The use of artificial neural networks in PVT-based radiation portal monitors

Polyvinyl toluene (PVT)-based gamma-ray scintillation detectors are cost effective for use in radiation portal monitors (RPMs) applied to screening for illicit radioactive materials at international border crossings. While such systems can provide good sensitivity for detecting the presence of radio...

Full description

Saved in:
Bibliographic Details
Published inNuclear instruments & methods in physics research. Section A, Accelerators, spectrometers, detectors and associated equipment Vol. 587; no. 2; pp. 398 - 412
Main Authors Kangas, Lars J., Keller, Paul E., Siciliano, Edward R., Kouzes, Richard T., Ely, James H.
Format Journal Article
LanguageEnglish
Published Elsevier B.V 21.03.2008
Subjects
Online AccessGet full text
ISSN0168-9002
1872-9576
DOI10.1016/j.nima.2008.01.065

Cover

Abstract Polyvinyl toluene (PVT)-based gamma-ray scintillation detectors are cost effective for use in radiation portal monitors (RPMs) applied to screening for illicit radioactive materials at international border crossings. While such systems can provide good sensitivity for detecting the presence of radioactive materials, they have poor spectral resolution that limits their ability to identify the isotopic content of the source of radiation. Without use of spectral information, RPMs cannot distinguish innocent materials that contain low levels of normally occurring radioactive materials (NORM) from special nuclear materials of concern. Thus, to reduce the number of “nuisance” alarms produced in PVT-based RPMs by innocent materials, algorithms that analyze spectra from PVT detectors must be optimized to make use of the limited information contained in their energy spectra. This paper reports the first application of artificial neural networks (ANNs) in such an analysis. This work was performed as a feasibility study whose primary objective was to describe how an ANN-based alarm algorithm can be used to reduce the nuisance/false alarm probability while maintaining high-detection probabilities for radioactive sources of interest. The spectra used in this study were obtained from a limited set of actual PVT-based RPM data, and included cases where simulated spectra were inserted into the measured spectra. This paper also includes an analysis of spectral channel importance and shows evaluations of two methods used to reduce the initial set of energy spectra channels into smaller sets. Although not a comprehensive study, the results of this work show that it is possible to use ANNs successfully to discriminate NORM from other materials for realistic PVT-based RPM spectra. The algorithms described may also have potential application in the analysis of sodium iodide based RPM spectra.
AbstractList Polyvinyl toluene (PVT)-based gamma-ray scintillation detectors are cost effective for use in radiation portal monitors (RPMs) applied to screening for illicit radioactive materials at international border crossings. While such systems can provide good sensitivity for detecting the presence of radioactive materials, they have poor spectral resolution that limits their ability to identify the isotopic content of the source of radiation. Without use of spectral information, RPMs cannot distinguish innocent materials that contain low levels of normally occurring radioactive materials (NORM) from special nuclear materials of concern. Thus, to reduce the number of “nuisance” alarms produced in PVT-based RPMs by innocent materials, algorithms that analyze spectra from PVT detectors must be optimized to make use of the limited information contained in their energy spectra. This paper reports the first application of artificial neural networks (ANNs) in such an analysis. This work was performed as a feasibility study whose primary objective was to describe how an ANN-based alarm algorithm can be used to reduce the nuisance/false alarm probability while maintaining high-detection probabilities for radioactive sources of interest. The spectra used in this study were obtained from a limited set of actual PVT-based RPM data, and included cases where simulated spectra were inserted into the measured spectra. This paper also includes an analysis of spectral channel importance and shows evaluations of two methods used to reduce the initial set of energy spectra channels into smaller sets. Although not a comprehensive study, the results of this work show that it is possible to use ANNs successfully to discriminate NORM from other materials for realistic PVT-based RPM spectra. The algorithms described may also have potential application in the analysis of sodium iodide based RPM spectra.
Author Kangas, Lars J.
Ely, James H.
Keller, Paul E.
Siciliano, Edward R.
Kouzes, Richard T.
Author_xml – sequence: 1
  givenname: Lars J.
  surname: Kangas
  fullname: Kangas, Lars J.
– sequence: 2
  givenname: Paul E.
  surname: Keller
  fullname: Keller, Paul E.
– sequence: 3
  givenname: Edward R.
  surname: Siciliano
  fullname: Siciliano, Edward R.
– sequence: 4
  givenname: Richard T.
  surname: Kouzes
  fullname: Kouzes, Richard T.
  email: rkouzes@pnl.gov
– sequence: 5
  givenname: James H.
  surname: Ely
  fullname: Ely, James H.
BookMark eNp9kMtKQzEQhoNUsK2-gKu8wDkm55qAGyne4IAuqtuQ5EwwtU1Kkiq-vWnrykVnMwz838D_zdDEeQcIXVNSUkK7m1Xp7EaWFSGsJLQkXXuGppT1VcHbvpugaQ6xghNSXaBZjCuSh_dsioblB-BdBOwNliFZY7WVa-xgFw4rffvwGbF1-PV9WSgZYcRBjlYm6x3e-pBybOOdTT7ES3Ru5DrC1d-eo7eH--XiqRheHp8Xd0Oh66pLxSgNZdoA7VXPOJcSOKtbVWupjFZ91TSqJVpqaDuer7HuW94B0bRquFbQ1HNUHf_q4GMMYMQ25PrhR1Ai9j7ESux9iL0PQajIPjLE_kHapkONFKRdn0ZvjyjkUl8WgojagtMw2gA6idHbU_gvQql_QQ
CitedBy_id crossref_primary_10_1140_epjp_i2019_12841_5
crossref_primary_10_1016_j_net_2021_07_025
crossref_primary_10_1287_ijoc_1120_0546
crossref_primary_10_1016_j_apradiso_2009_04_015
crossref_primary_10_1016_j_nima_2009_11_077
crossref_primary_10_1016_j_nima_2024_170123
crossref_primary_10_1109_TNS_2014_2299872
crossref_primary_10_1016_j_apradiso_2012_06_016
crossref_primary_10_1016_j_jenvrad_2020_106216
crossref_primary_10_1016_j_scitotenv_2015_10_112
crossref_primary_10_1016_j_apradiso_2015_10_019
crossref_primary_10_1007_s10994_017_5670_4
crossref_primary_10_3390_s20102895
crossref_primary_10_1080_00295450_2022_2096389
crossref_primary_10_1038_s41598_021_81546_4
crossref_primary_10_1016_j_scitotenv_2022_157526
crossref_primary_10_1016_j_nima_2023_168409
crossref_primary_10_1109_TNS_2015_2432098
crossref_primary_10_1016_j_jenvrad_2015_09_021
crossref_primary_10_1109_TNS_2013_2265307
crossref_primary_10_1016_j_cossms_2021_100975
crossref_primary_10_1016_j_scitotenv_2015_03_131
crossref_primary_10_1016_j_jenvrad_2014_07_016
crossref_primary_10_12943_CNR_2018_00004
crossref_primary_10_1016_j_nucengdes_2019_110479
crossref_primary_10_3390_s21030684
crossref_primary_10_3390_s21227629
crossref_primary_10_1109_TNS_2021_3116090
crossref_primary_10_1016_j_apradiso_2015_08_017
crossref_primary_10_1088_1748_0221_15_01_P01031
crossref_primary_10_1016_j_nima_2009_06_001
crossref_primary_10_1109_TNS_2022_3173371
crossref_primary_10_1016_j_anucene_2017_09_032
crossref_primary_10_1142_S2010194520600101
crossref_primary_10_1016_j_apradiso_2019_01_005
crossref_primary_10_1016_j_apradiso_2019_109010
crossref_primary_10_1016_j_envpol_2018_04_112
crossref_primary_10_1063_1_3207769
crossref_primary_10_1088_1748_0221_18_01_P01031
crossref_primary_10_14407_jrpr_2020_45_3_117
crossref_primary_10_1007_s41365_018_0402_4
crossref_primary_10_1016_j_anucene_2019_04_057
crossref_primary_10_1109_TNS_2022_3176586
crossref_primary_10_1016_j_apradiso_2015_03_014
crossref_primary_10_14407_jrpr_2021_00206
Cites_doi 10.1016/S0168-9002(97)00391-4
10.1016/j.nima.2005.05.056
10.1109/23.467888
10.1016/S0168-9002(96)80068-4
10.1109/NSSMIC.2003.1352095
10.1016/j.nima.2006.01.053
10.1016/j.nima.2006.02.156
10.1016/0893-6080(89)90020-8
10.1109/IJCNN.1990.137838
10.1111/j.1469-1809.1936.tb02137.x
10.1016/S0168-9002(01)01962-3
ContentType Journal Article
Copyright 2008 Elsevier B.V.
Copyright_xml – notice: 2008 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.nima.2008.01.065
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1872-9576
EndPage 412
ExternalDocumentID 10_1016_j_nima_2008_01_065
S0168900208001010
GroupedDBID --K
--M
-~X
.~1
0R~
123
1B1
1RT
1~.
1~5
29N
3O-
4.4
457
4G.
53G
5VS
6TJ
7-5
71M
8P~
8WZ
9JN
A6W
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABFNM
ABMAC
ABNEU
ABXDB
ABYKQ
ACDAQ
ACFVG
ACGFS
ACNCT
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
AEBSH
AEKER
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AIVDX
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HME
HVGLF
HX~
HZ~
H~9
IHE
J1W
KOM
LZ4
M41
MO0
N9A
NCXOZ
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SHN
SPC
SPCBC
SPD
SSQ
SSZ
T5K
TN5
VOH
WUQ
~02
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ADNMO
ADVLN
AEIPS
AFJKZ
AGQPQ
AIIUN
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c326t-daf18cfe17b7899aae9835b3cabfcb7244b50cace569724d37596e0c1249cbe43
IEDL.DBID AIKHN
ISSN 0168-9002
IngestDate Thu Apr 24 22:52:51 EDT 2025
Thu Oct 02 04:38:08 EDT 2025
Fri Feb 23 02:12:51 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Special nuclear material
Portal monitor
02.70.−c
Radiation detection
Naturally occurring radioactive material
Plastic scintillator
Spectral analysis
29.40.−n
SNM
07.05.Mh
NORM
Artificial neural network
Detection of illicit materials
Border security
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c326t-daf18cfe17b7899aae9835b3cabfcb7244b50cace569724d37596e0c1249cbe43
PageCount 15
ParticipantIDs crossref_primary_10_1016_j_nima_2008_01_065
crossref_citationtrail_10_1016_j_nima_2008_01_065
elsevier_sciencedirect_doi_10_1016_j_nima_2008_01_065
PublicationCentury 2000
PublicationDate 2008-03-21
PublicationDateYYYYMMDD 2008-03-21
PublicationDate_xml – month: 03
  year: 2008
  text: 2008-03-21
  day: 21
PublicationDecade 2000
PublicationTitle Nuclear instruments & methods in physics research. Section A, Accelerators, spectrometers, detectors and associated equipment
PublicationYear 2008
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Bellman (bib22) 1961
W. Rieck, M. Iwatschenko, Intelligent software solution for reliable high efficiency/low false alarm border monitoring, in: S.N.P. Inspectorates, Measures to Prevent, Intercept and Respond to Illicit Uses of Nuclear Material and Radioactive Sources, International Atomic Energy Agency, Stockholm, Sweden, 2001, p. 565.
MCNP X-5 Monte Carlo Team, MCNP—A General Purpose Monte-Carlo N-Particle Transport Code, Version 5, LA-UR-03-1987, Los Alamos National Laboratory, Los Alamos, NM, 2003.
D. Mitchell, D. Waymire, GADRASw User Manual Version 12.3.2, Sandia National Laboratories, Albuquerque, NM, 2005.
Priddy, Keller (bib28) 2005
B.D. Geelhood, J.H. Ely, R. Hansen, R.T. Kouzes, J.E. Schweppe, R.A. Warner, Overview of portal monitoring at border crossings, in: Nuclear Science Symposium, Portland, OR, USA, 2003, p. 513.
Yoshida, Shizuma, Endo, Oka (bib21) 2002; 484
K. Baba, I. Enbutu, M. Yoda, explicit representation of knowledge acquired from plant historical data using neural network, in: International Joint Conference on Neural Networks (IJCNN’90), 1990, p. 155.
Werbos (bib13) 1994
Siciliano, Ely, Kouzes, Milbrath, Schweppe, Stromswold (bib4) 2005; 550
Keller, Kangas, Troyer, Kouzes, Hashem (bib18) 1995; NS 42
Kouzes (bib2) 2004
Hornik, Stinchcombe, White (bib17) 1989; 2
Vigneron, Morel, Lépy, Martinez (bib20) 1996; 369
Rumelhart, Hinton, Williams (bib14) 1986; vol. 1
Trost, Iwatschenko (bib5) 2002
Ely, Kouzes, Schweppe, Siciliano, Strachan, Weier (bib9) 2006; 560
McClelland, Rumelhart, Hinton (bib24) 1986; vol. 1
Iwatschenko-Borho, Dederichs, Nürbechen, Schiefer, Rieck (bib7) 1998
Y. LeCun, Une procedure d’apprentissage pour reseau a seuil assymetrique, Cognitiva ‘85: A la frontière de l ‘intelligence Artificielle des Sciences de la Connaissance des Neuronsciences, 1985, p. 599.
P.J. Werbos, Beyond regression: new tools for prediction and analysis in the behavioral sciences, Ph.D. Thesis, Harvard University, 1974.
D. Parker, Learning-logic, Invention Report S81-64, File 1, Office of Technology Licensing, Stanford University, Palo Alto, CA, 1982.
Abdel-Aal, Al-Haddad (bib19) 1997; 391
Iwatschenko-Borho (bib6) 1997; 42
LoPresti, Weier, Kouzes, Schweppe (bib25) 2006; 562
R.T. Kouzes, J.H. Ely, R. Hansen, J.E. Schweppe, E.R. Siciliano, D.C. Stromswold, Homeland security instrumentation for radiation detection at borders, in: Fourth American Nuclear Society International Topical Meeting on Nuclear Plant Instrumentation, Controls and Human–Machine Interface Technologies (NPIC&HMIT 2004), Columbus, OH, 2004.
Fisher (bib10) 1936; 7
E. Kalapanidas, N. Avouris, M. Craciun, D. Neagu, Machine Learning algorithms: a study on noise sensitivity, in: First Balcan Conference in Informatics, Thessaloniki, Greece, 2003, p. 356.
Priddy, Keller (bib11) 2005
McClelland (10.1016/j.nima.2008.01.065_bib24) 1986; vol. 1
Yoshida (10.1016/j.nima.2008.01.065_bib21) 2002; 484
Rumelhart (10.1016/j.nima.2008.01.065_bib14) 1986; vol. 1
10.1016/j.nima.2008.01.065_bib12
10.1016/j.nima.2008.01.065_bib15
10.1016/j.nima.2008.01.065_bib16
Iwatschenko-Borho (10.1016/j.nima.2008.01.065_bib6) 1997; 42
Trost (10.1016/j.nima.2008.01.065_bib5) 2002
Abdel-Aal (10.1016/j.nima.2008.01.065_bib19) 1997; 391
Priddy (10.1016/j.nima.2008.01.065_bib28) 2005
Keller (10.1016/j.nima.2008.01.065_bib18) 1995; NS 42
Bellman (10.1016/j.nima.2008.01.065_bib22) 1961
Hornik (10.1016/j.nima.2008.01.065_bib17) 1989; 2
Ely (10.1016/j.nima.2008.01.065_bib9) 2006; 560
Siciliano (10.1016/j.nima.2008.01.065_bib4) 2005; 550
10.1016/j.nima.2008.01.065_bib23
10.1016/j.nima.2008.01.065_bib1
10.1016/j.nima.2008.01.065_bib26
10.1016/j.nima.2008.01.065_bib3
10.1016/j.nima.2008.01.065_bib27
10.1016/j.nima.2008.01.065_bib29
LoPresti (10.1016/j.nima.2008.01.065_bib25) 2006; 562
10.1016/j.nima.2008.01.065_bib8
Priddy (10.1016/j.nima.2008.01.065_bib11) 2005
Kouzes (10.1016/j.nima.2008.01.065_bib2) 2004
Vigneron (10.1016/j.nima.2008.01.065_bib20) 1996; 369
Fisher (10.1016/j.nima.2008.01.065_bib10) 1936; 7
Iwatschenko-Borho (10.1016/j.nima.2008.01.065_bib7) 1998
Werbos (10.1016/j.nima.2008.01.065_bib13) 1994
References_xml – year: 2005
  ident: bib11
  article-title: Artificial Neural Networks: An Introduction
– volume: 391
  start-page: 275
  year: 1997
  ident: bib19
  publication-title: Nucl. Instr. and Meth. A
– year: 2005
  ident: bib28
  article-title: Artificial Neural Networks: An Introduction
– year: 2004
  ident: bib2
  article-title: Radiation detection and interdiction for public protection from terrorism
  publication-title: Public Protection from Nuclear, Chemical, and Biological Terrorism
– volume: vol. 1
  start-page: 318
  year: 1986
  ident: bib14
  article-title: Learning internal representations by error propagation
  publication-title: Parallel Distributed Processing: Explorations in the Microstructures of Cognition. 1: Foundations
– year: 1994
  ident: bib13
  article-title: The Roots of Backpropagation
– volume: 2
  start-page: 359
  year: 1989
  ident: bib17
  publication-title: Neural Networks
– volume: NS 42
  start-page: 709
  year: 1995
  ident: bib18
  publication-title: IEEE Trans. Nucl. Sci.
– reference: P.J. Werbos, Beyond regression: new tools for prediction and analysis in the behavioral sciences, Ph.D. Thesis, Harvard University, 1974.
– reference: D. Parker, Learning-logic, Invention Report S81-64, File 1, Office of Technology Licensing, Stanford University, Palo Alto, CA, 1982.
– reference: E. Kalapanidas, N. Avouris, M. Craciun, D. Neagu, Machine Learning algorithms: a study on noise sensitivity, in: First Balcan Conference in Informatics, Thessaloniki, Greece, 2003, p. 356.
– volume: 562
  start-page: 281
  year: 2006
  ident: bib25
  publication-title: Nucl. Instr. and Meth. A
– reference: MCNP X-5 Monte Carlo Team, MCNP—A General Purpose Monte-Carlo N-Particle Transport Code, Version 5, LA-UR-03-1987, Los Alamos National Laboratory, Los Alamos, NM, 2003.
– reference: B.D. Geelhood, J.H. Ely, R. Hansen, R.T. Kouzes, J.E. Schweppe, R.A. Warner, Overview of portal monitoring at border crossings, in: Nuclear Science Symposium, Portland, OR, USA, 2003, p. 513.
– volume: 484
  start-page: 557
  year: 2002
  ident: bib21
  publication-title: Nucl. Instr. and Meth. A
– volume: 560
  start-page: 373
  year: 2006
  ident: bib9
  publication-title: Nucl. Instr. and Meth. A
– volume: 42
  start-page: 97
  year: 1997
  ident: bib6
  publication-title: Int. Z. Kernenerg.
– reference: D. Mitchell, D. Waymire, GADRASw User Manual Version 12.3.2, Sandia National Laboratories, Albuquerque, NM, 2005.
– volume: 369
  start-page: 642
  year: 1996
  ident: bib20
  publication-title: Nucl. Instr. and Meth. A
– year: 1961
  ident: bib22
  article-title: Adaptive Control Processes: A Guided Tour
– year: 2002
  ident: bib5
  article-title: Method and Device for Detecting Man-Made Radiation
– volume: 7
  start-page: 179
  year: 1936
  ident: bib10
  publication-title: Ann. Eugenics
– year: 1998
  ident: bib7
  article-title: Schnellerkennung von künstlichen Gammastrahlern mit dem NBR-Verfahren
– reference: W. Rieck, M. Iwatschenko, Intelligent software solution for reliable high efficiency/low false alarm border monitoring, in: S.N.P. Inspectorates, Measures to Prevent, Intercept and Respond to Illicit Uses of Nuclear Material and Radioactive Sources, International Atomic Energy Agency, Stockholm, Sweden, 2001, p. 565.
– reference: R.T. Kouzes, J.H. Ely, R. Hansen, J.E. Schweppe, E.R. Siciliano, D.C. Stromswold, Homeland security instrumentation for radiation detection at borders, in: Fourth American Nuclear Society International Topical Meeting on Nuclear Plant Instrumentation, Controls and Human–Machine Interface Technologies (NPIC&HMIT 2004), Columbus, OH, 2004.
– reference: K. Baba, I. Enbutu, M. Yoda, explicit representation of knowledge acquired from plant historical data using neural network, in: International Joint Conference on Neural Networks (IJCNN’90), 1990, p. 155.
– volume: 550
  start-page: 647
  year: 2005
  ident: bib4
  publication-title: Nucl. Instr. and Meth. A
– reference: Y. LeCun, Une procedure d’apprentissage pour reseau a seuil assymetrique, Cognitiva ‘85: A la frontière de l ‘intelligence Artificielle des Sciences de la Connaissance des Neuronsciences, 1985, p. 599.
– volume: vol. 1
  start-page: 3
  year: 1986
  ident: bib24
  article-title: The appeal of parallel distributed processing
  publication-title: Parallel Distributed Processing: Explorations in the Microstructures of Cognition. 1: Foundations,
– volume: 391
  start-page: 275
  year: 1997
  ident: 10.1016/j.nima.2008.01.065_bib19
  publication-title: Nucl. Instr. and Meth. A
  doi: 10.1016/S0168-9002(97)00391-4
– volume: 42
  start-page: 97
  issue: 2
  year: 1997
  ident: 10.1016/j.nima.2008.01.065_bib6
  publication-title: Int. Z. Kernenerg.
– ident: 10.1016/j.nima.2008.01.065_bib16
– volume: 550
  start-page: 647
  year: 2005
  ident: 10.1016/j.nima.2008.01.065_bib4
  publication-title: Nucl. Instr. and Meth. A
  doi: 10.1016/j.nima.2005.05.056
– ident: 10.1016/j.nima.2008.01.065_bib12
– year: 2005
  ident: 10.1016/j.nima.2008.01.065_bib28
– volume: NS 42
  start-page: 709
  year: 1995
  ident: 10.1016/j.nima.2008.01.065_bib18
  publication-title: IEEE Trans. Nucl. Sci.
  doi: 10.1109/23.467888
– year: 2004
  ident: 10.1016/j.nima.2008.01.065_bib2
  article-title: Radiation detection and interdiction for public protection from terrorism
– year: 2002
  ident: 10.1016/j.nima.2008.01.065_bib5
– year: 1998
  ident: 10.1016/j.nima.2008.01.065_bib7
– ident: 10.1016/j.nima.2008.01.065_bib26
– volume: vol. 1
  start-page: 318
  year: 1986
  ident: 10.1016/j.nima.2008.01.065_bib14
  article-title: Learning internal representations by error propagation
– volume: 369
  start-page: 642
  year: 1996
  ident: 10.1016/j.nima.2008.01.065_bib20
  publication-title: Nucl. Instr. and Meth. A
  doi: 10.1016/S0168-9002(96)80068-4
– volume: vol. 1
  start-page: 3
  year: 1986
  ident: 10.1016/j.nima.2008.01.065_bib24
  article-title: The appeal of parallel distributed processing
– ident: 10.1016/j.nima.2008.01.065_bib1
  doi: 10.1109/NSSMIC.2003.1352095
– volume: 560
  start-page: 373
  year: 2006
  ident: 10.1016/j.nima.2008.01.065_bib9
  publication-title: Nucl. Instr. and Meth. A
  doi: 10.1016/j.nima.2006.01.053
– ident: 10.1016/j.nima.2008.01.065_bib8
– year: 1994
  ident: 10.1016/j.nima.2008.01.065_bib13
– ident: 10.1016/j.nima.2008.01.065_bib15
– year: 2005
  ident: 10.1016/j.nima.2008.01.065_bib11
– volume: 562
  start-page: 281
  year: 2006
  ident: 10.1016/j.nima.2008.01.065_bib25
  publication-title: Nucl. Instr. and Meth. A
  doi: 10.1016/j.nima.2006.02.156
– ident: 10.1016/j.nima.2008.01.065_bib27
– volume: 2
  start-page: 359
  year: 1989
  ident: 10.1016/j.nima.2008.01.065_bib17
  publication-title: Neural Networks
  doi: 10.1016/0893-6080(89)90020-8
– ident: 10.1016/j.nima.2008.01.065_bib23
– year: 1961
  ident: 10.1016/j.nima.2008.01.065_bib22
– ident: 10.1016/j.nima.2008.01.065_bib29
  doi: 10.1109/IJCNN.1990.137838
– volume: 7
  start-page: 179
  year: 1936
  ident: 10.1016/j.nima.2008.01.065_bib10
  publication-title: Ann. Eugenics
  doi: 10.1111/j.1469-1809.1936.tb02137.x
– volume: 484
  start-page: 557
  year: 2002
  ident: 10.1016/j.nima.2008.01.065_bib21
  publication-title: Nucl. Instr. and Meth. A
  doi: 10.1016/S0168-9002(01)01962-3
– ident: 10.1016/j.nima.2008.01.065_bib3
SSID ssj0000978
Score 2.1320224
Snippet Polyvinyl toluene (PVT)-based gamma-ray scintillation detectors are cost effective for use in radiation portal monitors (RPMs) applied to screening for illicit...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 398
SubjectTerms Artificial neural network
Border security
Detection of illicit materials
Naturally occurring radioactive material
NORM
Plastic scintillator
Portal monitor
Radiation detection
SNM
Special nuclear material
Spectral analysis
Title The use of artificial neural networks in PVT-based radiation portal monitors
URI https://dx.doi.org/10.1016/j.nima.2008.01.065
Volume 587
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1872-9576
  dateEnd: 20181111
  omitProxy: true
  ssIdentifier: ssj0000978
  issn: 0168-9002
  databaseCode: AIKHN
  dateStart: 19950115
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Science Direct
  customDbUrl:
  eissn: 1872-9576
  dateEnd: 20181111
  omitProxy: true
  ssIdentifier: ssj0000978
  issn: 0168-9002
  databaseCode: ACRLP
  dateStart: 19950115
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect (Elsevier)
  customDbUrl:
  eissn: 1872-9576
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000978
  issn: 0168-9002
  databaseCode: .~1
  dateStart: 0
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA61RfAiPrE-Sg7eJHbTfeZYiqVqLUVb6W3JZhOo6LZ026u_3cljfYB48LTsklnCTDLzTZh8g9BloPQFxTwkmR8rEnCfESZUQnyeRJR7KmdSn0M-jKLBNLibhbMa6lV3YXRZpfP91qcbb-2-tJ0228v5vP0EYCVhpsmkIUqDvL0B8SdJ6qjRvb0fjL4cMrMOGcYTLeDuztgyr2Ju6YcSw96pY8xv8elbzOnvoV0HFnHXzmcf1WRxgLZN0aYoD9EQbIw3pcQLhfWcLRkE1hSV5mEKvEs8L_D4eUJ0vMrxSnMRaGNgC7zxm9nUq_IITfs3k96AuO4IRADkWpOcK5oIJWmcxZA0cS4ZoKnMFzxTIoshbGehJ7iQYcTgLffjkEXSE7rbtMhk4B-jerEo5AnCwhOMKtiOosMhXY65RoERFZD6cf2rJqKVTlLhqMN1B4vXtKoRe0m1Hl1PS5qCHpvo6lNmaYkz_hwdVqpOf5g_Bc_-h9zpP-XO0I4t_PBJh56j-nq1kReALtZZC21dv9MWrKHe43DccmvpA-usz8M
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA6lInoRn9j6ysGbxG66zxylWKq2RbCV3pYkm0BFt6XbXv3tZpJdqyA9eFp22Sxhspn5JnzzDULXgYYCxSwkwo81CbjPCJM6IT5PIso9nTEF55CDYdQbB4-TcFJDnaoWBmiVpe93Pt166_JJq7Rmaz6dtl4MWEmYbTJphdJM3r4VhO0YMrDbzzXPAwoVnMC32dke0Hmaa5JXPnXiQ4nV7oQI81d0-hFxuvtor4SK-M7N5gDVVH6Iti1lUxZHqG9WGK8KhWcaw4ydFAQGgUp7sfTuAk9z_Pw6IhCtMrwAJQJYCuxgN_6wW3pRHKNx937U6ZGyNwKRBnAtScY1TaRWNBaxSZk4V8xgKeFLLrQUsQnaIvQklyqMmLnL_DhkkfIk9JqWQgX-Carns1ydIiw9yag2m1G2uUmWYw4YMKLSJH4cPtVAtLJJKkvhcOhf8Z5WDLG3FOxYdrSkqbFjA918j5k72YyNb4eVqdNfi58av75hXPOf467QTm806Kf9h-HTGdp1FBCftOk5qi8XK3VhcMZSXNr_6Asl8872
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+use+of+artificial+neural+networks+in+PVT-based+radiation+portal+monitors&rft.jtitle=Nuclear+instruments+%26+methods+in+physics+research.+Section+A%2C+Accelerators%2C+spectrometers%2C+detectors+and+associated+equipment&rft.au=Kangas%2C+Lars+J.&rft.au=Keller%2C+Paul+E.&rft.au=Siciliano%2C+Edward+R.&rft.au=Kouzes%2C+Richard+T.&rft.date=2008-03-21&rft.issn=0168-9002&rft.volume=587&rft.issue=2-3&rft.spage=398&rft.epage=412&rft_id=info:doi/10.1016%2Fj.nima.2008.01.065&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_nima_2008_01_065
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0168-9002&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0168-9002&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0168-9002&client=summon