Virtual-simulation boosted neural network dose calculation engine for intensity-modulated radiation therapy
The Monte Carlo (MC) dose calculation method is widely recognized as the gold standard for precision in dose calculation. However, MC calculations are computationally intensive and time-consuming. This study aims to develop a neural network-based dose calculation engine using a virtual simulation da...
        Saved in:
      
    
          | Published in | Australasian physical & engineering sciences in medicine Vol. 48; no. 2; pp. 557 - 566 | 
|---|---|
| Main Authors | , , , , , , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        Cham
          Springer International Publishing
    
        01.06.2025
     Springer Nature B.V  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 2662-4729 0158-9938 2662-4737 2662-4737 1879-5447  | 
| DOI | 10.1007/s13246-025-01523-3 | 
Cover
| Abstract | The Monte Carlo (MC) dose calculation method is widely recognized as the gold standard for precision in dose calculation. However, MC calculations are computationally intensive and time-consuming. This study aims to develop a neural network-based dose calculation engine using a virtual simulation database, producing dose distributions with accuracy comparable to MC dose calculations. We established an unrestricted virtual simulation database employing specific rules and automated optimization techniques. Individual dose distributions for each beam were stored. A neural network was then constructed and trained using a 3D Dense-U-Net architecture. The model’s accuracy was validated in intensity-modulated radiation therapy (IMRT) for nasopharyngeal carcinoma, cervical carcinoma, and lung cancer. A total of 31,967 single-beam doses were collected from 2,382 virtual plans. For clinical beam doses, the gamma passing rates under the 1 mm/1% and 2 mm/2% criteria improved significantly from 13.4 ± 4.8% and 37.5 ± 9.4% to 77.5 ± 7.7% and 95.6 ± 2.5%, respectively, using the model. The mean computation time was 0.017 ± 0.002 s. We successfully developed an automated training workflow for a neural network-based dose calculation model in fixed-beam IMRT. This workflow enables the generation of a substantial training dataset from a relatively small clinical dataset, resulting in a model that excels in accuracy and speed. | 
    
|---|---|
| AbstractList | The Monte Carlo (MC) dose calculation method is widely recognized as the gold standard for precision in dose calculation. However, MC calculations are computationally intensive and time-consuming. This study aims to develop a neural network-based dose calculation engine using a virtual simulation database, producing dose distributions with accuracy comparable to MC dose calculations. We established an unrestricted virtual simulation database employing specific rules and automated optimization techniques. Individual dose distributions for each beam were stored. A neural network was then constructed and trained using a 3D Dense-U-Net architecture. The model’s accuracy was validated in intensity-modulated radiation therapy (IMRT) for nasopharyngeal carcinoma, cervical carcinoma, and lung cancer. A total of 31,967 single-beam doses were collected from 2,382 virtual plans. For clinical beam doses, the gamma passing rates under the 1 mm/1% and 2 mm/2% criteria improved significantly from 13.4 ± 4.8% and 37.5 ± 9.4% to 77.5 ± 7.7% and 95.6 ± 2.5%, respectively, using the model. The mean computation time was 0.017 ± 0.002 s. We successfully developed an automated training workflow for a neural network-based dose calculation model in fixed-beam IMRT. This workflow enables the generation of a substantial training dataset from a relatively small clinical dataset, resulting in a model that excels in accuracy and speed. The Monte Carlo (MC) dose calculation method is widely recognized as the gold standard for precision in dose calculation. However, MC calculations are computationally intensive and time-consuming. This study aims to develop a neural network-based dose calculation engine using a virtual simulation database, producing dose distributions with accuracy comparable to MC dose calculations. We established an unrestricted virtual simulation database employing specific rules and automated optimization techniques. Individual dose distributions for each beam were stored. A neural network was then constructed and trained using a 3D Dense-U-Net architecture. The model's accuracy was validated in intensity-modulated radiation therapy (IMRT) for nasopharyngeal carcinoma, cervical carcinoma, and lung cancer. A total of 31,967 single-beam doses were collected from 2,382 virtual plans. For clinical beam doses, the gamma passing rates under the 1 mm/1% and 2 mm/2% criteria improved significantly from 13.4 ± 4.8% and 37.5 ± 9.4% to 77.5 ± 7.7% and 95.6 ± 2.5%, respectively, using the model. The mean computation time was 0.017 ± 0.002 s. We successfully developed an automated training workflow for a neural network-based dose calculation model in fixed-beam IMRT. This workflow enables the generation of a substantial training dataset from a relatively small clinical dataset, resulting in a model that excels in accuracy and speed. The Monte Carlo (MC) dose calculation method is widely recognized as the gold standard for precision in dose calculation. However, MC calculations are computationally intensive and time-consuming. This study aims to develop a neural network-based dose calculation engine using a virtual simulation database, producing dose distributions with accuracy comparable to MC dose calculations. We established an unrestricted virtual simulation database employing specific rules and automated optimization techniques. Individual dose distributions for each beam were stored. A neural network was then constructed and trained using a 3D Dense-U-Net architecture. The model's accuracy was validated in intensity-modulated radiation therapy (IMRT) for nasopharyngeal carcinoma, cervical carcinoma, and lung cancer. A total of 31,967 single-beam doses were collected from 2,382 virtual plans. For clinical beam doses, the gamma passing rates under the 1 mm/1% and 2 mm/2% criteria improved significantly from 13.4 ± 4.8% and 37.5 ± 9.4% to 77.5 ± 7.7% and 95.6 ± 2.5%, respectively, using the model. The mean computation time was 0.017 ± 0.002 s. We successfully developed an automated training workflow for a neural network-based dose calculation model in fixed-beam IMRT. This workflow enables the generation of a substantial training dataset from a relatively small clinical dataset, resulting in a model that excels in accuracy and speed.The Monte Carlo (MC) dose calculation method is widely recognized as the gold standard for precision in dose calculation. However, MC calculations are computationally intensive and time-consuming. This study aims to develop a neural network-based dose calculation engine using a virtual simulation database, producing dose distributions with accuracy comparable to MC dose calculations. We established an unrestricted virtual simulation database employing specific rules and automated optimization techniques. Individual dose distributions for each beam were stored. A neural network was then constructed and trained using a 3D Dense-U-Net architecture. The model's accuracy was validated in intensity-modulated radiation therapy (IMRT) for nasopharyngeal carcinoma, cervical carcinoma, and lung cancer. A total of 31,967 single-beam doses were collected from 2,382 virtual plans. For clinical beam doses, the gamma passing rates under the 1 mm/1% and 2 mm/2% criteria improved significantly from 13.4 ± 4.8% and 37.5 ± 9.4% to 77.5 ± 7.7% and 95.6 ± 2.5%, respectively, using the model. The mean computation time was 0.017 ± 0.002 s. We successfully developed an automated training workflow for a neural network-based dose calculation model in fixed-beam IMRT. This workflow enables the generation of a substantial training dataset from a relatively small clinical dataset, resulting in a model that excels in accuracy and speed.  | 
    
| Author | Zhao, Wei Xu, Shouping Xie, Chuanbin Zhou, Qichao Shang, Xuying Li, Zirong Liu, Yaoying Zhang, Gaolong Sheng, Huashan  | 
    
| Author_xml | – sequence: 1 givenname: Zirong surname: Li fullname: Li, Zirong organization: Department of Research Algorithms, Manteia Technologies Co., Ltd – sequence: 2 givenname: Yaoying surname: Liu fullname: Liu, Yaoying organization: School of Physics, Beihang University, National Clinical Research Center for Cancer, Chinese Academy of Medical Sciences and Peking Union Medical College – sequence: 3 givenname: Xuying surname: Shang fullname: Shang, Xuying organization: School of Physics, Beihang University, National Clinical Research Center for Cancer, Chinese Academy of Medical Sciences and Peking Union Medical College – sequence: 4 givenname: Huashan surname: Sheng fullname: Sheng, Huashan organization: Department of Research Algorithms, Manteia Technologies Co., Ltd – sequence: 5 givenname: Chuanbin surname: Xie fullname: Xie, Chuanbin organization: Department of Radiation Oncology, PLA General Hospital – sequence: 6 givenname: Wei surname: Zhao fullname: Zhao, Wei organization: School of Physics, Beihang University – sequence: 7 givenname: Gaolong surname: Zhang fullname: Zhang, Gaolong organization: School of Physics, Beihang University – sequence: 8 givenname: Qichao surname: Zhou fullname: Zhou, Qichao email: zhouqc@manteiatech.com organization: Department of Research Algorithms, Manteia Technologies Co., Ltd – sequence: 9 givenname: Shouping orcidid: 0000-0003-3189-9680 surname: Xu fullname: Xu, Shouping email: xusp@cicams.ac.cn organization: National Clinical Research Center for Cancer, Chinese Academy of Medical Sciences and Peking Union Medical College  | 
    
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40029538$$D View this record in MEDLINE/PubMed | 
    
| BookMark | eNp90ctqHiEYBmApKTnfQBdloJtubDw7LktIDxDoJnQrzvhNajKjf9Wh_Hcfk0lS6KIrFZ9XxfcEHcQUAaF3lHyihOiLQjkTChMmMaGScczfoGOmFMNCc33wOmfmCJ2XckdIo5RqJQ_RkWgLI3l_jO5_hlxXN-MSlnV2NaTYDSmVCr6LsGY3t6H-Sfm-86lAN7p5fHEQb0OEbkq5C7FCLKHu8ZL8436LZ-fDBusvyG63P0NvJzcXOH8eT9HNl6uby2_4-sfX75efr_HImap4Gt0AvfRK-n4gWnA5ek2NkQNxCoDqSfS9ZP1InWBaeSU0BTMwbibXO8NP0cft2F1Ov1co1S6hjDDPLkJai-VUc26MUKTRD__Qu7Tm2B5nOWNSCcoUber9s1qHBbzd5bC4vLcvv9gA28CYUykZpldCiX1sy25t2VaBfWrL8hbiW6g0HG8h_737P6kHqi6X3A | 
    
| Cites_doi | 10.1088/0031-9155/25/2/003 10.1118/1.3539725 10.4329/wjr.v6.i11.874 10.1088/0031-9155/56/22/002 10.1088/0031-9155/48/21/005 10.3389/fonc.2022.808580 10.1016/j.radonc.2024.110593 10.1016/j.zemedi.2022.10.006 10.1088/0031-9155/51/22/005 10.1007/s11548-022-02801-1 10.1118/1.595772 10.1088/0031-9155/52/3/006 10.1088/0031-9155/45/1/306 10.1088/0031-9155/47/3/303 10.1088/0031-9155/50/5/011 10.1148/129.3.787 10.1088/0031-9155/60/19/7419 10.1118/1.2745236 10.3389/fonc.2021.752007 10.3322/caac.21820 10.1088/0031-9155/50/14/013 10.1016/S0140-6736(21)00233-6 10.1088/0031-9155/50/8/009 10.1088/0031-9155/46/4/302 10.1118/1.598916 10.1088/0031-9155/45/7/303 10.1118/1.595924 10.7150/ijms.3635 10.1088/0031-9155/43/3/004  | 
    
| ContentType | Journal Article | 
    
| Copyright | Australasian College of Physical Scientists and Engineers in Medicine 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. 2025. Australasian College of Physical Scientists and Engineers in Medicine. Copyright Springer Nature B.V. Jun 2025  | 
    
| Copyright_xml | – notice: Australasian College of Physical Scientists and Engineers in Medicine 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. – notice: 2025. Australasian College of Physical Scientists and Engineers in Medicine. – notice: Copyright Springer Nature B.V. Jun 2025  | 
    
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM K9. 7X8  | 
    
| DOI | 10.1007/s13246-025-01523-3 | 
    
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic  | 
    
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic  | 
    
| DatabaseTitleList | ProQuest Health & Medical Complete (Alumni) MEDLINE MEDLINE - Academic  | 
    
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Engineering | 
    
| EISSN | 2662-4737 1879-5447  | 
    
| EndPage | 566 | 
    
| ExternalDocumentID | 40029538 10_1007_s13246_025_01523_3  | 
    
| Genre | Journal Article | 
    
| GrantInformation_xml | – fundername: Chinese Academy of Medical Sciences Initiative for Innovative Medicine grantid: 2024-I2M-C&T-B-076 funderid: http://dx.doi.org/10.13039/501100019018 – fundername: National Natural Science Foundation of China grantid: No. 12375359 funderid: http://dx.doi.org/10.13039/501100001809 – fundername: National Natural Science Foundation of China grantid: No. 12375359 – fundername: Chinese Academy of Medical Sciences Initiative for Innovative Medicine grantid: 2024-I2M-C&T-B-076  | 
    
| GroupedDBID | 0R~ 406 AACDK AAHNG AAJBT AANZL AAPKM AASML AATNV AAUYE AAYZH ABAKF ABBRH ABDBE ABDZT ABECU ABFSG ABJNI ABMQK ABRTQ ABSXP ABTEG ABTKH ACAOD ACDTI ACHSB ACMDZ ACOKC ACPIV ACSTC ACZOJ ADKNI ADTPH ADYFF AEFQL AEMSY AESKC AEVLU AEZWR AFBBN AFDZB AFHIU AFLOW AFOHR AFQWF AGMZJ AGQEE AGRTI AHPBZ AHWEU AIAKS AIGIU AILAN AIXLP ALMA_UNASSIGNED_HOLDINGS AMXSW AMYLF AOCGG ATHPR AYFIA BGNMA DDRTE DNIVK DPUIP EBLON EBS EMB EMOBN FERAY FIGPU FNLPD GGCAI IKXTQ IWAJR J-C JZLTJ LLZTM M4Y NPVJJ NQJWS NU0 PT4 ROL RSV SJYHP SNE SNPRN SNX SOHCF SOJ SRMVM SSLCW SV3 UOJIU UTJUX ZMTXR AAYXX CITATION CGR CUY CVF ECM EIF NPM ..I 06D 0VY 1N0 203 23N 29~ 2KG 30V 36B 4.4 408 40D 53G 5GY 67N 8WZ 96X A6W AAIAL AAJKR AARTL AATVU AAWCG AAYIU AAYQN AAZMS ABFTV ABJOX ABKCH ABPLI ABQBU ABTHY ABTMW ABXPI ACGFS ACGOD ACKNC ACMLO ADBBV ADHHG ADHIR ADKPE ADRFC ADURQ ADZKW AEGNC AEJHL AEJRE AENEX AEOHA AEPYU AETCA AEXYK AFWTZ AFZKB AGAYW AGDGC AGJBK AGQMX AGWZB AGYKE AHAVH AHBYD AHKAY AHMBA AHYZX AIIXL AITGF AJRNO AJZVZ AKMHD ALFXC AMKLP AMYQR ANMIH ARAPS AXYYD CSCUP EIOEI EN4 ESBYG FRRFC FYJPI GGRSB GJIRD GQ7 HCIFZ HMJXF HRMNR HZ~ I0C ITM J0Z JBSCW K9. KOV KTM O9- O93 O9I O9J P2P R9I RLLFE S1Z S27 S3A S3B SBL SHX SISQX SPISZ SSXJD STPWE T13 TSG U2A U9L UG4 UZXMN VC2 VFIZW W48 WK8 WOQ Z45 ZOVNA ~A9 7X8  | 
    
| ID | FETCH-LOGICAL-c326t-fcabe85d65d8b07435cd71995b0a6ee17f488528c1a4276d6471e9b239fa8a93 | 
    
| ISSN | 2662-4729 0158-9938 2662-4737  | 
    
| IngestDate | Wed Oct 01 13:23:04 EDT 2025 Fri Oct 03 08:02:03 EDT 2025 Wed Jul 02 01:57:21 EDT 2025 Wed Oct 01 06:00:33 EDT 2025 Mon Jul 21 06:06:53 EDT 2025  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 2 | 
    
| Keywords | Radiation therapy (RT) Neural network (NN) IMRT Dose calculation Virtual-simulation  | 
    
| Language | English | 
    
| License | 2025. Australasian College of Physical Scientists and Engineers in Medicine. | 
    
| LinkModel | OpenURL | 
    
| MergedId | FETCHMERGED-LOGICAL-c326t-fcabe85d65d8b07435cd71995b0a6ee17f488528c1a4276d6471e9b239fa8a93 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23  | 
    
| ORCID | 0000-0003-3189-9680 | 
    
| PMID | 40029538 | 
    
| PQID | 3225641261 | 
    
| PQPubID | 33672 | 
    
| PageCount | 10 | 
    
| ParticipantIDs | proquest_miscellaneous_3173399460 proquest_journals_3225641261 pubmed_primary_40029538 crossref_primary_10_1007_s13246_025_01523_3 springer_journals_10_1007_s13246_025_01523_3  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2025-06-01 | 
    
| PublicationDateYYYYMMDD | 2025-06-01 | 
    
| PublicationDate_xml | – month: 06 year: 2025 text: 2025-06-01 day: 01  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | Cham | 
    
| PublicationPlace_xml | – name: Cham – name: Switzerland – name: Dordrecht  | 
    
| PublicationSubtitle | The Official Journal of the Australasian College of Physical Scientists and Engineers in Medicine | 
    
| PublicationTitle | Australasian physical & engineering sciences in medicine | 
    
| PublicationTitleAbbrev | Phys Eng Sci Med | 
    
| PublicationTitleAlternate | Phys Eng Sci Med | 
    
| PublicationYear | 2025 | 
    
| Publisher | Springer International Publishing Springer Nature B.V  | 
    
| Publisher_xml | – name: Springer International Publishing – name: Springer Nature B.V  | 
    
| References | B Yang (1523_CR21) 2023; 18 IA Popescu (1523_CR9) 2005; 50 Y Liu (1523_CR27) 2025; 202 W-Z Chen (1523_CR5) 2014; 6 MR Sontag (1523_CR10) 1978; 129 Y Peng (1523_CR26) 2022; 12 W Laub (1523_CR34) 2000; 45 U Jelen (1523_CR22) 2005; 50 JV Siebers (1523_CR33) 2007; 34 A Boyer (1523_CR12) 1985; 12 1523_CR20 1523_CR1 S Hissoiny (1523_CR15) 2011; 38 HE Romeijn (1523_CR19) 2003; 48 1523_CR24 X Jia (1523_CR16) 2011; 56 Z Tian (1523_CR17) 2015; 60 1523_CR28 P Keall (1523_CR29) 2001; 46 T Knöös (1523_CR7) 2006; 51 Y Liu (1523_CR25) 2021; 11 R Baskar (1523_CR3) 2012; 9 D Shepard (1523_CR18) 2000; 45 J Yang (1523_CR30) 2005; 50 BS Chhikara (1523_CR2) 2023; 10 R Jeraj (1523_CR6) 2002; 47 C Börgers (1523_CR8) 1998; 43 R Mohan (1523_CR13) 1986; 13 S Webb (1523_CR11) 1980; 25 RA Chandra (1523_CR4) 2021; 398 U Jeleń (1523_CR23) 2007; 52 1523_CR31 P Keall (1523_CR32) 2000; 27 1523_CR14  | 
    
| References_xml | – volume: 25 start-page: 225 issue: 2 year: 1980 ident: 1523_CR11 publication-title: Phys Med Biol doi: 10.1088/0031-9155/25/2/003 – volume: 38 start-page: 754 issue: 2 year: 2011 ident: 1523_CR15 publication-title: Med Phys doi: 10.1118/1.3539725 – volume: 6 start-page: 874 issue: 11 year: 2014 ident: 1523_CR5 publication-title: World J Radiol doi: 10.4329/wjr.v6.i11.874 – volume: 56 start-page: 7017 issue: 22 year: 2011 ident: 1523_CR16 publication-title: Phys Med Biol doi: 10.1088/0031-9155/56/22/002 – volume: 48 start-page: 3521 issue: 21 year: 2003 ident: 1523_CR19 publication-title: Phys Med Biol doi: 10.1088/0031-9155/48/21/005 – volume: 12 start-page: 808580 year: 2022 ident: 1523_CR26 publication-title: Front Oncol doi: 10.3389/fonc.2022.808580 – volume: 202 start-page: 110593 year: 2025 ident: 1523_CR27 publication-title: Radiother Oncol doi: 10.1016/j.radonc.2024.110593 – ident: 1523_CR20 doi: 10.1016/j.zemedi.2022.10.006 – volume: 51 start-page: 5785 issue: 22 year: 2006 ident: 1523_CR7 publication-title: Phys Med Biol doi: 10.1088/0031-9155/51/22/005 – volume: 18 start-page: 953 issue: 5 year: 2023 ident: 1523_CR21 publication-title: Int J Comput Assist Radiol Surg doi: 10.1007/s11548-022-02801-1 – ident: 1523_CR31 – volume: 12 start-page: 169 issue: 2 year: 1985 ident: 1523_CR12 publication-title: Med Phys doi: 10.1118/1.595772 – volume: 52 start-page: 617 issue: 3 year: 2007 ident: 1523_CR23 publication-title: Phys Med Biol doi: 10.1088/0031-9155/52/3/006 – volume: 45 start-page: 69 issue: 1 year: 2000 ident: 1523_CR18 publication-title: Phys Med Biol doi: 10.1088/0031-9155/45/1/306 – volume: 10 start-page: 451 issue: 1 year: 2023 ident: 1523_CR2 publication-title: Chem Biology Lett – volume: 47 start-page: 391 issue: 3 year: 2002 ident: 1523_CR6 publication-title: Phys Med Biol doi: 10.1088/0031-9155/47/3/303 – volume: 50 start-page: 869 issue: 5 year: 2005 ident: 1523_CR30 publication-title: Phys Med Biol doi: 10.1088/0031-9155/50/5/011 – volume: 129 start-page: 787 issue: 3 year: 1978 ident: 1523_CR10 publication-title: Radiology doi: 10.1148/129.3.787 – volume: 60 start-page: 7419 issue: 19 year: 2015 ident: 1523_CR17 publication-title: Phys Med Biol doi: 10.1088/0031-9155/60/19/7419 – volume: 34 start-page: 2853 issue: 7 year: 2007 ident: 1523_CR33 publication-title: Med Phys doi: 10.1118/1.2745236 – volume: 11 start-page: 752007 year: 2021 ident: 1523_CR25 publication-title: Front Oncol doi: 10.3389/fonc.2021.752007 – ident: 1523_CR1 doi: 10.3322/caac.21820 – volume: 50 start-page: 3375 issue: 14 year: 2005 ident: 1523_CR9 publication-title: Phys Med Biol doi: 10.1088/0031-9155/50/14/013 – volume: 398 start-page: 171 issue: 10295 year: 2021 ident: 1523_CR4 publication-title: Lancet doi: 10.1016/S0140-6736(21)00233-6 – ident: 1523_CR14 – volume: 50 start-page: 1747 issue: 8 year: 2005 ident: 1523_CR22 publication-title: Phys Med Biol doi: 10.1088/0031-9155/50/8/009 – volume: 46 start-page: 929 issue: 4 year: 2001 ident: 1523_CR29 publication-title: Phys Med Biol doi: 10.1088/0031-9155/46/4/302 – ident: 1523_CR28 – volume: 27 start-page: 478 issue: 3 year: 2000 ident: 1523_CR32 publication-title: Med Phys doi: 10.1118/1.598916 – volume: 45 start-page: 1741 issue: 7 year: 2000 ident: 1523_CR34 publication-title: Phys Med Biol doi: 10.1088/0031-9155/45/7/303 – ident: 1523_CR24 – volume: 13 start-page: 64 issue: 1 year: 1986 ident: 1523_CR13 publication-title: Med Phys doi: 10.1118/1.595924 – volume: 9 start-page: 193 issue: 3 year: 2012 ident: 1523_CR3 publication-title: Int J Med Sci doi: 10.7150/ijms.3635 – volume: 43 start-page: 517 issue: 3 year: 1998 ident: 1523_CR8 publication-title: Phys Med Biol doi: 10.1088/0031-9155/43/3/004  | 
    
| SSID | ssj0002511765 ssj0024368  | 
    
| Score | 2.3444402 | 
    
| Snippet | The Monte Carlo (MC) dose calculation method is widely recognized as the gold standard for precision in dose calculation. However, MC calculations are... | 
    
| SourceID | proquest pubmed crossref springer  | 
    
| SourceType | Aggregation Database Index Database Publisher  | 
    
| StartPage | 557 | 
    
| SubjectTerms | Accuracy Algorithms Automation Biological and Medical Physics Biomedical and Life Sciences Biomedical Engineering and Bioengineering Biomedicine Biophysics Cancer therapies Computer Simulation Datasets Humans Medical and Radiation Physics Monte Carlo Method Neural networks Neural Networks, Computer Optimization techniques Planning Python Radiation Dosage Radiation therapy Radiotherapy Dosage Radiotherapy Planning, Computer-Assisted Radiotherapy, Intensity-Modulated Scientific Paper Simulation Workflow  | 
    
| Title | Virtual-simulation boosted neural network dose calculation engine for intensity-modulated radiation therapy | 
    
| URI | https://link.springer.com/article/10.1007/s13246-025-01523-3 https://www.ncbi.nlm.nih.gov/pubmed/40029538 https://www.proquest.com/docview/3225641261 https://www.proquest.com/docview/3173399460  | 
    
| Volume | 48 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 2662-4737 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002511765 issn: 2662-4729 databaseCode: AFBBN dateStart: 20010301 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 2662-4737 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0024368 issn: 2662-4729 databaseCode: AGYKE dateStart: 20010101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 2662-4737 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0024368 issn: 2662-4729 databaseCode: U2A dateStart: 20010301 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLe6TkLbAfFNYExG4hYy5ctOcuwQU4VgQqJDFZfIThyooOnUJoftyF_O81eStZsEXKLKduzKv5_t957fe0HoTQUaV0xY5HE4i0FB8VNYc37mFSknvKRAKybtHZ_O6fQi_jAn89Ho98BrqW34SXF9a1zJ_6AKZYCrjJL9B2S7TqEAfgO-8ASE4flXGH9drGX4h7dZLM1XuFwQmqUB05V5KmH2a-3l7ZbKLZ39Kmw7ofIQKifDhfZib6685aqU9fD6WqYsUA2bQdoBI8R-tthKo7voExq65jhVLrbbl_YfldvANxlV970va9URwFZXi770i7Vhz9ubxUIXT1u2-WFIbewVIen9qk6E2tdAJAi9ONG5XuwmHKcDsoWDHZXo_NU7O71vIp9BIJRe1NIDEXRqLxo2BrQulwr7WN4-Ep1HZiu_tq3aQ_shnAz-GO1Pzk5PzztLnVTCEkpMxJWOu9we9QDds_3cFHB2tJadG3clyMweoPtGA8ETTaeHaCTqR-hwkJfyMfq5SyxsiIU1sbAhFpbEwgNiYc0HDMTCtxALd8TChlhP0Ozs_ezd1DNf5fAKEPUbryoYFykpKSlTLgVQUpSJDPTnPqNCBEkFZwIJ0yJgMUxoSUH8ERkPo6xiKcuip2hcr2rxHGHQvIOqhC2BcxrDi5wynlYV830BQ2XcQa6dyfxS517J-yzbEoIcIMgVBHnkoCM72blZo5tcHlc0DkIaOOh1Vw07qLwWY7VYtdAmSCIQ02PqO-iZBqkbzoLqoLcWtb7zu__Lizs7eokO-kVxhMbNuhWvQKxt-LHh3THauwgnfwDhdKVw | 
    
| linkProvider | Library Specific Holdings | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Virtual-simulation+boosted+neural+network+dose+calculation+engine+for+intensity-modulated+radiation+therapy&rft.jtitle=Physical+and+engineering+sciences+in+medicine&rft.au=Li%2C+Zirong&rft.au=Liu%2C+Yaoying&rft.au=Shang%2C+Xuying&rft.au=Sheng%2C+Huashan&rft.date=2025-06-01&rft.eissn=2662-4737&rft.volume=48&rft.issue=2&rft.spage=557&rft_id=info:doi/10.1007%2Fs13246-025-01523-3&rft_id=info%3Apmid%2F40029538&rft.externalDocID=40029538 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2662-4729&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2662-4729&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2662-4729&client=summon |