Reproducible image-based profiling with Pycytominer

Advances in high-throughput microscopy have enabled the rapid acquisition of large numbers of high-content microscopy images. Next, whether by deep learning or classical algorithms, image analysis pipelines commonly produce single-cell features. To process these single cells for downstream applicati...

Full description

Saved in:
Bibliographic Details
Published inNature methods Vol. 22; no. 4; pp. 677 - 680
Main Authors Serrano, Erik, Chandrasekaran, Srinivas Niranj, Bunten, Dave, Brewer, Kenneth I., Tomkinson, Jenna, Kern, Roshan, Bornholdt, Michael, Fleming, Stephen J., Pei, Ruifan, Arevalo, John, Tsang, Hillary, Rubinetti, Vincent, Tromans-Coia, Callum, Becker, Tim, Weisbart, Erin, Bunne, Charlotte, Kalinin, Alexandr A., Senft, Rebecca, Taylor, Stephen J., Jamali, Nasim, Adeboye, Adeniyi, Abbasi, Hamdah Shafqat, Goodman, Allen, Caicedo, Juan C., Carpenter, Anne E., Cimini, Beth A., Singh, Shantanu, Way, Gregory P.
Format Journal Article
LanguageEnglish
Published New York Nature Publishing Group US 01.04.2025
Nature Publishing Group
Subjects
Online AccessGet full text
ISSN1548-7091
1548-7105
1548-7105
DOI10.1038/s41592-025-02611-8

Cover

Abstract Advances in high-throughput microscopy have enabled the rapid acquisition of large numbers of high-content microscopy images. Next, whether by deep learning or classical algorithms, image analysis pipelines commonly produce single-cell features. To process these single cells for downstream applications, we present Pycytominer, a user-friendly, open-source Python package that implements the bioinformatics steps key to image-based profiling. We demonstrate Pycytominer’s usefulness in a machine-learning project to predict nuisance compounds that cause undesirable cell injuries. Pycytominer is a user-friendly, open-source Python package that carries out key bioinformatics steps in image-based profiling.
AbstractList Advances in high-throughput microscopy have enabled the rapid acquisition of large numbers of high-content microscopy images. Next, whether by deep learning or classical algorithms, image analysis pipelines commonly produce single-cell features. To process these single cells for downstream applications, we present Pycytominer, a user-friendly, open-source Python package that implements the bioinformatics steps key to image-based profiling. We demonstrate Pycytominer's usefulness in a machine-learning project to predict nuisance compounds that cause undesirable cell injuries.
Advances in high-throughput microscopy have enabled the rapid acquisition of large numbers of high-content microscopy images. Next, whether by deep learning or classical algorithms, image analysis pipelines commonly produce single-cell features. To process these single cells for downstream applications, we present Pycytominer, a user-friendly, open-source Python package that implements the bioinformatics steps key to image-based profiling. We demonstrate Pycytominer's usefulness in a machine-learning project to predict nuisance compounds that cause undesirable cell injuries.Advances in high-throughput microscopy have enabled the rapid acquisition of large numbers of high-content microscopy images. Next, whether by deep learning or classical algorithms, image analysis pipelines commonly produce single-cell features. To process these single cells for downstream applications, we present Pycytominer, a user-friendly, open-source Python package that implements the bioinformatics steps key to image-based profiling. We demonstrate Pycytominer's usefulness in a machine-learning project to predict nuisance compounds that cause undesirable cell injuries.
Advances in high-throughput microscopy have enabled the rapid acquisition of large numbers of high-content microscopy images. Next, whether by deep learning or classical algorithms, image analysis pipelines commonly produce single-cell features. To process these single cells for downstream applications, we present Pycytominer, a user-friendly, open-source Python package that implements the bioinformatics steps key to image-based profiling. We demonstrate Pycytominer’s usefulness in a machine-learning project to predict nuisance compounds that cause undesirable cell injuries. Pycytominer is a user-friendly, open-source Python package that carries out key bioinformatics steps in image-based profiling.
Advances in high-throughput microscopy have enabled the rapid acquisition of large numbers of high-content microscopy images. Next, whether by deep learning or classical algorithms, image analysis pipelines commonly produce single-cell features. To process these single cells for downstream applications, we present Pycytominer, a user-friendly, open-source Python package that implements the bioinformatics steps key to image-based profiling. We demonstrate Pycytominer’s usefulness in a machine-learning project to predict nuisance compounds that cause undesirable cell injuries.Pycytominer is a user-friendly, open-source Python package that carries out key bioinformatics steps in image-based profiling.
Author Chandrasekaran, Srinivas Niranj
Kalinin, Alexandr A.
Tsang, Hillary
Senft, Rebecca
Fleming, Stephen J.
Serrano, Erik
Taylor, Stephen J.
Brewer, Kenneth I.
Jamali, Nasim
Tomkinson, Jenna
Becker, Tim
Kern, Roshan
Pei, Ruifan
Caicedo, Juan C.
Cimini, Beth A.
Bunne, Charlotte
Adeboye, Adeniyi
Carpenter, Anne E.
Rubinetti, Vincent
Tromans-Coia, Callum
Way, Gregory P.
Abbasi, Hamdah Shafqat
Singh, Shantanu
Goodman, Allen
Arevalo, John
Bornholdt, Michael
Weisbart, Erin
Bunten, Dave
Author_xml – sequence: 1
  givenname: Erik
  surname: Serrano
  fullname: Serrano, Erik
  organization: Department of Biomedical Informatics, University of Colorado School of Medicine
– sequence: 2
  givenname: Srinivas Niranj
  orcidid: 0000-0001-8874-9988
  surname: Chandrasekaran
  fullname: Chandrasekaran, Srinivas Niranj
  organization: Imaging Platform, Broad Institute of MIT and Harvard
– sequence: 3
  givenname: Dave
  orcidid: 0000-0001-6041-3665
  surname: Bunten
  fullname: Bunten, Dave
  organization: Department of Biomedical Informatics, University of Colorado School of Medicine
– sequence: 4
  givenname: Kenneth I.
  surname: Brewer
  fullname: Brewer, Kenneth I.
  organization: Independent Researcher
– sequence: 5
  givenname: Jenna
  surname: Tomkinson
  fullname: Tomkinson, Jenna
  organization: Department of Biomedical Informatics, University of Colorado School of Medicine
– sequence: 6
  givenname: Roshan
  orcidid: 0000-0002-5605-4759
  surname: Kern
  fullname: Kern, Roshan
  organization: Department of Biomedical Informatics, University of Colorado School of Medicine, Case Western Reserve University
– sequence: 7
  givenname: Michael
  surname: Bornholdt
  fullname: Bornholdt, Michael
  organization: Imaging Platform, Broad Institute of MIT and Harvard
– sequence: 8
  givenname: Stephen J.
  orcidid: 0000-0002-1885-4405
  surname: Fleming
  fullname: Fleming, Stephen J.
  organization: Data Sciences Platform, Broad Institute of MIT and Harvard
– sequence: 9
  givenname: Ruifan
  surname: Pei
  fullname: Pei, Ruifan
  organization: Imaging Platform, Broad Institute of MIT and Harvard
– sequence: 10
  givenname: John
  orcidid: 0000-0002-1138-5036
  surname: Arevalo
  fullname: Arevalo, John
  organization: Imaging Platform, Broad Institute of MIT and Harvard
– sequence: 11
  givenname: Hillary
  surname: Tsang
  fullname: Tsang, Hillary
  organization: Imaging Platform, Broad Institute of MIT and Harvard
– sequence: 12
  givenname: Vincent
  surname: Rubinetti
  fullname: Rubinetti, Vincent
  organization: Department of Biomedical Informatics, University of Colorado School of Medicine
– sequence: 13
  givenname: Callum
  surname: Tromans-Coia
  fullname: Tromans-Coia, Callum
  organization: Imaging Platform, Broad Institute of MIT and Harvard
– sequence: 14
  givenname: Tim
  orcidid: 0000-0001-9615-0799
  surname: Becker
  fullname: Becker, Tim
  organization: Imaging Platform, Broad Institute of MIT and Harvard
– sequence: 15
  givenname: Erin
  orcidid: 0000-0002-6437-2458
  surname: Weisbart
  fullname: Weisbart, Erin
  organization: Imaging Platform, Broad Institute of MIT and Harvard
– sequence: 16
  givenname: Charlotte
  orcidid: 0000-0003-1431-103X
  surname: Bunne
  fullname: Bunne, Charlotte
  organization: Imaging Platform, Broad Institute of MIT and Harvard
– sequence: 17
  givenname: Alexandr A.
  orcidid: 0000-0003-4563-3226
  surname: Kalinin
  fullname: Kalinin, Alexandr A.
  organization: Imaging Platform, Broad Institute of MIT and Harvard
– sequence: 18
  givenname: Rebecca
  surname: Senft
  fullname: Senft, Rebecca
  organization: Imaging Platform, Broad Institute of MIT and Harvard
– sequence: 19
  givenname: Stephen J.
  orcidid: 0000-0002-7279-7798
  surname: Taylor
  fullname: Taylor, Stephen J.
  organization: Department of Biomedical Informatics, University of Colorado School of Medicine
– sequence: 20
  givenname: Nasim
  surname: Jamali
  fullname: Jamali, Nasim
  organization: Imaging Platform, Broad Institute of MIT and Harvard
– sequence: 21
  givenname: Adeniyi
  surname: Adeboye
  fullname: Adeboye, Adeniyi
  organization: Imaging Platform, Broad Institute of MIT and Harvard
– sequence: 22
  givenname: Hamdah Shafqat
  surname: Abbasi
  fullname: Abbasi, Hamdah Shafqat
  organization: Imaging Platform, Broad Institute of MIT and Harvard
– sequence: 23
  givenname: Allen
  surname: Goodman
  fullname: Goodman, Allen
  organization: Imaging Platform, Broad Institute of MIT and Harvard, Genentech gRED
– sequence: 24
  givenname: Juan C.
  surname: Caicedo
  fullname: Caicedo, Juan C.
  organization: Imaging Platform, Broad Institute of MIT and Harvard, Morgridge Institute for Research, University of Wisconsin-Madison
– sequence: 25
  givenname: Anne E.
  orcidid: 0000-0003-1555-8261
  surname: Carpenter
  fullname: Carpenter, Anne E.
  organization: Imaging Platform, Broad Institute of MIT and Harvard
– sequence: 26
  givenname: Beth A.
  orcidid: 0000-0001-9640-9318
  surname: Cimini
  fullname: Cimini, Beth A.
  organization: Imaging Platform, Broad Institute of MIT and Harvard
– sequence: 27
  givenname: Shantanu
  orcidid: 0000-0003-3150-3025
  surname: Singh
  fullname: Singh, Shantanu
  email: shantanu@broadinstitute.org
  organization: Imaging Platform, Broad Institute of MIT and Harvard
– sequence: 28
  givenname: Gregory P.
  orcidid: 0000-0002-0503-9348
  surname: Way
  fullname: Way, Gregory P.
  email: gregory.way@cuanschutz.edu
  organization: Department of Biomedical Informatics, University of Colorado School of Medicine
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40032995$$D View this record in MEDLINE/PubMed
BookMark eNp9kEtLAzEYRYNU7EP_gAspuHEzmi-PmWQpxRcUFNF1yCSZOmUeNZlB-u-NTqvgwkXIRzg3uTlTNGraxiF0CvgSMBVXgQGXJMGEx5UCJOIATYAzkWSA-Wg_YwljNA1hjTGljPAjNGZxJFLyCaLPbuNb25syr9y8rPXKJbkOzs7jcVFWZbOaf5Td2_xpa7ZdW5eN88fosNBVcCe7fYZeb29eFvfJ8vHuYXG9TAwlaZcYm0kgsSgWBlMH1DGdESti6QJMnhU2w5AazVNtqLbc5TIriAUNKdU5lXSGLoZ7Y5X33oVO1WUwrqp049o-KAoZZZiDJBE9_4Ou2943sV2khMAsI4xG6mxH9XntrNr4-GG_VXsdESADYHwbgnfFDwJYfTlXg3MVnatv50rEEB1CIcLNyvnft_9JfQK0nIGo
Cites_doi 10.5555/2600239.2600241
10.1016/j.coisb.2018.05.004
10.1101/2024.04.26.591386
10.1038/nmeth.2019
10.1038/nmeth.4397
10.1186/s12859-021-04344-9
10.1038/s41467-024-50613-5
10.5281/ZENODO.3509134
10.1016/j.cels.2022.10.001
10.1016/j.tcb.2022.11.011
10.1038/s41467-023-36829-x
10.1038/s41573-022-00472-w
10.1038/s41420-023-01559-y
10.1101/2023.09.13.557636
10.1101/2024.08.27.609964
10.1038/s41592-024-02241-6
10.1016/j.slasd.2023.08.009
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Nature America, Inc. 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
2025. The Author(s), under exclusive licence to Springer Nature America, Inc.
Copyright Nature Publishing Group Apr 2025
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Nature America, Inc. 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: 2025. The Author(s), under exclusive licence to Springer Nature America, Inc.
– notice: Copyright Nature Publishing Group Apr 2025
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QL
7QO
7SS
7TK
7U9
8FD
C1K
FR3
H94
K9.
M7N
P64
RC3
7X8
DOI 10.1038/s41592-025-02611-8
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Bacteriology Abstracts (Microbiology B)
Biotechnology Research Abstracts
Entomology Abstracts (Full archive)
Neurosciences Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Virology and AIDS Abstracts
Technology Research Database
ProQuest Health & Medical Complete (Alumni)
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Entomology Abstracts
Genetics Abstracts
Biotechnology Research Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Engineering Research Database
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic

Virology and AIDS Abstracts
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1548-7105
EndPage 680
ExternalDocumentID 40032995
10_1038_s41592_025_02611_8
Genre Journal Article
GrantInformation_xml – fundername: U.S. Department of Health & Human Services | NIH | National Institute of General Medical Sciences (NIGMS)
  grantid: R35 GM122547; R35 GM122547; R35 GM122547; R35 GM122547; R35 GM122547; R35 GM122547; R35 GM122547; R35 GM122547; R35 GM122547; R35 GM122547; R35 GM122547
  funderid: https://doi.org/10.13039/100000057
– fundername: Chan Zuckerberg Initiative DAF (2020-225720)
– fundername: P. A. Messerschmidt og Hustrus Fond
  funderid: https://doi.org/10.13039/501100008274
– fundername: Human Frontier Science Program (HFSP)
  grantid: RGY0081/2019
  funderid: https://doi.org/10.13039/501100000854
– fundername: Massachusetts Life Sciences Center (MLSC)
  grantid: Data Science Internship Program; Data Science Internship Program; Bits to Bytes Capital Call
  funderid: https://doi.org/10.13039/100011495
– fundername: U.S. Department of Health & Human Services | NIH | U.S. National Library of Medicine (NLM)
  grantid: T15LM009451
  funderid: https://doi.org/10.13039/100000092
– fundername: Schmidt Fellowship program of the Broad Institute
– fundername: Starr Cancer Consortium (112-0039)
– fundername: U.S. Department of Health & Human Services | NIH | U.S. National Library of Medicine (NLM)
  grantid: T15LM009451
– fundername: NLM NIH HHS
  grantid: T15 LM009451
– fundername: Human Frontier Science Program (HFSP)
  grantid: RGY0081/2019
– fundername: Massachusetts Life Sciences Center (MLSC)
  grantid: Bits to Bytes Capital Call
– fundername: Massachusetts Life Sciences Center (MLSC)
  grantid: Data Science Internship Program
– fundername: NIGMS NIH HHS
  grantid: R35 GM122547
GroupedDBID ---
-~X
0R~
123
29M
39C
4.4
53G
7X2
7X7
7XC
88E
88I
8AO
8CJ
8FE
8FG
8FH
8FI
8FJ
8R4
8R5
AAHBH
AARCD
AAYZH
ABAWZ
ABDBF
ABJCF
ABJNI
ABLJU
ABUWG
ACBWK
ACGFS
ACGOD
ACIWK
ACPRK
ACUHS
ADBBV
AENEX
AEUYN
AFANA
AFBBN
AFKRA
AFRAH
AFSHS
AGAYW
AHBCP
AHMBA
AHSBF
AIBTJ
ALFFA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ARAPS
ARMCB
ASPBG
ATCPS
ATHPR
AVWKF
AXYYD
AZFZN
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
BKKNO
BKSAR
BPHCQ
BVXVI
CCPQU
CS3
D1I
D1J
D1K
DB5
DU5
DWQXO
EBS
EE.
EJD
EMOBN
ESX
F5P
FEDTE
FSGXE
FYUFA
FZEXT
GNUQQ
HCIFZ
HMCUK
HVGLF
HZ~
IAO
IHR
INH
INR
ITC
K6-
KB.
L6V
LK5
LK8
M0K
M1P
M2P
M7P
M7R
M7S
NFIDA
NNMJJ
O9-
ODYON
P2P
P62
PATMY
PCBAR
PDBOC
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PTHSS
PYCSY
Q2X
RNS
RNT
RNTTT
SHXYY
SIXXV
SJN
SNYQT
SOJ
SV3
TAOOD
TBHMF
TDRGL
TSG
TUS
UKHRP
~8M
AAYXX
CITATION
AGSTI
CGR
CUY
CVF
ECM
EIF
NPM
PUEGO
7QL
7QO
7SS
7TK
7U9
8FD
C1K
FR3
H94
K9.
M7N
P64
RC3
7X8
ID FETCH-LOGICAL-c326t-cd791203808c03e13e4a72d8159f1cb7fd7016ca56ac3ad5eb97f2d1a163ab393
ISSN 1548-7091
1548-7105
IngestDate Thu Sep 04 17:25:49 EDT 2025
Fri Oct 03 06:40:03 EDT 2025
Fri Oct 03 01:51:42 EDT 2025
Wed Oct 01 06:36:38 EDT 2025
Mon Jul 21 06:06:45 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License 2025. The Author(s), under exclusive licence to Springer Nature America, Inc.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c326t-cd791203808c03e13e4a72d8159f1cb7fd7016ca56ac3ad5eb97f2d1a163ab393
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-1555-8261
0000-0002-1138-5036
0000-0003-1431-103X
0000-0001-6041-3665
0000-0002-5605-4759
0000-0002-0503-9348
0000-0001-9640-9318
0000-0002-7279-7798
0000-0003-4563-3226
0000-0001-9615-0799
0000-0002-6437-2458
0000-0001-8874-9988
0000-0003-3150-3025
0000-0002-1885-4405
PMID 40032995
PQID 3188047243
PQPubID 28015
PageCount 4
ParticipantIDs proquest_miscellaneous_3173405192
proquest_journals_3188047243
pubmed_primary_40032995
crossref_primary_10_1038_s41592_025_02611_8
springer_journals_10_1038_s41592_025_02611_8
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-04-01
PublicationDateYYYYMMDD 2025-04-01
PublicationDate_xml – month: 04
  year: 2025
  text: 2025-04-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: United States
PublicationSubtitle Techniques for life scientists and chemists
PublicationTitle Nature methods
PublicationTitleAbbrev Nat Methods
PublicationTitleAlternate Nat Methods
PublicationYear 2025
Publisher Nature Publishing Group US
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group US
– name: Nature Publishing Group
References 2611_CR1
J Schindelin (2611_CR2) 2012; 9
C Wolff (2611_CR17) 2024
2611_CR9
JL Dahlin (2611_CR19) 2023; 14
2611_CR13
2611_CR14
2611_CR11
2611_CR12
2611_CR20
K Schorpp (2611_CR8) 2023; 9
D Krentzel (2611_CR6) 2023; 33
JC Caicedo (2611_CR5) 2017; 14
SN Chandrasekaran (2611_CR16) 2024; 21
GP Way (2611_CR10) 2022; 13
2611_CR18
J Arevalo (2611_CR15) 2024; 15
DR Stirling (2611_CR3) 2021; 22
C Scheeder (2611_CR4) 2018; 10
F Vincent (2611_CR7) 2022; 21
38045474 - ArXiv. 2024 Jul 2:arXiv:2311.13417v2.
References_xml – ident: 2611_CR20
  doi: 10.5555/2600239.2600241
– volume: 10
  start-page: 43
  year: 2018
  ident: 2611_CR4
  publication-title: Curr. Opin. Syst. Biol.
  doi: 10.1016/j.coisb.2018.05.004
– ident: 2611_CR9
  doi: 10.1101/2024.04.26.591386
– volume: 9
  start-page: 676
  year: 2012
  ident: 2611_CR2
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.2019
– volume: 14
  start-page: 849
  year: 2017
  ident: 2611_CR5
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.4397
– volume: 22
  start-page: 433
  year: 2021
  ident: 2611_CR3
  publication-title: BMC Bioinform.
  doi: 10.1186/s12859-021-04344-9
– volume: 15
  start-page: 6516
  year: 2024
  ident: 2611_CR15
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-024-50613-5
– ident: 2611_CR18
– ident: 2611_CR14
– ident: 2611_CR12
– ident: 2611_CR13
  doi: 10.5281/ZENODO.3509134
– volume: 13
  start-page: 911
  year: 2022
  ident: 2611_CR10
  publication-title: Cell Syst.
  doi: 10.1016/j.cels.2022.10.001
– volume: 33
  start-page: 538
  year: 2023
  ident: 2611_CR6
  publication-title: Trends Cell Biol.
  doi: 10.1016/j.tcb.2022.11.011
– volume: 14
  start-page: 1364
  year: 2023
  ident: 2611_CR19
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-023-36829-x
– volume: 21
  start-page: 899
  year: 2022
  ident: 2611_CR7
  publication-title: Nat. Rev. Drug Discov.
  doi: 10.1038/s41573-022-00472-w
– volume: 9
  start-page: 277
  year: 2023
  ident: 2611_CR8
  publication-title: Cell Death Discov
  doi: 10.1038/s41420-023-01559-y
– ident: 2611_CR11
  doi: 10.1101/2023.09.13.557636
– year: 2024
  ident: 2611_CR17
  publication-title: bioRxiv
  doi: 10.1101/2024.08.27.609964
– volume: 21
  start-page: 1114
  year: 2024
  ident: 2611_CR16
  publication-title: Nat. Meth.
  doi: 10.1038/s41592-024-02241-6
– ident: 2611_CR1
  doi: 10.1016/j.slasd.2023.08.009
– reference: 38045474 - ArXiv. 2024 Jul 2:arXiv:2311.13417v2.
SSID ssj0033425
Score 2.5479424
Snippet Advances in high-throughput microscopy have enabled the rapid acquisition of large numbers of high-content microscopy images. Next, whether by deep learning or...
SourceID proquest
pubmed
crossref
springer
SourceType Aggregation Database
Index Database
Publisher
StartPage 677
SubjectTerms 631/114/1305
631/114/2163
631/114/794
Algorithms
Application programming interface
Bioinformatics
Biological Microscopy
Biological Techniques
Biomedical and Life Sciences
Biomedical Engineering/Biotechnology
Brief Communication
Communication
Computational Biology - methods
Datasets
Deep learning
Feature selection
Humans
Image acquisition
Image analysis
Image processing
Image Processing, Computer-Assisted - methods
Injuries
Kinases
Life Sciences
Machine Learning
Microscopy
Microscopy - methods
Morphology
Open source software
Proteomics
Python
Reproducibility of Results
Single-Cell Analysis - methods
Software
Title Reproducible image-based profiling with Pycytominer
URI https://link.springer.com/article/10.1038/s41592-025-02611-8
https://www.ncbi.nlm.nih.gov/pubmed/40032995
https://www.proquest.com/docview/3188047243
https://www.proquest.com/docview/3173405192
Volume 22
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1548-7105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0033425
  issn: 1548-7091
  databaseCode: AFBBN
  dateStart: 20190101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR1db9Mw0CqdkHhBfBMYKEi8DRfHdmrncUNMA4mKh03aW-TYjlSmtVOXgsqv5xw7rqFMYrxElVtdL77zffi-EHqrSsOJoQarqhEYBF6Bq0pV2FClbKFkS7krTv4ym56c8c_n5flodJVkLa27ZqJ__rWu5H-oCmtAV1clewvKRqCwAJ-BvvAECsPzn2gM1nPfsHXuyp_mlyAasNNKrvLfTeKO96xfN3rTLS9dnV9qjM76pp5hiHS0rUF6gP5aBiEZC3lcGYJZAfQLtQqXpi74812BoJzDyrfo2K9dVnzIl09i9vZHyN_wlUAHnybpjQMtk0SVICS5xIL4KVsTm6wVpEwlK6UJB_FETE7D6Bavcad-ltOOMPet26_BxHAZsg4PcPcKLLeqawjX_6HRYp5hH2FnsvYwaoBR9zBqeQftUdADZIz2Do-PjmaD9maM94N64zuGQiuA8n4Xk9-NmR0PZSe63hstpw_Q_eBt5IeedR6ikV08Qnf9_NHNY8RSBsoTBsojA-WOgfKEgZ6gs-OPpx9OcJiigTWY5h3WRlQFBfyJ1ITZglmuBDUS3qUtdCNaI8Ds16qcKs2UKW1TiZaaQoGlrhpWsadovFgu7HOUS2KU5BpON2l4a2lDm1YTCS4pqKmKiwwdDNtRX_lmKfXNJMjQ_rBjdThU1zVz_QG5oJxl6E38GkSei2OphV2u3W8E4871oBl65nc6_h2gxsDCKjP0btj6LfCbcXlxK8xfonvbc7GPxt1qbV-Bbdo1rwM7_QIgCYdv
linkProvider Library Specific Holdings
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Reproducible+image-based+profiling+with+Pycytominer&rft.jtitle=Nature+methods&rft.au=Serrano%2C+Erik&rft.au=Chandrasekaran%2C+Srinivas+Niranj&rft.au=Bunten%2C+Dave&rft.au=Brewer%2C+Kenneth+I.&rft.date=2025-04-01&rft.issn=1548-7091&rft.eissn=1548-7105&rft.volume=22&rft.issue=4&rft.spage=677&rft.epage=680&rft_id=info:doi/10.1038%2Fs41592-025-02611-8&rft.externalDBID=n%2Fa&rft.externalDocID=10_1038_s41592_025_02611_8
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1548-7091&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1548-7091&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1548-7091&client=summon