A 4-D Subgrid Scheme for the NS-FDTD Technique Using the CNS-FDTD Algorithm With the Shepard Method and a Gaussian Smoothing Filter

A precise subgrid technique for the nonstandard finite-difference time-domain (NS-FDTD) method in 4-D (i.e., 3-D space and 1-D time) is proposed in this paper. The novel algorithm is efficiently blended with the Shepard scheme and a Gaussian smoothing filter to minimize the error in the interpolated...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on magnetics Vol. 51; no. 3; pp. 1 - 4
Main Authors Ohtani, Tadao, Kanai, Yasushi, Kantartzis, Nikolaos V.
Format Journal Article
LanguageEnglish
Published New York IEEE 01.03.2015
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN0018-9464
1941-0069
DOI10.1109/TMAG.2014.2360841

Cover

Abstract A precise subgrid technique for the nonstandard finite-difference time-domain (NS-FDTD) method in 4-D (i.e., 3-D space and 1-D time) is proposed in this paper. The novel algorithm is efficiently blended with the Shepard scheme and a Gaussian smoothing filter to minimize the error in the interpolated values used for the spatial connection process. Moreover, the required time interpolation is performed via the complex (C)NS-FDTD approach. A key advantage of the proposed formulation is its structural simplicity, due to the prior interpolation concepts and the absence of any nonphysical convention, which enables its straightforward application to a variety of realistic problems. The numerical results validate the benefits of the method by means of different subgrid simulation scenarios.
AbstractList A precise subgrid technique for the nonstandard finite-difference time-domain (NS-FDTD) method in 4-D (i.e., 3-D space and 1-D time) is proposed in this paper. The novel algorithm is efficiently blended with the Shepard scheme and a Gaussian smoothing filter to minimize the error in the interpolated values used for the spatial connection process. Moreover, the required time interpolation is performed via the complex (C)NS-FDTD approach. A key advantage of the proposed formulation is its structural simplicity, due to the prior interpolation concepts and the absence of any nonphysical convention, which enables its straightforward application to a variety of realistic problems. The numerical results validate the benefits of the method by means of different subgrid simulation scenarios.
Author Ohtani, Tadao
Kanai, Yasushi
Kantartzis, Nikolaos V.
Author_xml – sequence: 1
  givenname: Tadao
  surname: Ohtani
  fullname: Ohtani, Tadao
– sequence: 2
  givenname: Yasushi
  surname: Kanai
  fullname: Kanai, Yasushi
  email: kanai@iee.niit.ac.jp
  organization: Niigata Inst. of Technol., Kashiwazaki, Japan
– sequence: 3
  givenname: Nikolaos V.
  surname: Kantartzis
  fullname: Kantartzis, Nikolaos V.
  organization: Aristotle Univ. of Thessaloniki, Thessaloniki, Greece
BookMark eNp9kTFv2zAQhYkiBeqk_QFFFwJdusjlkbREjYYduwWSdpCDjgJFnS0GEumS1NC5f7xSnHbI0IEkDu97d0e8a3LlvENC3gNbArDy8-F-vV9yBnLJRc6UhFdkAaWEjLG8vCILxkBlpczlG3Id4-NUyhWwBfm9pjLb0mpsTsG2tDIdDkiPPtDUIf1WZbvtYUsPaDpnf45IH6J1pydt81dc9ycfbOoG-mO6n7Sqw7MOLb3H1PmWajcdutdjjFY7Wg3ep27us7N9wvCWvD7qPuK75_eGPOxuD5sv2d33_dfN-i4zgucpE9JIUTBuCimhaVRumrwFrUtTNLpVBQKsciZZa0QLZmVKrlULWByVhga4ETfk06XvOfjpLzHVg40G-1479GOsIVe5FJxLNqEfX6CPfgxu2m6mVlypgouJggtlgo8x4LE-Bzvo8KsGVs-x1HMs9RxL_RzL5CleeIxNOlnvUtC2_6_zw8VpEfHfpIKVQpZC_AFm2Jm-
CODEN IEMGAQ
CitedBy_id crossref_primary_10_1088_1742_6596_1196_1_012071
crossref_primary_10_1109_JMMCT_2024_3372619
crossref_primary_10_1109_TMAG_2017_2655626
crossref_primary_10_1088_1742_6596_1196_1_012024
crossref_primary_10_3390_en15124322
crossref_primary_10_1109_TGRS_2017_2747404
Cites_doi 10.1002/ecjb.20078
10.1109/TMAG.2010.2047385
10.1109/TMAG.2013.2283087
10.1109/TMAG.2004.825011
10.4304/jmm.7.6.429-433
10.1006/jcph.1994.1159
10.1109/TAP.2002.801268
10.1109/TAP.2007.891809
10.1109/TAP.2005.854558
10.1111/j.1467-8659.2005.00903.x
10.1142/9789812703316_0004
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Mar 2015
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Mar 2015
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
7U5
8BQ
8FD
JG9
L7M
F28
FR3
DOI 10.1109/TMAG.2014.2360841
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Xplore Digital Library (LUT)
CrossRef
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
DatabaseTitle CrossRef
Materials Research Database
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
Electronics & Communications Abstracts
Engineering Research Database
ANTE: Abstracts in New Technology & Engineering
DatabaseTitleList Materials Research Database
Materials Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore Digital Library (LUT)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1941-0069
EndPage 4
ExternalDocumentID 3703448351
10_1109_TMAG_2014_2360841
7093493
Genre orig-research
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
RIA
RIE
RNS
TN5
TWZ
VH1
VJK
XXG
AAYXX
CITATION
7SP
7U5
8BQ
8FD
JG9
L7M
RIG
F28
FR3
ID FETCH-LOGICAL-c326t-34c43702c7441bb86cb6d1aa9c7bad87e1156040dc3d1c5c92a8d1e7f8a1b12c3
IEDL.DBID RIE
ISSN 0018-9464
IngestDate Mon Sep 29 05:02:39 EDT 2025
Mon Jun 30 10:15:59 EDT 2025
Wed Oct 01 05:07:43 EDT 2025
Thu Apr 24 23:03:49 EDT 2025
Tue Aug 26 16:50:04 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 3
Keywords finite-difference time-domain (FDTD) methods
iterative schemes
Antenna analysis
nonstandard (NS) discretization techniques
subgrid algorithms
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c326t-34c43702c7441bb86cb6d1aa9c7bad87e1156040dc3d1c5c92a8d1e7f8a1b12c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-0381-9957
PQID 1685288723
PQPubID 85461
PageCount 4
ParticipantIDs proquest_miscellaneous_1686432240
crossref_citationtrail_10_1109_TMAG_2014_2360841
ieee_primary_7093493
crossref_primary_10_1109_TMAG_2014_2360841
proquest_journals_1685288723
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-March
2015-3-00
20150301
PublicationDateYYYYMMDD 2015-03-01
PublicationDate_xml – month: 03
  year: 2015
  text: 2015-March
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on magnetics
PublicationTitleAbbrev TMAG
PublicationYear 2015
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref11
ref10
mickens (ref3) 1984
ref2
ref1
ref8
ref7
ref9
ref6
ref5
taflove (ref4) 2005
References_xml – ident: ref13
  doi: 10.1002/ecjb.20078
– ident: ref6
  doi: 10.1109/TMAG.2010.2047385
– ident: ref8
  doi: 10.1109/TMAG.2013.2283087
– ident: ref12
  doi: 10.1109/TMAG.2004.825011
– year: 1984
  ident: ref3
  publication-title: Nonstandard Finite Difference Models of Differential Equations
– ident: ref10
  doi: 10.4304/jmm.7.6.429-433
– ident: ref11
  doi: 10.1006/jcph.1994.1159
– year: 2005
  ident: ref4
  publication-title: Computational Electrodynamics The Finite-Difference Time-Domain Method
– ident: ref1
  doi: 10.1109/TAP.2002.801268
– ident: ref7
  doi: 10.1109/TAP.2007.891809
– ident: ref5
  doi: 10.1109/TAP.2005.854558
– ident: ref9
  doi: 10.1111/j.1467-8659.2005.00903.x
– ident: ref2
  doi: 10.1142/9789812703316_0004
SSID ssj0014510
Score 2.1580377
Snippet A precise subgrid technique for the nonstandard finite-difference time-domain (NS-FDTD) method in 4-D (i.e., 3-D space and 1-D time) is proposed in this paper....
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Algorithms
Antenna radiation patterns
Conventions
Finite difference method
Finite difference methods
Gaussian
Interpolation
Magnetism
Mathematical analysis
Mathematical models
Numerical stability
Smoothing
Smoothing methods
Stability analysis
Three dimensional
Time-domain analysis
Title A 4-D Subgrid Scheme for the NS-FDTD Technique Using the CNS-FDTD Algorithm With the Shepard Method and a Gaussian Smoothing Filter
URI https://ieeexplore.ieee.org/document/7093493
https://www.proquest.com/docview/1685288723
https://www.proquest.com/docview/1686432240
Volume 51
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Xplore Digital Library (LUT)
  customDbUrl:
  eissn: 1941-0069
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014510
  issn: 0018-9464
  databaseCode: RIE
  dateStart: 19650101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3Nb9MwFLe2SUhw2GAD0W0gI3FCpIsdx3GO1Uo3IXWXdmK3yHacrdqaoDa5cOUf33vOhxggxCFRpOc4ln7P9s95X4R8tLE0uJME1pgwEMzKQPNCBGHCgZ4ytI1h7PD8Sl5ei6838c0O-TzEwjjnvPOZG-Ojt-XnlW3wV9lZAsdvkUa7ZDdRso3VGiwGImZtuAlTWDZedBZMFqZny_nkAp24xJhHMlSCPdmDfFGVP1Ziv73MDsi8H1jrVXI_bmoztj9-y9n4vyN_SfY7nkknrWK8IjuuPCQvfsk-eEieee9Puz0iPydUBFMKi8jtZpXTBQC5dhToLAV6SK8WwWy6nNJln-6Vej8DLzvvhZOH22qzqu_W9BvcvWxx5zCXI537ItVUl3DRC91sMW6TLtYVKAn2M1uhxf41uZ59WZ5fBl11hsAC5auDSFgRJSG3CTAqY5S0RuZM69QmRucqcQyDtEWY2yhnNrYp1ypnLimUZoZxG70he2VVureEApqay7TgwKGFsIXJWSGsU5i8nTvHRyTs8cpsl7ocK2g8ZP4IE6YZQpwhxFkH8Yh8Gl753ubt-FfjI4RsaNihNSKnvVJk3czeZkyqmMPKzEH8YRDDnERDiy5d1fg2QPSQLB3_vecT8hy-H7e-bKdkr9407h2Qm9q891r9CBOz8iY
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VIgQcCrRFLG3BSJwQ2caO8zquut0u0OxlU9FbZDtOu6KboN3kwpU_jsd5iJcQh0SRxrEsfWP7s-cF8Fb5gcSdxFFSug6nKnAEK7jjhszQU4q2MYwdThbB_Ip_vPavd-D9EAujtbbOZ3qMn9aWn1eqwauy09Acv3ns3YP7Pufcb6O1BpsB92kbcEIjLBzPOxsmdePTNJlcoBsXHzMvcCNOf9mFbFmVP9Ziu8HMnkDSD631K_kybmo5Vt9-y9r4v2N_Cnsd0ySTVjWewY4u9-HxT_kH9-GB9f9U2wP4PiHcmRKzjNxsVjlZGijXmhhCSwxBJIulM5umU5L2CV-J9TSwsrNeOLm7qTar-nZNPpu3lS1vNWZzJIktU01EaR5yIZotRm6S5boyaoL9zFZosz-Eq9l5ejZ3uvoMjjKkr3Y8rrgXukyFhlNJGQVKBjkVIlahFHkUaoph2tzNlZdT5auYiSinOiwiQSVlynsOu2VV6hdAwigQLIgLZlg056qQOS240hGmb2dasxG4PV6Z6pKXYw2Nu8weYtw4Q4gzhDjrIB7Bu-GXr23mjn81PkDIhoYdWiM47pUi6-b2NqNB5DOzNjMjfjOIzaxEU4soddXYNobqIV16-feeX8PDeZpcZpcfFp-O4JEZi996th3Dbr1p9ImhOrV8ZTX8B-dY9XM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+4-D+Subgrid+Scheme+for+the+NS-FDTD+Technique+Using+the+CNS-FDTD+Algorithm+With+the+Shepard+Method+and+a+Gaussian+Smoothing+Filter&rft.jtitle=IEEE+transactions+on+magnetics&rft.au=Ohtani%2C+Tadao&rft.au=Kanai%2C+Yasushi&rft.au=Kantartzis%2C+Nikolaos+V.&rft.date=2015-03-01&rft.pub=IEEE&rft.issn=0018-9464&rft.volume=51&rft.issue=3&rft.spage=1&rft.epage=4&rft_id=info:doi/10.1109%2FTMAG.2014.2360841&rft.externalDocID=7093493
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9464&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9464&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9464&client=summon