The use of artificial neural networks in PVT-based radiation portal monitors
Polyvinyl toluene (PVT)-based gamma-ray scintillation detectors are cost effective for use in radiation portal monitors (RPMs) applied to screening for illicit radioactive materials at international border crossings. While such systems can provide good sensitivity for detecting the presence of radio...
Saved in:
| Published in | Nuclear instruments & methods in physics research. Section A, Accelerators, spectrometers, detectors and associated equipment Vol. 587; no. 2; pp. 398 - 412 |
|---|---|
| Main Authors | , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Elsevier B.V
21.03.2008
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0168-9002 1872-9576 |
| DOI | 10.1016/j.nima.2008.01.065 |
Cover
| Abstract | Polyvinyl toluene (PVT)-based gamma-ray scintillation detectors are cost effective for use in radiation portal monitors (RPMs) applied to screening for illicit radioactive materials at international border crossings. While such systems can provide good sensitivity for detecting the presence of radioactive materials, they have poor spectral resolution that limits their ability to identify the isotopic content of the source of radiation. Without use of spectral information, RPMs cannot distinguish innocent materials that contain low levels of normally occurring radioactive materials (NORM) from special nuclear materials of concern. Thus, to reduce the number of “nuisance” alarms produced in PVT-based RPMs by innocent materials, algorithms that analyze spectra from PVT detectors must be optimized to make use of the limited information contained in their energy spectra.
This paper reports the first application of artificial neural networks (ANNs) in such an analysis. This work was performed as a feasibility study whose primary objective was to describe how an ANN-based alarm algorithm can be used to reduce the nuisance/false alarm probability while maintaining high-detection probabilities for radioactive sources of interest. The spectra used in this study were obtained from a limited set of actual PVT-based RPM data, and included cases where simulated spectra were inserted into the measured spectra. This paper also includes an analysis of spectral channel importance and shows evaluations of two methods used to reduce the initial set of energy spectra channels into smaller sets. Although not a comprehensive study, the results of this work show that it is possible to use ANNs successfully to discriminate NORM from other materials for realistic PVT-based RPM spectra. The algorithms described may also have potential application in the analysis of sodium iodide based RPM spectra. |
|---|---|
| AbstractList | Polyvinyl toluene (PVT)-based gamma-ray scintillation detectors are cost effective for use in radiation portal monitors (RPMs) applied to screening for illicit radioactive materials at international border crossings. While such systems can provide good sensitivity for detecting the presence of radioactive materials, they have poor spectral resolution that limits their ability to identify the isotopic content of the source of radiation. Without use of spectral information, RPMs cannot distinguish innocent materials that contain low levels of normally occurring radioactive materials (NORM) from special nuclear materials of concern. Thus, to reduce the number of “nuisance” alarms produced in PVT-based RPMs by innocent materials, algorithms that analyze spectra from PVT detectors must be optimized to make use of the limited information contained in their energy spectra.
This paper reports the first application of artificial neural networks (ANNs) in such an analysis. This work was performed as a feasibility study whose primary objective was to describe how an ANN-based alarm algorithm can be used to reduce the nuisance/false alarm probability while maintaining high-detection probabilities for radioactive sources of interest. The spectra used in this study were obtained from a limited set of actual PVT-based RPM data, and included cases where simulated spectra were inserted into the measured spectra. This paper also includes an analysis of spectral channel importance and shows evaluations of two methods used to reduce the initial set of energy spectra channels into smaller sets. Although not a comprehensive study, the results of this work show that it is possible to use ANNs successfully to discriminate NORM from other materials for realistic PVT-based RPM spectra. The algorithms described may also have potential application in the analysis of sodium iodide based RPM spectra. |
| Author | Kangas, Lars J. Ely, James H. Keller, Paul E. Siciliano, Edward R. Kouzes, Richard T. |
| Author_xml | – sequence: 1 givenname: Lars J. surname: Kangas fullname: Kangas, Lars J. – sequence: 2 givenname: Paul E. surname: Keller fullname: Keller, Paul E. – sequence: 3 givenname: Edward R. surname: Siciliano fullname: Siciliano, Edward R. – sequence: 4 givenname: Richard T. surname: Kouzes fullname: Kouzes, Richard T. email: rkouzes@pnl.gov – sequence: 5 givenname: James H. surname: Ely fullname: Ely, James H. |
| BookMark | eNp9kMtKQzEQhoNUsK2-gKu8wDkm55qAGyne4IAuqtuQ5EwwtU1Kkiq-vWnrykVnMwz838D_zdDEeQcIXVNSUkK7m1Xp7EaWFSGsJLQkXXuGppT1VcHbvpugaQ6xghNSXaBZjCuSh_dsioblB-BdBOwNliFZY7WVa-xgFw4rffvwGbF1-PV9WSgZYcRBjlYm6x3e-pBybOOdTT7ES3Ru5DrC1d-eo7eH--XiqRheHp8Xd0Oh66pLxSgNZdoA7VXPOJcSOKtbVWupjFZ91TSqJVpqaDuer7HuW94B0bRquFbQ1HNUHf_q4GMMYMQ25PrhR1Ai9j7ESux9iL0PQajIPjLE_kHapkONFKRdn0ZvjyjkUl8WgojagtMw2gA6idHbU_gvQql_QQ |
| CitedBy_id | crossref_primary_10_1140_epjp_i2019_12841_5 crossref_primary_10_1016_j_net_2021_07_025 crossref_primary_10_1287_ijoc_1120_0546 crossref_primary_10_1016_j_apradiso_2009_04_015 crossref_primary_10_1016_j_nima_2009_11_077 crossref_primary_10_1016_j_nima_2024_170123 crossref_primary_10_1109_TNS_2014_2299872 crossref_primary_10_1016_j_apradiso_2012_06_016 crossref_primary_10_1016_j_jenvrad_2020_106216 crossref_primary_10_1016_j_scitotenv_2015_10_112 crossref_primary_10_1016_j_apradiso_2015_10_019 crossref_primary_10_1007_s10994_017_5670_4 crossref_primary_10_3390_s20102895 crossref_primary_10_1080_00295450_2022_2096389 crossref_primary_10_1038_s41598_021_81546_4 crossref_primary_10_1016_j_scitotenv_2022_157526 crossref_primary_10_1016_j_nima_2023_168409 crossref_primary_10_1109_TNS_2015_2432098 crossref_primary_10_1016_j_jenvrad_2015_09_021 crossref_primary_10_1109_TNS_2013_2265307 crossref_primary_10_1016_j_cossms_2021_100975 crossref_primary_10_1016_j_scitotenv_2015_03_131 crossref_primary_10_1016_j_jenvrad_2014_07_016 crossref_primary_10_12943_CNR_2018_00004 crossref_primary_10_1016_j_nucengdes_2019_110479 crossref_primary_10_3390_s21030684 crossref_primary_10_3390_s21227629 crossref_primary_10_1109_TNS_2021_3116090 crossref_primary_10_1016_j_apradiso_2015_08_017 crossref_primary_10_1088_1748_0221_15_01_P01031 crossref_primary_10_1016_j_nima_2009_06_001 crossref_primary_10_1109_TNS_2022_3173371 crossref_primary_10_1016_j_anucene_2017_09_032 crossref_primary_10_1142_S2010194520600101 crossref_primary_10_1016_j_apradiso_2019_01_005 crossref_primary_10_1016_j_apradiso_2019_109010 crossref_primary_10_1016_j_envpol_2018_04_112 crossref_primary_10_1063_1_3207769 crossref_primary_10_1088_1748_0221_18_01_P01031 crossref_primary_10_14407_jrpr_2020_45_3_117 crossref_primary_10_1007_s41365_018_0402_4 crossref_primary_10_1016_j_anucene_2019_04_057 crossref_primary_10_1109_TNS_2022_3176586 crossref_primary_10_1016_j_apradiso_2015_03_014 crossref_primary_10_14407_jrpr_2021_00206 |
| Cites_doi | 10.1016/S0168-9002(97)00391-4 10.1016/j.nima.2005.05.056 10.1109/23.467888 10.1016/S0168-9002(96)80068-4 10.1109/NSSMIC.2003.1352095 10.1016/j.nima.2006.01.053 10.1016/j.nima.2006.02.156 10.1016/0893-6080(89)90020-8 10.1109/IJCNN.1990.137838 10.1111/j.1469-1809.1936.tb02137.x 10.1016/S0168-9002(01)01962-3 |
| ContentType | Journal Article |
| Copyright | 2008 Elsevier B.V. |
| Copyright_xml | – notice: 2008 Elsevier B.V. |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.nima.2008.01.065 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Physics |
| EISSN | 1872-9576 |
| EndPage | 412 |
| ExternalDocumentID | 10_1016_j_nima_2008_01_065 S0168900208001010 |
| GroupedDBID | --K --M -~X .~1 0R~ 123 1B1 1RT 1~. 1~5 29N 3O- 4.4 457 4G. 53G 5VS 6TJ 7-5 71M 8P~ 8WZ 9JN A6W AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABFNM ABMAC ABNEU ABXDB ABYKQ ACDAQ ACFVG ACGFS ACNCT ACNNM ACRLP ADBBV ADEZE ADMUD AEBSH AEKER AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AIVDX AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HME HVGLF HX~ HZ~ H~9 IHE J1W KOM LZ4 M41 MO0 N9A NCXOZ O-L O9- OAUVE OGIMB OZT P-8 P-9 PC. Q38 R2- RIG RNS ROL RPZ SDF SDG SDP SES SEW SHN SPC SPCBC SPD SSQ SSZ T5K TN5 VOH WUQ ~02 ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ADNMO ADVLN AEIPS AFJKZ AGQPQ AIIUN ANKPU APXCP CITATION EFKBS ~HD |
| ID | FETCH-LOGICAL-c326t-daf18cfe17b7899aae9835b3cabfcb7244b50cace569724d37596e0c1249cbe43 |
| IEDL.DBID | AIKHN |
| ISSN | 0168-9002 |
| IngestDate | Thu Apr 24 22:52:51 EDT 2025 Thu Oct 02 04:38:08 EDT 2025 Fri Feb 23 02:12:51 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Keywords | Special nuclear material Portal monitor 02.70.−c Radiation detection Naturally occurring radioactive material Plastic scintillator Spectral analysis 29.40.−n SNM 07.05.Mh NORM Artificial neural network Detection of illicit materials Border security |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c326t-daf18cfe17b7899aae9835b3cabfcb7244b50cace569724d37596e0c1249cbe43 |
| PageCount | 15 |
| ParticipantIDs | crossref_primary_10_1016_j_nima_2008_01_065 crossref_citationtrail_10_1016_j_nima_2008_01_065 elsevier_sciencedirect_doi_10_1016_j_nima_2008_01_065 |
| PublicationCentury | 2000 |
| PublicationDate | 2008-03-21 |
| PublicationDateYYYYMMDD | 2008-03-21 |
| PublicationDate_xml | – month: 03 year: 2008 text: 2008-03-21 day: 21 |
| PublicationDecade | 2000 |
| PublicationTitle | Nuclear instruments & methods in physics research. Section A, Accelerators, spectrometers, detectors and associated equipment |
| PublicationYear | 2008 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Bellman (bib22) 1961 W. Rieck, M. Iwatschenko, Intelligent software solution for reliable high efficiency/low false alarm border monitoring, in: S.N.P. Inspectorates, Measures to Prevent, Intercept and Respond to Illicit Uses of Nuclear Material and Radioactive Sources, International Atomic Energy Agency, Stockholm, Sweden, 2001, p. 565. MCNP X-5 Monte Carlo Team, MCNP—A General Purpose Monte-Carlo N-Particle Transport Code, Version 5, LA-UR-03-1987, Los Alamos National Laboratory, Los Alamos, NM, 2003. D. Mitchell, D. Waymire, GADRASw User Manual Version 12.3.2, Sandia National Laboratories, Albuquerque, NM, 2005. Priddy, Keller (bib28) 2005 B.D. Geelhood, J.H. Ely, R. Hansen, R.T. Kouzes, J.E. Schweppe, R.A. Warner, Overview of portal monitoring at border crossings, in: Nuclear Science Symposium, Portland, OR, USA, 2003, p. 513. Yoshida, Shizuma, Endo, Oka (bib21) 2002; 484 K. Baba, I. Enbutu, M. Yoda, explicit representation of knowledge acquired from plant historical data using neural network, in: International Joint Conference on Neural Networks (IJCNN’90), 1990, p. 155. Werbos (bib13) 1994 Siciliano, Ely, Kouzes, Milbrath, Schweppe, Stromswold (bib4) 2005; 550 Keller, Kangas, Troyer, Kouzes, Hashem (bib18) 1995; NS 42 Kouzes (bib2) 2004 Hornik, Stinchcombe, White (bib17) 1989; 2 Vigneron, Morel, Lépy, Martinez (bib20) 1996; 369 Rumelhart, Hinton, Williams (bib14) 1986; vol. 1 Trost, Iwatschenko (bib5) 2002 Ely, Kouzes, Schweppe, Siciliano, Strachan, Weier (bib9) 2006; 560 McClelland, Rumelhart, Hinton (bib24) 1986; vol. 1 Iwatschenko-Borho, Dederichs, Nürbechen, Schiefer, Rieck (bib7) 1998 Y. LeCun, Une procedure d’apprentissage pour reseau a seuil assymetrique, Cognitiva ‘85: A la frontière de l ‘intelligence Artificielle des Sciences de la Connaissance des Neuronsciences, 1985, p. 599. P.J. Werbos, Beyond regression: new tools for prediction and analysis in the behavioral sciences, Ph.D. Thesis, Harvard University, 1974. D. Parker, Learning-logic, Invention Report S81-64, File 1, Office of Technology Licensing, Stanford University, Palo Alto, CA, 1982. Abdel-Aal, Al-Haddad (bib19) 1997; 391 Iwatschenko-Borho (bib6) 1997; 42 LoPresti, Weier, Kouzes, Schweppe (bib25) 2006; 562 R.T. Kouzes, J.H. Ely, R. Hansen, J.E. Schweppe, E.R. Siciliano, D.C. Stromswold, Homeland security instrumentation for radiation detection at borders, in: Fourth American Nuclear Society International Topical Meeting on Nuclear Plant Instrumentation, Controls and Human–Machine Interface Technologies (NPIC&HMIT 2004), Columbus, OH, 2004. Fisher (bib10) 1936; 7 E. Kalapanidas, N. Avouris, M. Craciun, D. Neagu, Machine Learning algorithms: a study on noise sensitivity, in: First Balcan Conference in Informatics, Thessaloniki, Greece, 2003, p. 356. Priddy, Keller (bib11) 2005 McClelland (10.1016/j.nima.2008.01.065_bib24) 1986; vol. 1 Yoshida (10.1016/j.nima.2008.01.065_bib21) 2002; 484 Rumelhart (10.1016/j.nima.2008.01.065_bib14) 1986; vol. 1 10.1016/j.nima.2008.01.065_bib12 10.1016/j.nima.2008.01.065_bib15 10.1016/j.nima.2008.01.065_bib16 Iwatschenko-Borho (10.1016/j.nima.2008.01.065_bib6) 1997; 42 Trost (10.1016/j.nima.2008.01.065_bib5) 2002 Abdel-Aal (10.1016/j.nima.2008.01.065_bib19) 1997; 391 Priddy (10.1016/j.nima.2008.01.065_bib28) 2005 Keller (10.1016/j.nima.2008.01.065_bib18) 1995; NS 42 Bellman (10.1016/j.nima.2008.01.065_bib22) 1961 Hornik (10.1016/j.nima.2008.01.065_bib17) 1989; 2 Ely (10.1016/j.nima.2008.01.065_bib9) 2006; 560 Siciliano (10.1016/j.nima.2008.01.065_bib4) 2005; 550 10.1016/j.nima.2008.01.065_bib23 10.1016/j.nima.2008.01.065_bib1 10.1016/j.nima.2008.01.065_bib26 10.1016/j.nima.2008.01.065_bib3 10.1016/j.nima.2008.01.065_bib27 10.1016/j.nima.2008.01.065_bib29 LoPresti (10.1016/j.nima.2008.01.065_bib25) 2006; 562 10.1016/j.nima.2008.01.065_bib8 Priddy (10.1016/j.nima.2008.01.065_bib11) 2005 Kouzes (10.1016/j.nima.2008.01.065_bib2) 2004 Vigneron (10.1016/j.nima.2008.01.065_bib20) 1996; 369 Fisher (10.1016/j.nima.2008.01.065_bib10) 1936; 7 Iwatschenko-Borho (10.1016/j.nima.2008.01.065_bib7) 1998 Werbos (10.1016/j.nima.2008.01.065_bib13) 1994 |
| References_xml | – year: 2005 ident: bib11 article-title: Artificial Neural Networks: An Introduction – volume: 391 start-page: 275 year: 1997 ident: bib19 publication-title: Nucl. Instr. and Meth. A – year: 2005 ident: bib28 article-title: Artificial Neural Networks: An Introduction – year: 2004 ident: bib2 article-title: Radiation detection and interdiction for public protection from terrorism publication-title: Public Protection from Nuclear, Chemical, and Biological Terrorism – volume: vol. 1 start-page: 318 year: 1986 ident: bib14 article-title: Learning internal representations by error propagation publication-title: Parallel Distributed Processing: Explorations in the Microstructures of Cognition. 1: Foundations – year: 1994 ident: bib13 article-title: The Roots of Backpropagation – volume: 2 start-page: 359 year: 1989 ident: bib17 publication-title: Neural Networks – volume: NS 42 start-page: 709 year: 1995 ident: bib18 publication-title: IEEE Trans. Nucl. Sci. – reference: P.J. Werbos, Beyond regression: new tools for prediction and analysis in the behavioral sciences, Ph.D. Thesis, Harvard University, 1974. – reference: D. Parker, Learning-logic, Invention Report S81-64, File 1, Office of Technology Licensing, Stanford University, Palo Alto, CA, 1982. – reference: E. Kalapanidas, N. Avouris, M. Craciun, D. Neagu, Machine Learning algorithms: a study on noise sensitivity, in: First Balcan Conference in Informatics, Thessaloniki, Greece, 2003, p. 356. – volume: 562 start-page: 281 year: 2006 ident: bib25 publication-title: Nucl. Instr. and Meth. A – reference: MCNP X-5 Monte Carlo Team, MCNP—A General Purpose Monte-Carlo N-Particle Transport Code, Version 5, LA-UR-03-1987, Los Alamos National Laboratory, Los Alamos, NM, 2003. – reference: B.D. Geelhood, J.H. Ely, R. Hansen, R.T. Kouzes, J.E. Schweppe, R.A. Warner, Overview of portal monitoring at border crossings, in: Nuclear Science Symposium, Portland, OR, USA, 2003, p. 513. – volume: 484 start-page: 557 year: 2002 ident: bib21 publication-title: Nucl. Instr. and Meth. A – volume: 560 start-page: 373 year: 2006 ident: bib9 publication-title: Nucl. Instr. and Meth. A – volume: 42 start-page: 97 year: 1997 ident: bib6 publication-title: Int. Z. Kernenerg. – reference: D. Mitchell, D. Waymire, GADRASw User Manual Version 12.3.2, Sandia National Laboratories, Albuquerque, NM, 2005. – volume: 369 start-page: 642 year: 1996 ident: bib20 publication-title: Nucl. Instr. and Meth. A – year: 1961 ident: bib22 article-title: Adaptive Control Processes: A Guided Tour – year: 2002 ident: bib5 article-title: Method and Device for Detecting Man-Made Radiation – volume: 7 start-page: 179 year: 1936 ident: bib10 publication-title: Ann. Eugenics – year: 1998 ident: bib7 article-title: Schnellerkennung von künstlichen Gammastrahlern mit dem NBR-Verfahren – reference: W. Rieck, M. Iwatschenko, Intelligent software solution for reliable high efficiency/low false alarm border monitoring, in: S.N.P. Inspectorates, Measures to Prevent, Intercept and Respond to Illicit Uses of Nuclear Material and Radioactive Sources, International Atomic Energy Agency, Stockholm, Sweden, 2001, p. 565. – reference: R.T. Kouzes, J.H. Ely, R. Hansen, J.E. Schweppe, E.R. Siciliano, D.C. Stromswold, Homeland security instrumentation for radiation detection at borders, in: Fourth American Nuclear Society International Topical Meeting on Nuclear Plant Instrumentation, Controls and Human–Machine Interface Technologies (NPIC&HMIT 2004), Columbus, OH, 2004. – reference: K. Baba, I. Enbutu, M. Yoda, explicit representation of knowledge acquired from plant historical data using neural network, in: International Joint Conference on Neural Networks (IJCNN’90), 1990, p. 155. – volume: 550 start-page: 647 year: 2005 ident: bib4 publication-title: Nucl. Instr. and Meth. A – reference: Y. LeCun, Une procedure d’apprentissage pour reseau a seuil assymetrique, Cognitiva ‘85: A la frontière de l ‘intelligence Artificielle des Sciences de la Connaissance des Neuronsciences, 1985, p. 599. – volume: vol. 1 start-page: 3 year: 1986 ident: bib24 article-title: The appeal of parallel distributed processing publication-title: Parallel Distributed Processing: Explorations in the Microstructures of Cognition. 1: Foundations, – volume: 391 start-page: 275 year: 1997 ident: 10.1016/j.nima.2008.01.065_bib19 publication-title: Nucl. Instr. and Meth. A doi: 10.1016/S0168-9002(97)00391-4 – volume: 42 start-page: 97 issue: 2 year: 1997 ident: 10.1016/j.nima.2008.01.065_bib6 publication-title: Int. Z. Kernenerg. – ident: 10.1016/j.nima.2008.01.065_bib16 – volume: 550 start-page: 647 year: 2005 ident: 10.1016/j.nima.2008.01.065_bib4 publication-title: Nucl. Instr. and Meth. A doi: 10.1016/j.nima.2005.05.056 – ident: 10.1016/j.nima.2008.01.065_bib12 – year: 2005 ident: 10.1016/j.nima.2008.01.065_bib28 – volume: NS 42 start-page: 709 year: 1995 ident: 10.1016/j.nima.2008.01.065_bib18 publication-title: IEEE Trans. Nucl. Sci. doi: 10.1109/23.467888 – year: 2004 ident: 10.1016/j.nima.2008.01.065_bib2 article-title: Radiation detection and interdiction for public protection from terrorism – year: 2002 ident: 10.1016/j.nima.2008.01.065_bib5 – year: 1998 ident: 10.1016/j.nima.2008.01.065_bib7 – ident: 10.1016/j.nima.2008.01.065_bib26 – volume: vol. 1 start-page: 318 year: 1986 ident: 10.1016/j.nima.2008.01.065_bib14 article-title: Learning internal representations by error propagation – volume: 369 start-page: 642 year: 1996 ident: 10.1016/j.nima.2008.01.065_bib20 publication-title: Nucl. Instr. and Meth. A doi: 10.1016/S0168-9002(96)80068-4 – volume: vol. 1 start-page: 3 year: 1986 ident: 10.1016/j.nima.2008.01.065_bib24 article-title: The appeal of parallel distributed processing – ident: 10.1016/j.nima.2008.01.065_bib1 doi: 10.1109/NSSMIC.2003.1352095 – volume: 560 start-page: 373 year: 2006 ident: 10.1016/j.nima.2008.01.065_bib9 publication-title: Nucl. Instr. and Meth. A doi: 10.1016/j.nima.2006.01.053 – ident: 10.1016/j.nima.2008.01.065_bib8 – year: 1994 ident: 10.1016/j.nima.2008.01.065_bib13 – ident: 10.1016/j.nima.2008.01.065_bib15 – year: 2005 ident: 10.1016/j.nima.2008.01.065_bib11 – volume: 562 start-page: 281 year: 2006 ident: 10.1016/j.nima.2008.01.065_bib25 publication-title: Nucl. Instr. and Meth. A doi: 10.1016/j.nima.2006.02.156 – ident: 10.1016/j.nima.2008.01.065_bib27 – volume: 2 start-page: 359 year: 1989 ident: 10.1016/j.nima.2008.01.065_bib17 publication-title: Neural Networks doi: 10.1016/0893-6080(89)90020-8 – ident: 10.1016/j.nima.2008.01.065_bib23 – year: 1961 ident: 10.1016/j.nima.2008.01.065_bib22 – ident: 10.1016/j.nima.2008.01.065_bib29 doi: 10.1109/IJCNN.1990.137838 – volume: 7 start-page: 179 year: 1936 ident: 10.1016/j.nima.2008.01.065_bib10 publication-title: Ann. Eugenics doi: 10.1111/j.1469-1809.1936.tb02137.x – volume: 484 start-page: 557 year: 2002 ident: 10.1016/j.nima.2008.01.065_bib21 publication-title: Nucl. Instr. and Meth. A doi: 10.1016/S0168-9002(01)01962-3 – ident: 10.1016/j.nima.2008.01.065_bib3 |
| SSID | ssj0000978 |
| Score | 2.1320224 |
| Snippet | Polyvinyl toluene (PVT)-based gamma-ray scintillation detectors are cost effective for use in radiation portal monitors (RPMs) applied to screening for illicit... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 398 |
| SubjectTerms | Artificial neural network Border security Detection of illicit materials Naturally occurring radioactive material NORM Plastic scintillator Portal monitor Radiation detection SNM Special nuclear material Spectral analysis |
| Title | The use of artificial neural networks in PVT-based radiation portal monitors |
| URI | https://dx.doi.org/10.1016/j.nima.2008.01.065 |
| Volume | 587 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1872-9576 dateEnd: 20181111 omitProxy: true ssIdentifier: ssj0000978 issn: 0168-9002 databaseCode: AIKHN dateStart: 19950115 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Science Direct customDbUrl: eissn: 1872-9576 dateEnd: 20181111 omitProxy: true ssIdentifier: ssj0000978 issn: 0168-9002 databaseCode: ACRLP dateStart: 19950115 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect (Elsevier) customDbUrl: eissn: 1872-9576 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000978 issn: 0168-9002 databaseCode: .~1 dateStart: 0 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA61RfAiPrE-Sg7eJHbTfeZYiqVqLUVb6W3JZhOo6LZ026u_3cljfYB48LTsklnCTDLzTZh8g9BloPQFxTwkmR8rEnCfESZUQnyeRJR7KmdSn0M-jKLBNLibhbMa6lV3YXRZpfP91qcbb-2-tJ0228v5vP0EYCVhpsmkIUqDvL0B8SdJ6qjRvb0fjL4cMrMOGcYTLeDuztgyr2Ju6YcSw96pY8xv8elbzOnvoV0HFnHXzmcf1WRxgLZN0aYoD9EQbIw3pcQLhfWcLRkE1hSV5mEKvEs8L_D4eUJ0vMrxSnMRaGNgC7zxm9nUq_IITfs3k96AuO4IRADkWpOcK5oIJWmcxZA0cS4ZoKnMFzxTIoshbGehJ7iQYcTgLffjkEXSE7rbtMhk4B-jerEo5AnCwhOMKtiOosMhXY65RoERFZD6cf2rJqKVTlLhqMN1B4vXtKoRe0m1Hl1PS5qCHpvo6lNmaYkz_hwdVqpOf5g_Bc_-h9zpP-XO0I4t_PBJh56j-nq1kReALtZZC21dv9MWrKHe43DccmvpA-usz8M |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA6lInoRn9j6ysGbxG66zxylWKq2RbCV3pYkm0BFt6XbXv3tZpJdqyA9eFp22Sxhspn5JnzzDULXgYYCxSwkwo81CbjPCJM6IT5PIso9nTEF55CDYdQbB4-TcFJDnaoWBmiVpe93Pt166_JJq7Rmaz6dtl4MWEmYbTJphdJM3r4VhO0YMrDbzzXPAwoVnMC32dke0Hmaa5JXPnXiQ4nV7oQI81d0-hFxuvtor4SK-M7N5gDVVH6Iti1lUxZHqG9WGK8KhWcaw4ydFAQGgUp7sfTuAk9z_Pw6IhCtMrwAJQJYCuxgN_6wW3pRHKNx937U6ZGyNwKRBnAtScY1TaRWNBaxSZk4V8xgKeFLLrQUsQnaIvQklyqMmLnL_DhkkfIk9JqWQgX-Carns1ydIiw9yag2m1G2uUmWYw4YMKLSJH4cPtVAtLJJKkvhcOhf8Z5WDLG3FOxYdrSkqbFjA918j5k72YyNb4eVqdNfi58av75hXPOf467QTm806Kf9h-HTGdp1FBCftOk5qi8XK3VhcMZSXNr_6Asl8872 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+use+of+artificial+neural+networks+in+PVT-based+radiation+portal+monitors&rft.jtitle=Nuclear+instruments+%26+methods+in+physics+research.+Section+A%2C+Accelerators%2C+spectrometers%2C+detectors+and+associated+equipment&rft.au=Kangas%2C+Lars+J.&rft.au=Keller%2C+Paul+E.&rft.au=Siciliano%2C+Edward+R.&rft.au=Kouzes%2C+Richard+T.&rft.date=2008-03-21&rft.issn=0168-9002&rft.volume=587&rft.issue=2-3&rft.spage=398&rft.epage=412&rft_id=info:doi/10.1016%2Fj.nima.2008.01.065&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_nima_2008_01_065 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0168-9002&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0168-9002&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0168-9002&client=summon |