An Ensemble Surrogate-Based Coevolutionary Algorithm for Solving Large-Scale Expensive Optimization Problems
Surrogate-assisted evolutionary algorithms (SAEAs) have shown promising performance for solving expensive optimization problems (EOPs) whose true evaluations are computationally or physically expensive. However, most existing SAEAs only focus on the problems with low dimensionality and they rarely c...
Saved in:
| Published in | IEEE transactions on cybernetics Vol. 53; no. 9; pp. 1 - 13 |
|---|---|
| Main Authors | , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Piscataway
IEEE
01.09.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 2168-2267 2168-2275 2168-2275 |
| DOI | 10.1109/TCYB.2022.3200517 |
Cover
| Abstract | Surrogate-assisted evolutionary algorithms (SAEAs) have shown promising performance for solving expensive optimization problems (EOPs) whose true evaluations are computationally or physically expensive. However, most existing SAEAs only focus on the problems with low dimensionality and they rarely consider solving large-scale EOPs (LSEOPs). To fill this research gap, this article proposes an ensemble surrogate-based coevolutionary optimizer for tackling LSEOPs. First, some local surrogate models are trained with low-dimensional data subsets by using feature selection on the large-scale decision variables, a part of which are used to build a selective ensemble surrogate for better approximating the target LSEOP. Then, a coevolutionary optimizer guided by the ensemble surrogate is designed by running two populations to cooperatively solve the target LSEOP and the simplified auxiliary problem. The information of offspring from the two populations is shared to facilitate the coevolution process, which can exploit the searching experience from the simplified auxiliary problem to help solving the target LSEOP. Finally, an effective infill selection criterion is used to update the ensemble surrogate and enhance its approximate performance. To evaluate the performance of the proposed algorithm, a number of well-known benchmark problems are used and the experimental results validate our superior performance over nine state-of-the-art SAEAs on most cases. |
|---|---|
| AbstractList | Surrogate-assisted evolutionary algorithms (SAEAs) have shown promising performance for solving expensive optimization problems (EOPs) whose true evaluations are computationally or physically expensive. However, most existing SAEAs only focus on the problems with low dimensionality and they rarely consider solving large-scale EOPs (LSEOPs). To fill this research gap, this article proposes an ensemble surrogate-based coevolutionary optimizer for tackling LSEOPs. First, some local surrogate models are trained with low-dimensional data subsets by using feature selection on the large-scale decision variables, a part of which are used to build a selective ensemble surrogate for better approximating the target LSEOP. Then, a coevolutionary optimizer guided by the ensemble surrogate is designed by running two populations to cooperatively solve the target LSEOP and the simplified auxiliary problem. The information of offspring from the two populations is shared to facilitate the coevolution process, which can exploit the searching experience from the simplified auxiliary problem to help solving the target LSEOP. Finally, an effective infill selection criterion is used to update the ensemble surrogate and enhance its approximate performance. To evaluate the performance of the proposed algorithm, a number of well-known benchmark problems are used and the experimental results validate our superior performance over nine state-of-the-art SAEAs on most cases. Surrogate-assisted evolutionary algorithms (SAEAs) have shown promising performance for solving expensive optimization problems (EOPs) whose true evaluations are computationally or physically expensive. However, most existing SAEAs only focus on the problems with low dimensionality and they rarely consider solving large-scale EOPs (LSEOPs). To fill this research gap, this article proposes an ensemble surrogate-based coevolutionary optimizer for tackling LSEOPs. First, some local surrogate models are trained with low-dimensional data subsets by using feature selection on the large-scale decision variables, a part of which are used to build a selective ensemble surrogate for better approximating the target LSEOP. Then, a coevolutionary optimizer guided by the ensemble surrogate is designed by running two populations to cooperatively solve the target LSEOP and the simplified auxiliary problem. The information of offspring from the two populations is shared to facilitate the coevolution process, which can exploit the searching experience from the simplified auxiliary problem to help solving the target LSEOP. Finally, an effective infill selection criterion is used to update the ensemble surrogate and enhance its approximate performance. To evaluate the performance of the proposed algorithm, a number of well-known benchmark problems are used and the experimental results validate our superior performance over nine state-of-the-art SAEAs on most cases.Surrogate-assisted evolutionary algorithms (SAEAs) have shown promising performance for solving expensive optimization problems (EOPs) whose true evaluations are computationally or physically expensive. However, most existing SAEAs only focus on the problems with low dimensionality and they rarely consider solving large-scale EOPs (LSEOPs). To fill this research gap, this article proposes an ensemble surrogate-based coevolutionary optimizer for tackling LSEOPs. First, some local surrogate models are trained with low-dimensional data subsets by using feature selection on the large-scale decision variables, a part of which are used to build a selective ensemble surrogate for better approximating the target LSEOP. Then, a coevolutionary optimizer guided by the ensemble surrogate is designed by running two populations to cooperatively solve the target LSEOP and the simplified auxiliary problem. The information of offspring from the two populations is shared to facilitate the coevolution process, which can exploit the searching experience from the simplified auxiliary problem to help solving the target LSEOP. Finally, an effective infill selection criterion is used to update the ensemble surrogate and enhance its approximate performance. To evaluate the performance of the proposed algorithm, a number of well-known benchmark problems are used and the experimental results validate our superior performance over nine state-of-the-art SAEAs on most cases. |
| Author | Tan, Kay Chen Leung, Victor C. M. Li, Jianqiang Wu, Xunfeng Lin, Qiuzhen |
| Author_xml | – sequence: 1 givenname: Xunfeng surname: Wu fullname: Wu, Xunfeng organization: College of Computer Science and Software Engineering, Shenzhen University, Shenzhen, China – sequence: 2 givenname: Qiuzhen orcidid: 0000-0003-2415-0401 surname: Lin fullname: Lin, Qiuzhen organization: College of Computer Science and Software Engineering, Shenzhen University, Shenzhen, China – sequence: 3 givenname: Jianqiang orcidid: 0000-0002-2208-962X surname: Li fullname: Li, Jianqiang organization: College of Computer Science and Software Engineering, Shenzhen University, Shenzhen, China – sequence: 4 givenname: Kay Chen orcidid: 0000-0002-6802-2463 surname: Tan fullname: Tan, Kay Chen organization: Department of Computing, The Hong Kong Polytechnic University, Hong Kong, China – sequence: 5 givenname: Victor C. M. orcidid: 0000-0003-3529-2640 surname: Leung fullname: Leung, Victor C. M. organization: College of Computer Science and Software Engineering, Shenzhen University, Shenzhen, China |
| BookMark | eNp9kU1rGzEQhkVJaNI0P6D0stBLL-voY_WxR8e4H2BIwOmhJzHezLoKWsmVdk3aX185Djnk0LloEM_7MjPvO3ISYkBCPjA6Y4y2V3eLn9czTjmfCU6pZPoNOedMmZpzLU9eeqXPyGXOD7SUKV-teUvOhGKMS8XPiZ-HahkyDhuP1XpKKW5hxPoaMt5Xi4j76KfRxQDpTzX325jc-Guo-piqdfR7F7bVCtIW63UHxWD5uMOQ3R6rm93oBvcXDtrqNsViP-T35LQHn_Hy-b0gP74s7xbf6tXN1--L-aruBFdjLWVDNdz3G2GkoUIJyliraIOAdAO8bMu0RKMYMAqybxkItpEM-h7KZUCIC_L56LtL8feEebSDyx16DwHjlC3XTDYNV0YV9NMr9CFOKZTpLDdSUK6bRhdKH6kuxZwT9rZz49NuYwLnLaP2kIk9ZGIPmdjnTIqSvVLukhvKNf-r-XjUOER84VvTNkJJ8Q_mJZaw |
| CODEN | ITCEB8 |
| CitedBy_id | crossref_primary_10_1109_TETCI_2023_3301794 crossref_primary_10_1016_j_ins_2024_121224 crossref_primary_10_1007_s12065_023_00882_8 crossref_primary_10_1109_TCYB_2024_3489885 crossref_primary_10_1109_TEVC_2023_3338693 |
| Cites_doi | 10.1109/CEC.1999.785513 10.1007/978-3-642-41278-3_45 10.1109/TCYB.2018.2869674 10.1109/TEVC.2017.2675628 10.1016/j.swevo.2011.05.001 10.1016/j.omega.2021.102442 10.1016/j.swevo.2020.100800 10.1007/s00500-003-0329-4 10.1016/j.eswa.2013.10.002 10.1023/A:1008306431147 10.1109/TEVC.2002.800884 10.1016/j.ins.2019.01.009 10.1109/CEC.2008.4631273 10.2478/v10175-010-0019-1 10.1016/j.ins.2018.04.062 10.1016/j.knosys.2018.08.010 10.1016/j.swevo.2020.100787 10.1109/TCYB.2019.2904543 10.1109/TEVC.2019.2899030 10.1109/TSMCC.2005.855506 10.1109/TEVC.2017.2693320 10.1016/j.jspi.2006.06.002 10.1109/TEVC.2018.2869001 10.1109/TEVC.2018.2834881 10.1109/TEVC.2020.3017865 10.1007/s10489-018-1279-y 10.1109/CEC.2013.6557555 10.1186/s12544-020-00409-7 10.1016/j.jocs.2013.07.004 10.1109/TEVC.2018.2802784 10.1109/4235.996017 10.3233/ICA-160516 10.1109/TCYB.2017.2710978 10.1109/TEVC.2016.2555315 10.1109/TEVC.2018.2869247 10.1016/j.ins.2014.08.039 10.1023/A:1008202821328 10.1007/978-3-030-58112-1_9 10.1109/TEVC.2019.2890818 10.1007/BF00058655 10.1109/TEVC.2009.2014613 10.1109/TEVC.2005.859463 10.1109/TEVC.2019.2893447 10.1109/TCYB.2018.2794503 10.1214/aoms/1177729694 10.1109/TEVC.2009.2027359 10.1109/SSCI44817.2019.9002961 10.1109/CEC.2017.7969486 10.1080/00401706.1987.10488205 10.1007/3-540-45712-7_35 10.1007/s00500-014-1283-z 10.1007/978-3-642-15844-5_37 10.1109/TEVC.2013.2248012 10.1109/TSC.2020.2975774 10.1080/0305215X.2012.690759 10.1109/CEC.2019.8789943 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
| DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 7TB 8FD F28 FR3 H8D JQ2 L7M L~C L~D 7X8 |
| DOI | 10.1109/TCYB.2022.3200517 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional MEDLINE - Academic |
| DatabaseTitle | CrossRef Aerospace Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Computer and Information Systems Abstracts Professional MEDLINE - Academic |
| DatabaseTitleList | Aerospace Database MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Sciences (General) |
| EISSN | 2168-2275 |
| EndPage | 13 |
| ExternalDocumentID | 10_1109_TCYB_2022_3200517 9894365 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: Science, Technology and Innovation Commission of Shenzhen Municipality; Shenzhen Science and Technology Innovation Commission grantid: R2020A045 funderid: 10.13039/501100010877 – fundername: Shenzhen Scientific Research and Development Funding Program grantid: JCYJ20190808164211203 – fundername: Research Grants Council of the Hong Kong, SAR grantid: PolyU11209219 – fundername: Guangdong “Pearl River Talent Recruitment Program” grantid: 2019ZT08X603 – fundername: National Key Research and Development Project, Ministry of Science and Technology, China grantid: 2018AAA0101301 – fundername: National Natural Science Foundation of China grantid: 61876162; 61876110 funderid: 10.13039/501100001809 |
| GroupedDBID | 0R~ 4.4 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACIWK AENEX AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD HZ~ IFIPE IPLJI JAVBF M43 O9- OCL PQQKQ RIA RIE RNS AAYXX CITATION 7SC 7SP 7TB 8FD F28 FR3 H8D JQ2 L7M L~C L~D 7X8 |
| ID | FETCH-LOGICAL-c326t-55407adfb385803630119604eae0ba2200175e861a10a5f91a31b51affa110a33 |
| IEDL.DBID | RIE |
| ISSN | 2168-2267 2168-2275 |
| IngestDate | Wed Oct 01 13:39:01 EDT 2025 Mon Jun 30 03:54:25 EDT 2025 Wed Oct 01 01:36:45 EDT 2025 Thu Apr 24 23:02:35 EDT 2025 Wed Aug 27 02:29:12 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 9 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c326t-55407adfb385803630119604eae0ba2200175e861a10a5f91a31b51affa110a33 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-6802-2463 0000-0003-2415-0401 0000-0002-2208-962X 0000-0003-3529-2640 |
| PMID | 36112562 |
| PQID | 2853027447 |
| PQPubID | 85422 |
| PageCount | 13 |
| ParticipantIDs | proquest_miscellaneous_2715442686 crossref_citationtrail_10_1109_TCYB_2022_3200517 crossref_primary_10_1109_TCYB_2022_3200517 proquest_journals_2853027447 ieee_primary_9894365 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2023-09-01 |
| PublicationDateYYYYMMDD | 2023-09-01 |
| PublicationDate_xml | – month: 09 year: 2023 text: 2023-09-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Piscataway |
| PublicationPlace_xml | – name: Piscataway |
| PublicationTitle | IEEE transactions on cybernetics |
| PublicationTitleAbbrev | TCYB |
| PublicationYear | 2023 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref57 deb (ref59) 1996; 26 ref12 ref56 ref15 ref14 ref52 ref11 ref55 ref10 ref54 ref17 ref16 ref19 hollander (ref64) 2013; 751 suganthan (ref60) 2005 ref50 ref46 ref45 ref48 ref47 ref42 ref41 ref44 ref43 ref49 ref8 ref7 ref9 ref4 ref6 ref5 ref40 ref35 ref34 ref37 ref36 ref31 ref30 ref33 ref32 ref2 ref1 ref39 ref38 deb (ref58) 1995; 9 dasgupta (ref3) 2013 kendall (ref53) 1990 li (ref65) 2013; 7 ref24 ref23 ref26 ref25 ref20 ref63 ref22 ref21 nesrine (ref18) 2014 ref28 ref27 ref29 ref62 ref61 zhou (ref51) 2019 |
| References_xml | – ident: ref42 doi: 10.1109/CEC.1999.785513 – ident: ref52 doi: 10.1007/978-3-642-41278-3_45 – ident: ref17 doi: 10.1109/TCYB.2018.2869674 – ident: ref13 doi: 10.1109/TEVC.2017.2675628 – ident: ref27 doi: 10.1016/j.swevo.2011.05.001 – ident: ref31 doi: 10.1016/j.omega.2021.102442 – ident: ref37 doi: 10.1016/j.swevo.2020.100800 – volume: 7 start-page: 8 year: 2013 ident: ref65 article-title: Benchmark functions for the CEC 2013 special session and competition on large-scale global optimization publication-title: Gene – ident: ref22 doi: 10.1007/s00500-003-0329-4 – ident: ref1 doi: 10.1016/j.eswa.2013.10.002 – ident: ref9 doi: 10.1023/A:1008306431147 – ident: ref28 doi: 10.1109/TEVC.2002.800884 – ident: ref38 doi: 10.1016/j.ins.2019.01.009 – ident: ref26 doi: 10.1109/CEC.2008.4631273 – ident: ref55 doi: 10.2478/v10175-010-0019-1 – ident: ref61 doi: 10.1016/j.ins.2018.04.062 – ident: ref63 doi: 10.1016/j.knosys.2018.08.010 – ident: ref49 doi: 10.1016/j.swevo.2020.100787 – ident: ref5 doi: 10.1109/TCYB.2019.2904543 – ident: ref57 doi: 10.1109/TEVC.2019.2899030 – ident: ref24 doi: 10.1109/TSMCC.2005.855506 – ident: ref11 doi: 10.1109/TEVC.2017.2693320 – ident: ref45 doi: 10.1016/j.jspi.2006.06.002 – ident: ref19 doi: 10.1109/TEVC.2018.2869001 – ident: ref14 doi: 10.1109/TEVC.2018.2834881 – volume: 26 start-page: 30 year: 1996 ident: ref59 article-title: A combined genetic adaptive search (GeneAS) for engineering design publication-title: Comput Sci Inform – ident: ref35 doi: 10.1109/TEVC.2020.3017865 – ident: ref46 doi: 10.1007/s10489-018-1279-y – ident: ref47 doi: 10.1109/CEC.2013.6557555 – ident: ref32 doi: 10.1186/s12544-020-00409-7 – ident: ref20 doi: 10.1016/j.jocs.2013.07.004 – ident: ref56 doi: 10.1109/TEVC.2018.2802784 – ident: ref40 doi: 10.1109/4235.996017 – ident: ref30 doi: 10.3233/ICA-160516 – year: 2005 ident: ref60 article-title: Problem definitions and evaluation criteria for the CEC 2005 special session on real-parameter optimization – volume: 9 start-page: 115 year: 1995 ident: ref58 article-title: Simulated binary crossover for continuous search space publication-title: Complex Syst – ident: ref62 doi: 10.1109/TCYB.2017.2710978 – year: 2019 ident: ref51 publication-title: Ensemble Methods Foundations and Algorithms – volume: 751 year: 2013 ident: ref64 publication-title: Nonparametric Statistical Methods – ident: ref8 doi: 10.1109/TEVC.2016.2555315 – year: 2013 ident: ref3 publication-title: Evolutionary Algorithms in Engineering Applications – year: 1990 ident: ref53 publication-title: Rank Correlation Methods – ident: ref34 doi: 10.1109/TEVC.2018.2869247 – ident: ref43 doi: 10.1016/j.ins.2014.08.039 – ident: ref4 doi: 10.1023/A:1008202821328 – ident: ref39 doi: 10.1007/978-3-030-58112-1_9 – ident: ref12 doi: 10.1109/TEVC.2019.2890818 – ident: ref44 doi: 10.1007/BF00058655 – start-page: 581 year: 2014 ident: ref18 article-title: Steady state IBEA assisted by MLP neural networks for expensive multi-objective optimization problems publication-title: Proc Annu Conf Genet Evol Comput – ident: ref41 doi: 10.1109/TEVC.2009.2014613 – ident: ref25 doi: 10.1109/TEVC.2005.859463 – ident: ref7 doi: 10.1109/TEVC.2019.2893447 – ident: ref29 doi: 10.1109/TCYB.2018.2794503 – ident: ref54 doi: 10.1214/aoms/1177729694 – ident: ref15 doi: 10.1109/TEVC.2009.2027359 – ident: ref36 doi: 10.1109/SSCI44817.2019.9002961 – ident: ref2 doi: 10.1109/CEC.2017.7969486 – ident: ref50 doi: 10.1080/00401706.1987.10488205 – ident: ref23 doi: 10.1007/3-540-45712-7_35 – ident: ref21 doi: 10.1007/s00500-014-1283-z – ident: ref16 doi: 10.1007/978-3-642-15844-5_37 – ident: ref10 doi: 10.1109/TEVC.2013.2248012 – ident: ref6 doi: 10.1109/TSC.2020.2975774 – ident: ref48 doi: 10.1080/0305215X.2012.690759 – ident: ref33 doi: 10.1109/CEC.2019.8789943 |
| SSID | ssj0000816898 |
| Score | 2.4189277 |
| Snippet | Surrogate-assisted evolutionary algorithms (SAEAs) have shown promising performance for solving expensive optimization problems (EOPs) whose true evaluations... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1 |
| SubjectTerms | Approximation algorithms Computational modeling Data models Ensemble surrogate Evolutionary algorithms large-scale expensive optimization problem (LSEOP) Optimization Performance evaluation Populations Predictive models Search problems Support vector machines surrogate-assisted evolutionary algorithm (SAEA) |
| Title | An Ensemble Surrogate-Based Coevolutionary Algorithm for Solving Large-Scale Expensive Optimization Problems |
| URI | https://ieeexplore.ieee.org/document/9894365 https://www.proquest.com/docview/2853027447 https://www.proquest.com/docview/2715442686 |
| Volume | 53 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 2168-2275 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000816898 issn: 2168-2267 databaseCode: RIE dateStart: 20130101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwELXaHlAvlFIQW0plJA6A8NZ2nI89bletKsSXtK1UTpGdjAGRTVA2QYJfj8fxRmqpEDdLsaNEz_aMZ8bvEfJCpibWpYiYiCww5YwIczADy0AZKTSPSuvZPj8kF1fq7XV8vUXejHdhAMAXn8EUmz6XXzZFj6GyE08WnsTbZDvNkuGu1hhP8QISXvpWugZzXkUakpiCz04uF59P3WFQymkkPS3VLrkXJc7XiBN5wyJ5iZW_9mVvbM73yPvNZw41Jt-nfWemxe9bDI7_-x8PyP3gddL5ME32yRbUD8l-WNdr-jKQT786INW8pmf1GlamArrs27bBOBs7dcaupIsGfoapqttfdF59adpv3dcVdZ4vXTYVBifoO6wtZ0uHPVAkUvYF8vSj25pW4c4n_TSo2Kwfkavzs8vFBQuKDKxwbl7HYqTr06U1mE7EFDAyxiVcgQZutMT6rDSGLBFacB3bmdCRMLHQ1moHg46ix2Snbmp4QqgRtlQclDbKOAMJMw6psYW1zoEqrJATwjeo5EWgK0fVjCr3xxY-yxHTHDHNA6YT8noc8mPg6vhX5wMEZuwYMJmQow30eVjN61xmqK2UKuVGPR8fu3WIyRVdQ9O7PinyGskkSw7vfvNTsotS9UN92hHZ6doenjmHpjPHfib_ASO972E |
| linkProvider | IEEE |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fb9MwED6NIcFegDEmCgOMxAMg3MWOnbSPXbWpQDeQ2knjKbKTMyDSBKUJEvz12I5biR9CvFmKHSX6bN_57vx9AM94qqUqWExZbJAKa0SohRnpCIXmTEVxYTzb50UyuxRvruTVDrza3oVBRF98hkPX9Ln8os47Fyo79mThibwG16UQQva3tbYRFS8h4cVvuW1Q61ekIY3JovHxcvrhxB4HOR_G3BNT7cGNOLHehkz4LzbJi6z8sTN7c3N2G843H9pXmXwZdq0e5j9-43D83z-5A7eC30km_UTZhx2s7sJ-WNlr8jzQT784gHJSkdNqjStdIll0TVO7SBs9seauINMav4XJqprvZFJ-rJvP7acVsb4vWdSlC0-QuasupwuLPhJHpexL5Mk7uzmtwq1P8r7XsVnfg8uz0-V0RoMmA82to9dS6Qj7VGG0Syi6JLDjjEsigQojrbir0EoljhKmWKSkGTMVMy2ZMkZZGFQcH8JuVVd4H4hmphARCqWFtiYSxxGm2uTGWBcqN4wPINqgkuWBsNzpZpSZP7hE48xhmjlMs4DpAF5uh3zt2Tr-1fnAAbPtGDAZwNEG-iys53XGR05dKRXCjnq6fWxXokuvqArrzvZJHbMRT0bJg7-_-QncnC3P59n89cXbh7DnhOv7arUj2G2bDh9Z96bVj_2s_gnSQPKu |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Ensemble+Surrogate-Based+Coevolutionary+Algorithm+for+Solving+Large-Scale+Expensive+Optimization+Problems&rft.jtitle=IEEE+transactions+on+cybernetics&rft.au=Wu%2C+Xunfeng&rft.au=Lin%2C+Qiuzhen&rft.au=Li%2C+Jianqiang&rft.au=Tan%2C+Kay+Chen&rft.date=2023-09-01&rft.issn=2168-2267&rft.eissn=2168-2275&rft.volume=53&rft.issue=9&rft.spage=5854&rft.epage=5866&rft_id=info:doi/10.1109%2FTCYB.2022.3200517&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TCYB_2022_3200517 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2168-2267&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2168-2267&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2168-2267&client=summon |