Sliding Mode Control for Sampled-Data Systems Subject to Deception Attacks: Handling Randomly Perturbed Sampling Periods
In this article, the sliding mode control problem is addressed for a class of sampled-data systems subject to deception attacks. The sampling periods undergo component-wise random perturbations that are governed by a Markovian chain. The component of the sampled output is transmitted via an individu...
Saved in:
Published in | IEEE transactions on cybernetics Vol. 53; no. 11; pp. 1 - 14 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Piscataway
IEEE
01.11.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 2168-2267 2168-2275 2168-2275 |
DOI | 10.1109/TCYB.2022.3202486 |
Cover
Abstract | In this article, the sliding mode control problem is addressed for a class of sampled-data systems subject to deception attacks. The sampling periods undergo component-wise random perturbations that are governed by a Markovian chain. The component of the sampled output is transmitted via an individual communication channel that is vulnerable to deception attacks, and Bernoulli-distributed stochastic variables are utilized to characterize the random occurrence of the deception attacks initiated by the adversaries. A sliding mode controller is designed to drive the state into the sliding domain around the specified sliding surface, and sufficient conditions are derived to guarantee the exponentially ultimate boundedness of the resultant closed-loop system in the mean-square sense. Furthermore, an optimization problem is established to pursue locally optimal control performance. Finally, a simulation example is given to verify the effectiveness and advantages of the developed controller design approach. |
---|---|
AbstractList | In this article, the sliding mode control problem is addressed for a class of sampled-data systems subject to deception attacks. The sampling periods undergo component-wise random perturbations that are governed by a Markovian chain. The component of the sampled output is transmitted via an individual communication channel that is vulnerable to deception attacks, and Bernoulli-distributed stochastic variables are utilized to characterize the random occurrence of the deception attacks initiated by the adversaries. A sliding mode controller is designed to drive the state into the sliding domain around the specified sliding surface, and sufficient conditions are derived to guarantee the exponentially ultimate boundedness of the resultant closed-loop system in the mean-square sense. Furthermore, an optimization problem is established to pursue locally optimal control performance. Finally, a simulation example is given to verify the effectiveness and advantages of the developed controller design approach. In this article, the sliding mode control problem is addressed for a class of sampled-data systems subject to deception attacks. The sampling periods undergo component-wise random perturbations that are governed by a Markovian chain. The component of the sampled output is transmitted via an individual communication channel that is vulnerable to deception attacks, and Bernoulli-distributed stochastic variables are utilized to characterize the random occurrence of the deception attacks initiated by the adversaries. A sliding mode controller is designed to drive the state into the sliding domain around the specified sliding surface, and sufficient conditions are derived to guarantee the exponentially ultimate boundedness of the resultant closed-loop system in the mean-square sense. Furthermore, an optimization problem is established to pursue locally optimal control performance. Finally, a simulation example is given to verify the effectiveness and advantages of the developed controller design approach.In this article, the sliding mode control problem is addressed for a class of sampled-data systems subject to deception attacks. The sampling periods undergo component-wise random perturbations that are governed by a Markovian chain. The component of the sampled output is transmitted via an individual communication channel that is vulnerable to deception attacks, and Bernoulli-distributed stochastic variables are utilized to characterize the random occurrence of the deception attacks initiated by the adversaries. A sliding mode controller is designed to drive the state into the sliding domain around the specified sliding surface, and sufficient conditions are derived to guarantee the exponentially ultimate boundedness of the resultant closed-loop system in the mean-square sense. Furthermore, an optimization problem is established to pursue locally optimal control performance. Finally, a simulation example is given to verify the effectiveness and advantages of the developed controller design approach. |
Author | Liu, Hongjian Cao, Zhiru Song, Jun Niu, Yugang Wang, Zidong |
Author_xml | – sequence: 1 givenname: Zhiru orcidid: 0000-0003-4213-6937 surname: Cao fullname: Cao, Zhiru organization: School of Mechatronic Engineering and Automation, Shanghai University, Shanghai, China – sequence: 2 givenname: Zidong orcidid: 0000-0002-9576-7401 surname: Wang fullname: Wang, Zidong organization: College of Electrical Engineering and Automation, Shandong University of Science and Technology, Qingdao, China – sequence: 3 givenname: Yugang orcidid: 0000-0002-3010-1879 surname: Niu fullname: Niu, Yugang organization: Ministry of Education, Key Laboratory of Smart Manufacturing in Energy Chemical Process, East China University of Science and Technology, Shanghai, China – sequence: 4 givenname: Jun orcidid: 0000-0003-4718-9835 surname: Song fullname: Song, Jun organization: School of Artificial Intelligence, Anhui University, Hefei, China – sequence: 5 givenname: Hongjian orcidid: 0000-0001-6471-5089 surname: Liu fullname: Liu, Hongjian organization: Ministry of Education, Key Laboratory of Advanced Perception and Intelligent Control of High-End Equipment, Anhui Polytechnic University, Wuhu, China |
BookMark | eNp9UU1v1DAUtFCRKKU_AHGxxIVLFn9sbIdb2VKKVNSKLQdOlmO_IC9OvNiOxP77Otqqhx7w4flp3szYevManUxxAoTeUrKilHQf7ze_Pq8YYWzFa10r8QKdMipUw5hsT556IV-h85x3pB5VoU6don_b4J2ffuPv0QHexKmkGPAQE96acR_ANZemGLw95AJjxtu534EtuER8CRb2xccJX5Ri7J_8CV-byYXF7Edt4hgO-A5SmVMP7mi3zCrko8tv0MvBhAznj_cZ-nn15X5z3dzcfv22ubhpLGeiNG0ruqEVQF0PzPZcdVxa1qsKG-pawkVLO8LNei2kc0wKOijF2zUR0LO-t_wMfTj67lP8O0MuevTZQghmgjhnzWTdDheE80p9_4y6i3Oa6u80U1K1RHHJKoseWTbFnBMMep_8aNJBU6KXOPQSh17i0I9xVI18prG-mGV5JRkf_qt8d1R6AHh6qesoZVzxB6ixmOI |
CODEN | ITCEB8 |
CitedBy_id | crossref_primary_10_1109_TSMC_2023_3281720 crossref_primary_10_1002_acs_3600 crossref_primary_10_1016_j_jfranklin_2023_12_021 crossref_primary_10_1002_acs_3689 crossref_primary_10_1002_acs_3854 crossref_primary_10_1007_s00034_024_02899_5 crossref_primary_10_1080_00207721_2023_2180336 crossref_primary_10_1109_TFUZZ_2024_3420793 crossref_primary_10_1007_s11432_022_3817_5 crossref_primary_10_1109_TIFS_2024_3522770 crossref_primary_10_1109_TFUZZ_2024_3466218 crossref_primary_10_1016_j_jfranklin_2024_107491 crossref_primary_10_1002_rnc_7479 crossref_primary_10_1109_TAC_2023_3326861 crossref_primary_10_1002_rnc_7455 crossref_primary_10_1016_j_automatica_2025_112132 crossref_primary_10_1109_TCYB_2024_3350331 crossref_primary_10_1049_cth2_12446 crossref_primary_10_1007_s11071_024_09809_z crossref_primary_10_1109_TASE_2024_3379192 |
Cites_doi | 10.1080/00207721.2021.1885082 10.1016/j.automatica.2020.109154 10.1016/j.sysconle.2011.07.005 10.1016/j.automatica.2017.02.002 10.1016/j.automatica.2019.06.019 10.1080/00207721.2021.1872118 10.1109/TAC.2018.2831620 10.1109/TII.2014.2299897 10.1016/j.automatica.2009.03.004 10.1109/TAC.2017.2685083 10.1002/asjc.1924 10.1016/j.neucom.2017.10.008 10.1007/978-3-319-48962-9 10.1109/TCYB.2019.2896160 10.1109/TFUZZ.2019.2907503 10.1016/j.automatica.2017.12.033 10.1016/j.automatica.2018.09.003 10.1109/TNNLS.2018.2790982 10.1016/j.automatica.2004.03.003 10.1109/TCYB.2019.2900478 10.1016/j.isatra.2019.05.004 10.1109/TSMC.2019.2905253 10.1109/TSMC.2020.3003801 10.1016/j.jfranklin.2021.08.015 10.1109/TSMC.2018.2876497 10.1109/TCSI.2020.3036847 10.1016/j.ins.2018.04.052 10.1109/9.827351 10.1016/j.automatica.2017.04.032 10.1109/TSMC.2019.2919513 10.1109/TCYB.2019.2894392 10.1109/TCYB.2017.2716115 10.1109/TSMC.2018.2814572 10.1109/TCST.2016.2616379 10.1109/TCSI.2019.2948015 10.1002/rnc.4818 10.1049/iet-cta.2018.5080 10.1080/00207179.2020.1750706 10.1002/rnc.4347 10.1109/TCYB.2017.2685425 10.1109/TNSE.2022.3173310 10.1109/TCNS.2017.2648508 10.1109/OJIES.2020.3040412 10.1016/j.automatica.2020.109128 10.1109/TSMC.2022.3166554 10.1109/TCSI.2019.2929554 10.1109/TII.2016.2607150 10.1109/TCYB.2021.3069423 10.1016/j.automatica.2015.10.005 10.1109/TFUZZ.2015.2501412 10.1016/j.neucom.2019.04.065 10.1109/TAC.2019.2926156 10.1080/00207721.2020.1746439 10.1016/j.ins.2018.12.091 10.1109/TCSI.2021.3071341 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 7TB 8FD F28 FR3 H8D JQ2 L7M L~C L~D 7X8 |
DOI | 10.1109/TCYB.2022.3202486 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE/IET Electronic Library CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional MEDLINE - Academic |
DatabaseTitle | CrossRef Aerospace Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Computer and Information Systems Abstracts Professional MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Aerospace Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE/IET Electronic Library url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
EISSN | 2168-2275 |
EndPage | 14 |
ExternalDocumentID | 10_1109_TCYB_2022_3202486 9911238 |
Genre | orig-research |
GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 61873148; 61933007; 62203288; 61903143 funderid: 10.13039/501100001809 – fundername: Alexander von Humboldt Foundation of Germany – fundername: Natural Science Foundation of Anhui Province of China grantid: 2108085MA07 – fundername: AHPU High-End Equipment Intelligent Control Innovation Team of China grantid: 2021CXTD005 |
GroupedDBID | 0R~ 4.4 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACIWK AENEX AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD HZ~ IFIPE IPLJI JAVBF M43 O9- OCL PQQKQ RIA RIE RNS AAYXX CITATION RIG 7SC 7SP 7TB 8FD F28 FR3 H8D JQ2 L7M L~C L~D 7X8 |
ID | FETCH-LOGICAL-c326t-5569f56e1dbe2cb38937c2b8569a1d503651903a4467dd2761f8835406eb2bbc3 |
IEDL.DBID | RIE |
ISSN | 2168-2267 2168-2275 |
IngestDate | Sun Sep 28 12:19:04 EDT 2025 Mon Jun 30 04:19:37 EDT 2025 Tue Jul 01 00:54:03 EDT 2025 Thu Apr 24 22:55:38 EDT 2025 Wed Aug 27 02:29:14 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c326t-5569f56e1dbe2cb38937c2b8569a1d503651903a4467dd2761f8835406eb2bbc3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-9576-7401 0000-0003-4718-9835 0000-0001-6471-5089 0000-0003-4213-6937 0000-0002-3010-1879 |
PQID | 2878508372 |
PQPubID | 85422 |
PageCount | 14 |
ParticipantIDs | ieee_primary_9911238 proquest_journals_2878508372 crossref_citationtrail_10_1109_TCYB_2022_3202486 crossref_primary_10_1109_TCYB_2022_3202486 proquest_miscellaneous_2721636033 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-11-01 |
PublicationDateYYYYMMDD | 2023-11-01 |
PublicationDate_xml | – month: 11 year: 2023 text: 2023-11-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Piscataway |
PublicationPlace_xml | – name: Piscataway |
PublicationTitle | IEEE transactions on cybernetics |
PublicationTitleAbbrev | TCYB |
PublicationYear | 2023 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref12 ref56 ref15 ref14 ref53 ref52 ref11 ref55 ref10 ref54 ref17 ref16 ref19 ref18 ref51 ref50 ref46 ref45 ref48 ref47 ref42 ref41 ref44 ref43 ref49 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 ref35 ref34 ref36 ref31 ref30 ref33 ref32 ref2 ref1 ref39 ref38 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref29 wang (ref37) 2022 |
References_xml | – ident: ref15 doi: 10.1080/00207721.2021.1885082 – ident: ref56 doi: 10.1016/j.automatica.2020.109154 – ident: ref24 doi: 10.1016/j.sysconle.2011.07.005 – ident: ref22 doi: 10.1016/j.automatica.2017.02.002 – ident: ref2 doi: 10.1016/j.automatica.2019.06.019 – ident: ref20 doi: 10.1080/00207721.2021.1872118 – ident: ref19 doi: 10.1109/TAC.2018.2831620 – ident: ref50 doi: 10.1109/TII.2014.2299897 – ident: ref9 doi: 10.1016/j.automatica.2009.03.004 – ident: ref32 doi: 10.1109/TAC.2017.2685083 – ident: ref3 doi: 10.1002/asjc.1924 – ident: ref11 doi: 10.1016/j.neucom.2017.10.008 – ident: ref44 doi: 10.1007/978-3-319-48962-9 – ident: ref43 doi: 10.1109/TCYB.2019.2896160 – ident: ref41 doi: 10.1109/TFUZZ.2019.2907503 – ident: ref36 doi: 10.1016/j.automatica.2017.12.033 – ident: ref23 doi: 10.1016/j.automatica.2018.09.003 – ident: ref40 doi: 10.1109/TNNLS.2018.2790982 – ident: ref8 doi: 10.1016/j.automatica.2004.03.003 – ident: ref42 doi: 10.1109/TCYB.2019.2900478 – ident: ref49 doi: 10.1016/j.isatra.2019.05.004 – ident: ref6 doi: 10.1109/TSMC.2019.2905253 – ident: ref45 doi: 10.1109/TSMC.2020.3003801 – ident: ref13 doi: 10.1016/j.jfranklin.2021.08.015 – ident: ref7 doi: 10.1109/TSMC.2018.2876497 – ident: ref31 doi: 10.1109/TCSI.2020.3036847 – ident: ref54 doi: 10.1016/j.ins.2018.04.052 – year: 2022 ident: ref37 article-title: Pinning spatiotemporal sampled-data synchronization of coupled reaction-diffusion neural networks under deception attacks publication-title: IEEE Trans Neural Netw Learn Syst – ident: ref1 doi: 10.1109/9.827351 – ident: ref39 doi: 10.1016/j.automatica.2017.04.032 – ident: ref14 doi: 10.1109/TSMC.2019.2919513 – ident: ref17 doi: 10.1109/TCYB.2019.2894392 – ident: ref5 doi: 10.1109/TCYB.2017.2716115 – ident: ref28 doi: 10.1109/TSMC.2018.2814572 – ident: ref10 doi: 10.1109/TCST.2016.2616379 – ident: ref16 doi: 10.1109/TCSI.2019.2948015 – ident: ref34 doi: 10.1002/rnc.4818 – ident: ref25 doi: 10.1049/iet-cta.2018.5080 – ident: ref26 doi: 10.1080/00207179.2020.1750706 – ident: ref27 doi: 10.1002/rnc.4347 – ident: ref55 doi: 10.1109/TCYB.2017.2685425 – ident: ref47 doi: 10.1109/TNSE.2022.3173310 – ident: ref18 doi: 10.1109/TCNS.2017.2648508 – ident: ref48 doi: 10.1109/OJIES.2020.3040412 – ident: ref53 doi: 10.1016/j.automatica.2020.109128 – ident: ref52 doi: 10.1109/TSMC.2022.3166554 – ident: ref35 doi: 10.1109/TCSI.2019.2929554 – ident: ref51 doi: 10.1109/TII.2016.2607150 – ident: ref30 doi: 10.1109/TCYB.2021.3069423 – ident: ref33 doi: 10.1016/j.automatica.2015.10.005 – ident: ref38 doi: 10.1109/TFUZZ.2015.2501412 – ident: ref21 doi: 10.1016/j.neucom.2019.04.065 – ident: ref4 doi: 10.1109/TAC.2019.2926156 – ident: ref12 doi: 10.1080/00207721.2020.1746439 – ident: ref46 doi: 10.1016/j.ins.2018.12.091 – ident: ref29 doi: 10.1109/TCSI.2021.3071341 |
SSID | ssj0000816898 |
Score | 2.5030928 |
Snippet | In this article, the sliding mode control problem is addressed for a class of sampled-data systems subject to deception attacks. The sampling periods undergo... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1 |
SubjectTerms | Closed loops Control systems design Controllers Data systems Feedback control Markov chains Markovian model Nonuniform sampling Optimal control Optimization Perturbation randomly occurring deception attacks randomly perturbed sampling periods (RPSPs) Sampled data systems Sliding mode control sliding mode control (SMC) Stochastic processes Symmetric matrices Time measurement |
Title | Sliding Mode Control for Sampled-Data Systems Subject to Deception Attacks: Handling Randomly Perturbed Sampling Periods |
URI | https://ieeexplore.ieee.org/document/9911238 https://www.proquest.com/docview/2878508372 https://www.proquest.com/docview/2721636033 |
Volume | 53 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3faxQxEB7aPvmitlU8rZKCDyrmupu9ze761l4th1AR20J9WvJjFkrP29Lbg-pf70w2t4hK8S1ksyEwk8w3ycw3AK-9daX3OpEKKy8nNkdZkZ2WGlWTVoUtseHk5NPPenYx-XSZX27A-yEXBhFD8BmOuRne8n3rVnxVdkBYhg7achM2Sc36XK3hPiUUkAilbxU1JKGKIj5ipkl1cD79dkTOoFJjrhc-4czp38xQqKvy12EcLMzJIzhdr60PLLkerzo7dj__oG3838U_hocRaorDXje2YQMXO7AdN_NSvImM02934e5sfsU2THBlNDHto9cFwVlxZpg92Mtj0xkR2c0FHTZ8eyO6VhxjDIsRh13H6fofxIx5G3iyr9Rov89_iC94S4bNou-n42_UddX65RO4OPl4Pp3JWJJBOsJ5ncxzXTW5xtRbVM4GtOOULanbpD4nc0iIMMkMOZmF96rQaVOGqyVNHry1LnsKW4t2gc9A6MahJwCiCZFNTONKZ4ytGs-Qi1AajiBZS6h2ka-cy2bM6-C3JFXNQq1ZqHUU6gjeDb_c9GQd9w3eZSENA6N8RrC3VoM6budlTW5lybz5hRrB_vCZNiK_rpgFtisawzRImU6y7Pm_Z34BD7hWfZ_IuAdb3e0KXxKi6eyroMq_ABNQ8e0 |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Rb9MwED6N8QAvgzEQhQ2MxAMg3CVO4yS8jY6pwDoh1knjKYrtizStNGhNJeDX785xIwQI8WY5jmXpbN9357vvAJ47Y3PndCQVFk6OTIqyID0tNao6LjKTY83JydMTPTkbfThPzzfgdZ8Lg4g--AyH3PRv-a6xK3aV7ROWoYs2vwE3U7Iq8i5bq_eo-BISvvitooYkXJGFZ8w4KvZn4y9vyRxUasgVw0ecO_2LIvKVVf64jr2OOboD0_XqutCSy-GqNUP78zfixv9d_l3YCmBTHHS7Yxs2cHEPtsNxXooXgXP65Q58P51fsBYTXBtNjLv4dUGAVpxWzB_s5GHVViLwmwu6bth_I9pGHGIIjBEHbcsJ-2_EhJkbeLLP1Gi-zn-IT3hFqs2g66bjb9R10bjlfTg7ejcbT2QoyiAtIb1Wpqku6lRj7Awqazzescrk1F3FLiWFSJgwSioyMzPnVKbjOvfOJU02vDE2eQCbi2aBD0Ho2qIjCKIJk42q2ua2qkxROwZdhNNwANFaQqUNjOVcOGNeesslKkoWaslCLYNQB_Cq_-VbR9fxr8E7LKR-YJDPAHbX26AMB3pZkmGZM3N-pgbwrP9MR5HfV6oFNisaw0RIiY6S5NHfZ34Ktyaz6XF5_P7k42O4zZXru7TGXdhsr1a4R_imNU_8tr4G8_r1QA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sliding+Mode+Control+for+Sampled-Data+Systems+Subject+to+Deception+Attacks%3A+Handling+Randomly+Perturbed+Sampling+Periods&rft.jtitle=IEEE+transactions+on+cybernetics&rft.au=Cao%2C+Zhiru&rft.au=Wang%2C+Zidong&rft.au=Niu%2C+Yugang&rft.au=Song%2C+Jun&rft.date=2023-11-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=2168-2267&rft.eissn=2168-2275&rft.volume=53&rft.issue=11&rft.spage=7034&rft_id=info:doi/10.1109%2FTCYB.2022.3202486&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2168-2267&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2168-2267&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2168-2267&client=summon |