An Ensemble Surrogate-Based Coevolutionary Algorithm for Solving Large-Scale Expensive Optimization Problems

Surrogate-assisted evolutionary algorithms (SAEAs) have shown promising performance for solving expensive optimization problems (EOPs) whose true evaluations are computationally or physically expensive. However, most existing SAEAs only focus on the problems with low dimensionality and they rarely c...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on cybernetics Vol. 53; no. 9; pp. 1 - 13
Main Authors Wu, Xunfeng, Lin, Qiuzhen, Li, Jianqiang, Tan, Kay Chen, Leung, Victor C. M.
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 01.09.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN2168-2267
2168-2275
2168-2275
DOI10.1109/TCYB.2022.3200517

Cover

Abstract Surrogate-assisted evolutionary algorithms (SAEAs) have shown promising performance for solving expensive optimization problems (EOPs) whose true evaluations are computationally or physically expensive. However, most existing SAEAs only focus on the problems with low dimensionality and they rarely consider solving large-scale EOPs (LSEOPs). To fill this research gap, this article proposes an ensemble surrogate-based coevolutionary optimizer for tackling LSEOPs. First, some local surrogate models are trained with low-dimensional data subsets by using feature selection on the large-scale decision variables, a part of which are used to build a selective ensemble surrogate for better approximating the target LSEOP. Then, a coevolutionary optimizer guided by the ensemble surrogate is designed by running two populations to cooperatively solve the target LSEOP and the simplified auxiliary problem. The information of offspring from the two populations is shared to facilitate the coevolution process, which can exploit the searching experience from the simplified auxiliary problem to help solving the target LSEOP. Finally, an effective infill selection criterion is used to update the ensemble surrogate and enhance its approximate performance. To evaluate the performance of the proposed algorithm, a number of well-known benchmark problems are used and the experimental results validate our superior performance over nine state-of-the-art SAEAs on most cases.
AbstractList Surrogate-assisted evolutionary algorithms (SAEAs) have shown promising performance for solving expensive optimization problems (EOPs) whose true evaluations are computationally or physically expensive. However, most existing SAEAs only focus on the problems with low dimensionality and they rarely consider solving large-scale EOPs (LSEOPs). To fill this research gap, this article proposes an ensemble surrogate-based coevolutionary optimizer for tackling LSEOPs. First, some local surrogate models are trained with low-dimensional data subsets by using feature selection on the large-scale decision variables, a part of which are used to build a selective ensemble surrogate for better approximating the target LSEOP. Then, a coevolutionary optimizer guided by the ensemble surrogate is designed by running two populations to cooperatively solve the target LSEOP and the simplified auxiliary problem. The information of offspring from the two populations is shared to facilitate the coevolution process, which can exploit the searching experience from the simplified auxiliary problem to help solving the target LSEOP. Finally, an effective infill selection criterion is used to update the ensemble surrogate and enhance its approximate performance. To evaluate the performance of the proposed algorithm, a number of well-known benchmark problems are used and the experimental results validate our superior performance over nine state-of-the-art SAEAs on most cases.
Surrogate-assisted evolutionary algorithms (SAEAs) have shown promising performance for solving expensive optimization problems (EOPs) whose true evaluations are computationally or physically expensive. However, most existing SAEAs only focus on the problems with low dimensionality and they rarely consider solving large-scale EOPs (LSEOPs). To fill this research gap, this article proposes an ensemble surrogate-based coevolutionary optimizer for tackling LSEOPs. First, some local surrogate models are trained with low-dimensional data subsets by using feature selection on the large-scale decision variables, a part of which are used to build a selective ensemble surrogate for better approximating the target LSEOP. Then, a coevolutionary optimizer guided by the ensemble surrogate is designed by running two populations to cooperatively solve the target LSEOP and the simplified auxiliary problem. The information of offspring from the two populations is shared to facilitate the coevolution process, which can exploit the searching experience from the simplified auxiliary problem to help solving the target LSEOP. Finally, an effective infill selection criterion is used to update the ensemble surrogate and enhance its approximate performance. To evaluate the performance of the proposed algorithm, a number of well-known benchmark problems are used and the experimental results validate our superior performance over nine state-of-the-art SAEAs on most cases.Surrogate-assisted evolutionary algorithms (SAEAs) have shown promising performance for solving expensive optimization problems (EOPs) whose true evaluations are computationally or physically expensive. However, most existing SAEAs only focus on the problems with low dimensionality and they rarely consider solving large-scale EOPs (LSEOPs). To fill this research gap, this article proposes an ensemble surrogate-based coevolutionary optimizer for tackling LSEOPs. First, some local surrogate models are trained with low-dimensional data subsets by using feature selection on the large-scale decision variables, a part of which are used to build a selective ensemble surrogate for better approximating the target LSEOP. Then, a coevolutionary optimizer guided by the ensemble surrogate is designed by running two populations to cooperatively solve the target LSEOP and the simplified auxiliary problem. The information of offspring from the two populations is shared to facilitate the coevolution process, which can exploit the searching experience from the simplified auxiliary problem to help solving the target LSEOP. Finally, an effective infill selection criterion is used to update the ensemble surrogate and enhance its approximate performance. To evaluate the performance of the proposed algorithm, a number of well-known benchmark problems are used and the experimental results validate our superior performance over nine state-of-the-art SAEAs on most cases.
Author Tan, Kay Chen
Leung, Victor C. M.
Li, Jianqiang
Wu, Xunfeng
Lin, Qiuzhen
Author_xml – sequence: 1
  givenname: Xunfeng
  surname: Wu
  fullname: Wu, Xunfeng
  organization: College of Computer Science and Software Engineering, Shenzhen University, Shenzhen, China
– sequence: 2
  givenname: Qiuzhen
  orcidid: 0000-0003-2415-0401
  surname: Lin
  fullname: Lin, Qiuzhen
  organization: College of Computer Science and Software Engineering, Shenzhen University, Shenzhen, China
– sequence: 3
  givenname: Jianqiang
  orcidid: 0000-0002-2208-962X
  surname: Li
  fullname: Li, Jianqiang
  organization: College of Computer Science and Software Engineering, Shenzhen University, Shenzhen, China
– sequence: 4
  givenname: Kay Chen
  orcidid: 0000-0002-6802-2463
  surname: Tan
  fullname: Tan, Kay Chen
  organization: Department of Computing, The Hong Kong Polytechnic University, Hong Kong, China
– sequence: 5
  givenname: Victor C. M.
  orcidid: 0000-0003-3529-2640
  surname: Leung
  fullname: Leung, Victor C. M.
  organization: College of Computer Science and Software Engineering, Shenzhen University, Shenzhen, China
BookMark eNp9kU1rGzEQhkVJaNI0P6D0stBLL-voY_WxR8e4H2BIwOmhJzHezLoKWsmVdk3aX185Djnk0LloEM_7MjPvO3ISYkBCPjA6Y4y2V3eLn9czTjmfCU6pZPoNOedMmZpzLU9eeqXPyGXOD7SUKV-teUvOhGKMS8XPiZ-HahkyDhuP1XpKKW5hxPoaMt5Xi4j76KfRxQDpTzX325jc-Guo-piqdfR7F7bVCtIW63UHxWD5uMOQ3R6rm93oBvcXDtrqNsViP-T35LQHn_Hy-b0gP74s7xbf6tXN1--L-aruBFdjLWVDNdz3G2GkoUIJyliraIOAdAO8bMu0RKMYMAqybxkItpEM-h7KZUCIC_L56LtL8feEebSDyx16DwHjlC3XTDYNV0YV9NMr9CFOKZTpLDdSUK6bRhdKH6kuxZwT9rZz49NuYwLnLaP2kIk9ZGIPmdjnTIqSvVLukhvKNf-r-XjUOER84VvTNkJJ8Q_mJZaw
CODEN ITCEB8
CitedBy_id crossref_primary_10_1109_TETCI_2023_3301794
crossref_primary_10_1016_j_ins_2024_121224
crossref_primary_10_1007_s12065_023_00882_8
crossref_primary_10_1109_TCYB_2024_3489885
crossref_primary_10_1109_TEVC_2023_3338693
Cites_doi 10.1109/CEC.1999.785513
10.1007/978-3-642-41278-3_45
10.1109/TCYB.2018.2869674
10.1109/TEVC.2017.2675628
10.1016/j.swevo.2011.05.001
10.1016/j.omega.2021.102442
10.1016/j.swevo.2020.100800
10.1007/s00500-003-0329-4
10.1016/j.eswa.2013.10.002
10.1023/A:1008306431147
10.1109/TEVC.2002.800884
10.1016/j.ins.2019.01.009
10.1109/CEC.2008.4631273
10.2478/v10175-010-0019-1
10.1016/j.ins.2018.04.062
10.1016/j.knosys.2018.08.010
10.1016/j.swevo.2020.100787
10.1109/TCYB.2019.2904543
10.1109/TEVC.2019.2899030
10.1109/TSMCC.2005.855506
10.1109/TEVC.2017.2693320
10.1016/j.jspi.2006.06.002
10.1109/TEVC.2018.2869001
10.1109/TEVC.2018.2834881
10.1109/TEVC.2020.3017865
10.1007/s10489-018-1279-y
10.1109/CEC.2013.6557555
10.1186/s12544-020-00409-7
10.1016/j.jocs.2013.07.004
10.1109/TEVC.2018.2802784
10.1109/4235.996017
10.3233/ICA-160516
10.1109/TCYB.2017.2710978
10.1109/TEVC.2016.2555315
10.1109/TEVC.2018.2869247
10.1016/j.ins.2014.08.039
10.1023/A:1008202821328
10.1007/978-3-030-58112-1_9
10.1109/TEVC.2019.2890818
10.1007/BF00058655
10.1109/TEVC.2009.2014613
10.1109/TEVC.2005.859463
10.1109/TEVC.2019.2893447
10.1109/TCYB.2018.2794503
10.1214/aoms/1177729694
10.1109/TEVC.2009.2027359
10.1109/SSCI44817.2019.9002961
10.1109/CEC.2017.7969486
10.1080/00401706.1987.10488205
10.1007/3-540-45712-7_35
10.1007/s00500-014-1283-z
10.1007/978-3-642-15844-5_37
10.1109/TEVC.2013.2248012
10.1109/TSC.2020.2975774
10.1080/0305215X.2012.690759
10.1109/CEC.2019.8789943
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
7TB
8FD
F28
FR3
H8D
JQ2
L7M
L~C
L~D
7X8
DOI 10.1109/TCYB.2022.3200517
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitle CrossRef
Aerospace Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList Aerospace Database

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 2168-2275
EndPage 13
ExternalDocumentID 10_1109_TCYB_2022_3200517
9894365
Genre orig-research
GrantInformation_xml – fundername: Science, Technology and Innovation Commission of Shenzhen Municipality; Shenzhen Science and Technology Innovation Commission
  grantid: R2020A045
  funderid: 10.13039/501100010877
– fundername: Shenzhen Scientific Research and Development Funding Program
  grantid: JCYJ20190808164211203
– fundername: Research Grants Council of the Hong Kong, SAR
  grantid: PolyU11209219
– fundername: Guangdong “Pearl River Talent Recruitment Program”
  grantid: 2019ZT08X603
– fundername: National Key Research and Development Project, Ministry of Science and Technology, China
  grantid: 2018AAA0101301
– fundername: National Natural Science Foundation of China
  grantid: 61876162; 61876110
  funderid: 10.13039/501100001809
GroupedDBID 0R~
4.4
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACIWK
AENEX
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
HZ~
IFIPE
IPLJI
JAVBF
M43
O9-
OCL
PQQKQ
RIA
RIE
RNS
AAYXX
CITATION
7SC
7SP
7TB
8FD
F28
FR3
H8D
JQ2
L7M
L~C
L~D
7X8
ID FETCH-LOGICAL-c326t-55407adfb385803630119604eae0ba2200175e861a10a5f91a31b51affa110a33
IEDL.DBID RIE
ISSN 2168-2267
2168-2275
IngestDate Wed Oct 01 13:39:01 EDT 2025
Mon Jun 30 03:54:25 EDT 2025
Wed Oct 01 01:36:45 EDT 2025
Thu Apr 24 23:02:35 EDT 2025
Wed Aug 27 02:29:12 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c326t-55407adfb385803630119604eae0ba2200175e861a10a5f91a31b51affa110a33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-6802-2463
0000-0003-2415-0401
0000-0002-2208-962X
0000-0003-3529-2640
PMID 36112562
PQID 2853027447
PQPubID 85422
PageCount 13
ParticipantIDs proquest_miscellaneous_2715442686
crossref_citationtrail_10_1109_TCYB_2022_3200517
crossref_primary_10_1109_TCYB_2022_3200517
proquest_journals_2853027447
ieee_primary_9894365
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-09-01
PublicationDateYYYYMMDD 2023-09-01
PublicationDate_xml – month: 09
  year: 2023
  text: 2023-09-01
  day: 01
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE transactions on cybernetics
PublicationTitleAbbrev TCYB
PublicationYear 2023
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref57
deb (ref59) 1996; 26
ref12
ref56
ref15
ref14
ref52
ref11
ref55
ref10
ref54
ref17
ref16
ref19
hollander (ref64) 2013; 751
suganthan (ref60) 2005
ref50
ref46
ref45
ref48
ref47
ref42
ref41
ref44
ref43
ref49
ref8
ref7
ref9
ref4
ref6
ref5
ref40
ref35
ref34
ref37
ref36
ref31
ref30
ref33
ref32
ref2
ref1
ref39
ref38
deb (ref58) 1995; 9
dasgupta (ref3) 2013
kendall (ref53) 1990
li (ref65) 2013; 7
ref24
ref23
ref26
ref25
ref20
ref63
ref22
ref21
nesrine (ref18) 2014
ref28
ref27
ref29
ref62
ref61
zhou (ref51) 2019
References_xml – ident: ref42
  doi: 10.1109/CEC.1999.785513
– ident: ref52
  doi: 10.1007/978-3-642-41278-3_45
– ident: ref17
  doi: 10.1109/TCYB.2018.2869674
– ident: ref13
  doi: 10.1109/TEVC.2017.2675628
– ident: ref27
  doi: 10.1016/j.swevo.2011.05.001
– ident: ref31
  doi: 10.1016/j.omega.2021.102442
– ident: ref37
  doi: 10.1016/j.swevo.2020.100800
– volume: 7
  start-page: 8
  year: 2013
  ident: ref65
  article-title: Benchmark functions for the CEC 2013 special session and competition on large-scale global optimization
  publication-title: Gene
– ident: ref22
  doi: 10.1007/s00500-003-0329-4
– ident: ref1
  doi: 10.1016/j.eswa.2013.10.002
– ident: ref9
  doi: 10.1023/A:1008306431147
– ident: ref28
  doi: 10.1109/TEVC.2002.800884
– ident: ref38
  doi: 10.1016/j.ins.2019.01.009
– ident: ref26
  doi: 10.1109/CEC.2008.4631273
– ident: ref55
  doi: 10.2478/v10175-010-0019-1
– ident: ref61
  doi: 10.1016/j.ins.2018.04.062
– ident: ref63
  doi: 10.1016/j.knosys.2018.08.010
– ident: ref49
  doi: 10.1016/j.swevo.2020.100787
– ident: ref5
  doi: 10.1109/TCYB.2019.2904543
– ident: ref57
  doi: 10.1109/TEVC.2019.2899030
– ident: ref24
  doi: 10.1109/TSMCC.2005.855506
– ident: ref11
  doi: 10.1109/TEVC.2017.2693320
– ident: ref45
  doi: 10.1016/j.jspi.2006.06.002
– ident: ref19
  doi: 10.1109/TEVC.2018.2869001
– ident: ref14
  doi: 10.1109/TEVC.2018.2834881
– volume: 26
  start-page: 30
  year: 1996
  ident: ref59
  article-title: A combined genetic adaptive search (GeneAS) for engineering design
  publication-title: Comput Sci Inform
– ident: ref35
  doi: 10.1109/TEVC.2020.3017865
– ident: ref46
  doi: 10.1007/s10489-018-1279-y
– ident: ref47
  doi: 10.1109/CEC.2013.6557555
– ident: ref32
  doi: 10.1186/s12544-020-00409-7
– ident: ref20
  doi: 10.1016/j.jocs.2013.07.004
– ident: ref56
  doi: 10.1109/TEVC.2018.2802784
– ident: ref40
  doi: 10.1109/4235.996017
– ident: ref30
  doi: 10.3233/ICA-160516
– year: 2005
  ident: ref60
  article-title: Problem definitions and evaluation criteria for the CEC 2005 special session on real-parameter optimization
– volume: 9
  start-page: 115
  year: 1995
  ident: ref58
  article-title: Simulated binary crossover for continuous search space
  publication-title: Complex Syst
– ident: ref62
  doi: 10.1109/TCYB.2017.2710978
– year: 2019
  ident: ref51
  publication-title: Ensemble Methods Foundations and Algorithms
– volume: 751
  year: 2013
  ident: ref64
  publication-title: Nonparametric Statistical Methods
– ident: ref8
  doi: 10.1109/TEVC.2016.2555315
– year: 2013
  ident: ref3
  publication-title: Evolutionary Algorithms in Engineering Applications
– year: 1990
  ident: ref53
  publication-title: Rank Correlation Methods
– ident: ref34
  doi: 10.1109/TEVC.2018.2869247
– ident: ref43
  doi: 10.1016/j.ins.2014.08.039
– ident: ref4
  doi: 10.1023/A:1008202821328
– ident: ref39
  doi: 10.1007/978-3-030-58112-1_9
– ident: ref12
  doi: 10.1109/TEVC.2019.2890818
– ident: ref44
  doi: 10.1007/BF00058655
– start-page: 581
  year: 2014
  ident: ref18
  article-title: Steady state IBEA assisted by MLP neural networks for expensive multi-objective optimization problems
  publication-title: Proc Annu Conf Genet Evol Comput
– ident: ref41
  doi: 10.1109/TEVC.2009.2014613
– ident: ref25
  doi: 10.1109/TEVC.2005.859463
– ident: ref7
  doi: 10.1109/TEVC.2019.2893447
– ident: ref29
  doi: 10.1109/TCYB.2018.2794503
– ident: ref54
  doi: 10.1214/aoms/1177729694
– ident: ref15
  doi: 10.1109/TEVC.2009.2027359
– ident: ref36
  doi: 10.1109/SSCI44817.2019.9002961
– ident: ref2
  doi: 10.1109/CEC.2017.7969486
– ident: ref50
  doi: 10.1080/00401706.1987.10488205
– ident: ref23
  doi: 10.1007/3-540-45712-7_35
– ident: ref21
  doi: 10.1007/s00500-014-1283-z
– ident: ref16
  doi: 10.1007/978-3-642-15844-5_37
– ident: ref10
  doi: 10.1109/TEVC.2013.2248012
– ident: ref6
  doi: 10.1109/TSC.2020.2975774
– ident: ref48
  doi: 10.1080/0305215X.2012.690759
– ident: ref33
  doi: 10.1109/CEC.2019.8789943
SSID ssj0000816898
Score 2.4189277
Snippet Surrogate-assisted evolutionary algorithms (SAEAs) have shown promising performance for solving expensive optimization problems (EOPs) whose true evaluations...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Approximation algorithms
Computational modeling
Data models
Ensemble surrogate
Evolutionary algorithms
large-scale expensive optimization problem (LSEOP)
Optimization
Performance evaluation
Populations
Predictive models
Search problems
Support vector machines
surrogate-assisted evolutionary algorithm (SAEA)
Title An Ensemble Surrogate-Based Coevolutionary Algorithm for Solving Large-Scale Expensive Optimization Problems
URI https://ieeexplore.ieee.org/document/9894365
https://www.proquest.com/docview/2853027447
https://www.proquest.com/docview/2715442686
Volume 53
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 2168-2275
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816898
  issn: 2168-2267
  databaseCode: RIE
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwELXaHlAvlFIQW0plJA6A8NZ2nI89bletKsSXtK1UTpGdjAGRTVA2QYJfj8fxRmqpEDdLsaNEz_aMZ8bvEfJCpibWpYiYiCww5YwIczADy0AZKTSPSuvZPj8kF1fq7XV8vUXejHdhAMAXn8EUmz6XXzZFj6GyE08WnsTbZDvNkuGu1hhP8QISXvpWugZzXkUakpiCz04uF59P3WFQymkkPS3VLrkXJc7XiBN5wyJ5iZW_9mVvbM73yPvNZw41Jt-nfWemxe9bDI7_-x8PyP3gddL5ME32yRbUD8l-WNdr-jKQT786INW8pmf1GlamArrs27bBOBs7dcaupIsGfoapqttfdF59adpv3dcVdZ4vXTYVBifoO6wtZ0uHPVAkUvYF8vSj25pW4c4n_TSo2Kwfkavzs8vFBQuKDKxwbl7HYqTr06U1mE7EFDAyxiVcgQZutMT6rDSGLBFacB3bmdCRMLHQ1moHg46ix2Snbmp4QqgRtlQclDbKOAMJMw6psYW1zoEqrJATwjeo5EWgK0fVjCr3xxY-yxHTHDHNA6YT8noc8mPg6vhX5wMEZuwYMJmQow30eVjN61xmqK2UKuVGPR8fu3WIyRVdQ9O7PinyGskkSw7vfvNTsotS9UN92hHZ6doenjmHpjPHfib_ASO972E
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fb9MwED6NIcFegDEmCgOMxAMg3MWOnbSPXbWpQDeQ2knjKbKTMyDSBKUJEvz12I5biR9CvFmKHSX6bN_57vx9AM94qqUqWExZbJAKa0SohRnpCIXmTEVxYTzb50UyuxRvruTVDrza3oVBRF98hkPX9Ln8os47Fyo79mThibwG16UQQva3tbYRFS8h4cVvuW1Q61ekIY3JovHxcvrhxB4HOR_G3BNT7cGNOLHehkz4LzbJi6z8sTN7c3N2G843H9pXmXwZdq0e5j9-43D83z-5A7eC30km_UTZhx2s7sJ-WNlr8jzQT784gHJSkdNqjStdIll0TVO7SBs9seauINMav4XJqprvZFJ-rJvP7acVsb4vWdSlC0-QuasupwuLPhJHpexL5Mk7uzmtwq1P8r7XsVnfg8uz0-V0RoMmA82to9dS6Qj7VGG0Syi6JLDjjEsigQojrbir0EoljhKmWKSkGTMVMy2ZMkZZGFQcH8JuVVd4H4hmphARCqWFtiYSxxGm2uTGWBcqN4wPINqgkuWBsNzpZpSZP7hE48xhmjlMs4DpAF5uh3zt2Tr-1fnAAbPtGDAZwNEG-iys53XGR05dKRXCjnq6fWxXokuvqArrzvZJHbMRT0bJg7-_-QncnC3P59n89cXbh7DnhOv7arUj2G2bDh9Z96bVj_2s_gnSQPKu
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Ensemble+Surrogate-Based+Coevolutionary+Algorithm+for+Solving+Large-Scale+Expensive+Optimization+Problems&rft.jtitle=IEEE+transactions+on+cybernetics&rft.au=Wu%2C+Xunfeng&rft.au=Lin%2C+Qiuzhen&rft.au=Li%2C+Jianqiang&rft.au=Tan%2C+Kay+Chen&rft.date=2023-09-01&rft.issn=2168-2267&rft.eissn=2168-2275&rft.volume=53&rft.issue=9&rft.spage=5854&rft.epage=5866&rft_id=info:doi/10.1109%2FTCYB.2022.3200517&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TCYB_2022_3200517
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2168-2267&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2168-2267&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2168-2267&client=summon