Fine-grained resource provisioning and task scheduling for heterogeneous applications in distributed green clouds

An increasing number of enterprises have adopted cloud computing to manage their important business applications in distributed green cloud &#x0028 DGC &#x0029 systems for low response time and high cost-effectiveness in recent years. Task scheduling and resource allocation in DGCs have gain...

Full description

Saved in:
Bibliographic Details
Published inIEEE/CAA journal of automatica sinica Vol. 7; no. 5; pp. 1380 - 1393
Main Authors Yuan, Haitao, Zhou, MengChu, Liu, Qing, Abusorrah, Abdullah
Format Journal Article
LanguageEnglish
Published Piscataway Chinese Association of Automation (CAA) 01.09.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Department of Electrical and Computer Engineering, New Jersey Institute of Technology, Newark, NJ 07102 USA%Department of Electrical and Computer Engineering, Faculty of Engineering, and the Center of Research Excellence in Renewable Energy and Power Systems, King Abdulaziz University, Jeddah 21589, Saudi Arabia
Subjects
Online AccessGet full text
ISSN2329-9266
2329-9274
DOI10.1109/JAS.2020.1003177

Cover

Abstract An increasing number of enterprises have adopted cloud computing to manage their important business applications in distributed green cloud &#x0028 DGC &#x0029 systems for low response time and high cost-effectiveness in recent years. Task scheduling and resource allocation in DGCs have gained more attention in both academia and industry as they are costly to manage because of high energy consumption. Many factors in DGCs, e.g., prices of power grid, and the amount of green energy express strong spatial variations. The dramatic increase of arriving tasks brings a big challenge to minimize the energy cost of a DGC provider in a market where above factors all possess spatial variations. This work adopts a G &#x002F G &#x002F 1 queuing system to analyze the performance of servers in DGCs. Based on it, a single-objective constrained optimization problem is formulated and solved by a proposed simulated-annealing-based bees algorithm &#x0028 SBA &#x0029 to find SBA can minimize the energy cost of a DGC provider by optimally allocating tasks of heterogeneous applications among multiple DGCs, and specifying the running speed of each server and the number of powered-on servers in each GC while strictly meeting response time limits of tasks of all applications. Realistic data-based experimental results prove that SBA achieves lower energy cost than several benchmark scheduling methods do.
AbstractList An increasing number of enterprises have adopted cloud computing to manage their important business applications in distributed green cloud &#x0028 DGC &#x0029 systems for low response time and high cost-effectiveness in recent years. Task scheduling and resource allocation in DGCs have gained more attention in both academia and industry as they are costly to manage because of high energy consumption. Many factors in DGCs, e.g., prices of power grid, and the amount of green energy express strong spatial variations. The dramatic increase of arriving tasks brings a big challenge to minimize the energy cost of a DGC provider in a market where above factors all possess spatial variations. This work adopts a G &#x002F G &#x002F 1 queuing system to analyze the performance of servers in DGCs. Based on it, a single-objective constrained optimization problem is formulated and solved by a proposed simulated-annealing-based bees algorithm &#x0028 SBA &#x0029 to find SBA can minimize the energy cost of a DGC provider by optimally allocating tasks of heterogeneous applications among multiple DGCs, and specifying the running speed of each server and the number of powered-on servers in each GC while strictly meeting response time limits of tasks of all applications. Realistic data-based experimental results prove that SBA achieves lower energy cost than several benchmark scheduling methods do.
An increasing number of enterprises have adopted cloud computing to manage their important business applications in distributed green cloud (DGC) systems for low response time and high cost-effectiveness in recent years. Task scheduling and resource allocation in DGCs have gained more attention in both academia and industry as they are costly to manage because of high energy consumption. Many factors in DGCs, e.g., prices of power grid, and the amount of green energy express strong spatial variations. The dramatic increase of arriving tasks brings a big challenge to minimize the energy cost of a DGC provider in a market where above factors all possess spatial variations. This work adopts a G/G/1 queuing system to analyze the performance of servers in DGCs. Based on it, a single-objective constrained optimization problem is formulated and solved by a proposed simulated-annealing-based bees algorithm (SBA) to find SBA can minimize the energy cost of a DGC provider by optimally allocating tasks of heterogeneous applications among multiple DGCs, and specifying the running speed of each server and the number of powered-on servers in each GC while strictly meeting response time limits of tasks of all applications. Realistic data-based experimental results prove that SBA achieves lower energy cost than several benchmark scheduling methods do.
Author Liu, Qing
Zhou, MengChu
Yuan, Haitao
Abusorrah, Abdullah
AuthorAffiliation Department of Electrical and Computer Engineering, New Jersey Institute of Technology, Newark, NJ 07102 USA%Department of Electrical and Computer Engineering, Faculty of Engineering, and the Center of Research Excellence in Renewable Energy and Power Systems, King Abdulaziz University, Jeddah 21589, Saudi Arabia
AuthorAffiliation_xml – name: Department of Electrical and Computer Engineering, New Jersey Institute of Technology, Newark, NJ 07102 USA%Department of Electrical and Computer Engineering, Faculty of Engineering, and the Center of Research Excellence in Renewable Energy and Power Systems, King Abdulaziz University, Jeddah 21589, Saudi Arabia
Author_xml – sequence: 1
  givenname: Haitao
  surname: Yuan
  fullname: Yuan, Haitao
  organization: Department of Electrical and Computer Engineering, New Jersey Institute of Technology, Newark, NJ 07102 USA
– sequence: 2
  givenname: MengChu
  surname: Zhou
  fullname: Zhou, MengChu
  organization: Department of Electrical and Computer Engineering, New Jersey Institute of Technology, Newark, NJ 07102 USA
– sequence: 3
  givenname: Qing
  surname: Liu
  fullname: Liu, Qing
  organization: Department of Electrical and Computer Engineering, New Jersey Institute of Technology, Newark, NJ 07102 USA
– sequence: 4
  givenname: Abdullah
  surname: Abusorrah
  fullname: Abusorrah, Abdullah
  organization: Department of Electrical and Computer Engineering, Faculty of Engineering, and the Center of Research Excellence in Renewable Energy and Power Systems, King Abdulaziz University, Jeddah 21589, Saudi Arabia
BookMark eNp9kUtrGzEUhUVJIWmSfaAbQXeFSa80Y421NKF5lEAXadZCI90Zy51KtqTJ69dHjk0KXXR1JfGdK845n8iBDx4JOWNwzhjIbz8Wd-cceLkB1KxtP5AjXnNZSd42B-9nIQ7JaUorAGB81grZHJHNpfNYDVGXYWnEFKZokK5jeHDJBe_8QLW3NOv0myazRDuN27c-RLrEjDEM6DFMier1enRG5yJK1HlqXcrRdVMue4eI6KkZw2TTCfnY6zHh6X4ek_vL778urqvbn1c3F4vbytRc5KrR0kIndGuF5dxKLVprBVjZ9rO-WOyMrkXXtSillp3AhnMx723RwtwAM_Ux-brb-6h9r_2gVsWaLz-qF7t86tTzY7eNDGbARIG_7OBifDNhyn9p3pREgc-hKZTYUSaGlCL2yrj85jiXAEfFQG3rUKUOtd2t9nUUIfwjXEf3R8fn_0k-7yQOEd9xyUDMhaxfAZbimTY
CODEN IJASJC
CitedBy_id crossref_primary_10_1109_MSMC_2022_3198027
crossref_primary_10_1109_TCC_2024_3450876
crossref_primary_10_3390_s21030779
crossref_primary_10_32604_csse_2022_022107
crossref_primary_10_1109_ACCESS_2020_3035181
crossref_primary_10_1016_j_suscom_2023_100888
crossref_primary_10_1007_s40747_021_00351_8
crossref_primary_10_32604_cmc_2023_040268
crossref_primary_10_1007_s10489_023_05212_0
crossref_primary_10_1109_TITS_2020_3030607
crossref_primary_10_1109_TIA_2022_3214186
crossref_primary_10_1109_TITS_2020_3046885
crossref_primary_10_1109_TSMC_2021_3049323
crossref_primary_10_1109_TCSS_2021_3055823
crossref_primary_10_1051_ro_2021173
crossref_primary_10_1007_s10586_022_03608_0
crossref_primary_10_1109_TCYB_2021_3126711
crossref_primary_10_1002_dac_5022
crossref_primary_10_1109_TSUSC_2022_3144357
crossref_primary_10_1016_j_jpdc_2022_12_007
crossref_primary_10_1109_TCYB_2021_3079346
crossref_primary_10_1109_TASE_2020_3046673
crossref_primary_10_1109_TASE_2023_3296733
crossref_primary_10_1109_TNSE_2023_3236214
crossref_primary_10_1109_JAS_2021_1004174
crossref_primary_10_1007_s10586_022_03561_y
crossref_primary_10_1109_JIOT_2023_3286390
crossref_primary_10_1109_TASE_2022_3178126
crossref_primary_10_1007_s00521_022_07477_x
crossref_primary_10_1109_TEVC_2021_3095481
crossref_primary_10_1109_TETCI_2021_3107488
crossref_primary_10_1109_ACCESS_2021_3108770
crossref_primary_10_1016_j_swevo_2022_101142
crossref_primary_10_1109_TCSS_2022_3217101
crossref_primary_10_1109_TII_2021_3102471
crossref_primary_10_1007_s00500_022_06782_w
crossref_primary_10_1049_cim2_12023
crossref_primary_10_1109_TCC_2021_3130644
crossref_primary_10_1109_TPDS_2024_3360448
crossref_primary_10_1109_TPDS_2021_3124670
crossref_primary_10_1109_TII_2021_3113875
crossref_primary_10_1109_TITS_2022_3177404
crossref_primary_10_1109_TSMC_2021_3072357
crossref_primary_10_1109_TPDS_2021_3075254
crossref_primary_10_1109_TPDS_2023_3288702
crossref_primary_10_1016_j_ins_2021_12_063
crossref_primary_10_1016_j_suscom_2023_100903
crossref_primary_10_1007_s10462_021_10059_3
crossref_primary_10_1109_JAS_2020_1003515
crossref_primary_10_1109_TSUSC_2022_3186656
crossref_primary_10_1109_TCC_2022_3150985
crossref_primary_10_1155_2022_4206714
crossref_primary_10_1109_TEVC_2021_3113923
crossref_primary_10_1007_s11276_022_03157_9
crossref_primary_10_1016_j_engappai_2021_104372
crossref_primary_10_1109_TPDS_2021_3122428
crossref_primary_10_1109_TCSS_2021_3061439
crossref_primary_10_1109_TITS_2022_3150471
crossref_primary_10_1016_j_eswa_2023_121309
crossref_primary_10_1109_TCYB_2021_3070143
crossref_primary_10_1109_TITS_2023_3266807
crossref_primary_10_1109_JIOT_2023_3237727
crossref_primary_10_2478_jsiot_2022_0013
crossref_primary_10_1109_JAS_2020_1003207
crossref_primary_10_1155_2021_5532288
crossref_primary_10_1109_JAS_2022_105695
crossref_primary_10_1007_s11432_022_3714_4
crossref_primary_10_1016_j_jii_2024_100561
crossref_primary_10_1002_dac_5075
crossref_primary_10_1109_TASE_2024_3403728
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
– notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
7TB
8FD
FR3
JQ2
L7M
L~C
L~D
2B.
4A8
92I
93N
PSX
TCJ
DOI 10.1109/JAS.2020.1003177
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList

Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2329-9274
EndPage 1393
ExternalDocumentID zdhxb_ywb202005016
10_1109_JAS_2020_1003177
9106869
Genre orig-research
GrantInformation_xml – fundername: (This work was supported in part by the National Natural Science Foundation of China ); (the Major Science and Technology Program for Water Pollution Control and Treatment of China ); (the National Defense Pre-Research Foundation of China ); and the Deanship of Scientific Research at King Abdulaziz University; (Jeddah )
  funderid: (This work was supported in part by the National Natural Science Foundation of China ); (the Major Science and Technology Program for Water Pollution Control and Treatment of China ); (the National Defense Pre-Research Foundation of China ); (DSR) at King Abdulaziz University; (Jeddah )
GroupedDBID -0I
-0Y
-SI
-S~
0R~
4.4
5VR
6IK
92M
97E
9D9
9DI
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACIWK
AFUIB
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CAJEI
EBS
EJD
IFIPE
IPLJI
JAVBF
M43
O9-
OCL
PQQKQ
Q--
RIA
RIE
RT9
T8Y
TCJ
TGT
U1F
U1G
U5I
U5S
AAYXX
CITATION
7SC
7SP
7TB
8FD
FR3
JQ2
L7M
L~C
L~D
2B.
4A8
92I
93N
PSX
R-I
RIG
ID FETCH-LOGICAL-c326t-4a9d0b6a7d6d22d9a67dd60d97f5f177bca36bb7e99a9b6e42268fd32608c01c3
IEDL.DBID RIE
ISSN 2329-9266
IngestDate Thu May 29 04:10:31 EDT 2025
Fri Jul 25 22:12:26 EDT 2025
Wed Oct 01 02:54:13 EDT 2025
Thu Apr 24 22:54:47 EDT 2025
Wed Aug 27 02:17:12 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords Bees algorithm
intelligent optimization
energy optimization
simulated annealing
data centers
distributed green cloud (DGC)
task scheduling
machine learning
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c326t-4a9d0b6a7d6d22d9a67dd60d97f5f177bca36bb7e99a9b6e42268fd32608c01c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2431702804
PQPubID 2040495
PageCount 14
ParticipantIDs proquest_journals_2431702804
crossref_citationtrail_10_1109_JAS_2020_1003177
wanfang_journals_zdhxb_ywb202005016
ieee_primary_9106869
crossref_primary_10_1109_JAS_2020_1003177
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-09-01
PublicationDateYYYYMMDD 2020-09-01
PublicationDate_xml – month: 09
  year: 2020
  text: 2020-09-01
  day: 01
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE/CAA journal of automatica sinica
PublicationTitleAbbrev JAS
PublicationTitle_FL IEEE/CAA Journal of Automatica Sinica
PublicationYear 2020
Publisher Chinese Association of Automation (CAA)
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Department of Electrical and Computer Engineering, New Jersey Institute of Technology, Newark, NJ 07102 USA%Department of Electrical and Computer Engineering, Faculty of Engineering, and the Center of Research Excellence in Renewable Energy and Power Systems, King Abdulaziz University, Jeddah 21589, Saudi Arabia
Publisher_xml – name: Chinese Association of Automation (CAA)
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
– name: Department of Electrical and Computer Engineering, New Jersey Institute of Technology, Newark, NJ 07102 USA%Department of Electrical and Computer Engineering, Faculty of Engineering, and the Center of Research Excellence in Renewable Energy and Power Systems, King Abdulaziz University, Jeddah 21589, Saudi Arabia
SSID ssj0001257694
Score 2.4511962
Snippet An increasing number of enterprises have adopted cloud computing to manage their important business applications in distributed green cloud &#x0028 DGC &#x0029...
An increasing number of enterprises have adopted cloud computing to manage their important business applications in distributed green cloud ( DGC ) systems for...
An increasing number of enterprises have adopted cloud computing to manage their important business applications in distributed green cloud (DGC) systems for...
SourceID wanfang
proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1380
SubjectTerms Clean energy
Cloud computing
Computational modeling
Computer simulation
Data centers
Electric power grids
Energy conservation
Energy consumption
Energy costs
Optimization
Power consumption
Processor scheduling
Provisioning
Queues
Queuing theory
Resource allocation
Resource scheduling
Response time
Search algorithms
Servers
Simulated annealing
System effectiveness
Task analysis
Task scheduling
Title Fine-grained resource provisioning and task scheduling for heterogeneous applications in distributed green clouds
URI https://ieeexplore.ieee.org/document/9106869
https://www.proquest.com/docview/2431702804
https://d.wanfangdata.com.cn/periodical/zdhxb-ywb202005016
Volume 7
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Xplore
  customDbUrl:
  eissn: 2329-9274
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001257694
  issn: 2329-9266
  databaseCode: RIE
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3da9RAEB_agqAPWq3i2SoL-iKYu22abLKPRTxKob5ooW9hd2dylZakNgnV_vWdSXLnVYr4tpDdIcnMMr_5BvgQdMmmcdB8kfi6JYQUWVemEeUJMZrYTzMvroGTr-boNDk-S8824NOqFoaI-uQzmsqyj-VjHTpxlc2YnsmN3YTNLDdDrdaaP4WRcz_3kDGCjSwrnmVUUtvZ8eE3tgXjPimANWZ2Twv1Y1XuIcxHN64qXbVYUzXzZ3CyfMkhw-Ri2rV-Gm7_6t_4v1-xDU9HzKkOByF5DhtUvYAna50Id-DnnNfRQuZFEKrr0aeveodDM7hslatQta65UGwQs4KSOnbFkFedS0ZNzYJIddeo9Yi4-lEplM68MlSL6S4kyUeFy7rD5iWczr98_3wUjdMYosAQr40SZ1F74zI0GMdonckQjUablWnJv9QHd2C8z8haZ70hKdHNS-SzOg96Pxy8gq2qrug1KLK5jVMkby1vK9kId9KQ1CNjNZ-k5QRmS-4UYWxVLhMzLoveZNG2YH4Wws9i5OcEPq5OXA1tOv6xd0eYsto38mMCe0sBKMZ73BSx4CuJPicTeD8KxZ-nt3j-yxe_b7yQ1ymj5zcP096Fx7JlyE3bg632uqO3DGZa_66X4jsmhvIC
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3da9RAEB9qRdQHv1rxtOqCvgjmbpvubrKPRTzO2uuLLfRt2a9cpSXRJqHav96ZJHdeRcS3hewOSWaW-c03wFvPCzSNPceLhNdNxBATbQuZxFxERBO7MnPkGpgfqdmJODiVpxvwflULE2Psks_imJZdLD9UviVX2QTpqVzpW3BbCiFkX6215lFB7NxNPkSUoBONqmcZl-R6crD_Ba3BtEsLQJ2Z3dBD3WCVGxjzzpUtC1su1pTN9CHMl6_Z55icj9vGjf31Hx0c__c7HsGDAXWy_V5MHsNGLJ_A_bVehFvwfYrrZEETI2Jgl4NXn3Uuh7p32jJbBtbY-pyhSYwqiirZGYJedkY5NRWKYqzamq3HxNnXkgXqzUtjtZDugtJ8mL-o2lBvw8n04_GHWTLMY0g8grwmEVYH7pTNggppGrRVWQiKB50VssBf6rzdU85lUWurnYpUpJsXAc_y3PNdv_cUNsuqjM-ARZ3rVIbotMZtBZrhllqSuoBozQlZjGCy5I7xQ7NymplxYTqjhWuD_DTETzPwcwTvVie-9Y06_rF3i5iy2jfwYwQ7SwEww02uTUoIi-LPYgRvBqH4_fQ6nP1w5ueVI_JcIn5-_nfar-Hu7Hh-aA4_HX1-Afdoe5-ptgObzWUbXyK0adyrTqJ_AfMl9U8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fine-grained+resource+provisioning+and+task+scheduling+for+heterogeneous+applications+in+distributed+green+clouds&rft.jtitle=IEEE%2FCAA+journal+of+automatica+sinica&rft.au=Yuan%2C+Haitao&rft.au=Zhou%2C+MengChu&rft.au=Liu%2C+Qing&rft.au=Abusorrah%2C+Abdullah&rft.date=2020-09-01&rft.pub=Chinese+Association+of+Automation+%28CAA%29&rft.issn=2329-9266&rft.volume=7&rft.issue=5&rft.spage=1380&rft.epage=1393&rft_id=info:doi/10.1109%2FJAS.2020.1003177&rft.externalDocID=9106869
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fzdhxb-ywb%2Fzdhxb-ywb.jpg