FPGA-Based Experimental Investigation of a Quasi-Centralized Model Predictive Control for Back-to-Back Converters
Voltage source back-to-back power converters are widely used in grid-tied applications. This paper presents a quasi-centralized direct model predictive control (QC-DMPC) scheme for back-to-back converter control without a dc-link outer-loop controller. Furthermore, the QC-DMPC is experimentally comp...
Saved in:
Published in | IEEE transactions on power electronics Vol. 31; no. 1; pp. 662 - 674 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.01.2016
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 0885-8993 1941-0107 |
DOI | 10.1109/TPEL.2015.2397695 |
Cover
Summary: | Voltage source back-to-back power converters are widely used in grid-tied applications. This paper presents a quasi-centralized direct model predictive control (QC-DMPC) scheme for back-to-back converter control without a dc-link outer-loop controller. Furthermore, the QC-DMPC is experimentally compared with a conventional proportional-integration (PI) dc-link controller-based DMPC (PI-DMPC) scheme. For the QC-DMPC scheme, the dc-link voltage is directly controlled by a grid-side predictive controller using a dynamic reference generation concept and load-side power estimation. For the PI-DMPC scheme, the dc-link voltage is controlled by an external PI controller. Both schemes are implemented on a field programmable gate array (FPGA)-based platform. Effectiveness of the proposed QC-DMPC is verified by both simulation and experimental data. Moreover, FPGA implementation issues (resource usage and timing information), dc-link control performance, and robustness to parameter variation of the two DMPC schemes are compared in detail. The results emphasize that the QC-DMPC may outperform the PI-DMPC scheme in normal operation but with a slightly higher usage of FPGA resources. However, PI-DMPC scheme is more robust when parameter variations are considered. |
---|---|
Bibliography: | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0885-8993 1941-0107 |
DOI: | 10.1109/TPEL.2015.2397695 |