Comparison of nonlinear and linear PCA on surface wind, surface height, and SST in the South China Sea
We compared nonlinear principal component analysis (NLPCA) with linear principal component analysis (LPCA) with the data of sea surface wind anomalies (SWA), surface height anomalies (SSHA), and sea surface temperature anomalies (SSTA), taken in the South China Sea (SCS) between 1993 and 2003. The S...
Saved in:
Published in | Chinese journal of oceanology and limnology Vol. 28; no. 5; pp. 981 - 989 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Heidelberg
SP Science Press
01.09.2010
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 0254-4059 2096-5508 1993-5005 2523-3521 |
DOI | 10.1007/s00343-010-9074-6 |
Cover
Abstract | We compared nonlinear principal component analysis (NLPCA) with linear principal component analysis (LPCA) with the data of sea surface wind anomalies (SWA), surface height anomalies (SSHA), and sea surface temperature anomalies (SSTA), taken in the South China Sea (SCS) between 1993 and 2003. The SCS monthly data for SWA, SSHA and SSTA (i.e., the anomalies with climatological seasonal cycle removed) were pre-filtered by LPCA, with only three leading modes retained. The first three modes of SWA, SSHA, and SSTA of LPCA explained 86%, 71%, and 94% of the total variance in the original data, respectively. Thus, the three associated time coefficient functions (TCFs) were used as the input data for NLPCA network. The NLPCA was made based on feed-forward neural network models. Compared with classical linear PCA, the first NLPCA mode could explain more variance than linear PCA for the above data. The nonlinearity of SWA and SSHA were stronger in most areas of the SCS. The first mode of the NLPCA on the SWA and SSHA accounted for 67.26% of the variance versus 54.7%, and 60.24% versus 50.43%, respectively for the first LPCA mode. Conversely, the nonlinear SSTA, localized in the northern SCS and southern continental shelf region, resulted in little improvement in the explanation of the variance for the first NLPCA. |
---|---|
AbstractList | We compared nonlinear principal component analysis (NLPCA) with linear principal component analysis (LPCA) with the data of sea surface wind anomalies (SWA), surface height anomalies (SSHA), and sea surface temperature anomalies (SSTA), taken in the South China Sea (SCS) between 1993 and 2003. The SCS monthly data for SWA, SSHA and SSTA (i.e., the anomalies with climatological seasonal cycle removed) were pre-filtered by LPCA, with only three leading modes retained. The first three modes of SWA, SSHA, and SSTA of LPCA explained 86%, 71%, and 94% of the total variance in the original data, respectively. Thus, the three associated time coefficient functions (TCFs) were used as the input data for NLPCA network. The NLPCA was made based on feed-forward neural network models. Compared with classical linear PCA, the first NLPCA mode could explain more variance than linear PCA for the above data. The nonlinearity of SWA and SSHA were stronger in most areas of the SCS. The first mode of the NLPCA on the SWA and SSHA accounted for 67.26% of the variance versus 54.7%, and 60.24% versus 50.43%, respectively for the first LPCA mode. Conversely, the nonlinear SSTA, localized in the northern SCS and southern continental shelf region, resulted in little improvement in the explanation of the variance for the first NLPCA. We compared nonlinear principal component analysis (NLPCA) with linear principal component analysis (LPCA) with the data of sea surface wind anomalies (SWA), surface height anomalies (SSHA), and sea surface temperature anomalies (SSTA), taken in the South China Sea (SCS) between 1993 and 2003. The SCS monthly data for SWA, SSHA and SSTA (i.e., the anomalies with climatological seasonal cycle removed) were pre-filtered by LPCA, with only three leading modes retained. The first three modes of SWA, SSHA, and SSTA of LPCA explained 86%, 71%, and 94% of the total variance in the original data, respectively. Thus, the three associated time coefficient functions (TCFs) were used as the input data for NLPCA network. The NLPCA was made based on feed-forward neural network models. Compared with classical linear PCA, the first NLPCA mode could explain more variance than linear PCA for the above data. The nonlinearity of SWA and SSHA were stronger in most areas of the SCS. The first mode of the NLPCA on the SWA and SSHA accounted for 67.26% of the variance versus 54.7%, and 60.24% versus 50.43%, respectively for the first LPCA mode. Conversely, the nonlinear SSTA, localized in the northern SCS and southern continental shelf region, resulted in little improvement in the explanation of the variance for the first NLPCA. |
Author | 陈海英 尹宝树 方国洪 王永刚 |
AuthorAffiliation | Key Laboratory of Ocean Circulation and Wave, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China Key Laboratory of Marine Setence and Numerical Modeling, First Institute of Oceanography, SOA, Qingdao 266061, China |
Author_xml | – sequence: 1 fullname: 陈海英 尹宝树 方国洪 王永刚 |
BookMark | eNp9kF9PHCEUxUljk65_PkDfSF98cfQCwwCPZmKriYkmq88EWdjBzsIKMzH99sXupiY--HS54XdOzj2H6CCm6BD6TuCcAIiLAsBa1gCBRoFom-4LWhClWMMB-AFaAOVt0wJX39BhKc-VVi2oBfJ92mxNDiVFnDyurmOIzmRs4grvn_f9Ja7fZc7eWIdfQ1yd_d8GF9bDdPaPXy4fcIh4GhxepnkacD-EaPDSmWP01ZuxuJP9PEKPP68e-uvm9u7XTX9521hGu6lxT5TWpNJyKZWwnlrBCBVWeNl1TFEqqSO0nsWkFUY5Yzi01EhFxYp6wtgROt35bnN6mV2Z9CYU68bRRJfmoiURHTChaCV_fCCf05xjDacFJy2RtBUVIjvI5lRKdl5vc9iY_EcT0G-9613vuvau33rXXdXQnaZUNq5dfjf-TLRPY4cU1y9Vp5-M_e3D6DTjkgNnHfsL_0SPXQ |
Cites_doi | 10.1029/2003JC002179 10.1175/1520-0442(1999)012<0917:RSSTVD>2.0.CO;2 10.1256/qj.01.158 10.1175/1520-0442(2001)014<2528:NCCAOT>2.0.CO;2 10.1175/1520-0442(1994)007<0929:IGSSTA>2.0.CO;2 10.1029/97JC00982 10.1007/BF02742620 10.1034/j.1600-0870.2001.00251.x 10.1002/aic.690370209 10.1029/2002RG000112 10.1029/2005JC003276 10.1007/BF02907613 10.7551/mitpress/5236.001.0001 10.3402/tellusa.v53i5.12230 |
ContentType | Journal Article |
Copyright | Chinese Society for Oceanology and Limnology, Science Press and Springer Berlin Heidelberg 2010 Chinese Society for Oceanology and Limnology, Science Press and Springer Berlin Heidelberg 2010. |
Copyright_xml | – notice: Chinese Society for Oceanology and Limnology, Science Press and Springer Berlin Heidelberg 2010 – notice: Chinese Society for Oceanology and Limnology, Science Press and Springer Berlin Heidelberg 2010. |
DBID | 2RA 92L CQIGP W94 ~WA AAYXX CITATION 3V. 7QH 7QL 7SN 7TN 7U7 7UA 7XB 88I 8FK ABUWG AEUYN AFKRA AZQEC BENPR BHPHI BKSAR C1K CCPQU DWQXO F1W GNUQQ H96 HCIFZ L.G M2P M7N PCBAR PHGZM PHGZT PKEHL PQEST PQQKQ PQUKI Q9U 7TG H95 KL. |
DOI | 10.1007/s00343-010-9074-6 |
DatabaseName | 维普_期刊 中文科技期刊数据库-CALIS站点 维普中文期刊数据库 中文科技期刊数据库-自然科学 中文科技期刊数据库- 镜像站点 CrossRef ProQuest Central (Corporate) Aqualine Bacteriology Abstracts (Microbiology B) Ecology Abstracts Oceanic Abstracts Toxicology Abstracts Water Resources Abstracts ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni Edition) ProQuest One Sustainability (subscription) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Korea ASFA: Aquatic Sciences and Fisheries Abstracts ProQuest Central Student Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources SciTech Premium Collection (UHCL Subscription) Aquatic Science & Fisheries Abstracts (ASFA) Professional Science Database (subscription) Algology Mycology and Protozoology Abstracts (Microbiology C) Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central Basic Meteorological & Geoastrophysical Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Meteorological & Geoastrophysical Abstracts - Academic |
DatabaseTitle | CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Water Resources Abstracts Environmental Sciences and Pollution Management ProQuest Central Earth, Atmospheric & Aquatic Science Collection ProQuest One Sustainability Oceanic Abstracts Natural Science Collection ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) ProQuest Central (New) ProQuest Science Journals (Alumni Edition) ProQuest Central Basic Toxicology Abstracts ProQuest Science Journals ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database Ecology Abstracts Aqualine Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ProQuest One Academic UKI Edition ASFA: Aquatic Sciences and Fisheries Abstracts ProQuest One Academic ProQuest Central (Alumni) ProQuest One Academic (New) Meteorological & Geoastrophysical Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Meteorological & Geoastrophysical Abstracts - Academic |
DatabaseTitleList | Aquatic Science & Fisheries Abstracts (ASFA) Professional Aquatic Science & Fisheries Abstracts (ASFA) Professional |
Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central - New (Subscription) url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Oceanography |
DocumentTitleAlternate | Comparison of nonlinear and linear PCA on surface wind, surface height, and SST in the South China Sea |
EISSN | 1993-5005 2523-3521 |
EndPage | 989 |
ExternalDocumentID | 2140992201 10_1007_s00343_010_9074_6 35850536 |
GeographicLocations | South China Sea ISEW, South China Sea |
GeographicLocations_xml | – name: South China Sea – name: ISEW, South China Sea |
GroupedDBID | -5A -5G -5~ -BR -Y2 -~C .86 .VR 06D 0R~ 0VY 188 199 1N0 2.D 29B 2B. 2C. 2J2 2KG 2KM 2LR 2RA 2VQ 2WC 2~H 30V 3V. 4.4 408 40D 40E 5GY 5VS 67M 6NX 78A 88I 8CJ 8FE 8FH 8RM 8TC 8UJ 92E 92I 92L 92Q 93N 95- 95. 95~ 96X AAAVM AABHQ AAJKR AAPBV AARHV AARTL AATVU AAWCG AAYIU AAYQN AAYTO ABFTV ABJOX ABKCH ABMNI ABNWP ABQBU ABTHY ABTMW ABUWG ACGFS ACGOD ACHXU ACKNC ACOKC ACOMO ACPRK ACSNA ADHHG ADHIR ADINQ ADKPE ADURQ ADYFF ADZKW AEBTG AEGAL AEGNC AEJHL AEKMD AENEX AEOHA AEPYU AETLH AEXYK AFGCZ AFKRA AFRAH AFWTZ AFZKB AGAYW AGDGC AGGDS AGQMX AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHYZX AIIXL AINHJ AJBLW AJRNO ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMYQR ARMRJ AZQEC B-. BA0 BBWZM BENPR BGNMA BHPHI BKSAR BPHCQ C1A CAG CCEZO CCVFK CHBEP COF CQIGP CS3 CSCUP CW9 D1J D1K DU5 DWQXO EBS EJD ESBYG FA0 FEDTE FNLPD FRRFC FWDCC GGCAI GGRSB GJIRD GNUQQ GQ6 GQ7 H13 HCIFZ HF~ HG6 HMJXF HRMNR HVGLF HZ~ IJ- IPNFZ IXD I~X I~Z J-C JBSCW K6- KOV L8X LK5 M2P M4Y M7R MA- N2Q NDZJH NF0 NQJWS NU0 O9- O93 O9G O9I O9J P19 PCBAR PF0 PQEST PQQKQ PQUKI PROAC PT5 Q2X QOK QOS R89 R9I RNI ROL RPX RSV RZK S.. S16 S1Z S26 S27 S28 S3B SAP SCL SDH SEV SHX SISQX SNX SOJ SPISZ SZN T13 T16 TSG TUC U2A UG4 UZ4 VC2 W48 W94 WK6 WK8 Z5O Z86 ~02 ~A9 ~WA AAHBH ABJNI ABQSL DPUIP AAYXX ADHKG AGQPQ CITATION -SA -S~ 2JN 2JY 406 5VR 5XA 5XB 7QH 7QL 7SN 7TN 7U7 7UA 7XB 8FK AACDK AAHNG AAIAL AAJBT AANZL AAPKM AASML AATNV AAUYE AAYZH ABAKF ABBRH ABDBE ABDZT ABECU ABFSG ABHQN ABMQK ABRTQ ABSXP ABTEG ABTKH ABWNU ABXPI ACAOD ACDTI ACHSB ACMDZ ACMLO ACPIV ACSTC ACZOJ ADKNI ADRFC ADTPH AEFQL AEJRE AEMSY AESKC AEUYN AEVLU AEZWR AFBBN AFDZB AFHIU AFLOW AFQWF AFUIB AGJBK AGMZJ AGQEE AGRTI AHPBZ AHSBF AHWEU AIGIU AILAN AITGF AIXLP AJZVZ AMXSW AMYLF AOCGG ATHPR AXYYD AYFIA BDATZ C1K CAJEA CCPQU DDRTE DNIVK EBLON EIOEI F1W FERAY FFXSO FIGPU FINBP FSGXE GNWQR H96 IKXTQ IWAJR JZLTJ L.G LLZTM M7N NPVJJ PHGZM PHGZT PKEHL PT4 Q-- Q9U SJYHP SNE SNPRN SOHCF SRMVM SSLCW TCJ TGP U1G U5K UOJIU UTJUX UZXMN VFIZW YLTOR ZMTXR 7TG H95 KL. |
ID | FETCH-LOGICAL-c326t-eb220258c58897cf2c73127c7f866392282e1299338c7a9eaa5042a8927d2f133 |
IEDL.DBID | AGYKE |
ISSN | 0254-4059 2096-5508 |
IngestDate | Fri Jul 11 13:38:05 EDT 2025 Wed Aug 13 10:44:50 EDT 2025 Wed Oct 01 03:55:02 EDT 2025 Fri Feb 21 02:35:40 EST 2025 Thu Nov 24 20:30:32 EST 2022 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | nonlinear PCA South China Sea satellite data inter-annual variation |
Language | English |
License | http://www.springer.com/tdm |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c326t-eb220258c58897cf2c73127c7f866392282e1299338c7a9eaa5042a8927d2f133 |
Notes | South China Sea inter-annual variation 37-1150/P nonlinear PCA P731.23 satellite data P732.6 South China Sea; nonlinear PCA; satellite data; inter-annual variation ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
PQID | 751418247 |
PQPubID | 54339 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_817603792 proquest_journals_751418247 crossref_primary_10_1007_s00343_010_9074_6 springer_journals_10_1007_s00343_010_9074_6 chongqing_backfile_35850536 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2010-09-01 |
PublicationDateYYYYMMDD | 2010-09-01 |
PublicationDate_xml | – month: 09 year: 2010 text: 2010-09-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Heidelberg |
PublicationPlace_xml | – name: Heidelberg – name: Dordrecht |
PublicationTitle | Chinese journal of oceanology and limnology |
PublicationTitleAbbrev | Chin. J. Ocean. Limnol |
PublicationTitleAlternate | Chinese Journal of Oceanology and Limnology |
PublicationYear | 2010 |
Publisher | SP Science Press Springer Nature B.V |
Publisher_xml | – name: SP Science Press – name: Springer Nature B.V |
References | Klein, Soden, Lau (CR9) 1999; 12 Emery, Thomson (CR2) 2001 Renolds, Smith (CR11) 1994; 7 CR3 Hsieh (CR4) 2001; 53 Hsieh (CR5) 2001; 14 Hsieh, Hamilton (CR6) 2003; 129 Liu, Jiang, Xie, Liu (CR10) 2004; 109 Wang, Xie, Du, Wang, Chen (CR13) 2002; 47 Hsieh (CR7) 2004; 42 Kramer (CR8) 1991; 37 Wu, Shaw, Chao (CR14) 1998; 54 Chu, Lu, Chen (CR1) 1997; 102 Rumelhart, Hinton, Williams (CR12) 1986 C. R. Wu (9074_CR14) 1998; 54 9074_CR3 W. W. Hsieh (9074_CR5) 2001; 14 R. W. Renolds (9074_CR11) 1994; 7 Q. X. Liu (9074_CR10) 2004; 109 P. C. Chu (9074_CR1) 1997; 102 D. E. Rumelhart (9074_CR12) 1986 D. Wang (9074_CR13) 2002; 47 W. W. Hsieh (9074_CR6) 2003; 129 S. A. Klein (9074_CR9) 1999; 12 W. J. Emery (9074_CR2) 2001 M. A. Kramer (9074_CR8) 1991; 37 W. W. Hsieh (9074_CR7) 2004; 42 W. W. Hsieh (9074_CR4) 2001; 53 |
References_xml | – start-page: 318 year: 1986 end-page: 362 ident: CR12 article-title: Learning Internal Representations by Error Propagation publication-title: Parallel Distributed Processing – start-page: 638 year: 2001 ident: CR2 publication-title: Data Analysis and Methods in Physical Oceanography – volume: 109 start-page: C07012 year: 2004 ident: CR10 article-title: A gap in the Indo-Pacific warm pool over the South China Sea in boreal winter: Seasonal development and interannual variability publication-title: J. Geophys. Res. doi: 10.1029/2003JC002179 – volume: 12 start-page: 917 issue: 4 year: 1999 end-page: 932 ident: CR9 article-title: Remote sea surface variations during ENSO: Evidence for a tropical atmospheric bridge publication-title: J. Clim. doi: 10.1175/1520-0442(1999)012<0917:RSSTVD>2.0.CO;2 – ident: CR3 – volume: 129 start-page: 2 367 year: 2003 end-page: 2 382 ident: CR6 article-title: Nonlinear singular spectrum analysis of the tropical stratospheric wind publication-title: Q. J. R. Meteorol. Soc. doi: 10.1256/qj.01.158 – volume: 47 start-page: 1 221 issue: 14 year: 2002 end-page: 1 227 ident: CR13 article-title: The 1997–1998 warm event in the South China Sea publication-title: Chin. Sci. Bull. – volume: 14 start-page: 2 528 year: 2001 end-page: 2 539 ident: CR5 article-title: Nonlinear canonical correlation analysis of the tropical Pacific climate variability using a neural network approach publication-title: J. Clim. doi: 10.1175/1520-0442(2001)014<2528:NCCAOT>2.0.CO;2 – volume: 7 start-page: 929 year: 1994 end-page: 948 ident: CR11 article-title: Improved global sea surface temperature analyses using optimum interpolation publication-title: J. Clim. doi: 10.1175/1520-0442(1994)007<0929:IGSSTA>2.0.CO;2 – volume: 102 start-page: 20 937 issue: C9 year: 1997 end-page: 20 955 ident: CR1 article-title: Temporal and spatial variability of the South China Sea surface temperature anomaly publication-title: J. Geophys. Res. doi: 10.1029/97JC00982 – volume: 54 start-page: 361 year: 1998 end-page: 372 ident: CR14 article-title: Seasonal and interannual variations in the velocity field of the South China Sea publication-title: J. Oceanogr. doi: 10.1007/BF02742620 – volume: 53 start-page: 599 year: 2001 end-page: 615 ident: CR4 article-title: Nonlinear principal component analysis by neural networks publication-title: Tellus, Ser. A doi: 10.1034/j.1600-0870.2001.00251.x – volume: 37 start-page: 233 year: 1991 end-page: 243 ident: CR8 article-title: Nonlinear principal component analysis using autoassociative neural networks publication-title: AIChE J. doi: 10.1002/aic.690370209 – volume: 42 start-page: RG1003 year: 2004 ident: CR7 article-title: Nonlinear multivariate and time series analysis by neural network methods publication-title: Rev. Geophys. doi: 10.1029/2002RG000112 – ident: 9074_CR3 doi: 10.1029/2005JC003276 – volume: 37 start-page: 233 year: 1991 ident: 9074_CR8 publication-title: AIChE J. doi: 10.1002/aic.690370209 – volume: 47 start-page: 1 221 issue: 14 year: 2002 ident: 9074_CR13 publication-title: Chin. Sci. Bull. doi: 10.1007/BF02907613 – volume: 54 start-page: 361 year: 1998 ident: 9074_CR14 publication-title: J. Oceanogr. doi: 10.1007/BF02742620 – volume: 42 start-page: RG1003 year: 2004 ident: 9074_CR7 publication-title: Rev. Geophys. doi: 10.1029/2002RG000112 – volume: 7 start-page: 929 year: 1994 ident: 9074_CR11 publication-title: J. Clim. doi: 10.1175/1520-0442(1994)007<0929:IGSSTA>2.0.CO;2 – volume: 129 start-page: 2 367 year: 2003 ident: 9074_CR6 publication-title: Q. J. R. Meteorol. Soc. doi: 10.1256/qj.01.158 – volume: 109 start-page: C07012 year: 2004 ident: 9074_CR10 publication-title: J. Geophys. Res. – volume: 14 start-page: 2 528 year: 2001 ident: 9074_CR5 publication-title: J. Clim. doi: 10.1175/1520-0442(2001)014<2528:NCCAOT>2.0.CO;2 – start-page: 318 volume-title: Parallel Distributed Processing year: 1986 ident: 9074_CR12 doi: 10.7551/mitpress/5236.001.0001 – volume: 102 start-page: 20 937 issue: C9 year: 1997 ident: 9074_CR1 publication-title: J. Geophys. Res. doi: 10.1029/97JC00982 – start-page: 638 volume-title: Data Analysis and Methods in Physical Oceanography year: 2001 ident: 9074_CR2 – volume: 53 start-page: 599 year: 2001 ident: 9074_CR4 publication-title: Tellus, Ser. A doi: 10.3402/tellusa.v53i5.12230 – volume: 12 start-page: 917 issue: 4 year: 1999 ident: 9074_CR9 publication-title: J. Clim. doi: 10.1175/1520-0442(1999)012<0917:RSSTVD>2.0.CO;2 |
SSID | ssj0039409 ssj0002082055 |
Score | 1.7951717 |
Snippet | We compared nonlinear principal component analysis (NLPCA) with linear principal component analysis (LPCA) with the data of sea surface wind anomalies... We compared nonlinear principal component analysis (NLPCA) with linear principal component analysis (LPCA) with the data of sea surface wind anomalies (SWA),... |
SourceID | proquest crossref springer chongqing |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 981 |
SubjectTerms | Anomalies Comparative studies Continental shelves Earth and Environmental Science Earth Sciences Marine Neural networks Nonlinear equations Nonlinear systems Nonlinearity Oceanography Principal components analysis Sea Sea surface Sea surface temperature Seasonal variation Surface temperature Surface water Surface wind Temperature anomalies Wind 主成分分析 南海北部大陆架 海温异常 海面风 海面高度 非线性 |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fS-QwEB72dl_k4NDT4_bWkzzc053BNm036YOItyiLcJ64Cr6FaZqoCF3dH_jvO8m2XRT0raWhKZkk801m-n0Av5xDl5cm4Tmi4-ShHS-QghWBiSG0nwpThCrf8-H4Oj27yW468K_5F8aXVTZ7Ytioy6nxZ-QHkjw7YeFUHj0-cS8a5ZOrjYIG1soK5WFgGPsEPeFFlbvQ-3tyfnHZHroI7_CCEqog6M4Jnasm0xkFYtEk9dVFEfchIw98C3fT6vaJvMhrv7UGo2_yp8EtnW7ClxpPsuPVBNiCjq2-wuf_xmJVk1Fvgxu1YoNs6li1YsfAGcOqZPXlxeiY0eP5cubQWPZMofp-e3cXzk_3Q_vJ5IrdV4xwIwvyeywocLOJxR24Pj25Go15ra_ADYG2BaegWhDkUSZTKpfGCSOTWEgjnSIckguKxizBgZyiWCMxt4gZLXFUuZClcBTcfoMufbL9DqxM00RaV7gkFalTkSpNjEUcl1lWFMpEfRi0I0n-2Tx41imdUKxCm8CwD7-bsdWPK5IN3dIpB6NoMor2RtHUeNCMvq7X21y3s6MPrH1KC8VnP7Cy0-Vcq1gOo0Tmog9_GputX_Budz8-7G4AG6tyAl90tgvdxWxpfxJKWRR79dx7AcR34WM priority: 102 providerName: ProQuest |
Title | Comparison of nonlinear and linear PCA on surface wind, surface height, and SST in the South China Sea |
URI | http://lib.cqvip.com/qk/84119X/20105/35850536.html https://link.springer.com/article/10.1007/s00343-010-9074-6 https://www.proquest.com/docview/751418247 https://www.proquest.com/docview/817603792 |
Volume | 28 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1993-5005 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002082055 issn: 0254-4059 databaseCode: AFBBN dateStart: 19970301 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVPQU databaseName: ProQuest Central - New (Subscription) customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1993-5005 dateEnd: 20241002 omitProxy: true ssIdentifier: ssj0002082055 issn: 0254-4059 databaseCode: BENPR dateStart: 19970301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1993-5005 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0039409 issn: 0254-4059 databaseCode: AGYKE dateStart: 19970101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1993-5005 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0039409 issn: 0254-4059 databaseCode: U2A dateStart: 19970101 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT-MwEB4t5YKQ9gVoS3crH_YEBDVOUtvHtmqpWKmgbSvByXIcGxBSutuHkPj1jJ1HtYg9cEoiW44z48f3ZcYzAD-tVVZkOgqEUjbAHdoGqUKyQlWkEe3HVKfey3fSHc_jy5vkpjzHvaq83SuTpF-p68NuLpSK8_3pBI7QBd0d2E0cP2nAbu_i9tewWoBdrm-PepH7ID1KRGXMfKsRF1LhfpHf_cUX_rs1bfHmKxOp33lGn2BW9blwOHk836zTc_38KpzjOz_qM3wskSjpFUPnC3ww-VfYv9JG5WUY6wOwgzpNIVlYkhdxNdSSqDwj5e31oEeweLVZWqUNeUKSf1Y_3fs_r2e-_nQ6Iw85QcRJfOI-4nN3k6lRhzAfDWeDcVBmZgg0wr11gHSconi5TjgXTFuqWRRSppnliGAERR5nEEgI5L-aKWGUSnBxUFxQllGLtPgIGthl8w1IFscRMza1UUxjyzs806FKwzBLkjTlutOEVq0g3Nn1o4tXJSNkObh8dJtwUqlM_inCc8g6ELOXrUTZSidbiZVblVJlOVNXkiFiRI4VsyaQuhSnmLObqNwsNivJQ9btREzQJpxWWtw28N_XHb-rdgv2CscE5772HRrr5cb8QLyzTts4vkf9_qRdjnO89oeT699t2JnT3gucrPfX |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB4hOFBVqlpo1e324UO5UKwmdrJ2DqiiW9BSYIu6i8TNdfwoqFIW9iHUH9f_1rE3CWoluHFL5CiOPGN_32dPZgDee699YQ2nhdaeIkJ7WmoUK0xzg2w_Y6aMUb7D3uAs-3qen6_An-ZfmBBW2ayJcaG2ExP2yD8KRHbkwpn4dHVNQ9GocLjaVNDQdWUFuxszjNX_dRy53zeo4Ga7h1_Q3FuMHeyP-wNaFxmgBpnLnKKyRP2fS5NLWQjjmRE8ZcIILxGMC4aSxCEmou6XRujCaZ2jn2tZMGGZT8N-KCLAGrIOjpNq7fP-8PR7u8nDAsDGyqsMpQJFNSCbk9UkJjLlWYhmSmiQqDTmd7iYVD-vEbX-xclb8vvfeW2EwYOn8KTmr2Rv6XDPYMVVG_D4m3G6qpNfb4Lvt8UNycSTapmNQ0-JriypL0_7ewSbZ4up18aRm8vK7rR3F3G_dic-PxqNyWVFkKeSWO6PxIrfZOT0czh7kKF-Aav4ye4lEJtlXDhfep6xzMtEWpPqMk1tnpelNEkHuu1IIh8wv0KWK8VRG-Gi0-vAdjO26mqZ1EO16ZujURQaRQWjKHy424y-quf3TLXe2AHStuLEDKctunKTxUzJVPQSLgrWgQ-NzW5fcGd3r-7t7h2sD8Ynx-r4cHjUhUfLUIYQ8PYaVufThXuDDGlevq39kMCPh3b9v2PgG6s |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1La9wwEB7CBkoplKQPut200aG9tBGxZXslH0JJNlmSpmyXbgK5qbIeTSh4k30Q-hP7rzrSyg4ptLfcbCxsoxnp-z5pNAPwzjnlSqMzWirlKCK0o5VCscJUppHt50xXIcp31D8-zz9fFBdr8Ls5C-PDKps5MUzUZqr9GvkuR2RHLpzzXRejIsaHw0_XN9QXkPIbrU01DRWrLJi9kG0snvE4tb9uUc3N904O0fTvGRsenQ2OaSw4QDWymAVFlcmQAwhdCFFy7ZjmWcq45k4gMJcM5YlFfCxR1mmuSqtUgT6vRMm4YS71a6OIBuvcHxftwPrB0Wj8rV3wYR5sQxVWhrKBojIQzS5rEpKaZrmPbEqol6s05Hq4nNY_bhDB7mPmHRH-a-82QOJwA55GLkv2V863CWu2fgZPvmqr6pgI-zm4QVvokEwdqVeZOdSMqNqQeDke7BN8PF_OnNKW3F7VZqe9uwxrtzuh_WRyRq5qgpyVhNJ_JFT_JhOrXsD5g3T1S-jgL9tXQEyeZ9y6ymU5y51IhNGpqtLUFEVVCZ10odf2JHID_dNnvJIZ6iScgPpd-ND0rbxeJfiQbSrnYBSJRpHeKBIb95rel3Gsz2XrmV0g7VMcpH7nRdV2upxLkfJ-kvGSdeFjY7O7F_zzc6__-7lteIRDQH45GZ324PEqqsHHvm1BZzFb2jdIlhbV2-iGBL4_tOf_AfFpH-U |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comparison+of+nonlinear+and+linear+PCA+on+surface+wind%2C+surface+height%2C+and+SST+in+the+South+China+Sea&rft.jtitle=Chinese+journal+of+oceanology+and+limnology&rft.au=Chen%2C+Haiying&rft.au=Yin%2C+Baoshu&rft.au=Fang%2C+Guohong&rft.au=Wang%2C+Yonggang&rft.date=2010-09-01&rft.pub=SP+Science+Press&rft.issn=0254-4059&rft.eissn=1993-5005&rft.volume=28&rft.issue=5&rft.spage=981&rft.epage=989&rft_id=info:doi/10.1007%2Fs00343-010-9074-6&rft.externalDocID=10_1007_s00343_010_9074_6 |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F84119X%2F84119X.jpg |