Automatic kidney stone identification: an adaptive feature-weighted LSTM model based on urine and blood routine analysis

Kidney stones are the most common urinary system diseases, and early identification is of great significance. The purpose of this study was to use routine urine and blood detection indices to build a deep learning (DL) model to identify the presence of kidney stones in the early stage. A retrospecti...

Full description

Saved in:
Bibliographic Details
Published inUrolithiasis Vol. 52; no. 1; p. 145
Main Authors Zhu, Quanjing, Cheong-Iao Pang, Patrick, Chen, Canhui, Zheng, Qingyuan, Zhang, Chongwei, Li, Jiaxuan, Guo, Jielong, Mao, Chao, He, Yong
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 14.10.2024
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN2194-7236
2194-7228
2194-7236
DOI10.1007/s00240-024-01644-6

Cover

Abstract Kidney stones are the most common urinary system diseases, and early identification is of great significance. The purpose of this study was to use routine urine and blood detection indices to build a deep learning (DL) model to identify the presence of kidney stones in the early stage. A retrospective analysis was conducted on patients with kidney stones who were treated at West China Hospital of Sichuan University from January 2020 to June 2023. A total of 1130 individuals presenting with kidney stones and 1230 healthy subjects were enrolled. The first blood and urine laboratory data of participants at our hospital were collected, and the data were divided into a training dataset (80%) and a verification dataset (20%). Additionally, a long short-term memory (LSTM)-based adaptive feature weighting model was trained for the early identification of kidney stones, and the results were compared with those of other models. The performance of the model was evaluated by the area under the subject working characteristic curve (AUC). The important predictive factors are determined by ranking the characteristic importance of the predictive factors. A total of 17 variables were screened; among the top 4 characteristics according to the weight coefficient in this model, urine WBC, urine occult blood, qualitative urinary protein, and microcyte percentage had high predictive value for kidney stones in patients. The accuracy of the kidney stone (KS-LSTM) learning model was 89.5%, and the AUC was 0.95. Compared with other models, it has better performance. The results show that the KS-LSTM model based on routine urine and blood tests can accurately identify the presence of kidney stones. And provide valuable assistance for clinicians to identify kidney stones in the early stage.
AbstractList Kidney stones are the most common urinary system diseases, and early identification is of great significance. The purpose of this study was to use routine urine and blood detection indices to build a deep learning (DL) model to identify the presence of kidney stones in the early stage. A retrospective analysis was conducted on patients with kidney stones who were treated at West China Hospital of Sichuan University from January 2020 to June 2023. A total of 1130 individuals presenting with kidney stones and 1230 healthy subjects were enrolled. The first blood and urine laboratory data of participants at our hospital were collected, and the data were divided into a training dataset (80%) and a verification dataset (20%). Additionally, a long short-term memory (LSTM)-based adaptive feature weighting model was trained for the early identification of kidney stones, and the results were compared with those of other models. The performance of the model was evaluated by the area under the subject working characteristic curve (AUC). The important predictive factors are determined by ranking the characteristic importance of the predictive factors. A total of 17 variables were screened; among the top 4 characteristics according to the weight coefficient in this model, urine WBC, urine occult blood, qualitative urinary protein, and microcyte percentage had high predictive value for kidney stones in patients. The accuracy of the kidney stone (KS-LSTM) learning model was 89.5%, and the AUC was 0.95. Compared with other models, it has better performance. The results show that the KS-LSTM model based on routine urine and blood tests can accurately identify the presence of kidney stones. And provide valuable assistance for clinicians to identify kidney stones in the early stage.
Kidney stones are the most common urinary system diseases, and early identification is of great significance. The purpose of this study was to use routine urine and blood detection indices to build a deep learning (DL) model to identify the presence of kidney stones in the early stage. A retrospective analysis was conducted on patients with kidney stones who were treated at West China Hospital of Sichuan University from January 2020 to June 2023. A total of 1130 individuals presenting with kidney stones and 1230 healthy subjects were enrolled. The first blood and urine laboratory data of participants at our hospital were collected, and the data were divided into a training dataset (80%) and a verification dataset (20%). Additionally, a long short-term memory (LSTM)-based adaptive feature weighting model was trained for the early identification of kidney stones, and the results were compared with those of other models. The performance of the model was evaluated by the area under the subject working characteristic curve (AUC). The important predictive factors are determined by ranking the characteristic importance of the predictive factors. A total of 17 variables were screened; among the top 4 characteristics according to the weight coefficient in this model, urine WBC, urine occult blood, qualitative urinary protein, and microcyte percentage had high predictive value for kidney stones in patients. The accuracy of the kidney stone (KS-LSTM) learning model was 89.5%, and the AUC was 0.95. Compared with other models, it has better performance. The results show that the KS-LSTM model based on routine urine and blood tests can accurately identify the presence of kidney stones. And provide valuable assistance for clinicians to identify kidney stones in the early stage.Kidney stones are the most common urinary system diseases, and early identification is of great significance. The purpose of this study was to use routine urine and blood detection indices to build a deep learning (DL) model to identify the presence of kidney stones in the early stage. A retrospective analysis was conducted on patients with kidney stones who were treated at West China Hospital of Sichuan University from January 2020 to June 2023. A total of 1130 individuals presenting with kidney stones and 1230 healthy subjects were enrolled. The first blood and urine laboratory data of participants at our hospital were collected, and the data were divided into a training dataset (80%) and a verification dataset (20%). Additionally, a long short-term memory (LSTM)-based adaptive feature weighting model was trained for the early identification of kidney stones, and the results were compared with those of other models. The performance of the model was evaluated by the area under the subject working characteristic curve (AUC). The important predictive factors are determined by ranking the characteristic importance of the predictive factors. A total of 17 variables were screened; among the top 4 characteristics according to the weight coefficient in this model, urine WBC, urine occult blood, qualitative urinary protein, and microcyte percentage had high predictive value for kidney stones in patients. The accuracy of the kidney stone (KS-LSTM) learning model was 89.5%, and the AUC was 0.95. Compared with other models, it has better performance. The results show that the KS-LSTM model based on routine urine and blood tests can accurately identify the presence of kidney stones. And provide valuable assistance for clinicians to identify kidney stones in the early stage.
ArticleNumber 145
Author Zhang, Chongwei
Mao, Chao
Zheng, Qingyuan
Zhu, Quanjing
Guo, Jielong
Cheong-Iao Pang, Patrick
Chen, Canhui
He, Yong
Li, Jiaxuan
Author_xml – sequence: 1
  givenname: Quanjing
  surname: Zhu
  fullname: Zhu, Quanjing
  organization: Department of Laboratory Medicine, West China Hospital, Sichuan University
– sequence: 2
  givenname: Patrick
  surname: Cheong-Iao Pang
  fullname: Cheong-Iao Pang, Patrick
  organization: Faculty of Applied Sciences, Macao Polytechnic University
– sequence: 3
  givenname: Canhui
  surname: Chen
  fullname: Chen, Canhui
  organization: Beijing Four-Faith Digital Technology
– sequence: 4
  givenname: Qingyuan
  surname: Zheng
  fullname: Zheng, Qingyuan
  organization: Department of Laboratory Medicine, West China Hospital, Sichuan University
– sequence: 5
  givenname: Chongwei
  surname: Zhang
  fullname: Zhang, Chongwei
  organization: Department of Laboratory Medicine, West China Hospital, Sichuan University
– sequence: 6
  givenname: Jiaxuan
  surname: Li
  fullname: Li, Jiaxuan
  organization: Faculty of Applied Sciences, Macao Polytechnic University
– sequence: 7
  givenname: Jielong
  surname: Guo
  fullname: Guo, Jielong
  organization: Faculty of Applied Sciences, Macao Polytechnic University
– sequence: 8
  givenname: Chao
  surname: Mao
  fullname: Mao, Chao
  email: maoch3@foxmail.com
  organization: Faculty of Applied Sciences, Macao Polytechnic University
– sequence: 9
  givenname: Yong
  surname: He
  fullname: He, Yong
  email: heyong1011@scu.edu.cn
  organization: Department of Laboratory Medicine, West China Hospital, Sichuan University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39402276$$D View this record in MEDLINE/PubMed
BookMark eNp9kU9PHSEUxUljo1b9Al0YEjfdTAsMAzPdmZf-S55xUbsmd4b7LHYGnsDYvm9fdGxrupDFgVx-517CeUX2fPBIyGvO3nLG9LvEmJCsKlIxrqSs1AtyKHgnKy1qtffkfEBOUrphZXVdJznbJwd1J5kQWh2SX-dzDhNkN9Afznrc0ZTLIOos-uw2bihXwb-n4ClY2GZ3h3SDkOeI1U90198zWrr-enVBp2BxpD2kUgieztGVNuAt7ccQLI1hzksFxl1y6Zi83MCY8ORxPyLfPn64Wn2u1pefvqzO19VQC5UrK6Tola61km3LW8FVDdjypgWmBAfVcA6sa1TPQAnQfcOw7YXmnW6gE2Koj8ibpe82htsZUzaTSwOOI3gMczI150rpVsumoGf_oTdhjuW9CyUbXbRQp4_U3E9ozTa6CeLO_PnTAogFGGJIKeLmL8KZuc_OLNmZIuYhO3NvqhdTKrC_xvhv9jOu3x9dmY8
Cites_doi 10.1590/s1677-5538.ibju.2022.0450
10.1016/0893-6080(95)00107-7
10.1053/j.ajkd.2016.05.016
10.1089/end.2021.0211
10.1016/j.pop.2019.02.001
10.1016/j.kint.2021.05.031
10.1016/j.asoc.2021.107918
10.3390/ijms24032026
10.1016/j.pop.2020.08.005
10.1049/iet-rpg.2018.5917
10.1016/j.jinf.2023.07.006
10.1186/s12911-022-02094-z
10.1016/j.knosys.2021.107471
10.1007/s00240-019-01172-8
10.1038/s41581-020-0320-7
10.1016/j.ucl.2012.10.001
10.23736/S0375-9393.21.16241-8
10.1210/jc.2011-3492
10.1016/j.urology.2022.07.008
10.1016/j.inffus.2023.101819
10.1002/cac2.12215
10.1093/clinchem/hvad106
10.1016/j.clinbiochem.2020.06.014
10.1016/j.ekir.2021.03.894
10.1162/neco.1997.9.8.1735
10.1111/bju.13828
10.1007/s00330-019-6004-7
10.1016/j.cmpb.2021.106071
10.1016/j.artmed.2017.12.001
10.1053/j.ackd.2015.04.004
10.1016/j.neunet.2018.11.005
10.3390/nu13061917
10.1016/j.ab.2020.113587
10.1016/j.suc.2016.02.008
10.1016/j.csbj.2022.12.004
10.1097/MOU.0000000000000856
10.1097/MD.0000000000007898
10.1002/mp.15518
10.1007/s00345-021-03801-7
10.5213/inj.2244202.101
10.1016/j.semnephrol.2011.05.006
10.1097/YCO.0000000000000768
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
2024. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.
Copyright Springer Nature B.V. Dec 2024
Copyright_xml – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: 2024. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.
– notice: Copyright Springer Nature B.V. Dec 2024
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
K9.
7X8
DOI 10.1007/s00240-024-01644-6
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitleList ProQuest Health & Medical Complete (Alumni)

MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 2194-7236
ExternalDocumentID 39402276
10_1007_s00240_024_01644_6
Genre Journal Article
GroupedDBID -EM
.VR
06C
06D
0R~
203
29~
2J2
2JN
2JY
2KG
2KM
2LR
4.4
406
408
40E
53G
5C9
5VS
8UJ
95-
96X
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABIPD
ABJNI
ABJOX
ABKCH
ABKTR
ABLJU
ABMQK
ABNWP
ABPLI
ABQBU
ABSXP
ABTEG
ABTKH
ABTMW
ABWNU
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACPIV
ACZOJ
ADBBV
ADHIR
ADINQ
ADJJI
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEFQL
AEGNC
AEJHL
AEJRE
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFLOW
AFQWF
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGWZB
AGYKE
AHBYD
AHIZS
AHMBA
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJZVZ
AKMHD
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AZFZN
B-.
BGNMA
BSONS
CSCUP
DDRTE
DNIVK
DPUIP
EBLON
EBS
EIOEI
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FNLPD
FRRFC
FWDCC
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ8
HF~
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
IKXTQ
IMOTQ
IWAJR
IXD
IZIGR
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KOV
LLZTM
M4Y
MA-
NPVJJ
NQJWS
NU0
O93
O9J
PF0
PT4
QOR
R89
ROL
RSV
S16
SAP
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
SSXJD
STPWE
SZ9
SZN
TSG
TUC
U9L
UG4
UOJIU
UTJUX
W23
W48
YLTOR
ZMTXR
ZOVNA
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
ABRTQ
K9.
7X8
ID FETCH-LOGICAL-c326t-d242b67376488182163ae8158a0621a6511a0956b0a62a7b50e8b271975a922c3
IEDL.DBID AGYKE
ISSN 2194-7236
2194-7228
IngestDate Thu Sep 04 19:47:28 EDT 2025
Fri Jul 25 23:02:00 EDT 2025
Wed Feb 19 02:02:49 EST 2025
Tue Jul 01 03:47:07 EDT 2025
Fri Feb 21 02:36:16 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Identification
Urine and blood analysis
Long short-term memory (LSTM)
Kidney stone
Language English
License 2024. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c326t-d242b67376488182163ae8158a0621a6511a0956b0a62a7b50e8b271975a922c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PMID 39402276
PQID 3116457116
PQPubID 326290
ParticipantIDs proquest_miscellaneous_3116678745
proquest_journals_3116457116
pubmed_primary_39402276
crossref_primary_10_1007_s00240_024_01644_6
springer_journals_10_1007_s00240_024_01644_6
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-10-14
PublicationDateYYYYMMDD 2024-10-14
PublicationDate_xml – month: 10
  year: 2024
  text: 2024-10-14
  day: 14
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Germany
– name: Heidelberg
PublicationTitle Urolithiasis
PublicationTitleAbbrev Urolithiasis
PublicationTitleAlternate Urolithiasis
PublicationYear 2024
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References Y Kazemi (1644_CR18) 2018; 84
AA Theodosiou (1644_CR36) 2023; 87
JA Mandeville (1644_CR6) 2011; 31
SJ Eun (1644_CR17) 2022; 26
S Sudharson (1644_CR39) 2021; 205
K Bishop (1644_CR2) 2020; 47
C Mao (1644_CR25) 2023; 23
YK Tan (1644_CR9) 2013; 40
V Bellini (1644_CR13) 2022; 88
A Pfau (1644_CR3) 2016; 68
Z Chen (1644_CR23) 2023; 97
JP Ingimarsson (1644_CR8) 2016; 96
X Hong (1644_CR15) 2023; 49
S Sassanarakkit (1644_CR21) 2023; 21
HS Yang (1644_CR12) 2023; 69
1644_CR31
K Sakhaee (1644_CR5) 2012; 97
C Ma (1644_CR10) 2020; 84
J Shoag (1644_CR7) 2015; 22
1644_CR35
A Abraham (1644_CR40) 2021; 36
KJ Bergsland (1644_CR41) 2021; 6
YX Wu (1644_CR26) 2019; 13
A Brewin (1644_CR44) 2021; 31
L Mayans (1644_CR1) 2019; 46
K Eckle (1644_CR29) 2019; 110
S Dupond (1644_CR24) 2019; 14
NL Kavoussi (1644_CR19) 2022; 169
1644_CR4
A Merkin (1644_CR37) 2022; 35
MG Hill (1644_CR42) 2020; 48
A Peter (1644_CR43) 2020; 593
J Zheng (1644_CR14) 2021; 100
ZH Chen (1644_CR11) 2021; 41
H Naeem (1644_CR27) 2021; 113
J Su (1644_CR30) 2021; 232
C Thongprayoon (1644_CR45) 2020; 16
L Xiang (1644_CR16) 2022; 40
S Ranka (1644_CR32) 1996; 9
T De Perrot (1644_CR38) 2019; 29
DC Elton (1644_CR20) 2022; 49
G Zeng (1644_CR33) 2017; 120
1644_CR28
JP Peng (1644_CR34) 2017; 96
S Hochreiter (1644_CR22) 1997; 9
References_xml – volume: 49
  start-page: 221
  year: 2023
  ident: 1644_CR15
  publication-title: Int Braz J Urol
  doi: 10.1590/s1677-5538.ibju.2022.0450
– volume: 9
  start-page: 819
  year: 1996
  ident: 1644_CR32
  publication-title: Neural Netw
  doi: 10.1016/0893-6080(95)00107-7
– volume: 68
  start-page: 973
  year: 2016
  ident: 1644_CR3
  publication-title: Am J Kidney Dis
  doi: 10.1053/j.ajkd.2016.05.016
– volume: 36
  start-page: 243
  year: 2021
  ident: 1644_CR40
  publication-title: J Endourol
  doi: 10.1089/end.2021.0211
– volume: 14
  start-page: 200
  year: 2019
  ident: 1644_CR24
  publication-title: Annu Rev Control
– volume: 46
  start-page: 203
  year: 2019
  ident: 1644_CR1
  publication-title: Prim Care
  doi: 10.1016/j.pop.2019.02.001
– volume: 100
  start-page: 870
  year: 2021
  ident: 1644_CR14
  publication-title: Kidney Int
  doi: 10.1016/j.kint.2021.05.031
– volume: 113
  start-page: 107918
  year: 2021
  ident: 1644_CR27
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2021.107918
– ident: 1644_CR35
  doi: 10.3390/ijms24032026
– volume: 47
  start-page: 661
  year: 2020
  ident: 1644_CR2
  publication-title: Prim Care
  doi: 10.1016/j.pop.2020.08.005
– volume: 13
  start-page: 2062
  year: 2019
  ident: 1644_CR26
  publication-title: Iet Renew Power Gener
  doi: 10.1049/iet-rpg.2018.5917
– volume: 87
  start-page: 287
  year: 2023
  ident: 1644_CR36
  publication-title: J Infect
  doi: 10.1016/j.jinf.2023.07.006
– volume: 23
  start-page: 1
  year: 2023
  ident: 1644_CR25
  publication-title: Bmc Med Inf Decis Mak
  doi: 10.1186/s12911-022-02094-z
– volume: 232
  start-page: 107471
  year: 2021
  ident: 1644_CR30
  publication-title: Knowl Based Syst
  doi: 10.1016/j.knosys.2021.107471
– volume: 48
  start-page: 201
  year: 2020
  ident: 1644_CR42
  publication-title: Urolithiasis
  doi: 10.1007/s00240-019-01172-8
– volume: 16
  start-page: 736
  year: 2020
  ident: 1644_CR45
  publication-title: Nat Rev Nephrol
  doi: 10.1038/s41581-020-0320-7
– volume: 40
  start-page: 79
  year: 2013
  ident: 1644_CR9
  publication-title: Urol Clin North Am
  doi: 10.1016/j.ucl.2012.10.001
– volume: 88
  start-page: 729
  year: 2022
  ident: 1644_CR13
  publication-title: Minerva Anestesiol
  doi: 10.23736/S0375-9393.21.16241-8
– ident: 1644_CR31
– volume: 97
  start-page: 1847
  year: 2012
  ident: 1644_CR5
  publication-title: J Clin Endocrinol Metab
  doi: 10.1210/jc.2011-3492
– volume: 169
  start-page: 52
  year: 2022
  ident: 1644_CR19
  publication-title: Urology
  doi: 10.1016/j.urology.2022.07.008
– volume: 97
  start-page: 101819
  year: 2023
  ident: 1644_CR23
  publication-title: Inf Fusion
  doi: 10.1016/j.inffus.2023.101819
– volume: 41
  start-page: 1100
  year: 2021
  ident: 1644_CR11
  publication-title: Cancer Commun (Lond)
  doi: 10.1002/cac2.12215
– volume: 69
  start-page: 1238
  year: 2023
  ident: 1644_CR12
  publication-title: Clin Chem
  doi: 10.1093/clinchem/hvad106
– volume: 84
  start-page: 21
  year: 2020
  ident: 1644_CR10
  publication-title: Clin Biochem
  doi: 10.1016/j.clinbiochem.2020.06.014
– volume: 6
  start-page: 1729
  year: 2021
  ident: 1644_CR41
  publication-title: Kidney Int Rep
  doi: 10.1016/j.ekir.2021.03.894
– volume: 9
  start-page: 1735
  year: 1997
  ident: 1644_CR22
  publication-title: Neural Comput
  doi: 10.1162/neco.1997.9.8.1735
– volume: 120
  start-page: 109
  year: 2017
  ident: 1644_CR33
  publication-title: Bju Int
  doi: 10.1111/bju.13828
– volume: 29
  start-page: 4776
  year: 2019
  ident: 1644_CR38
  publication-title: Eur Radiol
  doi: 10.1007/s00330-019-6004-7
– ident: 1644_CR28
– volume: 205
  start-page: 106071
  year: 2021
  ident: 1644_CR39
  publication-title: Comput Methods Programs Biomed
  doi: 10.1016/j.cmpb.2021.106071
– volume: 84
  start-page: 117
  year: 2018
  ident: 1644_CR18
  publication-title: Artif Intell Med
  doi: 10.1016/j.artmed.2017.12.001
– volume: 22
  start-page: 273
  year: 2015
  ident: 1644_CR7
  publication-title: Adv Chronic Kidney Dis
  doi: 10.1053/j.ackd.2015.04.004
– volume: 110
  start-page: 232
  year: 2019
  ident: 1644_CR29
  publication-title: Neural Netw
  doi: 10.1016/j.neunet.2018.11.005
– ident: 1644_CR4
  doi: 10.3390/nu13061917
– volume: 593
  start-page: 113587
  year: 2020
  ident: 1644_CR43
  publication-title: Anal Biochem
  doi: 10.1016/j.ab.2020.113587
– volume: 96
  start-page: 517
  year: 2016
  ident: 1644_CR8
  publication-title: Surg Clin North Am
  doi: 10.1016/j.suc.2016.02.008
– volume: 21
  start-page: 260
  year: 2023
  ident: 1644_CR21
  publication-title: Comput Struct Biotechnol J
  doi: 10.1016/j.csbj.2022.12.004
– volume: 31
  start-page: 71
  year: 2021
  ident: 1644_CR44
  publication-title: Curr Opin Urol
  doi: 10.1097/MOU.0000000000000856
– volume: 96
  start-page: e7898
  year: 2017
  ident: 1644_CR34
  publication-title: Med (Baltim)
  doi: 10.1097/MD.0000000000007898
– volume: 49
  start-page: 2545
  year: 2022
  ident: 1644_CR20
  publication-title: Med Phys
  doi: 10.1002/mp.15518
– volume: 40
  start-page: 221
  year: 2022
  ident: 1644_CR16
  publication-title: World J Urol
  doi: 10.1007/s00345-021-03801-7
– volume: 26
  start-page: 210
  year: 2022
  ident: 1644_CR17
  publication-title: Int Neurourol J
  doi: 10.5213/inj.2244202.101
– volume: 31
  start-page: 254
  year: 2011
  ident: 1644_CR6
  publication-title: Semin Nephrol
  doi: 10.1016/j.semnephrol.2011.05.006
– volume: 35
  start-page: 123
  year: 2022
  ident: 1644_CR37
  publication-title: Curr Opin Psychiatry
  doi: 10.1097/YCO.0000000000000768
SSID ssj0000999410
Score 2.3904033
Snippet Kidney stones are the most common urinary system diseases, and early identification is of great significance. The purpose of this study was to use routine...
SourceID proquest
pubmed
crossref
springer
SourceType Aggregation Database
Index Database
Publisher
StartPage 145
SubjectTerms Adult
Deep Learning
Female
Humans
Kidney Calculi - blood
Kidney Calculi - chemistry
Kidney Calculi - urine
Kidney stones
Male
Medical Biochemistry
Medicine
Medicine & Public Health
Middle Aged
Nephrology
Predictive Value of Tests
Retrospective Studies
Urinalysis - methods
Urine
Urology
Title Automatic kidney stone identification: an adaptive feature-weighted LSTM model based on urine and blood routine analysis
URI https://link.springer.com/article/10.1007/s00240-024-01644-6
https://www.ncbi.nlm.nih.gov/pubmed/39402276
https://www.proquest.com/docview/3116457116
https://www.proquest.com/docview/3116678745
Volume 52
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 2194-7236
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000999410
  issn: 2194-7236
  databaseCode: AFBBN
  dateStart: 19970101
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 2194-7236
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000999410
  issn: 2194-7236
  databaseCode: AGYKE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NT8MgFH_RLTFe_P6YToOJN8WstIXO22acRp0XXaKnBgpNjEm3bF38-Ot90HbGr4MXDi20wHvwfvAePwAOo6QdBNKkNNIypYFuc6pwoUGF5jxJVeRLRynUv-WXg-DqIXwoD4VNqmj3yiXpZurZYTdHx0UxoZYWKqB8HuqhXaDUoN65eLz-3FuxqCfwWuUZmd8Lf7VDP8DlD8eosze9ZRhUNS3CTJ5Pprk6Sd6_kTj-tykrsFQCUNIpNGYV5ky2Bgv90sW-Dq-daT50PK7k-Uln5o1YeGjIky7jipwoT4nMiNRyZGdLkhpHD0pf3D6r0eTm7r5P3CU7xJpJTYYZsdv6Botp4oLlyXiIOu-eFLQoGzDond-fXdLyegaaIObLqUbrruw1NxwnAVymILKTJvLCSLY48yRHKCctzaFqSc6kUGHLRIoJry1C2WYs8TehlmEDtoFY1IdATmimfYQMqTJG-p4vIm29y4Y14KgSVjwqWDjiGd-y68wYk9h1Zswb0KzkGZcjchL7Hr4MBaYNOJi9xrFkHSQyM8NpkQeNtwjCBmwVejD7nb1BnjGBpY8rmX5-_O-67Pwv-y4sMqsWNmQmaEItH0_NHqKeXO2jkve63dv9Utk_ABqZ-EQ
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1BT9swFH6CIg0uA8aADjY8iRszahzHdrlVCFag5UIrsVNkx46EkFLUpgL26_fsJEWD7cDFh8RObL9nv89-z58BDlXW5Vy7nCqrc8ptV1CDCw0qrRBZblSsA6XQ8Fr0x_zyNrmtD4XNmmj3xiUZZurFYbdAx0UxoZ4WilOxDCs8Uoq3YKX389fVy96KRz086tRnZP5d-G879AZcvnGMBntzvg7jpqZVmMn98bw0x9nvVySO723KBnysASjpVRqzCUuu-AQfhrWLfQueevNyEnhcyf2dLdwz8fDQkTtbxxUFUZ4QXRBt9YOfLUnuAj0ofQz7rM6Swc1oSMIlO8SbSUsmBfHb-g6LWRKC5cl0gjofnlS0KJ9hfH42Ou3T-noGmiHmK6lF6278NTcCJwFcpiCy005FidIdwSItEMppT3NoOlowLU3SccowGXVloruMZfE2tApswC4Qj_oQyEnLbIyQITfO6TiKpbLeu-xYG44aYaUPFQtHuuBbDp2ZYpKGzkxFG_Ybeab1iJylcYQvE4lpG74vXuNY8g4SXbjJvMqDxlvypA07lR4sfudvkGdMYukfjUxfPv7_unx5X_YDWO2PhoN0cHF9tQdrzKuID5_h-9Aqp3P3FRFQab7VCv8HJjL5uQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT-MwEB5BkRAXlscudHkZiRsYGsexU24VUJ5FSIDEniI7diSElFZsqgV-PWMnKa_lgLj4kNiJ7bE9nz0znwE24rTNubIZjY3KKDdtQTVuNKg0QqSZjkPlKYV65-Lomp_cRDevovi9t3ttkixjGhxLU17sDEy2Mwp889RcFBPqKKI4FeMwwVG7RQ2Y6Bz-OX05Z3EIiAetKl7m_4Xf6qQPQPODkdTrnu4PUHWtS5eTu-1hobfTp3eEjt9p1gxMV8CUdMqRNAtjNp-DyV5lep-Hh86w6Ht-V3J3a3L7SBxstOTWVP5GXsS7ROVEGTVwqyjJrKcNpf_8-as15Ozyqkf85TvEqU9D-jlxx_0WixninejJfR_ngn9S0qX8hOvuwdXeEa2ubaApYsGCGtT62l1_I3BxwO0LIj5lUTSxagkWKIEQTzn6Q91Sgimpo5aNNZNBW0aqzVga_oJGjg1YBOLQIAI8aZgJEUpk2loVBqGMjbM6W9aEzVpwyaBk50hGPMy-MxNMEt-ZiWjCci3bpJqpf5MwwJeRxLQJ66PXOMec4UTltj8s86BSlzxqwkI5Jka_czfLMyax9FYt35ePf16X31_LvgaTF_vd5Oz4_HQJppgbIc6rhi9Do7gf2hUERoVercb-MyzyAqM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automatic+kidney+stone+identification%3A+an+adaptive+feature-weighted+LSTM+model+based+on+urine+and+blood+routine+analysis&rft.jtitle=Urolithiasis&rft.au=Zhu%2C+Quanjing&rft.au=Cheong-Iao+Pang%2C+Patrick&rft.au=Chen%2C+Canhui&rft.au=Zheng%2C+Qingyuan&rft.date=2024-10-14&rft.issn=2194-7236&rft.eissn=2194-7236&rft.volume=52&rft.issue=1&rft.spage=145&rft_id=info:doi/10.1007%2Fs00240-024-01644-6&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2194-7236&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2194-7236&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2194-7236&client=summon