Variational Progressive-Transfer Network for Soft Sensing of Multirate Industrial Processes

Deep-learning-based soft sensors have been extensively developed for predicting key quality or performance variables in industrial processes. However, most approaches assume that data are uniformly sampled while the multiple variables are often acquired at different rates in practical processes. Thi...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on cybernetics Vol. 52; no. 12; pp. 12882 - 12892
Main Authors Chai, Zheng, Zhao, Chunhui, Huang, Biao
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 01.12.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN2168-2267
2168-2275
2168-2275
DOI10.1109/TCYB.2021.3090996

Cover

Abstract Deep-learning-based soft sensors have been extensively developed for predicting key quality or performance variables in industrial processes. However, most approaches assume that data are uniformly sampled while the multiple variables are often acquired at different rates in practical processes. This article designed a progressive transfer strategy, based on which a variational progressive-transfer network (VPTN) method is proposed for the soft sensor development of industrial multirate processes. In VPTN, the multirate data are first separated into multiple data chunks where the variables within each chunk are acquired at a uniform rate. Then, a variational multichunk data modeling framework is developed to model the multiple chunks in a unified fashion through deep variational structures. The base models, including the unsupervised ones with only partial process variables and the supervised soft sensor model share a similar network structure, such that the subsequent transfer strategy can be readily implemented. Finally, a progressive transfer learning strategy is designed to transfer the model parameters from the fastest sampled data chunk to the slowest one in a progressive manner. Thus, the knowledge from various data chunks can be sequentially explored and transferred to enhance the performance of the terminal soft sensor model. Case studies on both a debutanizer column dataset and a real coal mill dataset in a thermal power plant validate the performance of the proposed method.
AbstractList Deep-learning-based soft sensors have been extensively developed for predicting key quality or performance variables in industrial processes. However, most approaches assume that data are uniformly sampled while the multiple variables are often acquired at different rates in practical processes. This article designed a progressive transfer strategy, based on which a variational progressive-transfer network (VPTN) method is proposed for the soft sensor development of industrial multirate processes. In VPTN, the multirate data are first separated into multiple data chunks where the variables within each chunk are acquired at a uniform rate. Then, a variational multichunk data modeling framework is developed to model the multiple chunks in a unified fashion through deep variational structures. The base models, including the unsupervised ones with only partial process variables and the supervised soft sensor model share a similar network structure, such that the subsequent transfer strategy can be readily implemented. Finally, a progressive transfer learning strategy is designed to transfer the model parameters from the fastest sampled data chunk to the slowest one in a progressive manner. Thus, the knowledge from various data chunks can be sequentially explored and transferred to enhance the performance of the terminal soft sensor model. Case studies on both a debutanizer column dataset and a real coal mill dataset in a thermal power plant validate the performance of the proposed method.
Deep-learning-based soft sensors have been extensively developed for predicting key quality or performance variables in industrial processes. However, most approaches assume that data are uniformly sampled while the multiple variables are often acquired at different rates in practical processes. This article designed a progressive transfer strategy, based on which a variational progressive-transfer network (VPTN) method is proposed for the soft sensor development of industrial multirate processes. In VPTN, the multirate data are first separated into multiple data chunks where the variables within each chunk are acquired at a uniform rate. Then, a variational multichunk data modeling framework is developed to model the multiple chunks in a unified fashion through deep variational structures. The base models, including the unsupervised ones with only partial process variables and the supervised soft sensor model share a similar network structure, such that the subsequent transfer strategy can be readily implemented. Finally, a progressive transfer learning strategy is designed to transfer the model parameters from the fastest sampled data chunk to the slowest one in a progressive manner. Thus, the knowledge from various data chunks can be sequentially explored and transferred to enhance the performance of the terminal soft sensor model. Case studies on both a debutanizer column dataset and a real coal mill dataset in a thermal power plant validate the performance of the proposed method.Deep-learning-based soft sensors have been extensively developed for predicting key quality or performance variables in industrial processes. However, most approaches assume that data are uniformly sampled while the multiple variables are often acquired at different rates in practical processes. This article designed a progressive transfer strategy, based on which a variational progressive-transfer network (VPTN) method is proposed for the soft sensor development of industrial multirate processes. In VPTN, the multirate data are first separated into multiple data chunks where the variables within each chunk are acquired at a uniform rate. Then, a variational multichunk data modeling framework is developed to model the multiple chunks in a unified fashion through deep variational structures. The base models, including the unsupervised ones with only partial process variables and the supervised soft sensor model share a similar network structure, such that the subsequent transfer strategy can be readily implemented. Finally, a progressive transfer learning strategy is designed to transfer the model parameters from the fastest sampled data chunk to the slowest one in a progressive manner. Thus, the knowledge from various data chunks can be sequentially explored and transferred to enhance the performance of the terminal soft sensor model. Case studies on both a debutanizer column dataset and a real coal mill dataset in a thermal power plant validate the performance of the proposed method.
Author Huang, Biao
Chai, Zheng
Zhao, Chunhui
Author_xml – sequence: 1
  givenname: Zheng
  orcidid: 0000-0001-9823-2990
  surname: Chai
  fullname: Chai, Zheng
  email: chaizheng@zju.edu.cn
  organization: State Key Laboratory of Industrial Control Technology, College of Control Science and Engineering, Zhejiang University, Hangzhou, China
– sequence: 2
  givenname: Chunhui
  orcidid: 0000-0002-0254-5763
  surname: Zhao
  fullname: Zhao, Chunhui
  email: chhzhao@zju.edu.cn
  organization: State Key Laboratory of Industrial Control Technology, College of Control Science and Engineering, Zhejiang University, Hangzhou, China
– sequence: 3
  givenname: Biao
  orcidid: 0000-0001-9082-2216
  surname: Huang
  fullname: Huang, Biao
  email: biao.huang@ualberta.ca
  organization: Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Canada
BookMark eNp9kctOAyEYRonRWK19AONmEjdupnIpAyy18dKkXpJWE-Niwkz_aajjUIHR-PbS1nThQjYQON8h8B2i3cY2gNAxwX1CsDqfDl8u-xRT0mdYYaWyHXRASSZTSgXf3a4z0UE97xc4Dhm3lNxHHTZgXEjBD9Drs3ZGB2MbXSePzs4deG8-IZ063fgKXHIP4cu6t6SyLpnYKiQTaLxp5omtkru2DsbpAMmombU-RNXaUkYJ-CO0V-naQ-937qKn66vp8DYdP9yMhhfjtGQ0C2k545DpQhZK8apQMhMUq2JGlMKkKAoWzyrNQBYkywAGVApMJdYzoJhrJinrorONd-nsRws-5O_Gl1DXugHb-pxyrgZsIDCP6OkfdGFbF98eKcEEj3fzlVBsqNJZ7x1UeWnC-pOC06bOCc5XFeSrCvJVBflvBTFJ_iSXzrxr9_1v5mSTMQCw5RXHUjLMfgBzGZId
CODEN ITCEB8
CitedBy_id crossref_primary_10_1007_s11771_023_5448_8
crossref_primary_10_1016_j_jprocont_2025_103408
crossref_primary_10_1016_j_energy_2024_131522
crossref_primary_10_1109_JSEN_2023_3279203
crossref_primary_10_1109_TII_2023_3275700
crossref_primary_10_1002_cjce_25080
crossref_primary_10_1016_j_knosys_2024_111491
crossref_primary_10_1109_TASE_2021_3132037
crossref_primary_10_1016_j_ress_2023_109602
crossref_primary_10_1016_j_patcog_2023_109943
crossref_primary_10_1109_JSEN_2024_3381837
crossref_primary_10_1109_TIM_2022_3217563
crossref_primary_10_1109_JAS_2024_124902
crossref_primary_10_1016_j_ins_2023_119001
crossref_primary_10_1109_TIM_2023_3331407
crossref_primary_10_1016_j_eswa_2023_123078
crossref_primary_10_1109_TCYB_2023_3298838
crossref_primary_10_1016_j_jprocont_2022_06_011
crossref_primary_10_1016_j_jprocont_2023_01_012
crossref_primary_10_1109_TCYB_2024_3365068
crossref_primary_10_1109_TII_2024_3359444
crossref_primary_10_1109_TSMC_2023_3322195
crossref_primary_10_1360_SSI_2022_0328
crossref_primary_10_1109_TII_2023_3272690
crossref_primary_10_1109_TII_2023_3330342
crossref_primary_10_1109_TIM_2021_3129879
crossref_primary_10_1016_j_chemolab_2025_105387
crossref_primary_10_1016_j_cjche_2024_01_025
crossref_primary_10_1016_j_jprocont_2025_103373
crossref_primary_10_1109_TIE_2022_3215448
crossref_primary_10_1109_TIM_2023_3291796
crossref_primary_10_1109_TIM_2024_3353844
crossref_primary_10_1109_TCST_2024_3483431
Cites_doi 10.1021/ie801084e
10.1016/j.conengprac.2019.104198
10.1109/TNNLS.2017.2749412
10.1109/TCYB.2019.2895238
10.1109/TNNLS.2019.2957366
10.1109/TIE.2016.2627020
10.1016/j.jprocont.2014.01.012
10.1109/TASE.2019.2957232
10.1016/j.bej.2018.04.015
10.1109/TII.2018.2864759
10.1109/TIM.2020.2991573
10.1016/j.jprocont.2020.05.012
10.1109/TIE.2018.2864703
10.1002/aic.11405
10.1109/TII.2019.2915559
10.1111/1467-9868.00196
10.1016/j.compchemeng.2020.106842
10.1016/S0959-1524(99)00010-4
10.3390/s19081826
10.1109/JAS.2021.1003826
10.1016/j.chemolab.2018.07.002
10.1016/j.jprocont.2019.11.007
10.1109/TCYB.2019.2948202
10.1109/TII.2019.2951622
10.1109/TKDE.2009.191
10.1109/TCYB.2016.2646059
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
7TB
8FD
F28
FR3
H8D
JQ2
L7M
L~C
L~D
7X8
DOI 10.1109/TCYB.2021.3090996
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitle CrossRef
Aerospace Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
Aerospace Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 2168-2275
EndPage 12892
ExternalDocumentID 10_1109_TCYB_2021_3090996
9508830
Genre orig-research
GrantInformation_xml – fundername: Research Project of the State Key Laboratory of Industrial Control Technology, Zhejiang University, China
  grantid: ICT2021A15
  funderid: 10.13039/501100011311
– fundername: State Key Laboratory of Synthetical Automation for Process Industries
  grantid: 2020-KF-21-07
  funderid: 10.13039/501100011248
– fundername: NSFC-Zhejiang Joint Fund for the Integration of Industrialization and Informatization
  grantid: U1709211
  funderid: 10.13039/501100001809
GroupedDBID 0R~
4.4
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACIWK
AENEX
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
HZ~
IFIPE
IPLJI
JAVBF
M43
O9-
OCL
PQQKQ
RIA
RIE
RNS
AAYXX
CITATION
7SC
7SP
7TB
8FD
F28
FR3
H8D
JQ2
L7M
L~C
L~D
7X8
ID FETCH-LOGICAL-c326t-cd5e6ab8b995fb9867209bd19901bbb36abfa3e8b166ee42870280ade205a3823
IEDL.DBID RIE
ISSN 2168-2267
2168-2275
IngestDate Sat Sep 27 23:09:06 EDT 2025
Mon Jun 30 03:11:17 EDT 2025
Wed Oct 01 01:36:42 EDT 2025
Thu Apr 24 23:08:23 EDT 2025
Wed Aug 27 02:14:18 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c326t-cd5e6ab8b995fb9867209bd19901bbb36abfa3e8b166ee42870280ade205a3823
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-9082-2216
0000-0001-9823-2990
0000-0002-0254-5763
PMID 34357875
PQID 2737567252
PQPubID 85422
PageCount 11
ParticipantIDs crossref_citationtrail_10_1109_TCYB_2021_3090996
ieee_primary_9508830
proquest_miscellaneous_2559434705
proquest_journals_2737567252
crossref_primary_10_1109_TCYB_2021_3090996
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-12-01
PublicationDateYYYYMMDD 2022-12-01
PublicationDate_xml – month: 12
  year: 2022
  text: 2022-12-01
  day: 01
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE transactions on cybernetics
PublicationTitleAbbrev TCYB
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref14
goodfellow (ref6) 2016
ref31
ref32
ref10
ref2
ref1
ref17
ref19
zhao (ref34) 2020
ref18
zou (ref33) 2021
zhang (ref15) 2020; 50
ref24
ref26
ref25
ref20
feng (ref8) 2020
ref22
ref21
ref28
ref27
tan (ref23) 2018
ref29
fortuna (ref30) 2007
ref7
ref9
ref4
ref3
ref5
kingma (ref11) 2014
kingma (ref16) 2014
References_xml – ident: ref14
  doi: 10.1021/ie801084e
– ident: ref17
  doi: 10.1016/j.conengprac.2019.104198
– ident: ref3
  doi: 10.1109/TNNLS.2017.2749412
– volume: 50
  start-page: 2803
  year: 2020
  ident: ref15
  article-title: Torus-event-based fault diagnosis for stochastic multirate time-varying systems with constrained fault
  publication-title: IEEE Trans Cybern
  doi: 10.1109/TCYB.2019.2895238
– year: 2020
  ident: ref8
  article-title: Dual attention-based encoder-decoder: A customized sequence-to-sequence learning for soft sensor development
  publication-title: IEEE Trans Neural Netw Learn Syst
– ident: ref10
  doi: 10.1109/TNNLS.2019.2957366
– ident: ref24
  doi: 10.1109/TIE.2016.2627020
– ident: ref9
  doi: 10.1016/j.jprocont.2014.01.012
– ident: ref26
  doi: 10.1109/TASE.2019.2957232
– ident: ref18
  doi: 10.1016/j.bej.2018.04.015
– year: 2016
  ident: ref6
  publication-title: Deep Learning
– ident: ref27
  doi: 10.1109/TII.2018.2864759
– ident: ref25
  doi: 10.1109/TIM.2020.2991573
– ident: ref13
  doi: 10.1016/j.jprocont.2020.05.012
– ident: ref31
  doi: 10.1109/TIE.2018.2864703
– start-page: 1
  year: 2014
  ident: ref11
  article-title: Auto-encoding variational Bayes
  publication-title: Proc Int Conf Learn Represent
– ident: ref2
  doi: 10.1002/aic.11405
– ident: ref5
  doi: 10.1109/TII.2019.2915559
– start-page: 270
  year: 2018
  ident: ref23
  article-title: A survey on deep transfer learning
  publication-title: Proc Int Conf Artif Neural Netw
– start-page: 3581
  year: 2014
  ident: ref16
  article-title: Semisupervised learning with deep generative models
  publication-title: Proc Adv Neural Inf Process Syst
– ident: ref20
  doi: 10.1111/1467-9868.00196
– ident: ref4
  doi: 10.1016/j.compchemeng.2020.106842
– ident: ref21
  doi: 10.1016/S0959-1524(99)00010-4
– year: 2007
  ident: ref30
  publication-title: Soft Sensors for Monitoring and Control of Industrial Processes
– ident: ref28
  doi: 10.3390/s19081826
– ident: ref32
  doi: 10.1109/JAS.2021.1003826
– year: 2020
  ident: ref34
  article-title: Condition-driven data analytics and monitoring for wide-range nonstationary and transient continuous processes
  publication-title: IEEE Trans Autom Sci Eng
– ident: ref19
  doi: 10.1016/j.chemolab.2018.07.002
– year: 2021
  ident: ref33
  article-title: Energy-to-peak state estimation with intermittent measurement outliers: The single-output case
  publication-title: IEEE Trans Cybern
– ident: ref29
  doi: 10.1016/j.jprocont.2019.11.007
– ident: ref7
  doi: 10.1109/TCYB.2019.2948202
– ident: ref12
  doi: 10.1109/TII.2019.2951622
– ident: ref22
  doi: 10.1109/TKDE.2009.191
– ident: ref1
  doi: 10.1109/TCYB.2016.2646059
SSID ssj0000816898
Score 2.5096493
Snippet Deep-learning-based soft sensors have been extensively developed for predicting key quality or performance variables in industrial processes. However, most...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 12882
SubjectTerms Adaptation models
Analytical models
Data models
Datasets
Deep learning
multirate industrial processes
Performance prediction
Probabilistic logic
Process variables
progressive transfer learning
Sensors
soft sensor
Task analysis
Thermal power plants
Transfer learning
Uncertainty
Title Variational Progressive-Transfer Network for Soft Sensing of Multirate Industrial Processes
URI https://ieeexplore.ieee.org/document/9508830
https://www.proquest.com/docview/2737567252
https://www.proquest.com/docview/2559434705
Volume 52
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 2168-2275
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816898
  issn: 2168-2267
  databaseCode: RIE
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS-RAEC7Ukxcfq7Lji17woGKPSefZRxVFFhTBB4qHkO5UPCgZcWY8-Out6vREWWXxFuhOSFPp1FddX9UHsBXbmlCyCmVoUyvJQxmpk9jKCGtygCHXwXK989l5enod_71Nbqdgr6uFQURHPsM-X7pcfjWwYz4q23eKpREF6NNZnra1Wt15ihOQcNK3ii4koYrMJzHDQO9fHd0dUjCown4UaAJFrFwUxdzphQmGnzySk1j58l92zuZkHs4mr9lyTB7745Hp27d_Ojj-dB0LMOdRpzhoP5NFmMLmFyz6fT0U27759M4S3N9Q8OwPCMUFk7eYJ_uK0jm1Gl_EeUscF4R2xSX9xMUlc-CbBzGohSvn5eYT4kMSRPhaBBwuw_XJ8dXRqfQCDNISqhtJWyWYliY3Wie10XmaqUCbKuRcmjEmorG6jDA3YZoiupypyoOyQhUkJScYV2CmGTT4G0SsSltllakyjRSBZqUqKTDM44oiNGXTugfBxAiF9d3JWSTjqXBRSqALNmHBJiy8CXuw293y3Lbm-N_kJbZDN9GboAfrE0sXfvMOC0J0WUJrTVQP_nTDtO04l1I2OBjTHIrE4ijOgmT1-yevwaziSgnHfFmHmdHLGDcIv4zMpvtw3wHAk-mH
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3BbtQwEB1V5QAXoBTEQilG4gAIbxPHTuJjW1Et0F0hdYuKOESxM-kBlEXdXQ58PTOON1SAELdIdqJYE2feeN7MA3iufUsoWaUy9bmX5KGctEZ7mWFLDjDlOliud57O8sm5fndhLrbg9VALg4iBfIZjvgy5_Gbh13xUdhAUSzMK0G8YrbXpq7WGE5UgIRHEbxVdSMIVRUxjpok9mB9_OqJwUKXjLLEEi1i7KNPc64Uphtd8UhBZ-ePPHNzNyR2Ybl60Z5l8Ga9Xbux__NbD8X9XchduR9wpDvsPZQe2sLsHO3FnL8WL2H765S58_kjhczwiFB-YvsVM2e8og1tr8UrMeuq4ILwrzug3Ls6YBd9dikUrQkEvt58Qv0RBRKxGwOV9OD95Mz-eyCjBID3hupX0jcG8dqWz1rTOlnmhEuualLNpzrmMxto6w9KleY4YsqaqTOoGVWJqTjE-gO1u0eFDEFrVvika1xQWKQYtalVTaFjqhmI05fN2BMnGCJWP_clZJuNrFeKUxFZswopNWEUTjuDVcMu3vjnHvybvsh2GidEEI9jbWLqK23dZEaYrDK3VqBE8G4Zp43E2pe5wsaY5FIvpTBeJefT3Jz-Fm5P59LQ6fTt7_xhuKa6bCDyYPdheXa3xCaGZldsPH_FPIcLs1A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Variational+Progressive-Transfer+Network+for+Soft+Sensing+of+Multirate+Industrial+Processes&rft.jtitle=IEEE+transactions+on+cybernetics&rft.au=Chai%2C+Zheng&rft.au=Zhao%2C+Chunhui&rft.au=Huang%2C+Biao&rft.date=2022-12-01&rft.issn=2168-2267&rft.eissn=2168-2275&rft.volume=52&rft.issue=12&rft.spage=12882&rft.epage=12892&rft_id=info:doi/10.1109%2FTCYB.2021.3090996&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TCYB_2021_3090996
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2168-2267&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2168-2267&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2168-2267&client=summon