Output-Feedback Flocking Control of Multiple Autonomous Surface Vehicles Based on Data-Driven Adaptive Extended State Observers
This article addresses an output-feedback flocking control problem for a swarm of autonomous surface vehicles (ASVs) to follow a leading ASV guided via a parameterized path. The leading and following ASVs are subject to completely unknown model parameters, external disturbances, and unmeasured veloc...
Saved in:
| Published in | IEEE transactions on cybernetics Vol. 51; no. 9; pp. 4611 - 4622 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
Piscataway
IEEE
01.09.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 2168-2267 2168-2275 2168-2275 |
| DOI | 10.1109/TCYB.2020.3009992 |
Cover
| Abstract | This article addresses an output-feedback flocking control problem for a swarm of autonomous surface vehicles (ASVs) to follow a leading ASV guided via a parameterized path. The leading and following ASVs are subject to completely unknown model parameters, external disturbances, and unmeasured velocities. A data-driven adaptive anti-disturbance control method is proposed for establishing a flocking behavior without any prior knowledge of model parameters. Specifically, a data-driven adaptive extended state observer (ESO) is proposed such that unknown input gains, unmeasured velocities, and total disturbance are simultaneously estimated. For the leading ASV, an output-feedback path-following control law is developed to follow a predefined parameterized path. For following ASVs, an output-feedback flocking control law is developed based on an artificial potential function for collision avoidance and connectivity preservation, in addition to a distributed ESO for estimating the velocity of the leading ASV through a cooperative estimation network. The simulation results are discussed to substantiate the efficacy of the proposed path-guided output-feedback ASV flocking control based on data-driven adaptive ESOs without measured velocity information. |
|---|---|
| AbstractList | This article addresses an output-feedback flocking control problem for a swarm of autonomous surface vehicles (ASVs) to follow a leading ASV guided via a parameterized path. The leading and following ASVs are subject to completely unknown model parameters, external disturbances, and unmeasured velocities. A data-driven adaptive anti-disturbance control method is proposed for establishing a flocking behavior without any prior knowledge of model parameters. Specifically, a data-driven adaptive extended state observer (ESO) is proposed such that unknown input gains, unmeasured velocities, and total disturbance are simultaneously estimated. For the leading ASV, an output-feedback path-following control law is developed to follow a predefined parameterized path. For following ASVs, an output-feedback flocking control law is developed based on an artificial potential function for collision avoidance and connectivity preservation, in addition to a distributed ESO for estimating the velocity of the leading ASV through a cooperative estimation network. The simulation results are discussed to substantiate the efficacy of the proposed path-guided output-feedback ASV flocking control based on data-driven adaptive ESOs without measured velocity information.This article addresses an output-feedback flocking control problem for a swarm of autonomous surface vehicles (ASVs) to follow a leading ASV guided via a parameterized path. The leading and following ASVs are subject to completely unknown model parameters, external disturbances, and unmeasured velocities. A data-driven adaptive anti-disturbance control method is proposed for establishing a flocking behavior without any prior knowledge of model parameters. Specifically, a data-driven adaptive extended state observer (ESO) is proposed such that unknown input gains, unmeasured velocities, and total disturbance are simultaneously estimated. For the leading ASV, an output-feedback path-following control law is developed to follow a predefined parameterized path. For following ASVs, an output-feedback flocking control law is developed based on an artificial potential function for collision avoidance and connectivity preservation, in addition to a distributed ESO for estimating the velocity of the leading ASV through a cooperative estimation network. The simulation results are discussed to substantiate the efficacy of the proposed path-guided output-feedback ASV flocking control based on data-driven adaptive ESOs without measured velocity information. This article addresses an output-feedback flocking control problem for a swarm of autonomous surface vehicles (ASVs) to follow a leading ASV guided via a parameterized path. The leading and following ASVs are subject to completely unknown model parameters, external disturbances, and unmeasured velocities. A data-driven adaptive anti-disturbance control method is proposed for establishing a flocking behavior without any prior knowledge of model parameters. Specifically, a data-driven adaptive extended state observer (ESO) is proposed such that unknown input gains, unmeasured velocities, and total disturbance are simultaneously estimated. For the leading ASV, an output-feedback path-following control law is developed to follow a predefined parameterized path. For following ASVs, an output-feedback flocking control law is developed based on an artificial potential function for collision avoidance and connectivity preservation, in addition to a distributed ESO for estimating the velocity of the leading ASV through a cooperative estimation network. The simulation results are discussed to substantiate the efficacy of the proposed path-guided output-feedback ASV flocking control based on data-driven adaptive ESOs without measured velocity information. |
| Author | Peng, Zhouhua Wang, Jun Liu, Lu |
| Author_xml | – sequence: 1 givenname: Zhouhua orcidid: 0000-0003-4468-7281 surname: Peng fullname: Peng, Zhouhua email: zhpeng@dlmu.edu.cn organization: School of Marine Electrical Engineering, Dalian Maritime University, Dalian, China – sequence: 2 givenname: Lu orcidid: 0000-0003-3975-3029 surname: Liu fullname: Liu, Lu email: luliu@dlmu.edu.cn organization: School of Marine Electrical Engineering, Dalian Maritime University, Dalian, China – sequence: 3 givenname: Jun orcidid: 0000-0002-1305-5735 surname: Wang fullname: Wang, Jun email: jwang.cs@cityu.edu.hk organization: Department of Computer Science and School of Data Science, City University of Hong Kong, Hong Kong |
| BookMark | eNp9kc1u3CAUhVGVqknTPEDVDVI33XjKj43NcjLJtJFSzSKjSl0hjC8tiQdcwFGzyquX0URZZBE2HKHvcOGc9-jIBw8IfaRkQSmRX7erX-cLRhhZcEKklOwNOmFUdBVjbXP0rEV7jM5SuiVldeVIdu_QMWdFio6foMfNnKc5V2uAodfmDq_HYO6c_41XwecYRhws_jGP2U0j4OWcgw-7MCd8M0erDeCf8MeZERI-1wkGHDy-0FlXF9Hdg8fLQU-5KHz5L4MfCnCTdQa86RPEe4jpA3pr9Zjg7Gk_Rdv15Xb1vbrefLtaLa8rw5nIlbGNrUVPW02BCtCED7oWwHpSU2vl0Ndd2xDoSw62N6SwA-kI4Y3tW6GBn6Ivh2unGP7OkLLauWRgHLWH8hvFai647LiQBf38Ar0Nc_TlcYo1LROikS0pFD1QJoaUIlg1RbfT8UFRovb9qH0_at-PeuqneNoXHuNKGm4ftHbjq85PB6cDgOdJkrZUEsb_A3ZTnnw |
| CODEN | ITCEB8 |
| CitedBy_id | crossref_primary_10_1016_j_oceaneng_2022_112474 crossref_primary_10_1016_j_jfranklin_2022_10_020 crossref_primary_10_1080_00207721_2023_2210139 crossref_primary_10_1016_j_jfranklin_2023_06_043 crossref_primary_10_1109_TCYB_2021_3061588 crossref_primary_10_1016_j_physa_2025_130466 crossref_primary_10_1016_j_conengprac_2023_105434 crossref_primary_10_1016_j_conengprac_2022_105158 crossref_primary_10_1109_TCYB_2022_3179467 crossref_primary_10_1109_TII_2023_3288217 crossref_primary_10_1109_JAS_2021_1003913 crossref_primary_10_1109_TFUZZ_2023_3245294 crossref_primary_10_1109_TSMC_2024_3444000 crossref_primary_10_1109_ACCESS_2022_3187743 crossref_primary_10_1016_j_oceaneng_2023_116041 crossref_primary_10_3390_jmse10111668 crossref_primary_10_1109_TIV_2024_3372652 crossref_primary_10_1109_TSMC_2023_3268663 crossref_primary_10_3390_jmse12101697 crossref_primary_10_1109_TCSI_2024_3426982 crossref_primary_10_1016_j_jfranklin_2025_107654 crossref_primary_10_1109_TSMC_2022_3184811 crossref_primary_10_1109_TIV_2022_3168974 crossref_primary_10_3390_app132413303 crossref_primary_10_3390_jmse11050897 crossref_primary_10_1007_s40815_021_01101_1 crossref_primary_10_1016_j_oceaneng_2021_110232 crossref_primary_10_3390_jmse12091484 crossref_primary_10_1016_j_jfranklin_2023_08_030 crossref_primary_10_1016_j_oceaneng_2022_113147 crossref_primary_10_1109_TSMC_2023_3341158 crossref_primary_10_3390_jmse13030458 crossref_primary_10_1007_s11071_024_09506_x crossref_primary_10_1109_TIE_2021_3120442 crossref_primary_10_1007_s11071_021_06757_w crossref_primary_10_1016_j_oceaneng_2021_110507 crossref_primary_10_1016_j_oceaneng_2022_110821 crossref_primary_10_1109_TFUZZ_2023_3309706 crossref_primary_10_1007_s40815_024_01812_1 crossref_primary_10_1109_TITS_2022_3217152 crossref_primary_10_1016_j_apenergy_2024_122802 crossref_primary_10_3390_jmse11010148 crossref_primary_10_1109_JAS_2023_123675 crossref_primary_10_1016_j_oceaneng_2023_114628 crossref_primary_10_1109_TSMC_2024_3442441 crossref_primary_10_3390_app131911039 crossref_primary_10_1016_j_isatra_2024_02_022 crossref_primary_10_1109_LCSYS_2021_3136761 crossref_primary_10_1109_TSMC_2024_3460370 crossref_primary_10_1016_j_oceaneng_2023_113671 crossref_primary_10_1016_j_oceaneng_2025_120304 crossref_primary_10_1007_s12555_021_0393_5 crossref_primary_10_1080_00207721_2025_2454413 crossref_primary_10_1016_j_oceaneng_2024_120098 crossref_primary_10_1016_j_amc_2022_126987 crossref_primary_10_1109_ACCESS_2023_3329060 crossref_primary_10_1016_j_oceaneng_2024_118972 crossref_primary_10_1109_TITS_2024_3525073 crossref_primary_10_1109_TIE_2022_3220890 crossref_primary_10_1109_TIV_2023_3335467 crossref_primary_10_1007_s11071_024_09956_3 crossref_primary_10_1007_s40815_024_01787_z crossref_primary_10_1016_j_jfranklin_2022_09_057 crossref_primary_10_1016_j_oceaneng_2023_114970 crossref_primary_10_1016_j_oceaneng_2024_117721 crossref_primary_10_1016_j_isatra_2023_10_014 crossref_primary_10_1109_TSMC_2022_3188700 crossref_primary_10_1016_j_jfranklin_2024_01_018 crossref_primary_10_1109_TIE_2022_3194637 crossref_primary_10_1002_rnc_7641 crossref_primary_10_1109_TIV_2023_3339836 crossref_primary_10_1109_TASE_2023_3306101 crossref_primary_10_1109_TITS_2023_3296002 crossref_primary_10_1109_TCYB_2024_3351476 crossref_primary_10_1016_j_ins_2022_05_068 crossref_primary_10_1109_TFUZZ_2024_3390141 crossref_primary_10_1007_s11768_022_00079_x crossref_primary_10_1016_j_oceaneng_2023_115275 crossref_primary_10_1016_j_oceaneng_2024_117950 crossref_primary_10_1109_TFUZZ_2021_3087920 crossref_primary_10_3389_fnbot_2022_1028656 crossref_primary_10_1109_TCST_2023_3323766 crossref_primary_10_1109_TASE_2022_3211693 crossref_primary_10_1109_TSMC_2022_3205637 crossref_primary_10_1016_j_neucom_2021_09_005 crossref_primary_10_1016_j_oceaneng_2024_119249 crossref_primary_10_1109_TIM_2023_3336444 crossref_primary_10_1109_TIV_2024_3350246 crossref_primary_10_1109_TSMC_2022_3222491 crossref_primary_10_1016_j_oceaneng_2022_112492 crossref_primary_10_1016_j_amc_2023_128084 crossref_primary_10_1177_10775463241271859 crossref_primary_10_1007_s11071_022_07618_w crossref_primary_10_1109_TVT_2021_3130006 crossref_primary_10_1002_rnc_7023 crossref_primary_10_1007_s12555_022_0950_6 crossref_primary_10_1016_j_oceaneng_2022_110740 crossref_primary_10_1016_j_oceaneng_2024_117853 crossref_primary_10_1109_TSMC_2021_3129823 crossref_primary_10_1016_j_ifacol_2022_05_039 crossref_primary_10_1016_j_isatra_2025_01_048 crossref_primary_10_1109_TITS_2022_3216808 crossref_primary_10_1109_TRO_2023_3266994 crossref_primary_10_1109_TITS_2023_3324346 crossref_primary_10_1109_TCYB_2024_3462757 crossref_primary_10_1016_j_automatica_2024_111716 crossref_primary_10_1109_TCYB_2022_3155761 crossref_primary_10_1007_s11071_022_08169_w crossref_primary_10_3390_electronics10232886 crossref_primary_10_1109_TVT_2022_3175726 crossref_primary_10_3390_drones7020145 crossref_primary_10_1016_j_chaos_2024_114556 crossref_primary_10_1109_TAES_2023_3289480 crossref_primary_10_1109_TII_2021_3108950 crossref_primary_10_1016_j_oceaneng_2023_113900 crossref_primary_10_1109_TITS_2023_3330570 crossref_primary_10_1109_TIV_2022_3224906 |
| Cites_doi | 10.1109/TNNLS.2013.2293499 10.1016/j.oceaneng.2019.106341 10.1109/TIE.2018.2885726 10.1109/TMECH.2015.2508647 10.1109/TAC.2008.2010897 10.1109/TIE.2017.2701778 10.1109/TCYB.2019.2914717 10.1109/ACCESS.2018.2857620 10.1109/TNNLS.2017.2743784 10.24846/v27i1y201801 10.1016/j.oceaneng.2019.05.078 10.1016/j.oceaneng.2011.07.006 10.1016/j.oceaneng.2019.04.077 10.1049/iet-cta.2011.0532 10.1016/j.oceaneng.2018.11.008 10.1109/TMECH.2019.2929216 10.1016/j.automatica.2003.10.010 10.1109/.2005.1469806 10.1016/j.engappai.2010.10.005 10.1016/j.ins.2015.04.025 10.1109/TCST.2011.2181513 10.1109/TNNLS.2017.2716947 10.1109/TCST.2012.2183676 10.1109/TCYB.2018.2883335 10.1109/TIE.2017.2652346 10.1109/TNNLS.2019.2912082 10.1109/TMECH.2017.2660528 10.1109/TSMC.2018.2875453 10.1007/s11432-015-5384-9 10.1109/TSMC.2017.2697447 10.1109/TCST.2006.872507 10.1109/TCST.2017.2699167 10.1109/TIM.2015.2459551 10.1016/j.oceaneng.2019.106501 10.1109/TNNLS.2014.2302477 10.1109/TNNLS.2016.2577342 10.1109/TCYB.2018.2869385 10.1109/TSMC.2019.2944521 10.1016/j.automatica.2004.10.006 10.1109/TIE.2016.2523453 10.1109/MCS.2009.934408 10.1016/j.oceaneng.2020.107242 10.1016/j.automatica.2018.01.026 10.1016/j.automatica.2016.01.004 10.1109/TCYB.2017.2785801 10.1109/TCYB.2014.2311824 10.1109/TIE.2013.2287222 10.1016/j.automatica.2019.108509 10.1109/TIE.2017.2758743 10.1016/j.automatica.2019.04.013 10.1049/PBCE119F_ch11 10.1109/TFUZZ.2018.2868898 10.1016/j.automatica.2015.03.006 10.1016/j.automatica.2013.05.029 10.1016/j.oceaneng.2018.04.016 10.1109/TAC.2005.864190 10.1016/j.neucom.2013.01.010 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
| DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 7TB 8FD F28 FR3 H8D JQ2 L7M L~C L~D 7X8 |
| DOI | 10.1109/TCYB.2020.3009992 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional MEDLINE - Academic |
| DatabaseTitle | CrossRef Aerospace Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Computer and Information Systems Abstracts Professional MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic Aerospace Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Sciences (General) |
| EISSN | 2168-2275 |
| EndPage | 4622 |
| ExternalDocumentID | 10_1109_TCYB_2020_3009992 9171902 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: National Key Research and Development Program of China grantid: 2016YFC0301500 funderid: 10.13039/501100012166 – fundername: Science and Technology Fund for Distinguished Young Scholars of Dalian grantid: 2018RJ08 – fundername: High-Level Talent Development Program in Transportation Department grantid: 2018-030 – fundername: International Partnership Program of Chinese Academy of Sciences grantid: GJHZ1849 funderid: 10.13039/501100002367 – fundername: National Natural Science Foundation of China grantid: 61673081; 51979020; 51909021; 61673330 funderid: 10.13039/501100001809 – fundername: Research Grants Council of the Hong Kong Special Administrative Region of China grantid: 11208517; 11202318 funderid: 10.13039/501100002920 – fundername: Fundamental Research Funds for the Central Universities grantid: 3132019319; 3132020101 funderid: 10.13039/501100012226 – fundername: China Postdoctoral Science Foundation grantid: 2019M650086 funderid: 10.13039/501100002858 – fundername: Stable Supporting Fund of Science and Technology on Underwater Vehicle Technology grantid: JCKYS2019604SXJQR-01 |
| GroupedDBID | 0R~ 4.4 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACIWK AENEX AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD HZ~ IFIPE IPLJI JAVBF M43 O9- OCL PQQKQ RIA RIE RNS AAYXX CITATION 7SC 7SP 7TB 8FD F28 FR3 H8D JQ2 L7M L~C L~D 7X8 |
| ID | FETCH-LOGICAL-c326t-cf5f46b17a1e16ea03da46e2b041ff9db48750eb999fbc0f46d080035fb76ae3 |
| IEDL.DBID | RIE |
| ISSN | 2168-2267 2168-2275 |
| IngestDate | Thu Oct 02 03:27:42 EDT 2025 Sun Jun 29 15:41:27 EDT 2025 Wed Oct 01 01:36:39 EDT 2025 Thu Apr 24 22:55:43 EDT 2025 Wed Aug 27 02:27:17 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 9 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c326t-cf5f46b17a1e16ea03da46e2b041ff9db48750eb999fbc0f46d080035fb76ae3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0003-3975-3029 0000-0002-1305-5735 0000-0003-4468-7281 |
| PMID | 32816683 |
| PQID | 2572665970 |
| PQPubID | 85422 |
| PageCount | 12 |
| ParticipantIDs | crossref_primary_10_1109_TCYB_2020_3009992 proquest_miscellaneous_2436398369 proquest_journals_2572665970 crossref_citationtrail_10_1109_TCYB_2020_3009992 ieee_primary_9171902 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2021-09-01 |
| PublicationDateYYYYMMDD | 2021-09-01 |
| PublicationDate_xml | – month: 09 year: 2021 text: 2021-09-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Piscataway |
| PublicationPlace_xml | – name: Piscataway |
| PublicationTitle | IEEE transactions on cybernetics |
| PublicationTitleAbbrev | TCYB |
| PublicationYear | 2021 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref12 ref15 ref58 ref14 ref11 gil (ref62) 2018; 16 ref10 ref17 roy (ref52) 2016 ref16 ref19 ref18 ref51 haidegger (ref55) 2011; 6 ref50 ref46 ref45 blaži? (ref56) 2014; 61 ref48 ref47 ref42 ref41 ref44 ref43 ref49 ref8 ref7 takács (ref54) 2015; 12 ref9 ref4 ref3 ref6 ref5 ref40 ref35 ref34 ref37 ref31 ref30 ref33 ref32 ref2 ref1 ref39 ref38 ref24 ref23 khalil (ref53) 2015 ref26 ref25 ref20 ref22 ref21 xu (ref59) 2018; 29 nguyen (ref29) 2018 ref28 ref27 wang (ref36) 2018; 29 ref60 ref61 peng (ref57) 2017; 28 |
| References_xml | – ident: ref7 doi: 10.1109/TNNLS.2013.2293499 – ident: ref10 doi: 10.1016/j.oceaneng.2019.106341 – ident: ref50 doi: 10.1109/TIE.2018.2885726 – ident: ref18 doi: 10.1109/TMECH.2015.2508647 – year: 2016 ident: ref52 publication-title: Memory-based data-driven mrac architecture ensuring parameter convergence – ident: ref23 doi: 10.1109/TAC.2008.2010897 – ident: ref8 doi: 10.1109/TIE.2017.2701778 – ident: ref16 doi: 10.1109/TCYB.2019.2914717 – ident: ref46 doi: 10.1109/ACCESS.2018.2857620 – volume: 6 start-page: 48 year: 2011 ident: ref55 article-title: Controller design solutions for long distance telesurgical applications publication-title: Artific Intellig Int J – volume: 29 start-page: 3839 year: 2018 ident: ref59 article-title: Online recorded data-based composite neural control of strict-feedback systems with application to hypersonic flight dynamics publication-title: IEEE Trans Neural Netw Learn Syst doi: 10.1109/TNNLS.2017.2743784 – ident: ref61 doi: 10.24846/v27i1y201801 – ident: ref47 doi: 10.1016/j.oceaneng.2019.05.078 – ident: ref41 doi: 10.1016/j.oceaneng.2011.07.006 – ident: ref20 doi: 10.1016/j.oceaneng.2019.04.077 – ident: ref25 doi: 10.1049/iet-cta.2011.0532 – ident: ref45 doi: 10.1016/j.oceaneng.2018.11.008 – volume: 16 start-page: 20 year: 2018 ident: ref62 article-title: Surrogate model based optimization of traffic lights cycles and green period ratios using microscopic simulation and fuzzy rule interpolation publication-title: Artific Intellig Int J – ident: ref3 doi: 10.1109/TMECH.2019.2929216 – ident: ref31 doi: 10.1016/j.automatica.2003.10.010 – ident: ref37 doi: 10.1109/.2005.1469806 – ident: ref60 doi: 10.1016/j.engappai.2010.10.005 – ident: ref48 doi: 10.1016/j.ins.2015.04.025 – ident: ref2 doi: 10.1109/TCST.2011.2181513 – volume: 29 start-page: 3658 year: 2018 ident: ref36 article-title: Adaptive neural output-feedback control for a class of nonlower triangular nonlinear systems with unmodeled dynamics publication-title: IEEE Trans Neural Netw Learn Syst doi: 10.1109/TNNLS.2017.2716947 – ident: ref43 doi: 10.1109/TCST.2012.2183676 – ident: ref5 doi: 10.1109/TCYB.2018.2883335 – ident: ref19 doi: 10.1109/TIE.2017.2652346 – ident: ref35 doi: 10.1109/TNNLS.2019.2912082 – ident: ref1 doi: 10.1109/TMECH.2017.2660528 – ident: ref32 doi: 10.1109/TSMC.2018.2875453 – ident: ref13 doi: 10.1007/s11432-015-5384-9 – ident: ref44 doi: 10.1109/TSMC.2017.2697447 – ident: ref42 doi: 10.1109/TCST.2006.872507 – ident: ref14 doi: 10.1109/TCST.2017.2699167 – ident: ref40 doi: 10.1109/TIM.2015.2459551 – ident: ref17 doi: 10.1016/j.oceaneng.2019.106501 – ident: ref6 doi: 10.1109/TNNLS.2014.2302477 – volume: 28 start-page: 2156 year: 2017 ident: ref57 article-title: Predictor-based neural dynamic surface control for uncertain nonlinear systems in strict-feedback form publication-title: IEEE Trans Neural Netw Learn Syst doi: 10.1109/TNNLS.2016.2577342 – year: 2015 ident: ref53 publication-title: Nonlinear Control – ident: ref9 doi: 10.1109/TCYB.2018.2869385 – ident: ref21 doi: 10.1109/TSMC.2019.2944521 – ident: ref30 doi: 10.1016/j.automatica.2004.10.006 – ident: ref51 doi: 10.1109/TIE.2016.2523453 – volume: 12 start-page: 95 year: 2015 ident: ref54 article-title: Models for force control in telesurgical robot systems publication-title: Acta Polytechnica Hungarica – ident: ref39 doi: 10.1109/MCS.2009.934408 – ident: ref49 doi: 10.1016/j.oceaneng.2020.107242 – ident: ref38 doi: 10.1016/j.automatica.2018.01.026 – ident: ref28 doi: 10.1016/j.automatica.2016.01.004 – ident: ref33 doi: 10.1109/TCYB.2017.2785801 – ident: ref58 doi: 10.1109/TCYB.2014.2311824 – volume: 61 start-page: 3660 year: 2014 ident: ref56 article-title: On periodic control laws for mobile robots publication-title: IEEE Trans Ind Electron doi: 10.1109/TIE.2013.2287222 – ident: ref27 doi: 10.1016/j.automatica.2019.108509 – ident: ref4 doi: 10.1109/TIE.2017.2758743 – ident: ref11 doi: 10.1016/j.automatica.2019.04.013 – start-page: 297 year: 2018 ident: ref29 article-title: Bounded distributed flocking control of nonholonomic mobile robots publication-title: Swarm Intelligence-Volume 1 Principles Current Algorithms and Methods doi: 10.1049/PBCE119F_ch11 – ident: ref34 doi: 10.1109/TFUZZ.2018.2868898 – ident: ref24 doi: 10.1016/j.automatica.2015.03.006 – ident: ref26 doi: 10.1016/j.automatica.2013.05.029 – ident: ref15 doi: 10.1016/j.oceaneng.2018.04.016 – ident: ref22 doi: 10.1109/TAC.2005.864190 – ident: ref12 doi: 10.1016/j.neucom.2013.01.010 |
| SSID | ssj0000816898 |
| Score | 2.6196718 |
| Snippet | This article addresses an output-feedback flocking control problem for a swarm of autonomous surface vehicles (ASVs) to follow a leading ASV guided via a... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 4611 |
| SubjectTerms | Adaptation models Adaptive control Autonomous surface vehicles (ASVs) Collision avoidance Control methods Control theory Cybernetics data-driven adaptive extended state observer (ESO) disturbances flocking Mathematical models Observers Output feedback Parameterization Parameters Sea surface State observers Surface vehicles Task analysis unknown control gains Urban areas Velocity measurement |
| Title | Output-Feedback Flocking Control of Multiple Autonomous Surface Vehicles Based on Data-Driven Adaptive Extended State Observers |
| URI | https://ieeexplore.ieee.org/document/9171902 https://www.proquest.com/docview/2572665970 https://www.proquest.com/docview/2436398369 |
| Volume | 51 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 2168-2275 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000816898 issn: 2168-2267 databaseCode: RIE dateStart: 20130101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZKT1yAUhALBblSD4DI1okTJzlut11VSEsPLKicItsZC6koWe0mFy79651xvJF4qOrNUpwo9tgz37wZO5GFUzKRWaRzXUaI_3GkXREJk6vMCJNkhvKdl1_U5bf083V2vcc-jbkwAOCDz2BKQ-_Lr1vbk6nsFFULlF_IcB_lhRpytUZ7im8g4VvfJjiIEFXkwYkZi_J0Nf9xhspggjqqx0TUxEYm5DMr5B8SybdY-Ycve2GzeMqWu98cYkxupn1npvb3XxUcH7qOZ-xJQJ18NhyTA7YHzXN2EO71lr8Pxac_HLLbq75b9120QKlmtL3hC5R2ZE7n8yGonbeOL0MUIp_1HSVFtP2Wf-03Tlvg3-Gnj7TjZygfa942_Fx3OjrfEFvls1qvicHyi2B85x7t8itD1mGEoi_YanGxml9GoUlDZBH5dZF1mUuViXMdQ6xAC1nrVEFiRBo7V9aGNCIBBjfdGStwbk0gVWYOT4MG-ZLtN20DrxhPcuMEAFXgqlOpTAEaaqRpiahSWZVNmNjRqbKhgDn10fhVeUVGlBVRuSIqV4HKE_ZxfGU9VO-4b_IhkWqcGKg0YUe7w1CF-72tkNEhskFlTEzY8fgYbya5W3QDuO9VgouQZSFV-fr_X37DHicUIeMj1o7Yfrfp4S1CnM6882f7Dq7M9iY |
| linkProvider | IEEE |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3Nb9MwFLemcRgXYBuIwhhG4gCIdE6cOMmx61YVWLcDBY1TZCfPmjSUVG1y4cK_znuOG4mBEDdLcaLYz37v974Zey0zq2Qkk0CnOg8Q_-NI2ywQJlWJESZKDOU7Ly7V_Ev88Tq53mHvh1wYAHDBZzCmofPlV03ZkansBFULlF_IcO8lcRwnfbbWYFFxLSRc89sIBwHiitS7MUORnyyn305RHYxQS3WoiNrYyIi8Zpn8TSa5Jit_cGYnbmYP2WL7o32Uye24a824_HGnhuP_ruQRe-BxJ5_0B2Wf7UB9wPb9zd7wN7789NtD9vOqa1ddG8xQrhld3vIZyjsyqPNpH9bOG8sXPg6RT7qW0iKabsM_d2urS-Bf4cbF2vFTlJAVb2p-plsdnK2JsfJJpVfEYvm5N79zh3f5lSH7MILRx2w5O19O54Fv0xCUiP3aoLSJjZUJUx1CqEALWelYQWREHFqbV4Z0IgEGN92aUuDcimCqTCyeBw3yCdutmxqeMh6lxgoAqsFVxVKZDDRUSNMccaUqVTJiYkunovQlzKmTxvfCqTIiL4jKBVG58FQesXfDK6u-fse_Jh8SqYaJnkojdrQ9DIW_4ZsCWR1iG1THxIi9Gh7j3SSHi64B972IcBEyz6TKn_39yy_Z3ny5uCguPlx-es7uRxQv4-LXjthuu-7gBQKe1hy7c_4LtZr5cw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Output-Feedback+Flocking+Control+of+Multiple+Autonomous+Surface+Vehicles+Based+on+Data-Driven+Adaptive+Extended+State+Observers&rft.jtitle=IEEE+transactions+on+cybernetics&rft.au=Peng%2C+Zhouhua&rft.au=Liu%2C+Lu&rft.au=Wang%2C+Jun&rft.date=2021-09-01&rft.pub=IEEE&rft.issn=2168-2267&rft.volume=51&rft.issue=9&rft.spage=4611&rft.epage=4622&rft_id=info:doi/10.1109%2FTCYB.2020.3009992&rft_id=info%3Apmid%2F32816683&rft.externalDocID=9171902 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2168-2267&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2168-2267&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2168-2267&client=summon |