical Sciences Initiative for Innovative Medicine
  grantid: 2024-I2M-C&T-B-076
  funderid: http://dx.doi.org/10.13039/501100019018
– fundername: National Natural Science Foundation of China
  grantid: No. 12375359
  funderid: http://dx.doi.org/10.13039/501100001809
– fundername: National Natural Science Foundation of China
  grantid: No. 12375359
– fundername: Chinese Academy of Medical Sciences Initiative for Innovative Medicine
  grantid: 2024-I2M-C&T-B-076
GroupedDBID 0R~
406
AACDK
AAHNG
AAJBT
AANZL
AAPKM
AASML
AATNV
AAUYE
AAYZH
ABAKF
ABBRH
ABDBE
ABDZT
ABECU
ABFSG
ABJNI
ABMQK
ABRTQ
ABSXP
ABTEG
ABTKH
ACAOD
ACDTI
ACHSB
ACMDZ
ACOKC
ACPIV
ACSTC
ACZOJ
ADKNI
ADTPH
ADYFF
AEFQL
AEMSY
AESKC
AEVLU
AEZWR
AFBBN
AFDZB
AFHIU
AFLOW
AFOHR
AFQWF
AGMZJ
AGQEE
AGRTI
AHPBZ
AHWEU
AIAKS
AIGIU
AILAN
AIXLP
ALMA_UNASSIGNED_HOLDINGS
AMXSW
AMYLF
AOCGG
ATHPR
AYFIA
BGNMA
DDRTE
DNIVK
DPUIP
EBLON
EBS
EMB
EMOBN
FERAY
FIGPU
FNLPD
GGCAI
IKXTQ
IWAJR
J-C
JZLTJ
LLZTM
M4Y
NPVJJ
NQJWS
NU0
PT4
ROL
RSV
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SRMVM
SSLCW
SV3
UOJIU
UTJUX
ZMTXR
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
..I
06D
0VY
1N0
203
23N
29~
2KG
30V
36B
4.4
408
40D
53G
5GY
67N
8WZ
96X
A6W
AAIAL
AAJKR
AARTL
AATVU
AAWCG
AAYIU
AAYQN
AAZMS
ABFTV
ABJOX
ABKCH
ABPLI
ABQBU
ABTHY
ABTMW
ABXPI
ACGFS
ACGOD
ACKNC
ACMLO
ADBBV
ADHHG
ADHIR
ADKPE
ADRFC
ADURQ
ADZKW
AEGNC
AEJHL
AEJRE
AENEX
AEOHA
AEPYU
AETCA
AEXYK
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGQMX
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHMBA
AHYZX
AIIXL
AITGF
AJRNO
AJZVZ
AKMHD
ALFXC
AMKLP
AMYQR
ANMIH
ARAPS
AXYYD
CSCUP
EIOEI
EN4
ESBYG
FRRFC
FYJPI
GGRSB
GJIRD
GQ7
HCIFZ
HMJXF
HRMNR
HZ~
I0C
ITM
J0Z
JBSCW
K9.
KOV
KTM
O9-
O93
O9I
O9J
P2P
R9I
RLLFE
S1Z
S27
S3A
S3B
SBL
SHX
SISQX
SPISZ
SSXJD
STPWE
T13
TSG
U2A
U9L
UG4
UZXMN
VC2
VFIZW
W48
WK8
WOQ
Z45
ZOVNA
~A9
7X8
ID FETCH-LOGICAL-c326t-fcabe85d65d8b07435cd71995b0a6ee17f488528c1a4276d6471e9b239fa8a93
ISSN 2662-4729
0158-9938
2662-4737
IngestDate Wed Oct 01 13:23:04 EDT 2025
Fri Oct 03 08:02:03 EDT 2025
Wed Jul 02 01:57:21 EDT 2025
Wed Oct 01 06:00:33 EDT 2025
Mon Jul 21 06:06:53 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Radiation therapy (RT)
Neural network (NN)
IMRT
Dose calculation
Virtual-simulation
Language English
License 2025. Australasian College of Physical Scientists and Engineers in Medicine.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c326t-fcabe85d65d8b07435cd71995b0a6ee17f488528c1a4276d6471e9b239fa8a93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-3189-9680
PMID 40029538
PQID 3225641261
PQPubID 33672
PageCount 10
ParticipantIDs proquest_miscellaneous_3173399460
proquest_journals_3225641261
pubmed_primary_40029538
crossref_primary_10_1007_s13246_025_01523_3
springer_journals_10_1007_s13246_025_01523_3
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-06-01
PublicationDateYYYYMMDD 2025-06-01
PublicationDate_xml – month: 06
  year: 2025
  text: 2025-06-01
  day: 01
PublicationDecade 2020
PublicationPlace Cham
PublicationPlace_xml – name: Cham
– name: Switzerland
– name: Dordrecht
PublicationSubtitle The Official Journal of the Australasian College of Physical Scientists and Engineers in Medicine
PublicationTitle Australasian physical & engineering sciences in medicine
PublicationTitleAbbrev Phys Eng Sci Med
PublicationTitleAlternate Phys Eng Sci Med
PublicationYear 2025
Publisher Springer International Publishing
Springer Nature B.V
Publisher_xml – name: Springer International Publishing
– name: Springer Nature B.V
References B Yang (1523_CR21) 2023; 18
IA Popescu (1523_CR9) 2005; 50
Y Liu (1523_CR27) 2025; 202
W-Z Chen (1523_CR5) 2014; 6
MR Sontag (1523_CR10) 1978; 129
Y Peng (1523_CR26) 2022; 12
W Laub (1523_CR34) 2000; 45
U Jelen (1523_CR22) 2005; 50
JV Siebers (1523_CR33) 2007; 34
A Boyer (1523_CR12) 1985; 12
1523_CR20
1523_CR1
S Hissoiny (1523_CR15) 2011; 38
HE Romeijn (1523_CR19) 2003; 48
1523_CR24
X Jia (1523_CR16) 2011; 56
Z Tian (1523_CR17) 2015; 60
1523_CR28
P Keall (1523_CR29) 2001; 46
T Knöös (1523_CR7) 2006; 51
Y Liu (1523_CR25) 2021; 11
R Baskar (1523_CR3) 2012; 9
D Shepard (1523_CR18) 2000; 45
J Yang (1523_CR30) 2005; 50
BS Chhikara (1523_CR2) 2023; 10
R Jeraj (1523_CR6) 2002; 47
C Börgers (1523_CR8) 1998; 43
R Mohan (1523_CR13) 1986; 13
S Webb (1523_CR11) 1980; 25
RA Chandra (1523_CR4) 2021; 398
U Jeleń (1523_CR23) 2007; 52
1523_CR31
P Keall (1523_CR32) 2000; 27
1523_CR14
References_xml – volume: 25
  start-page: 225
  issue: 2
  year: 1980
  ident: 1523_CR11
  publication-title: Phys Med Biol
  doi: 10.1088/0031-9155/25/2/003
– volume: 38
  start-page: 754
  issue: 2
  year: 2011
  ident: 1523_CR15
  publication-title: Med Phys
  doi: 10.1118/1.3539725
– volume: 6
  start-page: 874
  issue: 11
  year: 2014
  ident: 1523_CR5
  publication-title: World J Radiol
  doi: 10.4329/wjr.v6.i11.874
– volume: 56
  start-page: 7017
  issue: 22
  year: 2011
  ident: 1523_CR16
  publication-title: Phys Med Biol
  doi: 10.1088/0031-9155/56/22/002
– volume: 48
  start-page: 3521
  issue: 21
  year: 2003
  ident: 1523_CR19
  publication-title: Phys Med Biol
  doi: 10.1088/0031-9155/48/21/005
– volume: 12
  start-page: 808580
  year: 2022
  ident: 1523_CR26
  publication-title: Front Oncol
  doi: 10.3389/fonc.2022.808580
– volume: 202
  start-page: 110593
  year: 2025
  ident: 1523_CR27
  publication-title: Radiother Oncol
  doi: 10.1016/j.radonc.2024.110593
– ident: 1523_CR20
  doi: 10.1016/j.zemedi.2022.10.006
– volume: 51
  start-page: 5785
  issue: 22
  year: 2006
  ident: 1523_CR7
  publication-title: Phys Med Biol
  doi: 10.1088/0031-9155/51/22/005
– volume: 18
  start-page: 953
  issue: 5
  year: 2023
  ident: 1523_CR21
  publication-title: Int J Comput Assist Radiol Surg
  doi: 10.1007/s11548-022-02801-1
– ident: 1523_CR31
– volume: 12
  start-page: 169
  issue: 2
  year: 1985
  ident: 1523_CR12
  publication-title: Med Phys
  doi: 10.1118/1.595772
– volume: 52
  start-page: 617
  issue: 3
  year: 2007
  ident: 1523_CR23
  publication-title: Phys Med Biol
  doi: 10.1088/0031-9155/52/3/006
– volume: 45
  start-page: 69
  issue: 1
  year: 2000
  ident: 1523_CR18
  publication-title: Phys Med Biol
  doi: 10.1088/0031-9155/45/1/306
– volume: 10
  start-page: 451
  issue: 1
  year: 2023
  ident: 1523_CR2
  publication-title: Chem Biology Lett
– volume: 47
  start-page: 391
  issue: 3
  year: 2002
  ident: 1523_CR6
  publication-title: Phys Med Biol
  doi: 10.1088/0031-9155/47/3/303
– volume: 50
  start-page: 869
  issue: 5
  year: 2005
  ident: 1523_CR30
  publication-title: Phys Med Biol
  doi: 10.1088/0031-9155/50/5/011
– volume: 129
  start-page: 787
  issue: 3
  year: 1978
  ident: 1523_CR10
  publication-title: Radiology
  doi: 10.1148/129.3.787
– volume: 60
  start-page: 7419
  issue: 19
  year: 2015
  ident: 1523_CR17
  publication-title: Phys Med Biol
  doi: 10.1088/0031-9155/60/19/7419
– volume: 34
  start-page: 2853
  issue: 7
  year: 2007
  ident: 1523_CR33
  publication-title: Med Phys
  doi: 10.1118/1.2745236
– volume: 11
  start-page: 752007
  year: 2021
  ident: 1523_CR25
  publication-title: Front Oncol
  doi: 10.3389/fonc.2021.752007
– ident: 1523_CR1
  doi: 10.3322/caac.21820
– volume: 50
  start-page: 3375
  issue: 14
  year: 2005
  ident: 1523_CR9
  publication-title: Phys Med Biol
  doi: 10.1088/0031-9155/50/14/013
– volume: 398
  start-page: 171
  issue: 10295
  year: 2021
  ident: 1523_CR4
  publication-title: Lancet
  doi: 10.1016/S0140-6736(21)00233-6
– ident: 1523_CR14
– volume: 50
  start-page: 1747
  issue: 8
  year: 2005
  ident: 1523_CR22
  publication-title: Phys Med Biol
  doi: 10.1088/0031-9155/50/8/009
– volume: 46
  start-page: 929
  issue: 4
  year: 2001
  ident: 1523_CR29
  publication-title: Phys Med Biol
  doi: 10.1088/0031-9155/46/4/302
– ident: 1523_CR28
– volume: 27
  start-page: 478
  issue: 3
  year: 2000
  ident: 1523_CR32
  publication-title: Med Phys
  doi: 10.1118/1.598916
– volume: 45
  start-page: 1741
  issue: 7
  year: 2000
  ident: 1523_CR34
  publication-title: Phys Med Biol
  doi: 10.1088/0031-9155/45/7/303
– ident: 1523_CR24
– volume: 13
  start-page: 64
  issue: 1
  year: 1986
  ident: 1523_CR13
  publication-title: Med Phys
  doi: 10.1118/1.595924
– volume: 9
  start-page: 193
  issue: 3
  year: 2012
  ident: 1523_CR3
  publication-title: Int J Med Sci
  doi: 10.7150/ijms.3635
– volume: 43
  start-page: 517
  issue: 3
  year: 1998
  ident: 1523_CR8
  publication-title: Phys Med Biol
  doi: 10.1088/0031-9155/43/3/004
SSID ssj0002511765
ssj0024368
Score 2.3444402
Snippet The Monte Carlo (MC) dose calculation method is widely recognized as the gold standard for precision in dose calculation. However, MC calculations are...
SourceID proquest
pubmed
crossref
springer
SourceType Aggregation Database
Index Database
Publisher
StartPage 557
SubjectTerms Accuracy
Algorithms
Automation
Biological and Medical Physics
Biomedical and Life Sciences
Biomedical Engineering and Bioengineering
Biomedicine
Biophysics
Cancer therapies
Computer Simulation
Datasets
Humans
Medical and Radiation Physics
Monte Carlo Method
Neural networks
Neural Networks, Computer
Optimization techniques
Planning
Python
Radiation Dosage
Radiation therapy
Radiotherapy Dosage
Radiotherapy Planning, Computer-Assisted
Radiotherapy, Intensity-Modulated
Scientific Paper
Simulation
Workflow
Title Virtual-simulation boosted neural network dose calculation engine for intensity-modulated radiation therapy
URI https://link.springer.com/article/10.1007/s13246-025-01523-3
https://www.ncbi.nlm.nih.gov/pubmed/40029538
https://www.proquest.com/docview/3225641261
https://www.proquest.com/docview/3173399460
Volume 48
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 2662-4737
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002511765
  issn: 2662-4729
  databaseCode: AFBBN
  dateStart: 20010301
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 2662-4737
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0024368
  issn: 2662-4729
  databaseCode: AGYKE
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 2662-4737
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0024368
  issn: 2662-4729
  databaseCode: U2A
  dateStart: 20010301
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLe6TkLbAfFNYExG4hYy5ctOcuwQU4VgQqJDFZfIThyooOnUJoftyF_O81eStZsEXKLKduzKv5_t957fe0HoTQUaV0xY5HE4i0FB8VNYc37mFSknvKRAKybtHZ_O6fQi_jAn89Ho98BrqW34SXF9a1zJ_6AKZYCrjJL9B2S7TqEAfgO-8ASE4flXGH9drGX4h7dZLM1XuFwQmqUB05V5KmH2a-3l7ZbKLZ39Kmw7ofIQKifDhfZib6685aqU9fD6WqYsUA2bQdoBI8R-tthKo7voExq65jhVLrbbl_YfldvANxlV970va9URwFZXi770i7Vhz9ubxUIXT1u2-WFIbewVIen9qk6E2tdAJAi9ONG5XuwmHKcDsoWDHZXo_NU7O71vIp9BIJRe1NIDEXRqLxo2BrQulwr7WN4-Ep1HZiu_tq3aQ_shnAz-GO1Pzk5PzztLnVTCEkpMxJWOu9we9QDds_3cFHB2tJadG3clyMweoPtGA8ETTaeHaCTqR-hwkJfyMfq5SyxsiIU1sbAhFpbEwgNiYc0HDMTCtxALd8TChlhP0Ozs_ezd1DNf5fAKEPUbryoYFykpKSlTLgVQUpSJDPTnPqNCBEkFZwIJ0yJgMUxoSUH8ERkPo6xiKcuip2hcr2rxHGHQvIOqhC2BcxrDi5wynlYV830BQ2XcQa6dyfxS517J-yzbEoIcIMgVBHnkoCM72blZo5tcHlc0DkIaOOh1Vw07qLwWY7VYtdAmSCIQ02PqO-iZBqkbzoLqoLcWtb7zu__Lizs7eokO-kVxhMbNuhWvQKxt-LHh3THauwgnfwDhdKVw
linkProvider Library Specific Holdings
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Virtual-simulation+boosted+neural+network+dose+calculation+engine+for+intensity-modulated+radiation+therapy&rft.jtitle=Physical+and+engineering+sciences+in+medicine&rft.au=Li%2C+Zirong&rft.au=Liu%2C+Yaoying&rft.au=Shang%2C+Xuying&rft.au=Sheng%2C+Huashan&rft.date=2025-06-01&rft.eissn=2662-4737&rft.volume=48&rft.issue=2&rft.spage=557&rft_id=info:doi/10.1007%2Fs13246-025-01523-3&rft_id=info%3Apmid%2F40029538&rft.externalDocID=40029538
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2662-4729&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2662-4729&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2662-4729&client=summon