Numerical modeling of particle deposition in a realistic respiratory airway using CFD–DPM and genetic algorithm
In this study, a realistic model of the respiratory tract obtained from CT medical images was used to solve the flow field and particle motion using the Eulerian–Lagrangian approach to obtain the maximum particle deposition in the bronchial tree for the main purpose of optimizing the performance of...
Saved in:
| Published in | Biomechanics and modeling in mechanobiology Vol. 23; no. 5; pp. 1661 - 1677 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.10.2024
Springer Nature B.V |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1617-7959 1617-7940 1617-7940 |
| DOI | 10.1007/s10237-024-01861-3 |
Cover
| Abstract | In this study, a realistic model of the respiratory tract obtained from CT medical images was used to solve the flow field and particle motion using the Eulerian–Lagrangian approach to obtain the maximum particle deposition in the bronchial tree for the main purpose of optimizing the performance of drug delivery devices. The effects of different parameters, including particle diameter, particle shape factor, and air velocity, on the airflow field and particle deposition pattern in different zones of the lung were investigated. In addition, a genetic algorithm was employed to obtain the maximum particle deposition in the bronchial tree and the effect of the aforementioned parameters on particle deposition. Reverse flow, vortex formation, and laryngeal jet all affect the airflow structure and particle deposition pattern. The mouth–throat region had the highest deposition fraction at various flow rates. A change in the deposition pattern with an increased deposition fraction in the throat was observed owing to the increased diameter and shape factor of the particles, resulting from the higher inertia and drag force, respectively. The particle deposition analysis showed that three parameters, shape factor, diameter, and velocity, are directly related to particle deposition, and the diameter is the most effective parameter for particle deposition, with an effect of 60% compared to the shape factor and velocity. Finally, the prediction of the genetic algorithm reported a maximum particle deposition in the bronchial tree of 17%, whereas, based on the numerical results, the maximum particle deposition was reported to be 16%. Therefore, there is a 1% difference between the prediction of the genetic algorithm and the numerical results, which indicates the high accuracy of the prediction of the genetic algorithm. |
|---|---|
| AbstractList | In this study, a realistic model of the respiratory tract obtained from CT medical images was used to solve the flow field and particle motion using the Eulerian–Lagrangian approach to obtain the maximum particle deposition in the bronchial tree for the main purpose of optimizing the performance of drug delivery devices. The effects of different parameters, including particle diameter, particle shape factor, and air velocity, on the airflow field and particle deposition pattern in different zones of the lung were investigated. In addition, a genetic algorithm was employed to obtain the maximum particle deposition in the bronchial tree and the effect of the aforementioned parameters on particle deposition. Reverse flow, vortex formation, and laryngeal jet all affect the airflow structure and particle deposition pattern. The mouth–throat region had the highest deposition fraction at various flow rates. A change in the deposition pattern with an increased deposition fraction in the throat was observed owing to the increased diameter and shape factor of the particles, resulting from the higher inertia and drag force, respectively. The particle deposition analysis showed that three parameters, shape factor, diameter, and velocity, are directly related to particle deposition, and the diameter is the most effective parameter for particle deposition, with an effect of 60% compared to the shape factor and velocity. Finally, the prediction of the genetic algorithm reported a maximum particle deposition in the bronchial tree of 17%, whereas, based on the numerical results, the maximum particle deposition was reported to be 16%. Therefore, there is a 1% difference between the prediction of the genetic algorithm and the numerical results, which indicates the high accuracy of the prediction of the genetic algorithm. In this study, a realistic model of the respiratory tract obtained from CT medical images was used to solve the flow field and particle motion using the Eulerian-Lagrangian approach to obtain the maximum particle deposition in the bronchial tree for the main purpose of optimizing the performance of drug delivery devices. The effects of different parameters, including particle diameter, particle shape factor, and air velocity, on the airflow field and particle deposition pattern in different zones of the lung were investigated. In addition, a genetic algorithm was employed to obtain the maximum particle deposition in the bronchial tree and the effect of the aforementioned parameters on particle deposition. Reverse flow, vortex formation, and laryngeal jet all affect the airflow structure and particle deposition pattern. The mouth-throat region had the highest deposition fraction at various flow rates. A change in the deposition pattern with an increased deposition fraction in the throat was observed owing to the increased diameter and shape factor of the particles, resulting from the higher inertia and drag force, respectively. The particle deposition analysis showed that three parameters, shape factor, diameter, and velocity, are directly related to particle deposition, and the diameter is the most effective parameter for particle deposition, with an effect of 60% compared to the shape factor and velocity. Finally, the prediction of the genetic algorithm reported a maximum particle deposition in the bronchial tree of 17%, whereas, based on the numerical results, the maximum particle deposition was reported to be 16%. Therefore, there is a 1% difference between the prediction of the genetic algorithm and the numerical results, which indicates the high accuracy of the prediction of the genetic algorithm.In this study, a realistic model of the respiratory tract obtained from CT medical images was used to solve the flow field and particle motion using the Eulerian-Lagrangian approach to obtain the maximum particle deposition in the bronchial tree for the main purpose of optimizing the performance of drug delivery devices. The effects of different parameters, including particle diameter, particle shape factor, and air velocity, on the airflow field and particle deposition pattern in different zones of the lung were investigated. In addition, a genetic algorithm was employed to obtain the maximum particle deposition in the bronchial tree and the effect of the aforementioned parameters on particle deposition. Reverse flow, vortex formation, and laryngeal jet all affect the airflow structure and particle deposition pattern. The mouth-throat region had the highest deposition fraction at various flow rates. A change in the deposition pattern with an increased deposition fraction in the throat was observed owing to the increased diameter and shape factor of the particles, resulting from the higher inertia and drag force, respectively. The particle deposition analysis showed that three parameters, shape factor, diameter, and velocity, are directly related to particle deposition, and the diameter is the most effective parameter for particle deposition, with an effect of 60% compared to the shape factor and velocity. Finally, the prediction of the genetic algorithm reported a maximum particle deposition in the bronchial tree of 17%, whereas, based on the numerical results, the maximum particle deposition was reported to be 16%. Therefore, there is a 1% difference between the prediction of the genetic algorithm and the numerical results, which indicates the high accuracy of the prediction of the genetic algorithm. |
| Author | Khaksar, Saba Paknezhad, Mehrad Ahookhosh, Kaveh Saidi, Maysam |
| Author_xml | – sequence: 1 givenname: Saba surname: Khaksar fullname: Khaksar, Saba organization: Mechanical Engineering Department, Faculty of Engineering, Razi University – sequence: 2 givenname: Mehrad surname: Paknezhad fullname: Paknezhad, Mehrad organization: Mechanical Engineering Department, Faculty of Engineering, Razi University – sequence: 3 givenname: Maysam surname: Saidi fullname: Saidi, Maysam email: msaidi@razi.ac.ir organization: Mechanical Engineering Department, Faculty of Engineering, Razi University – sequence: 4 givenname: Kaveh surname: Ahookhosh fullname: Ahookhosh, Kaveh organization: Biomedical MRI Unit/Mosaic, Department of Imaging and Pathology, KU Leuven |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38869656$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kctO3TAQhq2Kqtz6Al1Ulth0ExjbsZ0s0aG0SNB2UdaWTzI5NUrsYCdCZ9d36BvyJPj0cJFYsJqR5vvn9u-THR88EvKJwTED0CeJARe6AF4WwCrFCvGO7DHFdKHrEnaec1nvkv2UbgA4iEp8ILuiqlStpNojtz_mAaNrbE-H0GLv_IqGjo42Tq7pkbY4huQmFzx1nloa0fYu5VrO0uiinUJcU-vinV3TOW3ki_Oz-7__zn5dUetbukKPG9z2qxDd9Gc4JO872yf8-BgPyPX519-L78Xlz28Xi9PLohFcTYXmvNGV7LRqJIilVKWyDSpoO2nRSuB1qTsoocQqH6NLaVvbykouOUouaikOyJdt3zGG2xnTZAaXGux76zHMyQhQumZCKp3Ro1foTZijz9sZwRjIUuZtMvX5kZqXA7ZmjG6wcW2enpkBvgWaGFKK2D0jDMzGMbN1zGTHzH_HjMgisRWlDPsVxpfZb6geAHH_mHI |
| Cites_doi | 10.1016/j.ijpharm.2019.05.058 10.1053/rmed.1999.0767 10.1007/s11095-007-9262-z 10.1007/s10237-016-0768-3 10.1080/15298668091424942 10.1016/j.compbiomed.2016.04.017 10.1016/j.jaerosci.2014.03.005 10.1016/j.ijpharm.2020.119599 10.1007/s11095-006-9174-3 10.1016/j.rmed.2007.11.003 10.1016/S0091-6749(99)70417-3 10.1155/2018/9603451 10.1016/j.ijpharm.2010.03.017 10.1016/j.jtherbio.2017.05.003 10.4324/9780203209592 10.1016/0032-5910(89)80008-7 10.1146/annurev.fl.28.010196.000303 10.1016/j.medengphy.2016.11.007 10.1016/0021-8502(77)90036-2 10.1007/s11517-022-02715-9 10.1016/j.resp.2007.02.006 10.1016/S0301-9322(02)00131-3 10.1016/j.medengphy.2010.08.012 10.1089/jam.1989.2.49 10.1007/s11095-012-0691-y 10.1146/annurev.fl.15.010183.002021 10.1016/0954-6111(95)90065-9 10.1016/j.jaerosci.2003.09.002 10.1378/chest.107.3.629 10.1080/027868299304165 10.1002/jps.20201 10.3390/ijerph17031119 10.1016/j.addr.2006.07.010 10.1002/ar.1091950308 10.1136/oem.37.4.337 10.1016/j.jaerosci.2007.08.010 10.1002/jps.20603 10.1006/pupt.2001.0273 10.1016/j.renene.2017.09.011 10.1016/j.energy.2023.126822 10.1080/08958370802448987 10.1089/jamp.2015.1281 10.1152/japplphysiol.01233.2007 10.1016/j.ejps.2021.105911 10.1016/j.energy.2019.115970 10.1016/j.jbiomech.2008.06.018 10.1146/annurev.physiol.68.072304.113102 10.1017/S0022112072001806 10.1080/027868291001385 |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. 2024. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature. |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. – notice: 2024. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature. |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7QO 7QP 7TB 7TK 7X7 7XB 88E 88I 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABJCF ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ HCIFZ K9. L6V LK8 M0S M1P M2P M7P M7S P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PTHSS Q9U S0W 7X8 |
| DOI | 10.1007/s10237-024-01861-3 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Biotechnology Research Abstracts Calcium & Calcified Tissue Abstracts Mechanical & Transportation Engineering Abstracts Neurosciences Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection ProQuest One ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) ProQuest Engineering Collection Biological Sciences ProQuest Health & Medical Collection Medical Database Science Database Biological Science Database Engineering Database Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection ProQuest Central Basic DELNET Engineering & Technology Collection MEDLINE - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Central Student ProQuest Central Essentials SciTech Premium Collection ProQuest Central China ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Engineering Collection Engineering Database ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection ProQuest Engineering Collection Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea ProQuest Central Basic ProQuest Science Journals ProQuest SciTech Collection ProQuest Medical Library ProQuest DELNET Engineering and Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | ProQuest Central Student MEDLINE MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Biology |
| EISSN | 1617-7940 |
| EndPage | 1677 |
| ExternalDocumentID | 38869656 10_1007_s10237_024_01861_3 |
| Genre | Journal Article |
| GroupedDBID | --- -5B -5G -BR -EM -Y2 -~C .86 .VR 06D 0R~ 0VY 1N0 203 23N 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 53G 5GY 5VS 67Z 6NX 7X7 88E 88I 8AO 8FE 8FG 8FH 8FI 8FJ 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACGOD ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACPRK ACSNA ACZOJ ADBBV ADHHG ADHIR ADINQ ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEUYN AEVLU AEXYK AFBBN AFGCZ AFKRA AFLOW AFQWF AFRAH AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHMBA AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALIPV ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BBNVY BDATZ BENPR BGLVJ BGNMA BHPHI BPHCQ BSONS BVXVI CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBD EBLON EBS EIOEI EJD EMOBN ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC FYUFA GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HLICF HMCUK HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITM IWAJR IXC IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV L6V LAS LK8 LLZTM M1P M2P M4Y M7P M7S MA- MK~ ML~ N2Q NB0 NPVJJ NQJWS NU0 O9- O93 O9J OAM P2P P9P PF0 PQQKQ PROAC PSQYO PT4 PTHSS Q2X QOS R89 R9I ROL RPX RSV S0W S16 S1Z S27 S3B SAP SDH SEG SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SV3 SZN T13 TSG TSK TSV TUC TUS U2A U9L UG4 UKHRP UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WJK WK8 YLTOR Z45 Z7V Z7Y Z83 ZMTXR ~A9 ~KM AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT PJZUB PPXIY PQGLB PUEGO CGR CUY CVF ECM EIF NPM 7QO 7QP 7TB 7TK 7XB 8FD 8FK FR3 K9. P64 PKEHL PQEST PQUKI PRINS Q9U 7X8 |
| ID | FETCH-LOGICAL-c326t-722c785f76c503b5646ace60df5aea502947f0404e8886745adad585b2e523953 |
| IEDL.DBID | U2A |
| ISSN | 1617-7959 1617-7940 |
| IngestDate | Thu Sep 04 15:55:45 EDT 2025 Tue Oct 07 05:33:35 EDT 2025 Wed Feb 19 02:17:28 EST 2025 Wed Oct 01 01:37:19 EDT 2025 Fri Feb 21 02:41:45 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 5 |
| Keywords | CFD Particle deposition Genetic algorithm (GA) Response surface method (RSM) Design of experiments Optimization |
| Language | English |
| License | 2024. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c326t-722c785f76c503b5646ace60df5aea502947f0404e8886745adad585b2e523953 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| PMID | 38869656 |
| PQID | 3110545722 |
| PQPubID | 54766 |
| PageCount | 17 |
| ParticipantIDs | proquest_miscellaneous_3067913567 proquest_journals_3110545722 pubmed_primary_38869656 crossref_primary_10_1007_s10237_024_01861_3 springer_journals_10_1007_s10237_024_01861_3 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 20241000 2024-10-00 2024-Oct 20241001 |
| PublicationDateYYYYMMDD | 2024-10-01 |
| PublicationDate_xml | – month: 10 year: 2024 text: 20241000 |
| PublicationDecade | 2020 |
| PublicationPlace | Berlin/Heidelberg |
| PublicationPlace_xml | – name: Berlin/Heidelberg – name: Germany – name: Dordrecht |
| PublicationTitle | Biomechanics and modeling in mechanobiology |
| PublicationTitleAbbrev | Biomech Model Mechanobiol |
| PublicationTitleAlternate | Biomech Model Mechanobiol |
| PublicationYear | 2024 |
| Publisher | Springer Berlin Heidelberg Springer Nature B.V |
| Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
| References | Tschumperlin, Drazen (CR47) 2006; 68 Borojeni, Noga, Vehring, Finlay (CR6) 2014; 73 Kleinstreuer, Zhang (CR26) 2003; 29 CR35 De Boeck, Alifier, Warnier (CR15) 1999; 103 Lin, Tawhai, McLennan, Hoffman (CR30) 2007; 157 Terzano (CR46) 2001; 14 Kleinstreuer, Zhang, Kim (CR27) 2007; 38 Lenney, Innes, Crompton (CR29) 2000; 94 Longest, Tian, Khajeh-Hosseini-Dalasm, Hindle (CR33) 2016; 29 Zeng, Martin, Marriott, Zeng, Martin, Marriott (CR53) 2001 Crowe, Troutt, Chung (CR14) 1996; 28 Hofmann, Martonen, Graham (CR22) 1989; 2 Lippmann, Yeates, Albert (CR31) 1980; 37 Singh, Raghav, Padhmashali, Paul, Islam, Saha (CR45) 2020; 17 CR5 Chow, Tong, Chattopadhyay, Shekunov (CR10) 2007; 24 CR49 Morsi, Alexander (CR36) 1972; 55 Jaliliantabar, Ghobadian, Najafi, Mamat, Carlucci (CR24) 2019; 187 Pityn, Chamberlain, King, Morgan (CR38) 1995; 89 Gonda, Hickey (CR19) 2004 Schlesinger, Bohning, Chan, Lippmann (CR43) 1977; 8 Rostami (CR42) 2009; 21 Inthavong, Choi, Tu, Ding, Thien (CR23) 2010; 32 Rahimi-Gorji, Gorji, Gorji-Bandpy (CR40) 2016; 74 Ahookhosh, Yaqoubi, Mohammadpourfard, Hamishehkar, Aminfar (CR1) 2019; 566 Lavorini, Magnan, Dubus, Voshaar, Corbetta, Broeders, Barnes (CR28) 2008; 102 Pourmehran, Gorji, Gorji-Bandpy (CR39) 2016; 15 Cheng, Zhou, Chen (CR9) 1999; 31 Luo, Liu (CR34) 2008; 41 Hindle, Newton, Chrystyn (CR21) 1995; 107 DeHaan, Finlay (CR16) 2004; 35 Coates, Chan, Fletcher, Raper (CR12) 2006; 95 Chen, Feng, Shi, Cai, Li, Zhao (CR8) 2023; 61 Ahookhosh, Saidi, Aminfar, Mohammadpourfard, Hamishehkar, Yaqoubi (CR2) 2020; 587 Shoyele, Cawthorne (CR44) 2006; 58 Ahookhosh, Saidi, Mohammadpourfard, Aminfar, Hamishehkar, Farnoud, Schmid (CR3) 2021; 164 Xu, Ni, Fu, Zheng, Luo, Weng (CR51) 2017; 70 Gao, Tian, Sun (CR18) 2018; 1 Pilcer, Amighi (CR37) 2010; 392 Yeh, Schum, Duggan (CR52) 1979; 195 Coates, Chan, Fletcher, Chiou (CR13) 2007; 24 Dolovich (CR17) 2000; 45 Xi, Longest, Martonen (CR50) 2008; 104 Tsega (CR48) 2018; 2018 Kannan, Przekwas, Singh, Delvadia, Tian, Walenga (CR25) 2017; 42 Haider, Levenspiel (CR20) 1989; 58 Aref (CR4) 1983; 15 Zhou, Cheng (CR54) 2005; 39 Chan, Lippmann (CR7) 1980; 41 Coates, Fletcher, Chan, Raper (CR11) 2004; 93 Rahmatian, Shahrbabaki, Moeini (CR41) 2023; 15 Longest, Tian, Walenga, Hindle (CR32) 2012; 29 SA Shoyele (1861_CR44) 2006; 58 W DeHaan (1861_CR16) 2004; 35 C-L Lin (1861_CR30) 2007; 157 K Ahookhosh (1861_CR1) 2019; 566 F Lavorini (1861_CR28) 2008; 102 C Crowe (1861_CR14) 1996; 28 I Gonda (1861_CR19) 2004 G Pilcer (1861_CR37) 2010; 392 W Hofmann (1861_CR22) 1989; 2 AA Borojeni (1861_CR6) 2014; 73 MS Coates (1861_CR13) 2007; 24 HY Luo (1861_CR34) 2008; 41 C Kleinstreuer (1861_CR26) 2003; 29 A Haider (1861_CR20) 1989; 58 C Kleinstreuer (1861_CR27) 2007; 38 Y Chen (1861_CR8) 2023; 61 M Lippmann (1861_CR31) 1980; 37 MS Coates (1861_CR12) 2006; 95 DJ Tschumperlin (1861_CR47) 2006; 68 AA Rostami (1861_CR42) 2009; 21 PW Longest (1861_CR33) 2016; 29 P Singh (1861_CR45) 2020; 17 J Xi (1861_CR50) 2008; 104 XY Xu (1861_CR51) 2017; 70 J Lenney (1861_CR29) 2000; 94 TL Chan (1861_CR7) 1980; 41 M Hindle (1861_CR21) 1995; 107 O Pourmehran (1861_CR39) 2016; 15 X Gao (1861_CR18) 2018; 1 Y-S Cheng (1861_CR9) 1999; 31 1861_CR49 MA Rahmatian (1861_CR41) 2023; 15 MA Dolovich (1861_CR17) 2000; 45 C Terzano (1861_CR46) 2001; 14 XM Zeng (1861_CR53) 2001 M Rahimi-Gorji (1861_CR40) 2016; 74 H Aref (1861_CR4) 1983; 15 Y Zhou (1861_CR54) 2005; 39 PW Longest (1861_CR32) 2012; 29 K Ahookhosh (1861_CR3) 2021; 164 P Pityn (1861_CR38) 1995; 89 F Jaliliantabar (1861_CR24) 2019; 187 RR Kannan (1861_CR25) 2017; 42 1861_CR35 K Ahookhosh (1861_CR2) 2020; 587 SA Morsi (1861_CR36) 1972; 55 RB Schlesinger (1861_CR43) 1977; 8 1861_CR5 K Inthavong (1861_CR23) 2010; 32 MS Coates (1861_CR11) 2004; 93 AHL Chow (1861_CR10) 2007; 24 EG Tsega (1861_CR48) 2018; 2018 HC Yeh (1861_CR52) 1979; 195 K De Boeck (1861_CR15) 1999; 103 |
| References_xml | – volume: 566 start-page: 157 year: 2019 end-page: 172 ident: CR1 article-title: Experimental investigation of aerosol deposition through a realistic respiratory airway replica: an evaluation for MDI and DPI performance publication-title: Int J Pharm doi: 10.1016/j.ijpharm.2019.05.058 – volume: 94 start-page: 496 issue: 5 year: 2000 end-page: 500 ident: CR29 article-title: Inappropriate inhaler use: assessment of use and patient preference of seven inhalation devices publication-title: Respir Med doi: 10.1053/rmed.1999.0767 – ident: CR49 – volume: 24 start-page: 1450 issue: 8 year: 2007 end-page: 1456 ident: CR13 article-title: Influence of mouthpiece geometry on the aerosol delivery performance of a dry powder inhaler publication-title: Pharm Res doi: 10.1007/s11095-007-9262-z – volume: 15 start-page: 1355 issue: 5 year: 2016 end-page: 1374 ident: CR39 article-title: Magnetic drug targeting through a realistic model of human tracheobronchial airways using computational fluid and particle dynamics publication-title: Biomech Model Mechanobiol doi: 10.1007/s10237-016-0768-3 – volume: 41 start-page: 399 issue: 6 year: 1980 end-page: 409 ident: CR7 article-title: Experimental measurements and empirical modeling of the regional deposition of inhaled particles in humans publication-title: Am Ind Hyg Assoc J doi: 10.1080/15298668091424942 – volume: 74 start-page: 1 year: 2016 end-page: 17 ident: CR40 article-title: Details of regional particle deposition and airflow structures in a realistic model of human tracheobronchial airways: two-phase flow simulation publication-title: Comput Biol Med doi: 10.1016/j.compbiomed.2016.04.017 – volume: 73 start-page: 39 year: 2014 end-page: 47 ident: CR6 article-title: Measurements of total aerosol deposition in intrathoracic conducting airway replicas of children publication-title: J Aerosol Sci doi: 10.1016/j.jaerosci.2014.03.005 – volume: 587 start-page: 119599 year: 2020 ident: CR2 article-title: Dry powder inhaler aerosol deposition in a model of tracheobronchial airways: validating CFD predictions with in vitro data publication-title: Int J Pharm doi: 10.1016/j.ijpharm.2020.119599 – volume: 24 start-page: 411 year: 2007 end-page: 437 ident: CR10 article-title: Particle engineering for pulmonary drug delivery publication-title: Pharm Res doi: 10.1007/s11095-006-9174-3 – ident: CR35 – volume: 102 start-page: 593 issue: 4 year: 2008 end-page: 604 ident: CR28 article-title: Effect of incorrect use of dry powder inhalers on management of patients with asthma and COPD publication-title: Respir Med doi: 10.1016/j.rmed.2007.11.003 – volume: 103 start-page: 763 issue: 5 year: 1999 end-page: 767 ident: CR15 article-title: Is the correct use of a dry powder inhaler (turbohaler) age dependent? publication-title: J Allergy Clin Immunol doi: 10.1016/S0091-6749(99)70417-3 – volume: 2018 start-page: 9603451 year: 2018 ident: CR48 article-title: Computational fluid dynamics modeling of respiratory airflow in tracheobronchial airways of infant, child, and adult publication-title: Comput Math Methods Med doi: 10.1155/2018/9603451 – volume: 392 start-page: 1 year: 2010 end-page: 19 ident: CR37 article-title: Formulation strategy and use of excipients in pulmonary drug delivery publication-title: Int J Pharm doi: 10.1016/j.ijpharm.2010.03.017 – volume: 70 start-page: 53 year: 2017 end-page: 63 ident: CR51 article-title: Numerical investigation of airflow, heat transfer and particle deposition for oral breathing in a realistic human upper airway model publication-title: J Therm Biol doi: 10.1016/j.jtherbio.2017.05.003 – start-page: 65 year: 2001 end-page: 102 ident: CR53 article-title: Medicinal aerosols publication-title: Particulate interactions in dry powder formulations for inhalation doi: 10.4324/9780203209592 – volume: 58 start-page: 63 issue: 1 year: 1989 end-page: 70 ident: CR20 article-title: Drag coefficient and terminal velocity of spherical and nonspherical particles publication-title: Powder Technol doi: 10.1016/0032-5910(89)80008-7 – volume: 28 start-page: 11 issue: 1 year: 1996 end-page: 43 ident: CR14 article-title: Numerical models for two-phase turbulent flows publication-title: Annu Rev Fluid Mech doi: 10.1146/annurev.fl.28.010196.000303 – volume: 42 start-page: 35 year: 2017 end-page: 47 ident: CR25 article-title: Pharmaceutical aerosols deposition patterns from a dry powder inhaler: Euler Lagrangian prediction and validation publication-title: Med Eng Phys doi: 10.1016/j.medengphy.2016.11.007 – volume: 8 start-page: 429 issue: 6 year: 1977 end-page: 445 ident: CR43 article-title: Particle deposition in a hollow cast of the human tracheobronchial tree publication-title: J Aerosol Sci doi: 10.1016/0021-8502(77)90036-2 – volume: 61 start-page: 259 issue: 1 year: 2023 end-page: 270 ident: CR8 article-title: Evaluation of computational fluid dynamics models for predicting pediatric upper airway airflow characteristics publication-title: Med Biol Eng Compu doi: 10.1007/s11517-022-02715-9 – volume: 157 start-page: 295 issue: 2–3 year: 2007 end-page: 309 ident: CR30 article-title: Characteristics of the turbulent laryngeal jet and its effect on airflow in the human intra-thoracic airways publication-title: Respir Physiol Neurobiol doi: 10.1016/j.resp.2007.02.006 – volume: 29 start-page: 271 issue: 2 year: 2003 end-page: 289 ident: CR26 article-title: Laminar-to-turbulent fluid-particle flows in a human airway model publication-title: Int J Multiph Flow doi: 10.1016/S0301-9322(02)00131-3 – volume: 32 start-page: 1198 issue: 10 year: 2010 end-page: 1212 ident: CR23 article-title: Micron particle deposition in a tracheobronchial airway model under different breathing conditions publication-title: Med Eng Phys doi: 10.1016/j.medengphy.2010.08.012 – volume: 2 start-page: 49 issue: 1 year: 1989 end-page: 68 ident: CR22 article-title: Predicted deposition of nonhygroscopic aerosols in the human lung as a function of subject age publication-title: J Aerosol Med doi: 10.1089/jam.1989.2.49 – volume: 29 start-page: 1670 issue: 6 year: 2012 end-page: 1688 ident: CR32 article-title: Comparing MDI and DPI aerosol deposition using in vitro experiments and a new stochastic individual path model of the conducting airways publication-title: Pharm Res doi: 10.1007/s11095-012-0691-y – ident: CR5 – volume: 15 start-page: 345 issue: 1 year: 1983 end-page: 389 ident: CR4 article-title: Integrable, chaotic, and turbulent vortex motion in two-dimensional flows publication-title: Annu Rev Fluid Mech doi: 10.1146/annurev.fl.15.010183.002021 – volume: 89 start-page: 15 issue: 1 year: 1995 end-page: 19 ident: CR38 article-title: Differences in particle deposition between the two lungs publication-title: Respir Med doi: 10.1016/0954-6111(95)90065-9 – volume: 35 start-page: 309 issue: 3 year: 2004 end-page: 331 ident: CR16 article-title: Predicting extrathoracic deposition from dry powder inhalers publication-title: J Aerosol Sci doi: 10.1016/j.jaerosci.2003.09.002 – volume: 107 start-page: 629 issue: 3 year: 1995 end-page: 633 ident: CR21 article-title: Dry powder inhalers are bioequivalent to metered-dose inhalers: a study using a new urinary albuterol (salbutamol) assay technique publication-title: Chest doi: 10.1378/chest.107.3.629 – volume: 31 start-page: 286 issue: 4 year: 1999 end-page: 300 ident: CR9 article-title: Particle deposition in a cast of human oral airways publication-title: Aerosol Sci Technol doi: 10.1080/027868299304165 – volume: 93 start-page: 2863 issue: 11 year: 2004 end-page: 2876 ident: CR11 article-title: Effect of design on the performance of a dry powder inhaler using computational fluid dynamics: Part 1: grid structure and mouthpiece length publication-title: J Pharm Sci doi: 10.1002/jps.20201 – volume: 17 start-page: 1119 issue: 3 year: 2020 ident: CR45 article-title: Airflow and particle transport prediction through stenosis airways publication-title: Int J Environ Res Public Health doi: 10.3390/ijerph17031119 – volume: 58 start-page: 1009 year: 2006 end-page: 1029 ident: CR44 article-title: Particle engineering techniques for inhaled biopharmaceuticals publication-title: Adv Drug Deliv Rev doi: 10.1016/j.addr.2006.07.010 – volume: 195 start-page: 483 issue: 3 year: 1979 end-page: 492 ident: CR52 article-title: Anatomic models of the tracheobronchial and pulmonary regions of the rat publication-title: Anat Rec doi: 10.1002/ar.1091950308 – start-page: 65 year: 2004 end-page: 88 ident: CR19 article-title: Targeting by deposition publication-title: Pharmaceutical inhalation aerosol technology – volume: 37 start-page: 337 issue: 4 year: 1980 end-page: 362 ident: CR31 article-title: Deposition, retention, and clearance of inhaled particles publication-title: Occup Environ Med doi: 10.1136/oem.37.4.337 – volume: 38 start-page: 1047 issue: 10 year: 2007 end-page: 1061 ident: CR27 article-title: Combined inertial and gravitational deposition of microparticles in small model airways of a human respiratory system publication-title: J Aerosol Sci doi: 10.1016/j.jaerosci.2007.08.010 – volume: 95 start-page: 1382 issue: 6 year: 2006 end-page: 1392 ident: CR12 article-title: Effect of design on the performance of a dry powder inhaler using computational fluid dynamics: Part 2: air inlet size publication-title: J Pharm Sci doi: 10.1002/jps.20603 – volume: 14 start-page: 351 issue: 5 year: 2001 end-page: 366 ident: CR46 article-title: Pressurized metered dose inhalers and add-on devices publication-title: Pulm Pharmacol Ther doi: 10.1006/pupt.2001.0273 – volume: 1 start-page: 999 issue: 115 year: 2018 end-page: 1013 ident: CR18 article-title: Multi-objective optimization design of bidirectional flow passage components using RSM and NSGA II: a case study of inlet/outlet diffusion segment in pumped storage power station publication-title: Renew Energy doi: 10.1016/j.renene.2017.09.011 – volume: 15 issue: 269 year: 2023 ident: CR41 article-title: Single-objective optimization design of convergent-divergent ducts of ducted wind turbine using RSM and GA, to increase power coefficient of a small-scale horizontal axis wind turbine publication-title: Energy doi: 10.1016/j.energy.2023.126822 – volume: 21 start-page: 262 issue: 4 year: 2009 end-page: 290 ident: CR42 article-title: Computational modeling of aerosol deposition in respiratory tract: a review publication-title: Inhalation Toxicol doi: 10.1080/08958370802448987 – volume: 29 start-page: 461 issue: 6 year: 2016 end-page: 481 ident: CR33 article-title: Validating whole-airway CFD predictions of DPI aerosol deposition at multiple flow rates publication-title: J Aerosol Med Pulm Drug Deliv doi: 10.1089/jamp.2015.1281 – volume: 104 start-page: 1761 issue: 6 year: 2008 end-page: 1777 ident: CR50 article-title: Effects of the laryngeal jet on nano- and microparticle transport and deposition in an approximate model of the upper tracheobronchial airways publication-title: J Appl Physiol doi: 10.1152/japplphysiol.01233.2007 – volume: 164 start-page: 105911 year: 2021 ident: CR3 article-title: Flow structure and particle deposition analyses for optimization of a pressurized metered Dose inhaler (pMDI) in a model of tracheobronchial airway publication-title: Eur J Pharm Sci doi: 10.1016/j.ejps.2021.105911 – volume: 187 start-page: 115970 year: 2019 ident: CR24 article-title: Multi-objective NSGA-II optimization of a compression ignition engine parameters using biodiesel fuel and exhaust gas recirculation publication-title: Energy doi: 10.1016/j.energy.2019.115970 – volume: 41 start-page: 2681 year: 2008 end-page: 2688 ident: CR34 article-title: Modeling the bifurcating flow in a CT-scanned human lung airway publication-title: J Biomech doi: 10.1016/j.jbiomech.2008.06.018 – volume: 68 start-page: 563 year: 2006 end-page: 583 ident: CR47 article-title: Chronic effects of mechanical force on airways publication-title: Annu Rev Physiol doi: 10.1146/annurev.physiol.68.072304.113102 – volume: 55 start-page: 193 issue: 2 year: 1972 end-page: 208 ident: CR36 article-title: An investigation of particle trajectories in two-phase flow systems publication-title: J Fluid Mech doi: 10.1017/S0022112072001806 – volume: 45 start-page: 597 year: 2000 end-page: 608 ident: CR17 article-title: Influence of inspiratory flow rate, particle size, and airway caliber on aerosolized drug delivery to the lung publication-title: Respir Care – volume: 39 start-page: 492 issue: 6 year: 2005 end-page: 500 ident: CR54 article-title: Particle deposition in a cast of human tracheobronchial airways publication-title: Aerosol Sci Technol doi: 10.1080/027868291001385 – volume: 2 start-page: 49 issue: 1 year: 1989 ident: 1861_CR22 publication-title: J Aerosol Med doi: 10.1089/jam.1989.2.49 – volume: 39 start-page: 492 issue: 6 year: 2005 ident: 1861_CR54 publication-title: Aerosol Sci Technol doi: 10.1080/027868291001385 – start-page: 65 volume-title: Particulate interactions in dry powder formulations for inhalation year: 2001 ident: 1861_CR53 doi: 10.4324/9780203209592 – volume: 41 start-page: 2681 year: 2008 ident: 1861_CR34 publication-title: J Biomech doi: 10.1016/j.jbiomech.2008.06.018 – volume: 45 start-page: 597 year: 2000 ident: 1861_CR17 publication-title: Respir Care – volume: 157 start-page: 295 issue: 2–3 year: 2007 ident: 1861_CR30 publication-title: Respir Physiol Neurobiol doi: 10.1016/j.resp.2007.02.006 – volume: 107 start-page: 629 issue: 3 year: 1995 ident: 1861_CR21 publication-title: Chest doi: 10.1378/chest.107.3.629 – volume: 103 start-page: 763 issue: 5 year: 1999 ident: 1861_CR15 publication-title: J Allergy Clin Immunol doi: 10.1016/S0091-6749(99)70417-3 – ident: 1861_CR5 – volume: 93 start-page: 2863 issue: 11 year: 2004 ident: 1861_CR11 publication-title: J Pharm Sci doi: 10.1002/jps.20201 – volume: 24 start-page: 1450 issue: 8 year: 2007 ident: 1861_CR13 publication-title: Pharm Res doi: 10.1007/s11095-007-9262-z – volume: 104 start-page: 1761 issue: 6 year: 2008 ident: 1861_CR50 publication-title: J Appl Physiol doi: 10.1152/japplphysiol.01233.2007 – volume: 70 start-page: 53 year: 2017 ident: 1861_CR51 publication-title: J Therm Biol doi: 10.1016/j.jtherbio.2017.05.003 – volume: 58 start-page: 1009 year: 2006 ident: 1861_CR44 publication-title: Adv Drug Deliv Rev doi: 10.1016/j.addr.2006.07.010 – volume: 42 start-page: 35 year: 2017 ident: 1861_CR25 publication-title: Med Eng Phys doi: 10.1016/j.medengphy.2016.11.007 – start-page: 65 volume-title: Pharmaceutical inhalation aerosol technology year: 2004 ident: 1861_CR19 – volume: 17 start-page: 1119 issue: 3 year: 2020 ident: 1861_CR45 publication-title: Int J Environ Res Public Health doi: 10.3390/ijerph17031119 – volume: 29 start-page: 1670 issue: 6 year: 2012 ident: 1861_CR32 publication-title: Pharm Res doi: 10.1007/s11095-012-0691-y – volume: 41 start-page: 399 issue: 6 year: 1980 ident: 1861_CR7 publication-title: Am Ind Hyg Assoc J doi: 10.1080/15298668091424942 – volume: 89 start-page: 15 issue: 1 year: 1995 ident: 1861_CR38 publication-title: Respir Med doi: 10.1016/0954-6111(95)90065-9 – volume: 94 start-page: 496 issue: 5 year: 2000 ident: 1861_CR29 publication-title: Respir Med doi: 10.1053/rmed.1999.0767 – volume: 21 start-page: 262 issue: 4 year: 2009 ident: 1861_CR42 publication-title: Inhalation Toxicol doi: 10.1080/08958370802448987 – volume: 35 start-page: 309 issue: 3 year: 2004 ident: 1861_CR16 publication-title: J Aerosol Sci doi: 10.1016/j.jaerosci.2003.09.002 – volume: 61 start-page: 259 issue: 1 year: 2023 ident: 1861_CR8 publication-title: Med Biol Eng Compu doi: 10.1007/s11517-022-02715-9 – volume: 2018 start-page: 9603451 year: 2018 ident: 1861_CR48 publication-title: Comput Math Methods Med doi: 10.1155/2018/9603451 – volume: 164 start-page: 105911 year: 2021 ident: 1861_CR3 publication-title: Eur J Pharm Sci doi: 10.1016/j.ejps.2021.105911 – volume: 74 start-page: 1 year: 2016 ident: 1861_CR40 publication-title: Comput Biol Med doi: 10.1016/j.compbiomed.2016.04.017 – volume: 187 start-page: 115970 year: 2019 ident: 1861_CR24 publication-title: Energy doi: 10.1016/j.energy.2019.115970 – volume: 1 start-page: 999 issue: 115 year: 2018 ident: 1861_CR18 publication-title: Renew Energy doi: 10.1016/j.renene.2017.09.011 – volume: 587 start-page: 119599 year: 2020 ident: 1861_CR2 publication-title: Int J Pharm doi: 10.1016/j.ijpharm.2020.119599 – volume: 31 start-page: 286 issue: 4 year: 1999 ident: 1861_CR9 publication-title: Aerosol Sci Technol doi: 10.1080/027868299304165 – volume: 28 start-page: 11 issue: 1 year: 1996 ident: 1861_CR14 publication-title: Annu Rev Fluid Mech doi: 10.1146/annurev.fl.28.010196.000303 – volume: 15 start-page: 1355 issue: 5 year: 2016 ident: 1861_CR39 publication-title: Biomech Model Mechanobiol doi: 10.1007/s10237-016-0768-3 – volume: 8 start-page: 429 issue: 6 year: 1977 ident: 1861_CR43 publication-title: J Aerosol Sci doi: 10.1016/0021-8502(77)90036-2 – volume: 15 issue: 269 year: 2023 ident: 1861_CR41 publication-title: Energy doi: 10.1016/j.energy.2023.126822 – volume: 24 start-page: 411 year: 2007 ident: 1861_CR10 publication-title: Pharm Res doi: 10.1007/s11095-006-9174-3 – volume: 14 start-page: 351 issue: 5 year: 2001 ident: 1861_CR46 publication-title: Pulm Pharmacol Ther doi: 10.1006/pupt.2001.0273 – volume: 102 start-page: 593 issue: 4 year: 2008 ident: 1861_CR28 publication-title: Respir Med doi: 10.1016/j.rmed.2007.11.003 – volume: 55 start-page: 193 issue: 2 year: 1972 ident: 1861_CR36 publication-title: J Fluid Mech doi: 10.1017/S0022112072001806 – volume: 73 start-page: 39 year: 2014 ident: 1861_CR6 publication-title: J Aerosol Sci doi: 10.1016/j.jaerosci.2014.03.005 – volume: 68 start-page: 563 year: 2006 ident: 1861_CR47 publication-title: Annu Rev Physiol doi: 10.1146/annurev.physiol.68.072304.113102 – volume: 566 start-page: 157 year: 2019 ident: 1861_CR1 publication-title: Int J Pharm doi: 10.1016/j.ijpharm.2019.05.058 – volume: 32 start-page: 1198 issue: 10 year: 2010 ident: 1861_CR23 publication-title: Med Eng Phys doi: 10.1016/j.medengphy.2010.08.012 – volume: 392 start-page: 1 year: 2010 ident: 1861_CR37 publication-title: Int J Pharm doi: 10.1016/j.ijpharm.2010.03.017 – volume: 38 start-page: 1047 issue: 10 year: 2007 ident: 1861_CR27 publication-title: J Aerosol Sci doi: 10.1016/j.jaerosci.2007.08.010 – ident: 1861_CR35 – volume: 195 start-page: 483 issue: 3 year: 1979 ident: 1861_CR52 publication-title: Anat Rec doi: 10.1002/ar.1091950308 – volume: 15 start-page: 345 issue: 1 year: 1983 ident: 1861_CR4 publication-title: Annu Rev Fluid Mech doi: 10.1146/annurev.fl.15.010183.002021 – volume: 29 start-page: 461 issue: 6 year: 2016 ident: 1861_CR33 publication-title: J Aerosol Med Pulm Drug Deliv doi: 10.1089/jamp.2015.1281 – volume: 58 start-page: 63 issue: 1 year: 1989 ident: 1861_CR20 publication-title: Powder Technol doi: 10.1016/0032-5910(89)80008-7 – volume: 37 start-page: 337 issue: 4 year: 1980 ident: 1861_CR31 publication-title: Occup Environ Med doi: 10.1136/oem.37.4.337 – volume: 95 start-page: 1382 issue: 6 year: 2006 ident: 1861_CR12 publication-title: J Pharm Sci doi: 10.1002/jps.20603 – ident: 1861_CR49 – volume: 29 start-page: 271 issue: 2 year: 2003 ident: 1861_CR26 publication-title: Int J Multiph Flow doi: 10.1016/S0301-9322(02)00131-3 |
| SSID | ssj0020383 |
| Score | 2.394702 |
| Snippet | In this study, a realistic model of the respiratory tract obtained from CT medical images was used to solve the flow field and particle motion using the... |
| SourceID | proquest pubmed crossref springer |
| SourceType | Aggregation Database Index Database Publisher |
| StartPage | 1661 |
| SubjectTerms | Air flow Algorithms Biological and Medical Physics Biomedical Engineering and Bioengineering Biophysics Computed tomography Computer Simulation Drag Drug delivery Engineering Genetic algorithms Humans Hydrodynamics Medical imaging Models, Biological Numerical Analysis, Computer-Assisted Numerical models Original Paper Parameters Particle deposition Particle shape Particle Size Pattern analysis Predictions Respiratory System - anatomy & histology Respiratory System - diagnostic imaging Respiratory tract Reversed flow Shape effects Shape factor Theoretical and Applied Mechanics Velocity |
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1fS8MwED_mRPBF_O90SgTfNNi1TdI9iKhzDMEh4sC3kjapCrObuiF78zv4Df0k3vXPhoi-FRrS9HLJ_S6X-x3AQcMo20Qkz13rxdxvBJZHkVXcj5QKYomYRFKC83VXdnr-1b24r0C3zIWha5Xlnpht1GYQ0xn5sYd2Cq29ct3T4QunqlEUXS1LaOiitII5ySjG5mDeJWasKsyfX3ZvbqcumJMTcxKo51Rlu0ijKZLpXE9xtFnoXgd0KvPTVP3Cn79ip5lJai_DUoEl2Vk--StQsekqLOTVJSdr8NId5-GYPsvq3WAfbJCwYaEszNjyxhZ7SplmCB_7GW0zPk3j70w_vb7rCaP78Q_sot36-vhs3VwznRqGukcpkEz3H1BSo8fndei1L-8uOryosMBjhG0jjtKMVSASJWPheJGQvtSxlY5JhLZaOG7TVwkuc9-ioyyVL7TRBh2MyLXowDaFtwHVdJDaLWAajVxCZF_oYKFLY4IgVhERVEUqcJT2anBYCjMc5kQa4YwymUQfoujDTPQhtq6X8g6LRfUWzlSgBvvT17gcKMahUzsYYxs6GGt4QqoabObzNP2ch__QRPxag6Ny4mad_z2W7f_HsgOLLilNdsGvDtXR69juIlAZRXuF9n0DkqHi8w priority: 102 providerName: ProQuest |
| Title | Numerical modeling of particle deposition in a realistic respiratory airway using CFD–DPM and genetic algorithm |
| URI | https://link.springer.com/article/10.1007/s10237-024-01861-3 https://www.ncbi.nlm.nih.gov/pubmed/38869656 https://www.proquest.com/docview/3110545722 https://www.proquest.com/docview/3067913567 |
| Volume | 23 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1617-7940 dateEnd: 20241101 omitProxy: false ssIdentifier: ssj0020383 issn: 1617-7959 databaseCode: ADMLS dateStart: 20110201 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1617-7940 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0020383 issn: 1617-7959 databaseCode: AFBBN dateStart: 20020601 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1617-7940 dateEnd: 20241101 omitProxy: true ssIdentifier: ssj0020383 issn: 1617-7959 databaseCode: 7X7 dateStart: 20020601 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1617-7940 dateEnd: 20241101 omitProxy: true ssIdentifier: ssj0020383 issn: 1617-7959 databaseCode: BENPR dateStart: 20020601 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1617-7940 dateEnd: 20241101 omitProxy: true ssIdentifier: ssj0020383 issn: 1617-7959 databaseCode: 8FG dateStart: 20020601 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1617-7940 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0020383 issn: 1617-7959 databaseCode: AGYKE dateStart: 20020101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1617-7940 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0020383 issn: 1617-7959 databaseCode: U2A dateStart: 20020624 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwEB2xCAkOiJ1CqYzEDSylSWynx9IFBLRCQKVyipzEKZVKWroIceMf-EO-hHGWUlQ4cImjxEoczzjzxrMBnBQDoUqI5KmpLJ_aRUdRz1OC2p4Qjs8Rk3Ad4Nxo8suWfdVm7TQobJR5u2cmyfhPPRPsZlqCokxB9dfRuyaLsMx0Oi_k4pZZnqpZRpJ8UwN3qitpp6Eyvz_jpziaw5hz9tFY7NQ3YD3Fi6ScEHgTFlS0BStJBcm3LVibySe4DS_NSWKA6ZG4wg1eJP2QDFL2IIHKfLRINyKSIGDsxYma8WxqcSeyO3yVb0R7xHdIpV79fP-o3jaIjAKC3KaDHonsdfrD7vjpeQda9dpD5ZKmNRWoj0BtTIVp-sJhoeA-MyyPcZtLX3EjCJlUkhlmyRYhLmxboWrMhc1kIANUKTxTocpaYtYuLEX9SO0DkSjWQp3eC1UqVGICx_GFp1NSecIxhLRycJpNrTtIUme430mSNSFcJIQbE8LF3vls9t10GY1cC8EJQjwcdA6Op7dxAWirhoxUf4J99FZY0WJc5GAvodr0dRZ-QwkRaw7OMjJ-P_zvsRz8r_shrJqapWIXvzwsjYcTdYRQZewVYFG0BR6d-kUBlsvVxs29bi8er2vYnteat3eFmHu_AE595Hk |
| linkProvider | Springer Nature |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1fT9swED8hENpepo39oRsDT9qeNmup49jJA0IbpSqDVmgCibfMiR2G1KUFWqG-7Tvs-_Bh9kl2lzitEBpvvEWK5Tjns-_38_nuAN63rXYJInkuXJhz2Y4dzzKnucy0jnOFmERRgHN_oHon8ttpdLoEN00sDF2rbPbEaqO2o5zOyD-HaKfQ2mshdsYXnKpGkXe1KaFhfGkFu12lGPOBHQdudo0U7mp7v4Pz_UGI7t7xbo_7KgM8R-gy4dhjruOo0CqPgjCLlFQmdyqwRWSciQKRSF2gqkuHZFFpGRlrLILsTDgkcQlVjUATsCJDmSD5W_m6Nzj6Pqd8QZ0IlEgEp6rePmzHB--JUHO0kUjnYzoFum0a7-DdO77aygR2n8ITj13Zl1rZnsGSK9dgta5mOXsOF4Np7f4Zsqq-DvbBRgUbe-Vk1jU3xNh5yQxDuDqs0kTj09zfz8z55bWZMbqPf8Z2u52_v_90jvrMlJahrlPIJTPDM5yZyc9fL-DkQWT9EpbLUenWgRk0qgUlF0NChxTKxnGuM0qIlek40CZswcdGmOm4TtyRLlI0k-hTFH1aiT7F1huNvFO_iK_Shcq14N38NS4_8qmY0o2m2IYO4tphpHQLXtXzNP9ciP-QIF5uwadm4had_38sr-8fyxY86h33D9PD_cHBG3gsSIGqy4UbsDy5nLq3CJIm2abXRAY_Hlr5_wHF0R5e |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8JAEJ4oRqMHo_hCUdfEm24obXe3HA1IfEE4SOKt2bZbJMGCWGK8-R_8h_4SZ_sAjHrw1rSbbbszm_lmZ-YbgNNqIFQNkTw1leVTu-oo6nlKUNsTwvE5YhKuC5xbbX7VtW8e2MNcFX-S7Z6HJNOaBs3SFMWVURBW5grfTEtQtC_oCjv6BGURlmxNlIAa3TUvpi6XkRJxahBPdVftrGzm9zm-m6YfePNHrDQxQc0NWM-wI7lIhb0JCyoqwnLaTfKtCGtz3IJb8NyepMGYAUm63eBNMgzJKFMVEqg8X4v0IyIJgsdBQtqMV9PoO5H98at8Izo7vkfqzcbn-0ej0yIyCghqni6AJHLQG4778ePTNnSbl_f1K5r1V6A-graYCtP0hcNCwX1mWB7jNpe-4kYQMqkkM8yaLULc5LZCN5kLm8lABuheeKZC97XGrB0oRMNI7QGRaOJCTfWF7hU6NIHj-MLT9FSecAwhrRKc5UvrjlIaDXdGmKwF4aIg3EQQLo4u56vvZlvqxbUQqCDcw48uwcn0MW4GHeGQkRpOcIw-FqtajIsS7KZSm77Own-oIXotwXkuxtnkf3_L_v-GH8NKp9F0767btwewamrtSjL_ylCIxxN1iAgm9o4SJf0CWsLlEg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Numerical+modeling+of+particle+deposition+in+a+realistic+respiratory+airway+using+CFD%E2%80%93DPM+and+genetic+algorithm&rft.jtitle=Biomechanics+and+modeling+in+mechanobiology&rft.au=Khaksar%2C+Saba&rft.au=Paknezhad%2C+Mehrad&rft.au=Saidi%2C+Maysam&rft.au=Ahookhosh%2C+Kaveh&rft.date=2024-10-01&rft.issn=1617-7959&rft.eissn=1617-7940&rft.volume=23&rft.issue=5&rft.spage=1661&rft.epage=1677&rft_id=info:doi/10.1007%2Fs10237-024-01861-3&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10237_024_01861_3 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1617-7959&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1617-7959&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1617-7959&client=summon |