Comparison of nonlinear and linear PCA on surface wind, surface height, and SST in the South China Sea

We compared nonlinear principal component analysis (NLPCA) with linear principal component analysis (LPCA) with the data of sea surface wind anomalies (SWA), surface height anomalies (SSHA), and sea surface temperature anomalies (SSTA), taken in the South China Sea (SCS) between 1993 and 2003. The S...

Full description

Saved in:
Bibliographic Details
Published inChinese journal of oceanology and limnology Vol. 28; no. 5; pp. 981 - 989
Main Author 陈海英 尹宝树 方国洪 王永刚
Format Journal Article
LanguageEnglish
Published Heidelberg SP Science Press 01.09.2010
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0254-4059
2096-5508
1993-5005
2523-3521
DOI10.1007/s00343-010-9074-6

Cover

Abstract We compared nonlinear principal component analysis (NLPCA) with linear principal component analysis (LPCA) with the data of sea surface wind anomalies (SWA), surface height anomalies (SSHA), and sea surface temperature anomalies (SSTA), taken in the South China Sea (SCS) between 1993 and 2003. The SCS monthly data for SWA, SSHA and SSTA (i.e., the anomalies with climatological seasonal cycle removed) were pre-filtered by LPCA, with only three leading modes retained. The first three modes of SWA, SSHA, and SSTA of LPCA explained 86%, 71%, and 94% of the total variance in the original data, respectively. Thus, the three associated time coefficient functions (TCFs) were used as the input data for NLPCA network. The NLPCA was made based on feed-forward neural network models. Compared with classical linear PCA, the first NLPCA mode could explain more variance than linear PCA for the above data. The nonlinearity of SWA and SSHA were stronger in most areas of the SCS. The first mode of the NLPCA on the SWA and SSHA accounted for 67.26% of the variance versus 54.7%, and 60.24% versus 50.43%, respectively for the first LPCA mode. Conversely, the nonlinear SSTA, localized in the northern SCS and southern continental shelf region, resulted in little improvement in the explanation of the variance for the first NLPCA.
AbstractList We compared nonlinear principal component analysis (NLPCA) with linear principal component analysis (LPCA) with the data of sea surface wind anomalies (SWA), surface height anomalies (SSHA), and sea surface temperature anomalies (SSTA), taken in the South China Sea (SCS) between 1993 and 2003. The SCS monthly data for SWA, SSHA and SSTA (i.e., the anomalies with climatological seasonal cycle removed) were pre-filtered by LPCA, with only three leading modes retained. The first three modes of SWA, SSHA, and SSTA of LPCA explained 86%, 71%, and 94% of the total variance in the original data, respectively. Thus, the three associated time coefficient functions (TCFs) were used as the input data for NLPCA network. The NLPCA was made based on feed-forward neural network models. Compared with classical linear PCA, the first NLPCA mode could explain more variance than linear PCA for the above data. The nonlinearity of SWA and SSHA were stronger in most areas of the SCS. The first mode of the NLPCA on the SWA and SSHA accounted for 67.26% of the variance versus 54.7%, and 60.24% versus 50.43%, respectively for the first LPCA mode. Conversely, the nonlinear SSTA, localized in the northern SCS and southern continental shelf region, resulted in little improvement in the explanation of the variance for the first NLPCA.
We compared nonlinear principal component analysis (NLPCA) with linear principal component analysis (LPCA) with the data of sea surface wind anomalies (SWA), surface height anomalies (SSHA), and sea surface temperature anomalies (SSTA), taken in the South China Sea (SCS) between 1993 and 2003. The SCS monthly data for SWA, SSHA and SSTA (i.e., the anomalies with climatological seasonal cycle removed) were pre-filtered by LPCA, with only three leading modes retained. The first three modes of SWA, SSHA, and SSTA of LPCA explained 86%, 71%, and 94% of the total variance in the original data, respectively. Thus, the three associated time coefficient functions (TCFs) were used as the input data for NLPCA network. The NLPCA was made based on feed-forward neural network models. Compared with classical linear PCA, the first NLPCA mode could explain more variance than linear PCA for the above data. The nonlinearity of SWA and SSHA were stronger in most areas of the SCS. The first mode of the NLPCA on the SWA and SSHA accounted for 67.26% of the variance versus 54.7%, and 60.24% versus 50.43%, respectively for the first LPCA mode. Conversely, the nonlinear SSTA, localized in the northern SCS and southern continental shelf region, resulted in little improvement in the explanation of the variance for the first NLPCA.
Author 陈海英 尹宝树 方国洪 王永刚
AuthorAffiliation Key Laboratory of Ocean Circulation and Wave, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China Key Laboratory of Marine Setence and Numerical Modeling, First Institute of Oceanography, SOA, Qingdao 266061, China
Author_xml – sequence: 1
  fullname: 陈海英 尹宝树 方国洪 王永刚
BookMark eNp9kF9PHCEUxUljk65_PkDfSF98cfQCwwCPZmKriYkmq88EWdjBzsIKMzH99sXupiY--HS54XdOzj2H6CCm6BD6TuCcAIiLAsBa1gCBRoFom-4LWhClWMMB-AFaAOVt0wJX39BhKc-VVi2oBfJ92mxNDiVFnDyurmOIzmRs4grvn_f9Ja7fZc7eWIdfQ1yd_d8GF9bDdPaPXy4fcIh4GhxepnkacD-EaPDSmWP01ZuxuJP9PEKPP68e-uvm9u7XTX9521hGu6lxT5TWpNJyKZWwnlrBCBVWeNl1TFEqqSO0nsWkFUY5Yzi01EhFxYp6wtgROt35bnN6mV2Z9CYU68bRRJfmoiURHTChaCV_fCCf05xjDacFJy2RtBUVIjvI5lRKdl5vc9iY_EcT0G-9613vuvau33rXXdXQnaZUNq5dfjf-TLRPY4cU1y9Vp5-M_e3D6DTjkgNnHfsL_0SPXQ
Cites_doi 10.1029/2003JC002179
10.1175/1520-0442(1999)012<0917:RSSTVD>2.0.CO;2
10.1256/qj.01.158
10.1175/1520-0442(2001)014<2528:NCCAOT>2.0.CO;2
10.1175/1520-0442(1994)007<0929:IGSSTA>2.0.CO;2
10.1029/97JC00982
10.1007/BF02742620
10.1034/j.1600-0870.2001.00251.x
10.1002/aic.690370209
10.1029/2002RG000112
10.1029/2005JC003276
10.1007/BF02907613
10.7551/mitpress/5236.001.0001
10.3402/tellusa.v53i5.12230
ContentType Journal Article
Copyright Chinese Society for Oceanology and Limnology, Science Press and Springer Berlin Heidelberg 2010
Chinese Society for Oceanology and Limnology, Science Press and Springer Berlin Heidelberg 2010.
Copyright_xml – notice: Chinese Society for Oceanology and Limnology, Science Press and Springer Berlin Heidelberg 2010
– notice: Chinese Society for Oceanology and Limnology, Science Press and Springer Berlin Heidelberg 2010.
DBID 2RA
92L
CQIGP
W94
~WA
AAYXX
CITATION
3V.
7QH
7QL
7SN
7TN
7U7
7UA
7XB
88I
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BENPR
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F1W
GNUQQ
H96
HCIFZ
L.G
M2P
M7N
PCBAR
PHGZM
PHGZT
PKEHL
PQEST
PQQKQ
PQUKI
Q9U
7TG
H95
KL.
DOI 10.1007/s00343-010-9074-6
DatabaseName 维普_期刊
中文科技期刊数据库-CALIS站点
维普中文期刊数据库
中文科技期刊数据库-自然科学
中文科技期刊数据库- 镜像站点
CrossRef
ProQuest Central (Corporate)
Aqualine
Bacteriology Abstracts (Microbiology B)
Ecology Abstracts
Oceanic Abstracts
Toxicology Abstracts
Water Resources Abstracts
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni Edition)
ProQuest One Sustainability (subscription)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central Korea
ASFA: Aquatic Sciences and Fisheries Abstracts
ProQuest Central Student
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
SciTech Premium Collection (UHCL Subscription)
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Science Database (subscription)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central Basic
Meteorological & Geoastrophysical Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Meteorological & Geoastrophysical Abstracts - Academic
DatabaseTitle CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Water Resources Abstracts
Environmental Sciences and Pollution Management
ProQuest Central
Earth, Atmospheric & Aquatic Science Collection
ProQuest One Sustainability
Oceanic Abstracts
Natural Science Collection
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
ProQuest Central (New)
ProQuest Science Journals (Alumni Edition)
ProQuest Central Basic
Toxicology Abstracts
ProQuest Science Journals
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
Ecology Abstracts
Aqualine
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ProQuest One Academic UKI Edition
ASFA: Aquatic Sciences and Fisheries Abstracts
ProQuest One Academic
ProQuest Central (Alumni)
ProQuest One Academic (New)
Meteorological & Geoastrophysical Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Meteorological & Geoastrophysical Abstracts - Academic
DatabaseTitleList

Aquatic Science & Fisheries Abstracts (ASFA) Professional
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central - New (Subscription)
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Oceanography
DocumentTitleAlternate Comparison of nonlinear and linear PCA on surface wind, surface height, and SST in the South China Sea
EISSN 1993-5005
2523-3521
EndPage 989
ExternalDocumentID 2140992201
10_1007_s00343_010_9074_6
35850536
GeographicLocations South China Sea
ISEW, South China Sea
GeographicLocations_xml – name: South China Sea
– name: ISEW, South China Sea
GroupedDBID -5A
-5G
-5~
-BR
-Y2
-~C
.86
.VR
06D
0R~
0VY
188
199
1N0
2.D
29B
2B.
2C.
2J2
2KG
2KM
2LR
2RA
2VQ
2WC
2~H
30V
3V.
4.4
408
40D
40E
5GY
5VS
67M
6NX
78A
88I
8CJ
8FE
8FH
8RM
8TC
8UJ
92E
92I
92L
92Q
93N
95-
95.
95~
96X
AAAVM
AABHQ
AAJKR
AAPBV
AARHV
AARTL
AATVU
AAWCG
AAYIU
AAYQN
AAYTO
ABFTV
ABJOX
ABKCH
ABMNI
ABNWP
ABQBU
ABTHY
ABTMW
ABUWG
ACGFS
ACGOD
ACHXU
ACKNC
ACOKC
ACOMO
ACPRK
ACSNA
ADHHG
ADHIR
ADINQ
ADKPE
ADURQ
ADYFF
ADZKW
AEBTG
AEGAL
AEGNC
AEJHL
AEKMD
AENEX
AEOHA
AEPYU
AETLH
AEXYK
AFGCZ
AFKRA
AFRAH
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGQMX
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHYZX
AIIXL
AINHJ
AJBLW
AJRNO
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMYQR
ARMRJ
AZQEC
B-.
BA0
BBWZM
BENPR
BGNMA
BHPHI
BKSAR
BPHCQ
C1A
CAG
CCEZO
CCVFK
CHBEP
COF
CQIGP
CS3
CSCUP
CW9
D1J
D1K
DU5
DWQXO
EBS
EJD
ESBYG
FA0
FEDTE
FNLPD
FRRFC
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GQ6
GQ7
H13
HCIFZ
HF~
HG6
HMJXF
HRMNR
HVGLF
HZ~
IJ-
IPNFZ
IXD
I~X
I~Z
J-C
JBSCW
K6-
KOV
L8X
LK5
M2P
M4Y
M7R
MA-
N2Q
NDZJH
NF0
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
P19
PCBAR
PF0
PQEST
PQQKQ
PQUKI
PROAC
PT5
Q2X
QOK
QOS
R89
R9I
RNI
ROL
RPX
RSV
RZK
S..
S16
S1Z
S26
S27
S28
S3B
SAP
SCL
SDH
SEV
SHX
SISQX
SNX
SOJ
SPISZ
SZN
T13
T16
TSG
TUC
U2A
UG4
UZ4
VC2
W48
W94
WK6
WK8
Z5O
Z86
~02
~A9
~WA
AAHBH
ABJNI
ABQSL
DPUIP
AAYXX
ADHKG
AGQPQ
CITATION
-SA
-S~
2JN
2JY
406
5VR
5XA
5XB
7QH
7QL
7SN
7TN
7U7
7UA
7XB
8FK
AACDK
AAHNG
AAIAL
AAJBT
AANZL
AAPKM
AASML
AATNV
AAUYE
AAYZH
ABAKF
ABBRH
ABDBE
ABDZT
ABECU
ABFSG
ABHQN
ABMQK
ABRTQ
ABSXP
ABTEG
ABTKH
ABWNU
ABXPI
ACAOD
ACDTI
ACHSB
ACMDZ
ACMLO
ACPIV
ACSTC
ACZOJ
ADKNI
ADRFC
ADTPH
AEFQL
AEJRE
AEMSY
AESKC
AEUYN
AEVLU
AEZWR
AFBBN
AFDZB
AFHIU
AFLOW
AFQWF
AFUIB
AGJBK
AGMZJ
AGQEE
AGRTI
AHPBZ
AHSBF
AHWEU
AIGIU
AILAN
AITGF
AIXLP
AJZVZ
AMXSW
AMYLF
AOCGG
ATHPR
AXYYD
AYFIA
BDATZ
C1K
CAJEA
CCPQU
DDRTE
DNIVK
EBLON
EIOEI
F1W
FERAY
FFXSO
FIGPU
FINBP
FSGXE
GNWQR
H96
IKXTQ
IWAJR
JZLTJ
L.G
LLZTM
M7N
NPVJJ
PHGZM
PHGZT
PKEHL
PT4
Q--
Q9U
SJYHP
SNE
SNPRN
SOHCF
SRMVM
SSLCW
TCJ
TGP
U1G
U5K
UOJIU
UTJUX
UZXMN
VFIZW
YLTOR
ZMTXR
7TG
H95
KL.
ID FETCH-LOGICAL-c326t-eb220258c58897cf2c73127c7f866392282e1299338c7a9eaa5042a8927d2f133
IEDL.DBID AGYKE
ISSN 0254-4059
2096-5508
IngestDate Fri Jul 11 13:38:05 EDT 2025
Wed Aug 13 10:44:50 EDT 2025
Wed Oct 01 03:55:02 EDT 2025
Fri Feb 21 02:35:40 EST 2025
Thu Nov 24 20:30:32 EST 2022
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords nonlinear PCA
South China Sea
satellite data
inter-annual variation
Language English
License http://www.springer.com/tdm
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c326t-eb220258c58897cf2c73127c7f866392282e1299338c7a9eaa5042a8927d2f133
Notes South China Sea
inter-annual variation
37-1150/P
nonlinear PCA
P731.23
satellite data
P732.6
South China Sea; nonlinear PCA; satellite data; inter-annual variation
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PQID 751418247
PQPubID 54339
PageCount 9
ParticipantIDs proquest_miscellaneous_817603792
proquest_journals_751418247
crossref_primary_10_1007_s00343_010_9074_6
springer_journals_10_1007_s00343_010_9074_6
chongqing_backfile_35850536
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2010-09-01
PublicationDateYYYYMMDD 2010-09-01
PublicationDate_xml – month: 09
  year: 2010
  text: 2010-09-01
  day: 01
PublicationDecade 2010
PublicationPlace Heidelberg
PublicationPlace_xml – name: Heidelberg
– name: Dordrecht
PublicationTitle Chinese journal of oceanology and limnology
PublicationTitleAbbrev Chin. J. Ocean. Limnol
PublicationTitleAlternate Chinese Journal of Oceanology and Limnology
PublicationYear 2010
Publisher SP Science Press
Springer Nature B.V
Publisher_xml – name: SP Science Press
– name: Springer Nature B.V
References Klein, Soden, Lau (CR9) 1999; 12
Emery, Thomson (CR2) 2001
Renolds, Smith (CR11) 1994; 7
CR3
Hsieh (CR4) 2001; 53
Hsieh (CR5) 2001; 14
Hsieh, Hamilton (CR6) 2003; 129
Liu, Jiang, Xie, Liu (CR10) 2004; 109
Wang, Xie, Du, Wang, Chen (CR13) 2002; 47
Hsieh (CR7) 2004; 42
Kramer (CR8) 1991; 37
Wu, Shaw, Chao (CR14) 1998; 54
Chu, Lu, Chen (CR1) 1997; 102
Rumelhart, Hinton, Williams (CR12) 1986
C. R. Wu (9074_CR14) 1998; 54
9074_CR3
W. W. Hsieh (9074_CR5) 2001; 14
R. W. Renolds (9074_CR11) 1994; 7
Q. X. Liu (9074_CR10) 2004; 109
P. C. Chu (9074_CR1) 1997; 102
D. E. Rumelhart (9074_CR12) 1986
D. Wang (9074_CR13) 2002; 47
W. W. Hsieh (9074_CR6) 2003; 129
S. A. Klein (9074_CR9) 1999; 12
W. J. Emery (9074_CR2) 2001
M. A. Kramer (9074_CR8) 1991; 37
W. W. Hsieh (9074_CR7) 2004; 42
W. W. Hsieh (9074_CR4) 2001; 53
References_xml – start-page: 318
  year: 1986
  end-page: 362
  ident: CR12
  article-title: Learning Internal Representations by Error Propagation
  publication-title: Parallel Distributed Processing
– start-page: 638
  year: 2001
  ident: CR2
  publication-title: Data Analysis and Methods in Physical Oceanography
– volume: 109
  start-page: C07012
  year: 2004
  ident: CR10
  article-title: A gap in the Indo-Pacific warm pool over the South China Sea in boreal winter: Seasonal development and interannual variability
  publication-title: J. Geophys. Res.
  doi: 10.1029/2003JC002179
– volume: 12
  start-page: 917
  issue: 4
  year: 1999
  end-page: 932
  ident: CR9
  article-title: Remote sea surface variations during ENSO: Evidence for a tropical atmospheric bridge
  publication-title: J. Clim.
  doi: 10.1175/1520-0442(1999)012<0917:RSSTVD>2.0.CO;2
– ident: CR3
– volume: 129
  start-page: 2 367
  year: 2003
  end-page: 2 382
  ident: CR6
  article-title: Nonlinear singular spectrum analysis of the tropical stratospheric wind
  publication-title: Q. J. R. Meteorol. Soc.
  doi: 10.1256/qj.01.158
– volume: 47
  start-page: 1 221
  issue: 14
  year: 2002
  end-page: 1 227
  ident: CR13
  article-title: The 1997–1998 warm event in the South China Sea
  publication-title: Chin. Sci. Bull.
– volume: 14
  start-page: 2 528
  year: 2001
  end-page: 2 539
  ident: CR5
  article-title: Nonlinear canonical correlation analysis of the tropical Pacific climate variability using a neural network approach
  publication-title: J. Clim.
  doi: 10.1175/1520-0442(2001)014<2528:NCCAOT>2.0.CO;2
– volume: 7
  start-page: 929
  year: 1994
  end-page: 948
  ident: CR11
  article-title: Improved global sea surface temperature analyses using optimum interpolation
  publication-title: J. Clim.
  doi: 10.1175/1520-0442(1994)007<0929:IGSSTA>2.0.CO;2
– volume: 102
  start-page: 20 937
  issue: C9
  year: 1997
  end-page: 20 955
  ident: CR1
  article-title: Temporal and spatial variability of the South China Sea surface temperature anomaly
  publication-title: J. Geophys. Res.
  doi: 10.1029/97JC00982
– volume: 54
  start-page: 361
  year: 1998
  end-page: 372
  ident: CR14
  article-title: Seasonal and interannual variations in the velocity field of the South China Sea
  publication-title: J. Oceanogr.
  doi: 10.1007/BF02742620
– volume: 53
  start-page: 599
  year: 2001
  end-page: 615
  ident: CR4
  article-title: Nonlinear principal component analysis by neural networks
  publication-title: Tellus, Ser. A
  doi: 10.1034/j.1600-0870.2001.00251.x
– volume: 37
  start-page: 233
  year: 1991
  end-page: 243
  ident: CR8
  article-title: Nonlinear principal component analysis using autoassociative neural networks
  publication-title: AIChE J.
  doi: 10.1002/aic.690370209
– volume: 42
  start-page: RG1003
  year: 2004
  ident: CR7
  article-title: Nonlinear multivariate and time series analysis by neural network methods
  publication-title: Rev. Geophys.
  doi: 10.1029/2002RG000112
– ident: 9074_CR3
  doi: 10.1029/2005JC003276
– volume: 37
  start-page: 233
  year: 1991
  ident: 9074_CR8
  publication-title: AIChE J.
  doi: 10.1002/aic.690370209
– volume: 47
  start-page: 1 221
  issue: 14
  year: 2002
  ident: 9074_CR13
  publication-title: Chin. Sci. Bull.
  doi: 10.1007/BF02907613
– volume: 54
  start-page: 361
  year: 1998
  ident: 9074_CR14
  publication-title: J. Oceanogr.
  doi: 10.1007/BF02742620
– volume: 42
  start-page: RG1003
  year: 2004
  ident: 9074_CR7
  publication-title: Rev. Geophys.
  doi: 10.1029/2002RG000112
– volume: 7
  start-page: 929
  year: 1994
  ident: 9074_CR11
  publication-title: J. Clim.
  doi: 10.1175/1520-0442(1994)007<0929:IGSSTA>2.0.CO;2
– volume: 129
  start-page: 2 367
  year: 2003
  ident: 9074_CR6
  publication-title: Q. J. R. Meteorol. Soc.
  doi: 10.1256/qj.01.158
– volume: 109
  start-page: C07012
  year: 2004
  ident: 9074_CR10
  publication-title: J. Geophys. Res.
– volume: 14
  start-page: 2 528
  year: 2001
  ident: 9074_CR5
  publication-title: J. Clim.
  doi: 10.1175/1520-0442(2001)014<2528:NCCAOT>2.0.CO;2
– start-page: 318
  volume-title: Parallel Distributed Processing
  year: 1986
  ident: 9074_CR12
  doi: 10.7551/mitpress/5236.001.0001
– volume: 102
  start-page: 20 937
  issue: C9
  year: 1997
  ident: 9074_CR1
  publication-title: J. Geophys. Res.
  doi: 10.1029/97JC00982
– start-page: 638
  volume-title: Data Analysis and Methods in Physical Oceanography
  year: 2001
  ident: 9074_CR2
– volume: 53
  start-page: 599
  year: 2001
  ident: 9074_CR4
  publication-title: Tellus, Ser. A
  doi: 10.3402/tellusa.v53i5.12230
– volume: 12
  start-page: 917
  issue: 4
  year: 1999
  ident: 9074_CR9
  publication-title: J. Clim.
  doi: 10.1175/1520-0442(1999)012<0917:RSSTVD>2.0.CO;2
SSID ssj0039409
ssj0002082055
Score 1.7951717
Snippet We compared nonlinear principal component analysis (NLPCA) with linear principal component analysis (LPCA) with the data of sea surface wind anomalies...
We compared nonlinear principal component analysis (NLPCA) with linear principal component analysis (LPCA) with the data of sea surface wind anomalies (SWA),...
SourceID proquest
crossref
springer
chongqing
SourceType Aggregation Database
Index Database
Publisher
StartPage 981
SubjectTerms Anomalies
Comparative studies
Continental shelves
Earth and Environmental Science
Earth Sciences
Marine
Neural networks
Nonlinear equations
Nonlinear systems
Nonlinearity
Oceanography
Principal components analysis
Sea
Sea surface
Sea surface temperature
Seasonal variation
Surface temperature
Surface water
Surface wind
Temperature anomalies
Wind
主成分分析
南海北部大陆架
海温异常
海面风
海面高度
非线性
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fS-QwEB72dl_k4NDT4_bWkzzc053BNm036YOItyiLcJ64Cr6FaZqoCF3dH_jvO8m2XRT0raWhKZkk801m-n0Av5xDl5cm4Tmi4-ShHS-QghWBiSG0nwpThCrf8-H4Oj27yW468K_5F8aXVTZ7Ytioy6nxZ-QHkjw7YeFUHj0-cS8a5ZOrjYIG1soK5WFgGPsEPeFFlbvQ-3tyfnHZHroI7_CCEqog6M4Jnasm0xkFYtEk9dVFEfchIw98C3fT6vaJvMhrv7UGo2_yp8EtnW7ClxpPsuPVBNiCjq2-wuf_xmJVk1Fvgxu1YoNs6li1YsfAGcOqZPXlxeiY0eP5cubQWPZMofp-e3cXzk_3Q_vJ5IrdV4xwIwvyeywocLOJxR24Pj25Go15ra_ADYG2BaegWhDkUSZTKpfGCSOTWEgjnSIckguKxizBgZyiWCMxt4gZLXFUuZClcBTcfoMufbL9DqxM00RaV7gkFalTkSpNjEUcl1lWFMpEfRi0I0n-2Tx41imdUKxCm8CwD7-bsdWPK5IN3dIpB6NoMor2RtHUeNCMvq7X21y3s6MPrH1KC8VnP7Cy0-Vcq1gOo0Tmog9_GputX_Budz8-7G4AG6tyAl90tgvdxWxpfxJKWRR79dx7AcR34WM
  priority: 102
  providerName: ProQuest
Title Comparison of nonlinear and linear PCA on surface wind, surface height, and SST in the South China Sea
URI http://lib.cqvip.com/qk/84119X/20105/35850536.html
https://link.springer.com/article/10.1007/s00343-010-9074-6
https://www.proquest.com/docview/751418247
https://www.proquest.com/docview/817603792
Volume 28
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1993-5005
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002082055
  issn: 0254-4059
  databaseCode: AFBBN
  dateStart: 19970301
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: ProQuest Central - New (Subscription)
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1993-5005
  dateEnd: 20241002
  omitProxy: true
  ssIdentifier: ssj0002082055
  issn: 0254-4059
  databaseCode: BENPR
  dateStart: 19970301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1993-5005
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0039409
  issn: 0254-4059
  databaseCode: AGYKE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1993-5005
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0039409
  issn: 0254-4059
  databaseCode: U2A
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT-MwEB4t5YKQ9gVoS3crH_YEBDVOUtvHtmqpWKmgbSvByXIcGxBSutuHkPj1jJ1HtYg9cEoiW44z48f3ZcYzAD-tVVZkOgqEUjbAHdoGqUKyQlWkEe3HVKfey3fSHc_jy5vkpjzHvaq83SuTpF-p68NuLpSK8_3pBI7QBd0d2E0cP2nAbu_i9tewWoBdrm-PepH7ID1KRGXMfKsRF1LhfpHf_cUX_rs1bfHmKxOp33lGn2BW9blwOHk836zTc_38KpzjOz_qM3wskSjpFUPnC3ww-VfYv9JG5WUY6wOwgzpNIVlYkhdxNdSSqDwj5e31oEeweLVZWqUNeUKSf1Y_3fs_r2e-_nQ6Iw85QcRJfOI-4nN3k6lRhzAfDWeDcVBmZgg0wr11gHSconi5TjgXTFuqWRRSppnliGAERR5nEEgI5L-aKWGUSnBxUFxQllGLtPgIGthl8w1IFscRMza1UUxjyzs806FKwzBLkjTlutOEVq0g3Nn1o4tXJSNkObh8dJtwUqlM_inCc8g6ELOXrUTZSidbiZVblVJlOVNXkiFiRI4VsyaQuhSnmLObqNwsNivJQ9btREzQJpxWWtw28N_XHb-rdgv2CscE5772HRrr5cb8QLyzTts4vkf9_qRdjnO89oeT699t2JnT3gucrPfX
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB4hOFBVqlpo1e324UO5UKwmdrJ2DqiiW9BSYIu6i8TNdfwoqFIW9iHUH9f_1rE3CWoluHFL5CiOPGN_32dPZgDee699YQ2nhdaeIkJ7WmoUK0xzg2w_Y6aMUb7D3uAs-3qen6_An-ZfmBBW2ayJcaG2ExP2yD8KRHbkwpn4dHVNQ9GocLjaVNDQdWUFuxszjNX_dRy53zeo4Ga7h1_Q3FuMHeyP-wNaFxmgBpnLnKKyRP2fS5NLWQjjmRE8ZcIILxGMC4aSxCEmou6XRujCaZ2jn2tZMGGZT8N-KCLAGrIOjpNq7fP-8PR7u8nDAsDGyqsMpQJFNSCbk9UkJjLlWYhmSmiQqDTmd7iYVD-vEbX-xclb8vvfeW2EwYOn8KTmr2Rv6XDPYMVVG_D4m3G6qpNfb4Lvt8UNycSTapmNQ0-JriypL0_7ewSbZ4up18aRm8vK7rR3F3G_dic-PxqNyWVFkKeSWO6PxIrfZOT0czh7kKF-Aav4ye4lEJtlXDhfep6xzMtEWpPqMk1tnpelNEkHuu1IIh8wv0KWK8VRG-Gi0-vAdjO26mqZ1EO16ZujURQaRQWjKHy424y-quf3TLXe2AHStuLEDKctunKTxUzJVPQSLgrWgQ-NzW5fcGd3r-7t7h2sD8Ynx-r4cHjUhUfLUIYQ8PYaVufThXuDDGlevq39kMCPh3b9v2PgG6s
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1La9wwEB7CBkoplKQPut200aG9tBGxZXslH0JJNlmSpmyXbgK5qbIeTSh4k30Q-hP7rzrSyg4ptLfcbCxsoxnp-z5pNAPwzjnlSqMzWirlKCK0o5VCscJUppHt50xXIcp31D8-zz9fFBdr8Ls5C-PDKps5MUzUZqr9GvkuR2RHLpzzXRejIsaHw0_XN9QXkPIbrU01DRWrLJi9kG0snvE4tb9uUc3N904O0fTvGRsenQ2OaSw4QDWymAVFlcmQAwhdCFFy7ZjmWcq45k4gMJcM5YlFfCxR1mmuSqtUgT6vRMm4YS71a6OIBuvcHxftwPrB0Wj8rV3wYR5sQxVWhrKBojIQzS5rEpKaZrmPbEqol6s05Hq4nNY_bhDB7mPmHRH-a-82QOJwA55GLkv2V863CWu2fgZPvmqr6pgI-zm4QVvokEwdqVeZOdSMqNqQeDke7BN8PF_OnNKW3F7VZqe9uwxrtzuh_WRyRq5qgpyVhNJ_JFT_JhOrXsD5g3T1S-jgL9tXQEyeZ9y6ymU5y51IhNGpqtLUFEVVCZ10odf2JHID_dNnvJIZ6iScgPpd-ND0rbxeJfiQbSrnYBSJRpHeKBIb95rel3Gsz2XrmV0g7VMcpH7nRdV2upxLkfJ-kvGSdeFjY7O7F_zzc6__-7lteIRDQH45GZ324PEqqsHHvm1BZzFb2jdIlhbV2-iGBL4_tOf_AfFpH-U
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comparison+of+nonlinear+and+linear+PCA+on+surface+wind%2C+surface+height%2C+and+SST+in+the+South+China+Sea&rft.jtitle=Chinese+journal+of+oceanology+and+limnology&rft.au=Chen%2C+Haiying&rft.au=Yin%2C+Baoshu&rft.au=Fang%2C+Guohong&rft.au=Wang%2C+Yonggang&rft.date=2010-09-01&rft.pub=SP+Science+Press&rft.issn=0254-4059&rft.eissn=1993-5005&rft.volume=28&rft.issue=5&rft.spage=981&rft.epage=989&rft_id=info:doi/10.1007%2Fs00343-010-9074-6&rft.externalDocID=10_1007_s00343_010_9074_6
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F84119X%2F84119X.jpg