Variational Progressive-Transfer Network for Soft Sensing of Multirate Industrial Processes
Deep-learning-based soft sensors have been extensively developed for predicting key quality or performance variables in industrial processes. However, most approaches assume that data are uniformly sampled while the multiple variables are often acquired at different rates in practical processes. Thi...
        Saved in:
      
    
          | Published in | IEEE transactions on cybernetics Vol. 52; no. 12; pp. 12882 - 12892 | 
|---|---|
| Main Authors | , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        Piscataway
          IEEE
    
        01.12.2022
     The Institute of Electrical and Electronics Engineers, Inc. (IEEE)  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 2168-2267 2168-2275 2168-2275  | 
| DOI | 10.1109/TCYB.2021.3090996 | 
Cover
| Abstract | Deep-learning-based soft sensors have been extensively developed for predicting key quality or performance variables in industrial processes. However, most approaches assume that data are uniformly sampled while the multiple variables are often acquired at different rates in practical processes. This article designed a progressive transfer strategy, based on which a variational progressive-transfer network (VPTN) method is proposed for the soft sensor development of industrial multirate processes. In VPTN, the multirate data are first separated into multiple data chunks where the variables within each chunk are acquired at a uniform rate. Then, a variational multichunk data modeling framework is developed to model the multiple chunks in a unified fashion through deep variational structures. The base models, including the unsupervised ones with only partial process variables and the supervised soft sensor model share a similar network structure, such that the subsequent transfer strategy can be readily implemented. Finally, a progressive transfer learning strategy is designed to transfer the model parameters from the fastest sampled data chunk to the slowest one in a progressive manner. Thus, the knowledge from various data chunks can be sequentially explored and transferred to enhance the performance of the terminal soft sensor model. Case studies on both a debutanizer column dataset and a real coal mill dataset in a thermal power plant validate the performance of the proposed method. | 
    
|---|---|
| AbstractList | Deep-learning-based soft sensors have been extensively developed for predicting key quality or performance variables in industrial processes. However, most approaches assume that data are uniformly sampled while the multiple variables are often acquired at different rates in practical processes. This article designed a progressive transfer strategy, based on which a variational progressive-transfer network (VPTN) method is proposed for the soft sensor development of industrial multirate processes. In VPTN, the multirate data are first separated into multiple data chunks where the variables within each chunk are acquired at a uniform rate. Then, a variational multichunk data modeling framework is developed to model the multiple chunks in a unified fashion through deep variational structures. The base models, including the unsupervised ones with only partial process variables and the supervised soft sensor model share a similar network structure, such that the subsequent transfer strategy can be readily implemented. Finally, a progressive transfer learning strategy is designed to transfer the model parameters from the fastest sampled data chunk to the slowest one in a progressive manner. Thus, the knowledge from various data chunks can be sequentially explored and transferred to enhance the performance of the terminal soft sensor model. Case studies on both a debutanizer column dataset and a real coal mill dataset in a thermal power plant validate the performance of the proposed method. Deep-learning-based soft sensors have been extensively developed for predicting key quality or performance variables in industrial processes. However, most approaches assume that data are uniformly sampled while the multiple variables are often acquired at different rates in practical processes. This article designed a progressive transfer strategy, based on which a variational progressive-transfer network (VPTN) method is proposed for the soft sensor development of industrial multirate processes. In VPTN, the multirate data are first separated into multiple data chunks where the variables within each chunk are acquired at a uniform rate. Then, a variational multichunk data modeling framework is developed to model the multiple chunks in a unified fashion through deep variational structures. The base models, including the unsupervised ones with only partial process variables and the supervised soft sensor model share a similar network structure, such that the subsequent transfer strategy can be readily implemented. Finally, a progressive transfer learning strategy is designed to transfer the model parameters from the fastest sampled data chunk to the slowest one in a progressive manner. Thus, the knowledge from various data chunks can be sequentially explored and transferred to enhance the performance of the terminal soft sensor model. Case studies on both a debutanizer column dataset and a real coal mill dataset in a thermal power plant validate the performance of the proposed method.Deep-learning-based soft sensors have been extensively developed for predicting key quality or performance variables in industrial processes. However, most approaches assume that data are uniformly sampled while the multiple variables are often acquired at different rates in practical processes. This article designed a progressive transfer strategy, based on which a variational progressive-transfer network (VPTN) method is proposed for the soft sensor development of industrial multirate processes. In VPTN, the multirate data are first separated into multiple data chunks where the variables within each chunk are acquired at a uniform rate. Then, a variational multichunk data modeling framework is developed to model the multiple chunks in a unified fashion through deep variational structures. The base models, including the unsupervised ones with only partial process variables and the supervised soft sensor model share a similar network structure, such that the subsequent transfer strategy can be readily implemented. Finally, a progressive transfer learning strategy is designed to transfer the model parameters from the fastest sampled data chunk to the slowest one in a progressive manner. Thus, the knowledge from various data chunks can be sequentially explored and transferred to enhance the performance of the terminal soft sensor model. Case studies on both a debutanizer column dataset and a real coal mill dataset in a thermal power plant validate the performance of the proposed method.  | 
    
| Author | Huang, Biao Chai, Zheng Zhao, Chunhui  | 
    
| Author_xml | – sequence: 1 givenname: Zheng orcidid: 0000-0001-9823-2990 surname: Chai fullname: Chai, Zheng email: chaizheng@zju.edu.cn organization: State Key Laboratory of Industrial Control Technology, College of Control Science and Engineering, Zhejiang University, Hangzhou, China – sequence: 2 givenname: Chunhui orcidid: 0000-0002-0254-5763 surname: Zhao fullname: Zhao, Chunhui email: chhzhao@zju.edu.cn organization: State Key Laboratory of Industrial Control Technology, College of Control Science and Engineering, Zhejiang University, Hangzhou, China – sequence: 3 givenname: Biao orcidid: 0000-0001-9082-2216 surname: Huang fullname: Huang, Biao email: biao.huang@ualberta.ca organization: Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Canada  | 
    
| BookMark | eNp9kctOAyEYRonRWK19AONmEjdupnIpAyy18dKkXpJWE-Niwkz_aajjUIHR-PbS1nThQjYQON8h8B2i3cY2gNAxwX1CsDqfDl8u-xRT0mdYYaWyHXRASSZTSgXf3a4z0UE97xc4Dhm3lNxHHTZgXEjBD9Drs3ZGB2MbXSePzs4deG8-IZ063fgKXHIP4cu6t6SyLpnYKiQTaLxp5omtkru2DsbpAMmombU-RNXaUkYJ-CO0V-naQ-937qKn66vp8DYdP9yMhhfjtGQ0C2k545DpQhZK8apQMhMUq2JGlMKkKAoWzyrNQBYkywAGVApMJdYzoJhrJinrorONd-nsRws-5O_Gl1DXugHb-pxyrgZsIDCP6OkfdGFbF98eKcEEj3fzlVBsqNJZ7x1UeWnC-pOC06bOCc5XFeSrCvJVBflvBTFJ_iSXzrxr9_1v5mSTMQCw5RXHUjLMfgBzGZId | 
    
| CODEN | ITCEB8 | 
    
| CitedBy_id | crossref_primary_10_1007_s11771_023_5448_8 crossref_primary_10_1016_j_jprocont_2025_103408 crossref_primary_10_1016_j_energy_2024_131522 crossref_primary_10_1109_JSEN_2023_3279203 crossref_primary_10_1109_TII_2023_3275700 crossref_primary_10_1002_cjce_25080 crossref_primary_10_1016_j_knosys_2024_111491 crossref_primary_10_1109_TASE_2021_3132037 crossref_primary_10_1016_j_ress_2023_109602 crossref_primary_10_1016_j_patcog_2023_109943 crossref_primary_10_1109_JSEN_2024_3381837 crossref_primary_10_1109_TIM_2022_3217563 crossref_primary_10_1109_JAS_2024_124902 crossref_primary_10_1016_j_ins_2023_119001 crossref_primary_10_1109_TIM_2023_3331407 crossref_primary_10_1016_j_eswa_2023_123078 crossref_primary_10_1109_TCYB_2023_3298838 crossref_primary_10_1016_j_jprocont_2022_06_011 crossref_primary_10_1016_j_jprocont_2023_01_012 crossref_primary_10_1109_TCYB_2024_3365068 crossref_primary_10_1109_TII_2024_3359444 crossref_primary_10_1109_TSMC_2023_3322195 crossref_primary_10_1360_SSI_2022_0328 crossref_primary_10_1109_TII_2023_3272690 crossref_primary_10_1109_TII_2023_3330342 crossref_primary_10_1109_TIM_2021_3129879 crossref_primary_10_1016_j_chemolab_2025_105387 crossref_primary_10_1016_j_cjche_2024_01_025 crossref_primary_10_1016_j_jprocont_2025_103373 crossref_primary_10_1109_TIE_2022_3215448 crossref_primary_10_1109_TIM_2023_3291796 crossref_primary_10_1109_TIM_2024_3353844 crossref_primary_10_1109_TCST_2024_3483431  | 
    
| Cites_doi | 10.1021/ie801084e 10.1016/j.conengprac.2019.104198 10.1109/TNNLS.2017.2749412 10.1109/TCYB.2019.2895238 10.1109/TNNLS.2019.2957366 10.1109/TIE.2016.2627020 10.1016/j.jprocont.2014.01.012 10.1109/TASE.2019.2957232 10.1016/j.bej.2018.04.015 10.1109/TII.2018.2864759 10.1109/TIM.2020.2991573 10.1016/j.jprocont.2020.05.012 10.1109/TIE.2018.2864703 10.1002/aic.11405 10.1109/TII.2019.2915559 10.1111/1467-9868.00196 10.1016/j.compchemeng.2020.106842 10.1016/S0959-1524(99)00010-4 10.3390/s19081826 10.1109/JAS.2021.1003826 10.1016/j.chemolab.2018.07.002 10.1016/j.jprocont.2019.11.007 10.1109/TCYB.2019.2948202 10.1109/TII.2019.2951622 10.1109/TKDE.2009.191 10.1109/TCYB.2016.2646059  | 
    
| ContentType | Journal Article | 
    
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 | 
    
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 | 
    
| DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 7TB 8FD F28 FR3 H8D JQ2 L7M L~C L~D 7X8  | 
    
| DOI | 10.1109/TCYB.2021.3090996 | 
    
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts  Academic Computer and Information Systems Abstracts Professional MEDLINE - Academic  | 
    
| DatabaseTitle | CrossRef Aerospace Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Computer and Information Systems Abstracts Professional MEDLINE - Academic  | 
    
| DatabaseTitleList | MEDLINE - Academic Aerospace Database  | 
    
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Sciences (General) | 
    
| EISSN | 2168-2275 | 
    
| EndPage | 12892 | 
    
| ExternalDocumentID | 10_1109_TCYB_2021_3090996 9508830  | 
    
| Genre | orig-research | 
    
| GrantInformation_xml | – fundername: Research Project of the State Key Laboratory of Industrial Control Technology, Zhejiang University, China grantid: ICT2021A15 funderid: 10.13039/501100011311 – fundername: State Key Laboratory of Synthetical Automation for Process Industries grantid: 2020-KF-21-07 funderid: 10.13039/501100011248 – fundername: NSFC-Zhejiang Joint Fund for the Integration of Industrialization and Informatization grantid: U1709211 funderid: 10.13039/501100001809  | 
    
| GroupedDBID | 0R~ 4.4 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACIWK AENEX AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD HZ~ IFIPE IPLJI JAVBF M43 O9- OCL PQQKQ RIA RIE RNS AAYXX CITATION 7SC 7SP 7TB 8FD F28 FR3 H8D JQ2 L7M L~C L~D 7X8  | 
    
| ID | FETCH-LOGICAL-c326t-cd5e6ab8b995fb9867209bd19901bbb36abfa3e8b166ee42870280ade205a3823 | 
    
| IEDL.DBID | RIE | 
    
| ISSN | 2168-2267 2168-2275  | 
    
| IngestDate | Sat Sep 27 23:09:06 EDT 2025 Mon Jun 30 03:11:17 EDT 2025 Wed Oct 01 01:36:42 EDT 2025 Thu Apr 24 23:08:23 EDT 2025 Wed Aug 27 02:14:18 EDT 2025  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 12 | 
    
| Language | English | 
    
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037  | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c326t-cd5e6ab8b995fb9867209bd19901bbb36abfa3e8b166ee42870280ade205a3823 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23  | 
    
| ORCID | 0000-0001-9082-2216 0000-0001-9823-2990 0000-0002-0254-5763  | 
    
| PMID | 34357875 | 
    
| PQID | 2737567252 | 
    
| PQPubID | 85422 | 
    
| PageCount | 11 | 
    
| ParticipantIDs | crossref_citationtrail_10_1109_TCYB_2021_3090996 ieee_primary_9508830 proquest_miscellaneous_2559434705 proquest_journals_2737567252 crossref_primary_10_1109_TCYB_2021_3090996  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2022-12-01 | 
    
| PublicationDateYYYYMMDD | 2022-12-01 | 
    
| PublicationDate_xml | – month: 12 year: 2022 text: 2022-12-01 day: 01  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | Piscataway | 
    
| PublicationPlace_xml | – name: Piscataway | 
    
| PublicationTitle | IEEE transactions on cybernetics | 
    
| PublicationTitleAbbrev | TCYB | 
    
| PublicationYear | 2022 | 
    
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE)  | 
    
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)  | 
    
| References | ref13 ref12 ref14 goodfellow (ref6) 2016 ref31 ref32 ref10 ref2 ref1 ref17 ref19 zhao (ref34) 2020 ref18 zou (ref33) 2021 zhang (ref15) 2020; 50 ref24 ref26 ref25 ref20 feng (ref8) 2020 ref22 ref21 ref28 ref27 tan (ref23) 2018 ref29 fortuna (ref30) 2007 ref7 ref9 ref4 ref3 ref5 kingma (ref11) 2014 kingma (ref16) 2014  | 
    
| References_xml | – ident: ref14 doi: 10.1021/ie801084e – ident: ref17 doi: 10.1016/j.conengprac.2019.104198 – ident: ref3 doi: 10.1109/TNNLS.2017.2749412 – volume: 50 start-page: 2803 year: 2020 ident: ref15 article-title: Torus-event-based fault diagnosis for stochastic multirate time-varying systems with constrained fault publication-title: IEEE Trans Cybern doi: 10.1109/TCYB.2019.2895238 – year: 2020 ident: ref8 article-title: Dual attention-based encoder-decoder: A customized sequence-to-sequence learning for soft sensor development publication-title: IEEE Trans Neural Netw Learn Syst – ident: ref10 doi: 10.1109/TNNLS.2019.2957366 – ident: ref24 doi: 10.1109/TIE.2016.2627020 – ident: ref9 doi: 10.1016/j.jprocont.2014.01.012 – ident: ref26 doi: 10.1109/TASE.2019.2957232 – ident: ref18 doi: 10.1016/j.bej.2018.04.015 – year: 2016 ident: ref6 publication-title: Deep Learning – ident: ref27 doi: 10.1109/TII.2018.2864759 – ident: ref25 doi: 10.1109/TIM.2020.2991573 – ident: ref13 doi: 10.1016/j.jprocont.2020.05.012 – ident: ref31 doi: 10.1109/TIE.2018.2864703 – start-page: 1 year: 2014 ident: ref11 article-title: Auto-encoding variational Bayes publication-title: Proc Int Conf Learn Represent – ident: ref2 doi: 10.1002/aic.11405 – ident: ref5 doi: 10.1109/TII.2019.2915559 – start-page: 270 year: 2018 ident: ref23 article-title: A survey on deep transfer learning publication-title: Proc Int Conf Artif Neural Netw – start-page: 3581 year: 2014 ident: ref16 article-title: Semisupervised learning with deep generative models publication-title: Proc Adv Neural Inf Process Syst – ident: ref20 doi: 10.1111/1467-9868.00196 – ident: ref4 doi: 10.1016/j.compchemeng.2020.106842 – ident: ref21 doi: 10.1016/S0959-1524(99)00010-4 – year: 2007 ident: ref30 publication-title: Soft Sensors for Monitoring and Control of Industrial Processes – ident: ref28 doi: 10.3390/s19081826 – ident: ref32 doi: 10.1109/JAS.2021.1003826 – year: 2020 ident: ref34 article-title: Condition-driven data analytics and monitoring for wide-range nonstationary and transient continuous processes publication-title: IEEE Trans Autom Sci Eng – ident: ref19 doi: 10.1016/j.chemolab.2018.07.002 – year: 2021 ident: ref33 article-title: Energy-to-peak state estimation with intermittent measurement outliers: The single-output case publication-title: IEEE Trans Cybern – ident: ref29 doi: 10.1016/j.jprocont.2019.11.007 – ident: ref7 doi: 10.1109/TCYB.2019.2948202 – ident: ref12 doi: 10.1109/TII.2019.2951622 – ident: ref22 doi: 10.1109/TKDE.2009.191 – ident: ref1 doi: 10.1109/TCYB.2016.2646059  | 
    
| SSID | ssj0000816898 | 
    
| Score | 2.5096493 | 
    
| Snippet | Deep-learning-based soft sensors have been extensively developed for predicting key quality or performance variables in industrial processes. However, most... | 
    
| SourceID | proquest crossref ieee  | 
    
| SourceType | Aggregation Database Enrichment Source Index Database Publisher  | 
    
| StartPage | 12882 | 
    
| SubjectTerms | Adaptation models Analytical models Data models Datasets Deep learning multirate industrial processes Performance prediction Probabilistic logic Process variables progressive transfer learning Sensors soft sensor Task analysis Thermal power plants Transfer learning Uncertainty  | 
    
| Title | Variational Progressive-Transfer Network for Soft Sensing of Multirate Industrial Processes | 
    
| URI | https://ieeexplore.ieee.org/document/9508830 https://www.proquest.com/docview/2737567252 https://www.proquest.com/docview/2559434705  | 
    
| Volume | 52 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 2168-2275 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000816898 issn: 2168-2267 databaseCode: RIE dateStart: 20130101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS-RAEC7Ukxcfq7Lji17woGKPSefZRxVFFhTBB4qHkO5UPCgZcWY8-Out6vREWWXxFuhOSFPp1FddX9UHsBXbmlCyCmVoUyvJQxmpk9jKCGtygCHXwXK989l5enod_71Nbqdgr6uFQURHPsM-X7pcfjWwYz4q23eKpREF6NNZnra1Wt15ihOQcNK3ii4koYrMJzHDQO9fHd0dUjCown4UaAJFrFwUxdzphQmGnzySk1j58l92zuZkHs4mr9lyTB7745Hp27d_Ojj-dB0LMOdRpzhoP5NFmMLmFyz6fT0U27759M4S3N9Q8OwPCMUFk7eYJ_uK0jm1Gl_EeUscF4R2xSX9xMUlc-CbBzGohSvn5eYT4kMSRPhaBBwuw_XJ8dXRqfQCDNISqhtJWyWYliY3Wie10XmaqUCbKuRcmjEmorG6jDA3YZoiupypyoOyQhUkJScYV2CmGTT4G0SsSltllakyjRSBZqUqKTDM44oiNGXTugfBxAiF9d3JWSTjqXBRSqALNmHBJiy8CXuw293y3Lbm-N_kJbZDN9GboAfrE0sXfvMOC0J0WUJrTVQP_nTDtO04l1I2OBjTHIrE4ijOgmT1-yevwaziSgnHfFmHmdHLGDcIv4zMpvtw3wHAk-mH | 
    
| linkProvider | IEEE | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3BbtQwEB1V5QAXoBTEQilG4gAIbxPHTuJjW1Et0F0hdYuKOESxM-kBlEXdXQ58PTOON1SAELdIdqJYE2feeN7MA3iufUsoWaUy9bmX5KGctEZ7mWFLDjDlOliud57O8sm5fndhLrbg9VALg4iBfIZjvgy5_Gbh13xUdhAUSzMK0G8YrbXpq7WGE5UgIRHEbxVdSMIVRUxjpok9mB9_OqJwUKXjLLEEi1i7KNPc64Uphtd8UhBZ-ePPHNzNyR2Ybl60Z5l8Ga9Xbux__NbD8X9XchduR9wpDvsPZQe2sLsHO3FnL8WL2H765S58_kjhczwiFB-YvsVM2e8og1tr8UrMeuq4ILwrzug3Ls6YBd9dikUrQkEvt58Qv0RBRKxGwOV9OD95Mz-eyCjBID3hupX0jcG8dqWz1rTOlnmhEuualLNpzrmMxto6w9KleY4YsqaqTOoGVWJqTjE-gO1u0eFDEFrVvika1xQWKQYtalVTaFjqhmI05fN2BMnGCJWP_clZJuNrFeKUxFZswopNWEUTjuDVcMu3vjnHvybvsh2GidEEI9jbWLqK23dZEaYrDK3VqBE8G4Zp43E2pe5wsaY5FIvpTBeJefT3Jz-Fm5P59LQ6fTt7_xhuKa6bCDyYPdheXa3xCaGZldsPH_FPIcLs1A | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Variational+Progressive-Transfer+Network+for+Soft+Sensing+of+Multirate+Industrial+Processes&rft.jtitle=IEEE+transactions+on+cybernetics&rft.au=Chai%2C+Zheng&rft.au=Zhao%2C+Chunhui&rft.au=Huang%2C+Biao&rft.date=2022-12-01&rft.issn=2168-2267&rft.eissn=2168-2275&rft.volume=52&rft.issue=12&rft.spage=12882&rft.epage=12892&rft_id=info:doi/10.1109%2FTCYB.2021.3090996&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TCYB_2021_3090996 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2168-2267&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2168-2267&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2168-2267&client=summon |