Output-Feedback Flocking Control of Multiple Autonomous Surface Vehicles Based on Data-Driven Adaptive Extended State Observers

This article addresses an output-feedback flocking control problem for a swarm of autonomous surface vehicles (ASVs) to follow a leading ASV guided via a parameterized path. The leading and following ASVs are subject to completely unknown model parameters, external disturbances, and unmeasured veloc...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on cybernetics Vol. 51; no. 9; pp. 4611 - 4622
Main Authors Peng, Zhouhua, Liu, Lu, Wang, Jun
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 01.09.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN2168-2267
2168-2275
2168-2275
DOI10.1109/TCYB.2020.3009992

Cover

Abstract This article addresses an output-feedback flocking control problem for a swarm of autonomous surface vehicles (ASVs) to follow a leading ASV guided via a parameterized path. The leading and following ASVs are subject to completely unknown model parameters, external disturbances, and unmeasured velocities. A data-driven adaptive anti-disturbance control method is proposed for establishing a flocking behavior without any prior knowledge of model parameters. Specifically, a data-driven adaptive extended state observer (ESO) is proposed such that unknown input gains, unmeasured velocities, and total disturbance are simultaneously estimated. For the leading ASV, an output-feedback path-following control law is developed to follow a predefined parameterized path. For following ASVs, an output-feedback flocking control law is developed based on an artificial potential function for collision avoidance and connectivity preservation, in addition to a distributed ESO for estimating the velocity of the leading ASV through a cooperative estimation network. The simulation results are discussed to substantiate the efficacy of the proposed path-guided output-feedback ASV flocking control based on data-driven adaptive ESOs without measured velocity information.
AbstractList This article addresses an output-feedback flocking control problem for a swarm of autonomous surface vehicles (ASVs) to follow a leading ASV guided via a parameterized path. The leading and following ASVs are subject to completely unknown model parameters, external disturbances, and unmeasured velocities. A data-driven adaptive anti-disturbance control method is proposed for establishing a flocking behavior without any prior knowledge of model parameters. Specifically, a data-driven adaptive extended state observer (ESO) is proposed such that unknown input gains, unmeasured velocities, and total disturbance are simultaneously estimated. For the leading ASV, an output-feedback path-following control law is developed to follow a predefined parameterized path. For following ASVs, an output-feedback flocking control law is developed based on an artificial potential function for collision avoidance and connectivity preservation, in addition to a distributed ESO for estimating the velocity of the leading ASV through a cooperative estimation network. The simulation results are discussed to substantiate the efficacy of the proposed path-guided output-feedback ASV flocking control based on data-driven adaptive ESOs without measured velocity information.This article addresses an output-feedback flocking control problem for a swarm of autonomous surface vehicles (ASVs) to follow a leading ASV guided via a parameterized path. The leading and following ASVs are subject to completely unknown model parameters, external disturbances, and unmeasured velocities. A data-driven adaptive anti-disturbance control method is proposed for establishing a flocking behavior without any prior knowledge of model parameters. Specifically, a data-driven adaptive extended state observer (ESO) is proposed such that unknown input gains, unmeasured velocities, and total disturbance are simultaneously estimated. For the leading ASV, an output-feedback path-following control law is developed to follow a predefined parameterized path. For following ASVs, an output-feedback flocking control law is developed based on an artificial potential function for collision avoidance and connectivity preservation, in addition to a distributed ESO for estimating the velocity of the leading ASV through a cooperative estimation network. The simulation results are discussed to substantiate the efficacy of the proposed path-guided output-feedback ASV flocking control based on data-driven adaptive ESOs without measured velocity information.
This article addresses an output-feedback flocking control problem for a swarm of autonomous surface vehicles (ASVs) to follow a leading ASV guided via a parameterized path. The leading and following ASVs are subject to completely unknown model parameters, external disturbances, and unmeasured velocities. A data-driven adaptive anti-disturbance control method is proposed for establishing a flocking behavior without any prior knowledge of model parameters. Specifically, a data-driven adaptive extended state observer (ESO) is proposed such that unknown input gains, unmeasured velocities, and total disturbance are simultaneously estimated. For the leading ASV, an output-feedback path-following control law is developed to follow a predefined parameterized path. For following ASVs, an output-feedback flocking control law is developed based on an artificial potential function for collision avoidance and connectivity preservation, in addition to a distributed ESO for estimating the velocity of the leading ASV through a cooperative estimation network. The simulation results are discussed to substantiate the efficacy of the proposed path-guided output-feedback ASV flocking control based on data-driven adaptive ESOs without measured velocity information.
Author Peng, Zhouhua
Wang, Jun
Liu, Lu
Author_xml – sequence: 1
  givenname: Zhouhua
  orcidid: 0000-0003-4468-7281
  surname: Peng
  fullname: Peng, Zhouhua
  email: zhpeng@dlmu.edu.cn
  organization: School of Marine Electrical Engineering, Dalian Maritime University, Dalian, China
– sequence: 2
  givenname: Lu
  orcidid: 0000-0003-3975-3029
  surname: Liu
  fullname: Liu, Lu
  email: luliu@dlmu.edu.cn
  organization: School of Marine Electrical Engineering, Dalian Maritime University, Dalian, China
– sequence: 3
  givenname: Jun
  orcidid: 0000-0002-1305-5735
  surname: Wang
  fullname: Wang, Jun
  email: jwang.cs@cityu.edu.hk
  organization: Department of Computer Science and School of Data Science, City University of Hong Kong, Hong Kong
BookMark eNp9kc1u3CAUhVGVqknTPEDVDVI33XjKj43NcjLJtJFSzSKjSl0hjC8tiQdcwFGzyquX0URZZBE2HKHvcOGc9-jIBw8IfaRkQSmRX7erX-cLRhhZcEKklOwNOmFUdBVjbXP0rEV7jM5SuiVldeVIdu_QMWdFio6foMfNnKc5V2uAodfmDq_HYO6c_41XwecYRhws_jGP2U0j4OWcgw-7MCd8M0erDeCf8MeZERI-1wkGHDy-0FlXF9Hdg8fLQU-5KHz5L4MfCnCTdQa86RPEe4jpA3pr9Zjg7Gk_Rdv15Xb1vbrefLtaLa8rw5nIlbGNrUVPW02BCtCED7oWwHpSU2vl0Ndd2xDoSw62N6SwA-kI4Y3tW6GBn6Ivh2unGP7OkLLauWRgHLWH8hvFai647LiQBf38Ar0Nc_TlcYo1LROikS0pFD1QJoaUIlg1RbfT8UFRovb9qH0_at-PeuqneNoXHuNKGm4ftHbjq85PB6cDgOdJkrZUEsb_A3ZTnnw
CODEN ITCEB8
CitedBy_id crossref_primary_10_1016_j_oceaneng_2022_112474
crossref_primary_10_1016_j_jfranklin_2022_10_020
crossref_primary_10_1080_00207721_2023_2210139
crossref_primary_10_1016_j_jfranklin_2023_06_043
crossref_primary_10_1109_TCYB_2021_3061588
crossref_primary_10_1016_j_physa_2025_130466
crossref_primary_10_1016_j_conengprac_2023_105434
crossref_primary_10_1016_j_conengprac_2022_105158
crossref_primary_10_1109_TCYB_2022_3179467
crossref_primary_10_1109_TII_2023_3288217
crossref_primary_10_1109_JAS_2021_1003913
crossref_primary_10_1109_TFUZZ_2023_3245294
crossref_primary_10_1109_TSMC_2024_3444000
crossref_primary_10_1109_ACCESS_2022_3187743
crossref_primary_10_1016_j_oceaneng_2023_116041
crossref_primary_10_3390_jmse10111668
crossref_primary_10_1109_TIV_2024_3372652
crossref_primary_10_1109_TSMC_2023_3268663
crossref_primary_10_3390_jmse12101697
crossref_primary_10_1109_TCSI_2024_3426982
crossref_primary_10_1016_j_jfranklin_2025_107654
crossref_primary_10_1109_TSMC_2022_3184811
crossref_primary_10_1109_TIV_2022_3168974
crossref_primary_10_3390_app132413303
crossref_primary_10_3390_jmse11050897
crossref_primary_10_1007_s40815_021_01101_1
crossref_primary_10_1016_j_oceaneng_2021_110232
crossref_primary_10_3390_jmse12091484
crossref_primary_10_1016_j_jfranklin_2023_08_030
crossref_primary_10_1016_j_oceaneng_2022_113147
crossref_primary_10_1109_TSMC_2023_3341158
crossref_primary_10_3390_jmse13030458
crossref_primary_10_1007_s11071_024_09506_x
crossref_primary_10_1109_TIE_2021_3120442
crossref_primary_10_1007_s11071_021_06757_w
crossref_primary_10_1016_j_oceaneng_2021_110507
crossref_primary_10_1016_j_oceaneng_2022_110821
crossref_primary_10_1109_TFUZZ_2023_3309706
crossref_primary_10_1007_s40815_024_01812_1
crossref_primary_10_1109_TITS_2022_3217152
crossref_primary_10_1016_j_apenergy_2024_122802
crossref_primary_10_3390_jmse11010148
crossref_primary_10_1109_JAS_2023_123675
crossref_primary_10_1016_j_oceaneng_2023_114628
crossref_primary_10_1109_TSMC_2024_3442441
crossref_primary_10_3390_app131911039
crossref_primary_10_1016_j_isatra_2024_02_022
crossref_primary_10_1109_LCSYS_2021_3136761
crossref_primary_10_1109_TSMC_2024_3460370
crossref_primary_10_1016_j_oceaneng_2023_113671
crossref_primary_10_1016_j_oceaneng_2025_120304
crossref_primary_10_1007_s12555_021_0393_5
crossref_primary_10_1080_00207721_2025_2454413
crossref_primary_10_1016_j_oceaneng_2024_120098
crossref_primary_10_1016_j_amc_2022_126987
crossref_primary_10_1109_ACCESS_2023_3329060
crossref_primary_10_1016_j_oceaneng_2024_118972
crossref_primary_10_1109_TITS_2024_3525073
crossref_primary_10_1109_TIE_2022_3220890
crossref_primary_10_1109_TIV_2023_3335467
crossref_primary_10_1007_s11071_024_09956_3
crossref_primary_10_1007_s40815_024_01787_z
crossref_primary_10_1016_j_jfranklin_2022_09_057
crossref_primary_10_1016_j_oceaneng_2023_114970
crossref_primary_10_1016_j_oceaneng_2024_117721
crossref_primary_10_1016_j_isatra_2023_10_014
crossref_primary_10_1109_TSMC_2022_3188700
crossref_primary_10_1016_j_jfranklin_2024_01_018
crossref_primary_10_1109_TIE_2022_3194637
crossref_primary_10_1002_rnc_7641
crossref_primary_10_1109_TIV_2023_3339836
crossref_primary_10_1109_TASE_2023_3306101
crossref_primary_10_1109_TITS_2023_3296002
crossref_primary_10_1109_TCYB_2024_3351476
crossref_primary_10_1016_j_ins_2022_05_068
crossref_primary_10_1109_TFUZZ_2024_3390141
crossref_primary_10_1007_s11768_022_00079_x
crossref_primary_10_1016_j_oceaneng_2023_115275
crossref_primary_10_1016_j_oceaneng_2024_117950
crossref_primary_10_1109_TFUZZ_2021_3087920
crossref_primary_10_3389_fnbot_2022_1028656
crossref_primary_10_1109_TCST_2023_3323766
crossref_primary_10_1109_TASE_2022_3211693
crossref_primary_10_1109_TSMC_2022_3205637
crossref_primary_10_1016_j_neucom_2021_09_005
crossref_primary_10_1016_j_oceaneng_2024_119249
crossref_primary_10_1109_TIM_2023_3336444
crossref_primary_10_1109_TIV_2024_3350246
crossref_primary_10_1109_TSMC_2022_3222491
crossref_primary_10_1016_j_oceaneng_2022_112492
crossref_primary_10_1016_j_amc_2023_128084
crossref_primary_10_1177_10775463241271859
crossref_primary_10_1007_s11071_022_07618_w
crossref_primary_10_1109_TVT_2021_3130006
crossref_primary_10_1002_rnc_7023
crossref_primary_10_1007_s12555_022_0950_6
crossref_primary_10_1016_j_oceaneng_2022_110740
crossref_primary_10_1016_j_oceaneng_2024_117853
crossref_primary_10_1109_TSMC_2021_3129823
crossref_primary_10_1016_j_ifacol_2022_05_039
crossref_primary_10_1016_j_isatra_2025_01_048
crossref_primary_10_1109_TITS_2022_3216808
crossref_primary_10_1109_TRO_2023_3266994
crossref_primary_10_1109_TITS_2023_3324346
crossref_primary_10_1109_TCYB_2024_3462757
crossref_primary_10_1016_j_automatica_2024_111716
crossref_primary_10_1109_TCYB_2022_3155761
crossref_primary_10_1007_s11071_022_08169_w
crossref_primary_10_3390_electronics10232886
crossref_primary_10_1109_TVT_2022_3175726
crossref_primary_10_3390_drones7020145
crossref_primary_10_1016_j_chaos_2024_114556
crossref_primary_10_1109_TAES_2023_3289480
crossref_primary_10_1109_TII_2021_3108950
crossref_primary_10_1016_j_oceaneng_2023_113900
crossref_primary_10_1109_TITS_2023_3330570
crossref_primary_10_1109_TIV_2022_3224906
Cites_doi 10.1109/TNNLS.2013.2293499
10.1016/j.oceaneng.2019.106341
10.1109/TIE.2018.2885726
10.1109/TMECH.2015.2508647
10.1109/TAC.2008.2010897
10.1109/TIE.2017.2701778
10.1109/TCYB.2019.2914717
10.1109/ACCESS.2018.2857620
10.1109/TNNLS.2017.2743784
10.24846/v27i1y201801
10.1016/j.oceaneng.2019.05.078
10.1016/j.oceaneng.2011.07.006
10.1016/j.oceaneng.2019.04.077
10.1049/iet-cta.2011.0532
10.1016/j.oceaneng.2018.11.008
10.1109/TMECH.2019.2929216
10.1016/j.automatica.2003.10.010
10.1109/.2005.1469806
10.1016/j.engappai.2010.10.005
10.1016/j.ins.2015.04.025
10.1109/TCST.2011.2181513
10.1109/TNNLS.2017.2716947
10.1109/TCST.2012.2183676
10.1109/TCYB.2018.2883335
10.1109/TIE.2017.2652346
10.1109/TNNLS.2019.2912082
10.1109/TMECH.2017.2660528
10.1109/TSMC.2018.2875453
10.1007/s11432-015-5384-9
10.1109/TSMC.2017.2697447
10.1109/TCST.2006.872507
10.1109/TCST.2017.2699167
10.1109/TIM.2015.2459551
10.1016/j.oceaneng.2019.106501
10.1109/TNNLS.2014.2302477
10.1109/TNNLS.2016.2577342
10.1109/TCYB.2018.2869385
10.1109/TSMC.2019.2944521
10.1016/j.automatica.2004.10.006
10.1109/TIE.2016.2523453
10.1109/MCS.2009.934408
10.1016/j.oceaneng.2020.107242
10.1016/j.automatica.2018.01.026
10.1016/j.automatica.2016.01.004
10.1109/TCYB.2017.2785801
10.1109/TCYB.2014.2311824
10.1109/TIE.2013.2287222
10.1016/j.automatica.2019.108509
10.1109/TIE.2017.2758743
10.1016/j.automatica.2019.04.013
10.1049/PBCE119F_ch11
10.1109/TFUZZ.2018.2868898
10.1016/j.automatica.2015.03.006
10.1016/j.automatica.2013.05.029
10.1016/j.oceaneng.2018.04.016
10.1109/TAC.2005.864190
10.1016/j.neucom.2013.01.010
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
7TB
8FD
F28
FR3
H8D
JQ2
L7M
L~C
L~D
7X8
DOI 10.1109/TCYB.2020.3009992
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitle CrossRef
Aerospace Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
Aerospace Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 2168-2275
EndPage 4622
ExternalDocumentID 10_1109_TCYB_2020_3009992
9171902
Genre orig-research
GrantInformation_xml – fundername: National Key Research and Development Program of China
  grantid: 2016YFC0301500
  funderid: 10.13039/501100012166
– fundername: Science and Technology Fund for Distinguished Young Scholars of Dalian
  grantid: 2018RJ08
– fundername: High-Level Talent Development Program in Transportation Department
  grantid: 2018-030
– fundername: International Partnership Program of Chinese Academy of Sciences
  grantid: GJHZ1849
  funderid: 10.13039/501100002367
– fundername: National Natural Science Foundation of China
  grantid: 61673081; 51979020; 51909021; 61673330
  funderid: 10.13039/501100001809
– fundername: Research Grants Council of the Hong Kong Special Administrative Region of China
  grantid: 11208517; 11202318
  funderid: 10.13039/501100002920
– fundername: Fundamental Research Funds for the Central Universities
  grantid: 3132019319; 3132020101
  funderid: 10.13039/501100012226
– fundername: China Postdoctoral Science Foundation
  grantid: 2019M650086
  funderid: 10.13039/501100002858
– fundername: Stable Supporting Fund of Science and Technology on Underwater Vehicle Technology
  grantid: JCKYS2019604SXJQR-01
GroupedDBID 0R~
4.4
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACIWK
AENEX
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
HZ~
IFIPE
IPLJI
JAVBF
M43
O9-
OCL
PQQKQ
RIA
RIE
RNS
AAYXX
CITATION
7SC
7SP
7TB
8FD
F28
FR3
H8D
JQ2
L7M
L~C
L~D
7X8
ID FETCH-LOGICAL-c326t-cf5f46b17a1e16ea03da46e2b041ff9db48750eb999fbc0f46d080035fb76ae3
IEDL.DBID RIE
ISSN 2168-2267
2168-2275
IngestDate Thu Oct 02 03:27:42 EDT 2025
Sun Jun 29 15:41:27 EDT 2025
Wed Oct 01 01:36:39 EDT 2025
Thu Apr 24 22:55:43 EDT 2025
Wed Aug 27 02:27:17 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c326t-cf5f46b17a1e16ea03da46e2b041ff9db48750eb999fbc0f46d080035fb76ae3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-3975-3029
0000-0002-1305-5735
0000-0003-4468-7281
PMID 32816683
PQID 2572665970
PQPubID 85422
PageCount 12
ParticipantIDs crossref_primary_10_1109_TCYB_2020_3009992
proquest_miscellaneous_2436398369
proquest_journals_2572665970
crossref_citationtrail_10_1109_TCYB_2020_3009992
ieee_primary_9171902
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-09-01
PublicationDateYYYYMMDD 2021-09-01
PublicationDate_xml – month: 09
  year: 2021
  text: 2021-09-01
  day: 01
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE transactions on cybernetics
PublicationTitleAbbrev TCYB
PublicationYear 2021
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref58
ref14
ref11
gil (ref62) 2018; 16
ref10
ref17
roy (ref52) 2016
ref16
ref19
ref18
ref51
haidegger (ref55) 2011; 6
ref50
ref46
ref45
blaži? (ref56) 2014; 61
ref48
ref47
ref42
ref41
ref44
ref43
ref49
ref8
ref7
takács (ref54) 2015; 12
ref9
ref4
ref3
ref6
ref5
ref40
ref35
ref34
ref37
ref31
ref30
ref33
ref32
ref2
ref1
ref39
ref38
ref24
ref23
khalil (ref53) 2015
ref26
ref25
ref20
ref22
ref21
xu (ref59) 2018; 29
nguyen (ref29) 2018
ref28
ref27
wang (ref36) 2018; 29
ref60
ref61
peng (ref57) 2017; 28
References_xml – ident: ref7
  doi: 10.1109/TNNLS.2013.2293499
– ident: ref10
  doi: 10.1016/j.oceaneng.2019.106341
– ident: ref50
  doi: 10.1109/TIE.2018.2885726
– ident: ref18
  doi: 10.1109/TMECH.2015.2508647
– year: 2016
  ident: ref52
  publication-title: Memory-based data-driven mrac architecture ensuring parameter convergence
– ident: ref23
  doi: 10.1109/TAC.2008.2010897
– ident: ref8
  doi: 10.1109/TIE.2017.2701778
– ident: ref16
  doi: 10.1109/TCYB.2019.2914717
– ident: ref46
  doi: 10.1109/ACCESS.2018.2857620
– volume: 6
  start-page: 48
  year: 2011
  ident: ref55
  article-title: Controller design solutions for long distance telesurgical applications
  publication-title: Artific Intellig Int J
– volume: 29
  start-page: 3839
  year: 2018
  ident: ref59
  article-title: Online recorded data-based composite neural control of strict-feedback systems with application to hypersonic flight dynamics
  publication-title: IEEE Trans Neural Netw Learn Syst
  doi: 10.1109/TNNLS.2017.2743784
– ident: ref61
  doi: 10.24846/v27i1y201801
– ident: ref47
  doi: 10.1016/j.oceaneng.2019.05.078
– ident: ref41
  doi: 10.1016/j.oceaneng.2011.07.006
– ident: ref20
  doi: 10.1016/j.oceaneng.2019.04.077
– ident: ref25
  doi: 10.1049/iet-cta.2011.0532
– ident: ref45
  doi: 10.1016/j.oceaneng.2018.11.008
– volume: 16
  start-page: 20
  year: 2018
  ident: ref62
  article-title: Surrogate model based optimization of traffic lights cycles and green period ratios using microscopic simulation and fuzzy rule interpolation
  publication-title: Artific Intellig Int J
– ident: ref3
  doi: 10.1109/TMECH.2019.2929216
– ident: ref31
  doi: 10.1016/j.automatica.2003.10.010
– ident: ref37
  doi: 10.1109/.2005.1469806
– ident: ref60
  doi: 10.1016/j.engappai.2010.10.005
– ident: ref48
  doi: 10.1016/j.ins.2015.04.025
– ident: ref2
  doi: 10.1109/TCST.2011.2181513
– volume: 29
  start-page: 3658
  year: 2018
  ident: ref36
  article-title: Adaptive neural output-feedback control for a class of nonlower triangular nonlinear systems with unmodeled dynamics
  publication-title: IEEE Trans Neural Netw Learn Syst
  doi: 10.1109/TNNLS.2017.2716947
– ident: ref43
  doi: 10.1109/TCST.2012.2183676
– ident: ref5
  doi: 10.1109/TCYB.2018.2883335
– ident: ref19
  doi: 10.1109/TIE.2017.2652346
– ident: ref35
  doi: 10.1109/TNNLS.2019.2912082
– ident: ref1
  doi: 10.1109/TMECH.2017.2660528
– ident: ref32
  doi: 10.1109/TSMC.2018.2875453
– ident: ref13
  doi: 10.1007/s11432-015-5384-9
– ident: ref44
  doi: 10.1109/TSMC.2017.2697447
– ident: ref42
  doi: 10.1109/TCST.2006.872507
– ident: ref14
  doi: 10.1109/TCST.2017.2699167
– ident: ref40
  doi: 10.1109/TIM.2015.2459551
– ident: ref17
  doi: 10.1016/j.oceaneng.2019.106501
– ident: ref6
  doi: 10.1109/TNNLS.2014.2302477
– volume: 28
  start-page: 2156
  year: 2017
  ident: ref57
  article-title: Predictor-based neural dynamic surface control for uncertain nonlinear systems in strict-feedback form
  publication-title: IEEE Trans Neural Netw Learn Syst
  doi: 10.1109/TNNLS.2016.2577342
– year: 2015
  ident: ref53
  publication-title: Nonlinear Control
– ident: ref9
  doi: 10.1109/TCYB.2018.2869385
– ident: ref21
  doi: 10.1109/TSMC.2019.2944521
– ident: ref30
  doi: 10.1016/j.automatica.2004.10.006
– ident: ref51
  doi: 10.1109/TIE.2016.2523453
– volume: 12
  start-page: 95
  year: 2015
  ident: ref54
  article-title: Models for force control in telesurgical robot systems
  publication-title: Acta Polytechnica Hungarica
– ident: ref39
  doi: 10.1109/MCS.2009.934408
– ident: ref49
  doi: 10.1016/j.oceaneng.2020.107242
– ident: ref38
  doi: 10.1016/j.automatica.2018.01.026
– ident: ref28
  doi: 10.1016/j.automatica.2016.01.004
– ident: ref33
  doi: 10.1109/TCYB.2017.2785801
– ident: ref58
  doi: 10.1109/TCYB.2014.2311824
– volume: 61
  start-page: 3660
  year: 2014
  ident: ref56
  article-title: On periodic control laws for mobile robots
  publication-title: IEEE Trans Ind Electron
  doi: 10.1109/TIE.2013.2287222
– ident: ref27
  doi: 10.1016/j.automatica.2019.108509
– ident: ref4
  doi: 10.1109/TIE.2017.2758743
– ident: ref11
  doi: 10.1016/j.automatica.2019.04.013
– start-page: 297
  year: 2018
  ident: ref29
  article-title: Bounded distributed flocking control of nonholonomic mobile robots
  publication-title: Swarm Intelligence-Volume 1 Principles Current Algorithms and Methods
  doi: 10.1049/PBCE119F_ch11
– ident: ref34
  doi: 10.1109/TFUZZ.2018.2868898
– ident: ref24
  doi: 10.1016/j.automatica.2015.03.006
– ident: ref26
  doi: 10.1016/j.automatica.2013.05.029
– ident: ref15
  doi: 10.1016/j.oceaneng.2018.04.016
– ident: ref22
  doi: 10.1109/TAC.2005.864190
– ident: ref12
  doi: 10.1016/j.neucom.2013.01.010
SSID ssj0000816898
Score 2.6196718
Snippet This article addresses an output-feedback flocking control problem for a swarm of autonomous surface vehicles (ASVs) to follow a leading ASV guided via a...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 4611
SubjectTerms Adaptation models
Adaptive control
Autonomous surface vehicles (ASVs)
Collision avoidance
Control methods
Control theory
Cybernetics
data-driven adaptive extended state observer (ESO)
disturbances
flocking
Mathematical models
Observers
Output feedback
Parameterization
Parameters
Sea surface
State observers
Surface vehicles
Task analysis
unknown control gains
Urban areas
Velocity measurement
Title Output-Feedback Flocking Control of Multiple Autonomous Surface Vehicles Based on Data-Driven Adaptive Extended State Observers
URI https://ieeexplore.ieee.org/document/9171902
https://www.proquest.com/docview/2572665970
https://www.proquest.com/docview/2436398369
Volume 51
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 2168-2275
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816898
  issn: 2168-2267
  databaseCode: RIE
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZKT1yAUhALBblSD4DI1okTJzlut11VSEsPLKicItsZC6koWe0mFy79651xvJF4qOrNUpwo9tgz37wZO5GFUzKRWaRzXUaI_3GkXREJk6vMCJNkhvKdl1_U5bf083V2vcc-jbkwAOCDz2BKQ-_Lr1vbk6nsFFULlF_IcB_lhRpytUZ7im8g4VvfJjiIEFXkwYkZi_J0Nf9xhspggjqqx0TUxEYm5DMr5B8SybdY-Ycve2GzeMqWu98cYkxupn1npvb3XxUcH7qOZ-xJQJ18NhyTA7YHzXN2EO71lr8Pxac_HLLbq75b9120QKlmtL3hC5R2ZE7n8yGonbeOL0MUIp_1HSVFtP2Wf-03Tlvg3-Gnj7TjZygfa942_Fx3OjrfEFvls1qvicHyi2B85x7t8itD1mGEoi_YanGxml9GoUlDZBH5dZF1mUuViXMdQ6xAC1nrVEFiRBo7V9aGNCIBBjfdGStwbk0gVWYOT4MG-ZLtN20DrxhPcuMEAFXgqlOpTAEaaqRpiahSWZVNmNjRqbKhgDn10fhVeUVGlBVRuSIqV4HKE_ZxfGU9VO-4b_IhkWqcGKg0YUe7w1CF-72tkNEhskFlTEzY8fgYbya5W3QDuO9VgouQZSFV-fr_X37DHicUIeMj1o7Yfrfp4S1CnM6882f7Dq7M9iY
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3Nb9MwFLemcRgXYBuIwhhG4gCIdE6cOMmx61YVWLcDBY1TZCfPmjSUVG1y4cK_znuOG4mBEDdLcaLYz37v974Zey0zq2Qkk0CnOg8Q_-NI2ywQJlWJESZKDOU7Ly7V_Ev88Tq53mHvh1wYAHDBZzCmofPlV03ZkansBFULlF_IcO8lcRwnfbbWYFFxLSRc89sIBwHiitS7MUORnyyn305RHYxQS3WoiNrYyIi8Zpn8TSa5Jit_cGYnbmYP2WL7o32Uye24a824_HGnhuP_ruQRe-BxJ5_0B2Wf7UB9wPb9zd7wN7789NtD9vOqa1ddG8xQrhld3vIZyjsyqPNpH9bOG8sXPg6RT7qW0iKabsM_d2urS-Bf4cbF2vFTlJAVb2p-plsdnK2JsfJJpVfEYvm5N79zh3f5lSH7MILRx2w5O19O54Fv0xCUiP3aoLSJjZUJUx1CqEALWelYQWREHFqbV4Z0IgEGN92aUuDcimCqTCyeBw3yCdutmxqeMh6lxgoAqsFVxVKZDDRUSNMccaUqVTJiYkunovQlzKmTxvfCqTIiL4jKBVG58FQesXfDK6u-fse_Jh8SqYaJnkojdrQ9DIW_4ZsCWR1iG1THxIi9Gh7j3SSHi64B972IcBEyz6TKn_39yy_Z3ny5uCguPlx-es7uRxQv4-LXjthuu-7gBQKe1hy7c_4LtZr5cw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Output-Feedback+Flocking+Control+of+Multiple+Autonomous+Surface+Vehicles+Based+on+Data-Driven+Adaptive+Extended+State+Observers&rft.jtitle=IEEE+transactions+on+cybernetics&rft.au=Peng%2C+Zhouhua&rft.au=Liu%2C+Lu&rft.au=Wang%2C+Jun&rft.date=2021-09-01&rft.pub=IEEE&rft.issn=2168-2267&rft.volume=51&rft.issue=9&rft.spage=4611&rft.epage=4622&rft_id=info:doi/10.1109%2FTCYB.2020.3009992&rft_id=info%3Apmid%2F32816683&rft.externalDocID=9171902
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2168-2267&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2168-2267&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2168-2267&client=summon