Fine-grained resource provisioning and task scheduling for heterogeneous applications in distributed green clouds
An increasing number of enterprises have adopted cloud computing to manage their important business applications in distributed green cloud ( DGC ) systems for low response time and high cost-effectiveness in recent years. Task scheduling and resource allocation in DGCs have gain...
Saved in:
| Published in | IEEE/CAA journal of automatica sinica Vol. 7; no. 5; pp. 1380 - 1393 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
Piscataway
Chinese Association of Automation (CAA)
01.09.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Department of Electrical and Computer Engineering, New Jersey Institute of Technology, Newark, NJ 07102 USA%Department of Electrical and Computer Engineering, Faculty of Engineering, and the Center of Research Excellence in Renewable Energy and Power Systems, King Abdulaziz University, Jeddah 21589, Saudi Arabia |
| Subjects | |
| Online Access | Get full text |
| ISSN | 2329-9266 2329-9274 |
| DOI | 10.1109/JAS.2020.1003177 |
Cover
| Abstract | An increasing number of enterprises have adopted cloud computing to manage their important business applications in distributed green cloud ( DGC ) systems for low response time and high cost-effectiveness in recent years. Task scheduling and resource allocation in DGCs have gained more attention in both academia and industry as they are costly to manage because of high energy consumption. Many factors in DGCs, e.g., prices of power grid, and the amount of green energy express strong spatial variations. The dramatic increase of arriving tasks brings a big challenge to minimize the energy cost of a DGC provider in a market where above factors all possess spatial variations. This work adopts a G / G / 1 queuing system to analyze the performance of servers in DGCs. Based on it, a single-objective constrained optimization problem is formulated and solved by a proposed simulated-annealing-based bees algorithm ( SBA ) to find SBA can minimize the energy cost of a DGC provider by optimally allocating tasks of heterogeneous applications among multiple DGCs, and specifying the running speed of each server and the number of powered-on servers in each GC while strictly meeting response time limits of tasks of all applications. Realistic data-based experimental results prove that SBA achieves lower energy cost than several benchmark scheduling methods do. |
|---|---|
| AbstractList | An increasing number of enterprises have adopted cloud computing to manage their important business applications in distributed green cloud ( DGC ) systems for low response time and high cost-effectiveness in recent years. Task scheduling and resource allocation in DGCs have gained more attention in both academia and industry as they are costly to manage because of high energy consumption. Many factors in DGCs, e.g., prices of power grid, and the amount of green energy express strong spatial variations. The dramatic increase of arriving tasks brings a big challenge to minimize the energy cost of a DGC provider in a market where above factors all possess spatial variations. This work adopts a G / G / 1 queuing system to analyze the performance of servers in DGCs. Based on it, a single-objective constrained optimization problem is formulated and solved by a proposed simulated-annealing-based bees algorithm ( SBA ) to find SBA can minimize the energy cost of a DGC provider by optimally allocating tasks of heterogeneous applications among multiple DGCs, and specifying the running speed of each server and the number of powered-on servers in each GC while strictly meeting response time limits of tasks of all applications. Realistic data-based experimental results prove that SBA achieves lower energy cost than several benchmark scheduling methods do. An increasing number of enterprises have adopted cloud computing to manage their important business applications in distributed green cloud (DGC) systems for low response time and high cost-effectiveness in recent years. Task scheduling and resource allocation in DGCs have gained more attention in both academia and industry as they are costly to manage because of high energy consumption. Many factors in DGCs, e.g., prices of power grid, and the amount of green energy express strong spatial variations. The dramatic increase of arriving tasks brings a big challenge to minimize the energy cost of a DGC provider in a market where above factors all possess spatial variations. This work adopts a G/G/1 queuing system to analyze the performance of servers in DGCs. Based on it, a single-objective constrained optimization problem is formulated and solved by a proposed simulated-annealing-based bees algorithm (SBA) to find SBA can minimize the energy cost of a DGC provider by optimally allocating tasks of heterogeneous applications among multiple DGCs, and specifying the running speed of each server and the number of powered-on servers in each GC while strictly meeting response time limits of tasks of all applications. Realistic data-based experimental results prove that SBA achieves lower energy cost than several benchmark scheduling methods do. |
| Author | Liu, Qing Zhou, MengChu Yuan, Haitao Abusorrah, Abdullah |
| AuthorAffiliation | Department of Electrical and Computer Engineering, New Jersey Institute of Technology, Newark, NJ 07102 USA%Department of Electrical and Computer Engineering, Faculty of Engineering, and the Center of Research Excellence in Renewable Energy and Power Systems, King Abdulaziz University, Jeddah 21589, Saudi Arabia |
| AuthorAffiliation_xml | – name: Department of Electrical and Computer Engineering, New Jersey Institute of Technology, Newark, NJ 07102 USA%Department of Electrical and Computer Engineering, Faculty of Engineering, and the Center of Research Excellence in Renewable Energy and Power Systems, King Abdulaziz University, Jeddah 21589, Saudi Arabia |
| Author_xml | – sequence: 1 givenname: Haitao surname: Yuan fullname: Yuan, Haitao organization: Department of Electrical and Computer Engineering, New Jersey Institute of Technology, Newark, NJ 07102 USA – sequence: 2 givenname: MengChu surname: Zhou fullname: Zhou, MengChu organization: Department of Electrical and Computer Engineering, New Jersey Institute of Technology, Newark, NJ 07102 USA – sequence: 3 givenname: Qing surname: Liu fullname: Liu, Qing organization: Department of Electrical and Computer Engineering, New Jersey Institute of Technology, Newark, NJ 07102 USA – sequence: 4 givenname: Abdullah surname: Abusorrah fullname: Abusorrah, Abdullah organization: Department of Electrical and Computer Engineering, Faculty of Engineering, and the Center of Research Excellence in Renewable Energy and Power Systems, King Abdulaziz University, Jeddah 21589, Saudi Arabia |
| BookMark | eNp9kUtrGzEUhUVJIWmSfaAbQXeFSa80Y421NKF5lEAXadZCI90Zy51KtqTJ69dHjk0KXXR1JfGdK845n8iBDx4JOWNwzhjIbz8Wd-cceLkB1KxtP5AjXnNZSd42B-9nIQ7JaUorAGB81grZHJHNpfNYDVGXYWnEFKZokK5jeHDJBe_8QLW3NOv0myazRDuN27c-RLrEjDEM6DFMier1enRG5yJK1HlqXcrRdVMue4eI6KkZw2TTCfnY6zHh6X4ek_vL778urqvbn1c3F4vbytRc5KrR0kIndGuF5dxKLVprBVjZ9rO-WOyMrkXXtSillp3AhnMx723RwtwAM_Ux-brb-6h9r_2gVsWaLz-qF7t86tTzY7eNDGbARIG_7OBifDNhyn9p3pREgc-hKZTYUSaGlCL2yrj85jiXAEfFQG3rUKUOtd2t9nUUIfwjXEf3R8fn_0k-7yQOEd9xyUDMhaxfAZbimTY |
| CODEN | IJASJC |
| CitedBy_id | crossref_primary_10_1109_MSMC_2022_3198027 crossref_primary_10_1109_TCC_2024_3450876 crossref_primary_10_3390_s21030779 crossref_primary_10_32604_csse_2022_022107 crossref_primary_10_1109_ACCESS_2020_3035181 crossref_primary_10_1016_j_suscom_2023_100888 crossref_primary_10_1007_s40747_021_00351_8 crossref_primary_10_32604_cmc_2023_040268 crossref_primary_10_1007_s10489_023_05212_0 crossref_primary_10_1109_TITS_2020_3030607 crossref_primary_10_1109_TIA_2022_3214186 crossref_primary_10_1109_TITS_2020_3046885 crossref_primary_10_1109_TSMC_2021_3049323 crossref_primary_10_1109_TCSS_2021_3055823 crossref_primary_10_1051_ro_2021173 crossref_primary_10_1007_s10586_022_03608_0 crossref_primary_10_1109_TCYB_2021_3126711 crossref_primary_10_1002_dac_5022 crossref_primary_10_1109_TSUSC_2022_3144357 crossref_primary_10_1016_j_jpdc_2022_12_007 crossref_primary_10_1109_TCYB_2021_3079346 crossref_primary_10_1109_TASE_2020_3046673 crossref_primary_10_1109_TASE_2023_3296733 crossref_primary_10_1109_TNSE_2023_3236214 crossref_primary_10_1109_JAS_2021_1004174 crossref_primary_10_1007_s10586_022_03561_y crossref_primary_10_1109_JIOT_2023_3286390 crossref_primary_10_1109_TASE_2022_3178126 crossref_primary_10_1007_s00521_022_07477_x crossref_primary_10_1109_TEVC_2021_3095481 crossref_primary_10_1109_TETCI_2021_3107488 crossref_primary_10_1109_ACCESS_2021_3108770 crossref_primary_10_1016_j_swevo_2022_101142 crossref_primary_10_1109_TCSS_2022_3217101 crossref_primary_10_1109_TII_2021_3102471 crossref_primary_10_1007_s00500_022_06782_w crossref_primary_10_1049_cim2_12023 crossref_primary_10_1109_TCC_2021_3130644 crossref_primary_10_1109_TPDS_2024_3360448 crossref_primary_10_1109_TPDS_2021_3124670 crossref_primary_10_1109_TII_2021_3113875 crossref_primary_10_1109_TITS_2022_3177404 crossref_primary_10_1109_TSMC_2021_3072357 crossref_primary_10_1109_TPDS_2021_3075254 crossref_primary_10_1109_TPDS_2023_3288702 crossref_primary_10_1016_j_ins_2021_12_063 crossref_primary_10_1016_j_suscom_2023_100903 crossref_primary_10_1007_s10462_021_10059_3 crossref_primary_10_1109_JAS_2020_1003515 crossref_primary_10_1109_TSUSC_2022_3186656 crossref_primary_10_1109_TCC_2022_3150985 crossref_primary_10_1155_2022_4206714 crossref_primary_10_1109_TEVC_2021_3113923 crossref_primary_10_1007_s11276_022_03157_9 crossref_primary_10_1016_j_engappai_2021_104372 crossref_primary_10_1109_TPDS_2021_3122428 crossref_primary_10_1109_TCSS_2021_3061439 crossref_primary_10_1109_TITS_2022_3150471 crossref_primary_10_1016_j_eswa_2023_121309 crossref_primary_10_1109_TCYB_2021_3070143 crossref_primary_10_1109_TITS_2023_3266807 crossref_primary_10_1109_JIOT_2023_3237727 crossref_primary_10_2478_jsiot_2022_0013 crossref_primary_10_1109_JAS_2020_1003207 crossref_primary_10_1155_2021_5532288 crossref_primary_10_1109_JAS_2022_105695 crossref_primary_10_1007_s11432_022_3714_4 crossref_primary_10_1016_j_jii_2024_100561 crossref_primary_10_1002_dac_5075 crossref_primary_10_1109_TASE_2024_3403728 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
| DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 7TB 8FD FR3 JQ2 L7M L~C L~D 2B. 4A8 92I 93N PSX TCJ |
| DOI | 10.1109/JAS.2020.1003177 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Wanfang Data Journals - Hong Kong WANFANG Data Centre Wanfang Data Journals 万方数据期刊 - 香港版 China Online Journals (COJ) China Online Journals (COJ) |
| DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Technology Research Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Xplore url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2329-9274 |
| EndPage | 1393 |
| ExternalDocumentID | zdhxb_ywb202005016 10_1109_JAS_2020_1003177 9106869 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: (This work was supported in part by the National Natural Science Foundation of China ); (the Major Science and Technology Program for Water Pollution Control and Treatment of China ); (the National Defense Pre-Research Foundation of China ); and the Deanship of Scientific Research at King Abdulaziz University; (Jeddah ) funderid: (This work was supported in part by the National Natural Science Foundation of China ); (the Major Science and Technology Program for Water Pollution Control and Treatment of China ); (the National Defense Pre-Research Foundation of China ); (DSR) at King Abdulaziz University; (Jeddah ) |
| GroupedDBID | -0I -0Y -SI -S~ 0R~ 4.4 5VR 6IK 92M 97E 9D9 9DI AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACIWK AFUIB AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CAJEI EBS EJD IFIPE IPLJI JAVBF M43 O9- OCL PQQKQ Q-- RIA RIE RT9 T8Y TCJ TGT U1F U1G U5I U5S AAYXX CITATION 7SC 7SP 7TB 8FD FR3 JQ2 L7M L~C L~D 2B. 4A8 92I 93N PSX R-I RIG |
| ID | FETCH-LOGICAL-c326t-4a9d0b6a7d6d22d9a67dd60d97f5f177bca36bb7e99a9b6e42268fd32608c01c3 |
| IEDL.DBID | RIE |
| ISSN | 2329-9266 |
| IngestDate | Thu May 29 04:10:31 EDT 2025 Fri Jul 25 22:12:26 EDT 2025 Wed Oct 01 02:54:13 EDT 2025 Thu Apr 24 22:54:47 EDT 2025 Wed Aug 27 02:17:12 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 5 |
| Keywords | Bees algorithm intelligent optimization energy optimization simulated annealing data centers distributed green cloud (DGC) task scheduling machine learning |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c326t-4a9d0b6a7d6d22d9a67dd60d97f5f177bca36bb7e99a9b6e42268fd32608c01c3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 2431702804 |
| PQPubID | 2040495 |
| PageCount | 14 |
| ParticipantIDs | proquest_journals_2431702804 crossref_citationtrail_10_1109_JAS_2020_1003177 wanfang_journals_zdhxb_ywb202005016 ieee_primary_9106869 crossref_primary_10_1109_JAS_2020_1003177 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2020-09-01 |
| PublicationDateYYYYMMDD | 2020-09-01 |
| PublicationDate_xml | – month: 09 year: 2020 text: 2020-09-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Piscataway |
| PublicationPlace_xml | – name: Piscataway |
| PublicationTitle | IEEE/CAA journal of automatica sinica |
| PublicationTitleAbbrev | JAS |
| PublicationTitle_FL | IEEE/CAA Journal of Automatica Sinica |
| PublicationYear | 2020 |
| Publisher | Chinese Association of Automation (CAA) The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Department of Electrical and Computer Engineering, New Jersey Institute of Technology, Newark, NJ 07102 USA%Department of Electrical and Computer Engineering, Faculty of Engineering, and the Center of Research Excellence in Renewable Energy and Power Systems, King Abdulaziz University, Jeddah 21589, Saudi Arabia |
| Publisher_xml | – name: Chinese Association of Automation (CAA) – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) – name: Department of Electrical and Computer Engineering, New Jersey Institute of Technology, Newark, NJ 07102 USA%Department of Electrical and Computer Engineering, Faculty of Engineering, and the Center of Research Excellence in Renewable Energy and Power Systems, King Abdulaziz University, Jeddah 21589, Saudi Arabia |
| SSID | ssj0001257694 |
| Score | 2.4511962 |
| Snippet | An increasing number of enterprises have adopted cloud computing to manage their important business applications in distributed green cloud ( DGC )... An increasing number of enterprises have adopted cloud computing to manage their important business applications in distributed green cloud ( DGC ) systems for... An increasing number of enterprises have adopted cloud computing to manage their important business applications in distributed green cloud (DGC) systems for... |
| SourceID | wanfang proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1380 |
| SubjectTerms | Clean energy Cloud computing Computational modeling Computer simulation Data centers Electric power grids Energy conservation Energy consumption Energy costs Optimization Power consumption Processor scheduling Provisioning Queues Queuing theory Resource allocation Resource scheduling Response time Search algorithms Servers Simulated annealing System effectiveness Task analysis Task scheduling |
| Title | Fine-grained resource provisioning and task scheduling for heterogeneous applications in distributed green clouds |
| URI | https://ieeexplore.ieee.org/document/9106869 https://www.proquest.com/docview/2431702804 https://d.wanfangdata.com.cn/periodical/zdhxb-ywb202005016 |
| Volume | 7 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Xplore customDbUrl: eissn: 2329-9274 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001257694 issn: 2329-9266 databaseCode: RIE dateStart: 20140101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3da9RAEB_agqAPWq3i2SoL-iKYu22abLKPRTxKob5ooW9hd2dylZakNgnV_vWdSXLnVYr4tpDdIcnMMr_5BvgQdMmmcdB8kfi6JYQUWVemEeUJMZrYTzMvroGTr-boNDk-S8824NOqFoaI-uQzmsqyj-VjHTpxlc2YnsmN3YTNLDdDrdaaP4WRcz_3kDGCjSwrnmVUUtvZ8eE3tgXjPimANWZ2Twv1Y1XuIcxHN64qXbVYUzXzZ3CyfMkhw-Ri2rV-Gm7_6t_4v1-xDU9HzKkOByF5DhtUvYAna50Id-DnnNfRQuZFEKrr0aeveodDM7hslatQta65UGwQs4KSOnbFkFedS0ZNzYJIddeo9Yi4-lEplM68MlSL6S4kyUeFy7rD5iWczr98_3wUjdMYosAQr40SZ1F74zI0GMdonckQjUablWnJv9QHd2C8z8haZ70hKdHNS-SzOg96Pxy8gq2qrug1KLK5jVMkby1vK9kId9KQ1CNjNZ-k5QRmS-4UYWxVLhMzLoveZNG2YH4Wws9i5OcEPq5OXA1tOv6xd0eYsto38mMCe0sBKMZ73BSx4CuJPicTeD8KxZ-nt3j-yxe_b7yQ1ymj5zcP096Fx7JlyE3bg632uqO3DGZa_66X4jsmhvIC |
| linkProvider | IEEE |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3da9RAEB9qRdQHv1rxtOqCvgjmbpvubrKPRTzO2uuLLfRt2a9cpSXRJqHav96ZJHdeRcS3hewOSWaW-c03wFvPCzSNPceLhNdNxBATbQuZxFxERBO7MnPkGpgfqdmJODiVpxvwflULE2Psks_imJZdLD9UviVX2QTpqVzpW3BbCiFkX6215lFB7NxNPkSUoBONqmcZl-R6crD_Ba3BtEsLQJ2Z3dBD3WCVGxjzzpUtC1su1pTN9CHMl6_Z55icj9vGjf31Hx0c__c7HsGDAXWy_V5MHsNGLJ_A_bVehFvwfYrrZEETI2Jgl4NXn3Uuh7p32jJbBtbY-pyhSYwqiirZGYJedkY5NRWKYqzamq3HxNnXkgXqzUtjtZDugtJ8mL-o2lBvw8n04_GHWTLMY0g8grwmEVYH7pTNggppGrRVWQiKB50VssBf6rzdU85lUWurnYpUpJsXAc_y3PNdv_cUNsuqjM-ARZ3rVIbotMZtBZrhllqSuoBozQlZjGCy5I7xQ7NymplxYTqjhWuD_DTETzPwcwTvVie-9Y06_rF3i5iy2jfwYwQ7SwEww02uTUoIi-LPYgRvBqH4_fQ6nP1w5ueVI_JcIn5-_nfar-Hu7Hh-aA4_HX1-Afdoe5-ptgObzWUbXyK0adyrTqJ_AfMl9U8 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fine-grained+resource+provisioning+and+task+scheduling+for+heterogeneous+applications+in+distributed+green+clouds&rft.jtitle=IEEE%2FCAA+journal+of+automatica+sinica&rft.au=Yuan%2C+Haitao&rft.au=Zhou%2C+MengChu&rft.au=Liu%2C+Qing&rft.au=Abusorrah%2C+Abdullah&rft.date=2020-09-01&rft.pub=Chinese+Association+of+Automation+%28CAA%29&rft.issn=2329-9266&rft.volume=7&rft.issue=5&rft.spage=1380&rft.epage=1393&rft_id=info:doi/10.1109%2FJAS.2020.1003177&rft.externalDocID=9106869 |
| thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fzdhxb-ywb%2Fzdhxb-ywb.jpg |