Computer-aided diagnostic screen for Congenital Central Hypoventilation Syndrome with facial phenotype

Background Congenital Central Hypoventilation Syndrome (CCHS) has devastating consequences if not diagnosed promptly. Despite identification of the disease-defining gene PHOX2B and a facial phenotype, CCHS remains underdiagnosed. This study aimed to incorporate automated techniques on facial photos...

Full description

Saved in:
Bibliographic Details
Published inPediatric research Vol. 95; no. 7; pp. 1843 - 1850
Main Authors Slattery, Susan M., Wilkinson, James, Mittal, Angeli, Zheng, Charlie, Easton, Nicholas, Singh, Saumya, Baker, Joshua J., Rand, Casey M., Khaytin, Ilya, Stewart, Tracey M., Demeter, David, Weese-Mayer, Debra E.
Format Journal Article
LanguageEnglish
Published New York Nature Publishing Group US 01.06.2024
Nature Publishing Group
Subjects
Online AccessGet full text
ISSN0031-3998
1530-0447
1530-0447
DOI10.1038/s41390-023-02990-8

Cover

Abstract Background Congenital Central Hypoventilation Syndrome (CCHS) has devastating consequences if not diagnosed promptly. Despite identification of the disease-defining gene PHOX2B and a facial phenotype, CCHS remains underdiagnosed. This study aimed to incorporate automated techniques on facial photos to screen for CCHS in a diverse pediatric cohort to improve early case identification and assess a facial phenotype– PHOX2B genotype relationship. Methods Facial photos of children and young adults with CCHS were control-matched by age, sex, race/ethnicity. After validating landmarks, principal component analysis (PCA) was applied with logistic regression (LR) for feature attribution and machine learning models for subject classification and assessment by PHOX2B pathovariant. Results Gradient-based feature attribution confirmed a subtle facial phenotype and models were successful in classifying CCHS: neural network performed best (median sensitivity 90% (IQR 84%, 95%)) on 179 clinical photos (versus LR and XGBoost, both 85% (IQR 75–76%, 90%)). Outcomes were comparable stratified by PHOX2B genotype and with the addition of publicly available CCHS photos ( n  = 104) using PCA and LR (sensitivity 83–89% (IQR 67–76%, 92–100%). Conclusions Utilizing facial features, findings suggest an automated, accessible classifier may be used to screen for CCHS in children with the phenotype and support providers to seek PHOX2B testing to improve the diagnostics. Impact Facial landmarking and principal component analysis on a diverse pediatric and young adult cohort with PHOX2B pathovariants delineated a distinct, subtle CCHS facial phenotype. Automated, low-cost machine learning models can detect a CCHS facial phenotype with a high sensitivity in screening to ultimately refer for disease-defining PHOX2B testing, potentially addressing gaps in disease underdiagnosis and allow for critical, timely intervention.
AbstractList BackgroundCongenital Central Hypoventilation Syndrome (CCHS) has devastating consequences if not diagnosed promptly. Despite identification of the disease-defining gene PHOX2B and a facial phenotype, CCHS remains underdiagnosed. This study aimed to incorporate automated techniques on facial photos to screen for CCHS in a diverse pediatric cohort to improve early case identification and assess a facial phenotype–PHOX2B genotype relationship.MethodsFacial photos of children and young adults with CCHS were control-matched by age, sex, race/ethnicity. After validating landmarks, principal component analysis (PCA) was applied with logistic regression (LR) for feature attribution and machine learning models for subject classification and assessment by PHOX2B pathovariant.ResultsGradient-based feature attribution confirmed a subtle facial phenotype and models were successful in classifying CCHS: neural network performed best (median sensitivity 90% (IQR 84%, 95%)) on 179 clinical photos (versus LR and XGBoost, both 85% (IQR 75–76%, 90%)). Outcomes were comparable stratified by PHOX2B genotype and with the addition of publicly available CCHS photos (n = 104) using PCA and LR (sensitivity 83–89% (IQR 67–76%, 92–100%).ConclusionsUtilizing facial features, findings suggest an automated, accessible classifier may be used to screen for CCHS in children with the phenotype and support providers to seek PHOX2B testing to improve the diagnostics.ImpactFacial landmarking and principal component analysis on a diverse pediatric and young adult cohort with PHOX2B pathovariants delineated a distinct, subtle CCHS facial phenotype.Automated, low-cost machine learning models can detect a CCHS facial phenotype with a high sensitivity in screening to ultimately refer for disease-defining PHOX2B testing, potentially addressing gaps in disease underdiagnosis and allow for critical, timely intervention.
Background Congenital Central Hypoventilation Syndrome (CCHS) has devastating consequences if not diagnosed promptly. Despite identification of the disease-defining gene PHOX2B and a facial phenotype, CCHS remains underdiagnosed. This study aimed to incorporate automated techniques on facial photos to screen for CCHS in a diverse pediatric cohort to improve early case identification and assess a facial phenotype– PHOX2B genotype relationship. Methods Facial photos of children and young adults with CCHS were control-matched by age, sex, race/ethnicity. After validating landmarks, principal component analysis (PCA) was applied with logistic regression (LR) for feature attribution and machine learning models for subject classification and assessment by PHOX2B pathovariant. Results Gradient-based feature attribution confirmed a subtle facial phenotype and models were successful in classifying CCHS: neural network performed best (median sensitivity 90% (IQR 84%, 95%)) on 179 clinical photos (versus LR and XGBoost, both 85% (IQR 75–76%, 90%)). Outcomes were comparable stratified by PHOX2B genotype and with the addition of publicly available CCHS photos ( n  = 104) using PCA and LR (sensitivity 83–89% (IQR 67–76%, 92–100%). Conclusions Utilizing facial features, findings suggest an automated, accessible classifier may be used to screen for CCHS in children with the phenotype and support providers to seek PHOX2B testing to improve the diagnostics. Impact Facial landmarking and principal component analysis on a diverse pediatric and young adult cohort with PHOX2B pathovariants delineated a distinct, subtle CCHS facial phenotype. Automated, low-cost machine learning models can detect a CCHS facial phenotype with a high sensitivity in screening to ultimately refer for disease-defining PHOX2B testing, potentially addressing gaps in disease underdiagnosis and allow for critical, timely intervention.
Congenital Central Hypoventilation Syndrome (CCHS) has devastating consequences if not diagnosed promptly. Despite identification of the disease-defining gene PHOX2B and a facial phenotype, CCHS remains underdiagnosed. This study aimed to incorporate automated techniques on facial photos to screen for CCHS in a diverse pediatric cohort to improve early case identification and assess a facial phenotype-PHOX2B genotype relationship. Facial photos of children and young adults with CCHS were control-matched by age, sex, race/ethnicity. After validating landmarks, principal component analysis (PCA) was applied with logistic regression (LR) for feature attribution and machine learning models for subject classification and assessment by PHOX2B pathovariant. Gradient-based feature attribution confirmed a subtle facial phenotype and models were successful in classifying CCHS: neural network performed best (median sensitivity 90% (IQR 84%, 95%)) on 179 clinical photos (versus LR and XGBoost, both 85% (IQR 75-76%, 90%)). Outcomes were comparable stratified by PHOX2B genotype and with the addition of publicly available CCHS photos (n = 104) using PCA and LR (sensitivity 83-89% (IQR 67-76%, 92-100%). Utilizing facial features, findings suggest an automated, accessible classifier may be used to screen for CCHS in children with the phenotype and support providers to seek PHOX2B testing to improve the diagnostics. Facial landmarking and principal component analysis on a diverse pediatric and young adult cohort with PHOX2B pathovariants delineated a distinct, subtle CCHS facial phenotype. Automated, low-cost machine learning models can detect a CCHS facial phenotype with a high sensitivity in screening to ultimately refer for disease-defining PHOX2B testing, potentially addressing gaps in disease underdiagnosis and allow for critical, timely intervention.
Congenital Central Hypoventilation Syndrome (CCHS) has devastating consequences if not diagnosed promptly. Despite identification of the disease-defining gene PHOX2B and a facial phenotype, CCHS remains underdiagnosed. This study aimed to incorporate automated techniques on facial photos to screen for CCHS in a diverse pediatric cohort to improve early case identification and assess a facial phenotype-PHOX2B genotype relationship.BACKGROUNDCongenital Central Hypoventilation Syndrome (CCHS) has devastating consequences if not diagnosed promptly. Despite identification of the disease-defining gene PHOX2B and a facial phenotype, CCHS remains underdiagnosed. This study aimed to incorporate automated techniques on facial photos to screen for CCHS in a diverse pediatric cohort to improve early case identification and assess a facial phenotype-PHOX2B genotype relationship.Facial photos of children and young adults with CCHS were control-matched by age, sex, race/ethnicity. After validating landmarks, principal component analysis (PCA) was applied with logistic regression (LR) for feature attribution and machine learning models for subject classification and assessment by PHOX2B pathovariant.METHODSFacial photos of children and young adults with CCHS were control-matched by age, sex, race/ethnicity. After validating landmarks, principal component analysis (PCA) was applied with logistic regression (LR) for feature attribution and machine learning models for subject classification and assessment by PHOX2B pathovariant.Gradient-based feature attribution confirmed a subtle facial phenotype and models were successful in classifying CCHS: neural network performed best (median sensitivity 90% (IQR 84%, 95%)) on 179 clinical photos (versus LR and XGBoost, both 85% (IQR 75-76%, 90%)). Outcomes were comparable stratified by PHOX2B genotype and with the addition of publicly available CCHS photos (n = 104) using PCA and LR (sensitivity 83-89% (IQR 67-76%, 92-100%).RESULTSGradient-based feature attribution confirmed a subtle facial phenotype and models were successful in classifying CCHS: neural network performed best (median sensitivity 90% (IQR 84%, 95%)) on 179 clinical photos (versus LR and XGBoost, both 85% (IQR 75-76%, 90%)). Outcomes were comparable stratified by PHOX2B genotype and with the addition of publicly available CCHS photos (n = 104) using PCA and LR (sensitivity 83-89% (IQR 67-76%, 92-100%).Utilizing facial features, findings suggest an automated, accessible classifier may be used to screen for CCHS in children with the phenotype and support providers to seek PHOX2B testing to improve the diagnostics.CONCLUSIONSUtilizing facial features, findings suggest an automated, accessible classifier may be used to screen for CCHS in children with the phenotype and support providers to seek PHOX2B testing to improve the diagnostics.Facial landmarking and principal component analysis on a diverse pediatric and young adult cohort with PHOX2B pathovariants delineated a distinct, subtle CCHS facial phenotype. Automated, low-cost machine learning models can detect a CCHS facial phenotype with a high sensitivity in screening to ultimately refer for disease-defining PHOX2B testing, potentially addressing gaps in disease underdiagnosis and allow for critical, timely intervention.IMPACTFacial landmarking and principal component analysis on a diverse pediatric and young adult cohort with PHOX2B pathovariants delineated a distinct, subtle CCHS facial phenotype. Automated, low-cost machine learning models can detect a CCHS facial phenotype with a high sensitivity in screening to ultimately refer for disease-defining PHOX2B testing, potentially addressing gaps in disease underdiagnosis and allow for critical, timely intervention.
Author Slattery, Susan M.
Khaytin, Ilya
Stewart, Tracey M.
Wilkinson, James
Rand, Casey M.
Zheng, Charlie
Demeter, David
Weese-Mayer, Debra E.
Mittal, Angeli
Baker, Joshua J.
Singh, Saumya
Easton, Nicholas
Author_xml – sequence: 1
  givenname: Susan M.
  surname: Slattery
  fullname: Slattery, Susan M.
  email: SSlattery@luriechildrens.org
  organization: Division of Autonomic Medicine, Department of Pediatrics, Ann & Robert H. Lurie Children’s Hospital of Chicago, Department of Pediatrics, Northwestern University Feinberg School of Medicine
– sequence: 2
  givenname: James
  surname: Wilkinson
  fullname: Wilkinson, James
  organization: Department of Computer Science, Northwestern University McCormick School of Engineering
– sequence: 3
  givenname: Angeli
  surname: Mittal
  fullname: Mittal, Angeli
  organization: Division of Autonomic Medicine, Department of Pediatrics, Ann & Robert H. Lurie Children’s Hospital of Chicago, Department of Computer Science, Northwestern University McCormick School of Engineering
– sequence: 4
  givenname: Charlie
  surname: Zheng
  fullname: Zheng, Charlie
  organization: Department of Computer Science, Northwestern University McCormick School of Engineering
– sequence: 5
  givenname: Nicholas
  surname: Easton
  fullname: Easton, Nicholas
  organization: Department of Computer Science, Northwestern University McCormick School of Engineering
– sequence: 6
  givenname: Saumya
  surname: Singh
  fullname: Singh, Saumya
  organization: Department of Computer Science, Northwestern University McCormick School of Engineering
– sequence: 7
  givenname: Joshua J.
  surname: Baker
  fullname: Baker, Joshua J.
  organization: Department of Pediatrics, Northwestern University Feinberg School of Medicine, Division of Genetics, Department of Pediatrics, Ann & Robert H. Lurie Children’s Hospital of Chicago
– sequence: 8
  givenname: Casey M.
  surname: Rand
  fullname: Rand, Casey M.
  organization: Division of Autonomic Medicine, Department of Pediatrics, Ann & Robert H. Lurie Children’s Hospital of Chicago, Stanley Manne Children’s Research Institute
– sequence: 9
  givenname: Ilya
  surname: Khaytin
  fullname: Khaytin, Ilya
  organization: Division of Autonomic Medicine, Department of Pediatrics, Ann & Robert H. Lurie Children’s Hospital of Chicago, Department of Pediatrics, Northwestern University Feinberg School of Medicine
– sequence: 10
  givenname: Tracey M.
  surname: Stewart
  fullname: Stewart, Tracey M.
  organization: Division of Autonomic Medicine, Department of Pediatrics, Ann & Robert H. Lurie Children’s Hospital of Chicago
– sequence: 11
  givenname: David
  surname: Demeter
  fullname: Demeter, David
  organization: Department of Computer Science, Northwestern University McCormick School of Engineering
– sequence: 12
  givenname: Debra E.
  surname: Weese-Mayer
  fullname: Weese-Mayer, Debra E.
  organization: Division of Autonomic Medicine, Department of Pediatrics, Ann & Robert H. Lurie Children’s Hospital of Chicago, Department of Pediatrics, Northwestern University Feinberg School of Medicine, Stanley Manne Children’s Research Institute
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38238566$$D View this record in MEDLINE/PubMed
BookMark eNp9kU1P3DAQhi0EgoX2D_RQReLSS8AfiT-OVURLJSQOwNnyJuPFKLGD7bTaf49ht0XqgcNoRqPnnRnNe4oOffCA0BeCLwhm8jI1hClcY8pKqFLJA7QiLSutphGHaIUxIzVTSp6g05SeMCZNK5tjdMIkZbLlfIVsF6Z5yRBr4wYYqsGZjQ8pu75KfQTwlQ2x6oLfgHfZjFUHPseSr7dz-F1qN5rsgq_utn6IYYLqj8uPlTW9K9D8CD7k7Qyf0JE1Y4LP-3yGHn5c3XfX9c3tz1_d95u6Z5TnmlBDqaC9sVxJJbg00kKDRblc4J4JwvFghZBYraVqBRcWiOXAeNsya-2anaFvu7lzDM8LpKwnl3oYR-MhLElTRRVuFWG8oOf_oU9hib5cpxkWqlUNIaJQX_fUsp5g0HN0k4lb_feDBaA7oI8hpQj2H0KwfrVJ72zSxSb9ZpOWRcR2olTg8tr4vvsD1QujmpRk
Cites_doi 10.1378/chest.15-0402
10.1613/jair.953
10.1186/s13023-021-01979-y
10.1162/jocn.1991.3.1.71
10.1002/ajmg.a.38199
10.1007/s10286-022-00908-8
10.1186/s12887-020-02239-x
10.1007/s10286-022-00901-1
10.1002/ajmg.a.63060
10.1016/j.procs.2022.01.183
10.1016/j.jormas.2021.04.003
10.1038/s41591-018-0279-0
10.1177/20552076221124432
10.1136/bmjopen-2020-047549
10.1016/j.media.2014.04.002
10.1016/j.chest.2022.12.028
10.1016/S2589-7500(21)00179-5
10.1186/s13023-020-01460-2
10.1016/S2589-7500(20)30065-0
10.1038/s41588-023-01469-w
10.1109/ACCESS.2022.3218160
10.1002/ppul.21527
10.1203/01.pdr.0000191814.73340.1d
10.1111/cge.13633
10.1364/JOSAA.4.000519
10.1164/rccm.200807-1069ST
10.1111/cge.13087
10.1016/S2589-7500(22)00050-4
10.1038/s41436-021-01178-x
10.1002/ajmg.a.40659
10.1002/ajmg.a.63126
10.2196/19263
10.1038/s41598-018-27586-9
10.1101/2022.08.26.22279217
10.1117/12.2282829
10.1109/DSMP.2018.8478556
10.1109/CVPR.2017.463
10.1145/2939672.2939785
ContentType Journal Article
Copyright The Author(s), under exclusive licence to the International Pediatric Research Foundation, Inc 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
2024. The Author(s), under exclusive licence to the International Pediatric Research Foundation, Inc.
Copyright_xml – notice: The Author(s), under exclusive licence to the International Pediatric Research Foundation, Inc 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: 2024. The Author(s), under exclusive licence to the International Pediatric Research Foundation, Inc.
DBID AAYXX
CITATION
NPM
3V.
7X7
7XB
88E
8C1
8FI
8FJ
8FK
ABUWG
AFKRA
BENPR
CCPQU
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
DOI 10.1038/s41390-023-02990-8
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Public Health Database
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni Edition)
ProQuest Central UK/Ireland
ProQuest Central
ProQuest One Community College
ProQuest Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
ProQuest Health & Medical Collection
Medical Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
ProQuest Public Health
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Central China
ProQuest Hospital Collection (Alumni)
ProQuest Central
ProQuest Health & Medical Complete
ProQuest Health & Medical Research Collection
Health Research Premium Collection
ProQuest Medical Library
ProQuest One Academic UKI Edition
Health and Medicine Complete (Alumni Edition)
Health & Medical Research Collection
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Medical Library (Alumni)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList ProQuest Public Health

PubMed
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1530-0447
EndPage 1850
ExternalDocumentID 38238566
10_1038_s41390_023_02990_8
Genre Journal Article
GroupedDBID ---
-Q-
.-D
.55
.GJ
08G
0R~
123
2WC
3V.
406
4Q1
4Q2
4Q3
53G
5RE
5VS
70F
77Y
7X7
88E
8C1
8FI
8FJ
AACDK
AAKAS
AANZL
AASML
AATNV
AAWTL
AAYEP
AAYZH
AAZLF
ABAKF
ABAWZ
ABJNI
ABLJU
ABOCM
ABPPZ
ABUWG
ABZZP
ACAOD
ACGFO
ACGFS
ACKTT
ACMJI
ACRQY
ACZOJ
ADBBV
ADBIZ
ADFPA
ADHDB
ADZCM
AE3
AE6
AEFQL
AEJRE
AEMSY
AENEX
AEVLU
AEXYK
AFBBN
AFKRA
AFSHS
AFTRI
AFUWQ
AGAYW
AGHAI
AGQEE
AHRYX
AHSBF
AHVBC
AIGIU
AILAN
AIZYK
AJRNO
ALFFA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMYLF
AWKKM
AXYYD
BAWUL
BENPR
BKKNO
BPHCQ
BS7
BVXVI
CCPQU
CS3
DIK
DNIVK
DPUIP
DU5
EBLON
EBS
EE.
EIOEI
EJD
EX3
F2K
F2L
F2M
F2N
F5P
FDQFY
FERAY
FIGPU
FIZPM
FRP
FSGXE
FYUFA
H0~
HMCUK
IWAJR
JF9
JG8
JK3
JSO
JZLTJ
K8S
KD2
KMI
L7B
M18
M1P
N9A
NAO
NQJWS
NXXTH
N~M
OAG
OAH
ODA
OK1
OL1
OLG
OLH
OLU
OLV
OLY
OLZ
OVD
OWU
OWV
OWW
OWX
OWY
OWZ
P-K
P2P
PQQKQ
PROAC
PSQYO
R58
RNT
RNTTT
ROL
S4R
SJN
SNX
SNYQT
SOHCF
SOJ
SRMVM
SWTZT
T8P
TAOOD
TBHMF
TDRGL
TEORI
TR2
UKHRP
VVN
W2D
W3M
WOQ
WOW
X7M
XXN
XYM
YFH
YOC
ZFV
ZXP
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
AEZWR
AFDZB
AFHIU
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PUEGO
NPM
PHGZM
PHGZT
PJZUB
PPXIY
7XB
8FK
K9.
PKEHL
PQEST
PQUKI
PRINS
7X8
ID FETCH-LOGICAL-c326t-12a2272caf6989768a8fe40700170c37160df77809b895767fe1f6e36553fffb3
IEDL.DBID 7X7
ISSN 0031-3998
1530-0447
IngestDate Sun Sep 28 11:07:47 EDT 2025
Fri Jul 25 08:58:45 EDT 2025
Mon Jul 21 05:55:32 EDT 2025
Wed Oct 01 01:48:05 EDT 2025
Fri Feb 21 02:38:09 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
License 2024. The Author(s), under exclusive licence to the International Pediatric Research Foundation, Inc.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c326t-12a2272caf6989768a8fe40700170c37160df77809b895767fe1f6e36553fffb3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PMID 38238566
PQID 3079594117
PQPubID 105497
PageCount 8
ParticipantIDs proquest_miscellaneous_2929059136
proquest_journals_3079594117
pubmed_primary_38238566
crossref_primary_10_1038_s41390_023_02990_8
springer_journals_10_1038_s41390_023_02990_8
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-06-01
PublicationDateYYYYMMDD 2024-06-01
PublicationDate_xml – month: 06
  year: 2024
  text: 2024-06-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: United States
PublicationSubtitle Official publication of the American Pediatric Society, the European Society for Paediatric Research and the Society for Pediatric Research
PublicationTitle Pediatric research
PublicationTitleAbbrev Pediatr Res
PublicationTitleAlternate Pediatr Res
PublicationYear 2024
Publisher Nature Publishing Group US
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group US
– name: Nature Publishing Group
References Dingemans (CR51) 2023; 55
Gurovich (CR18) 2019; 25
Charnay (CR38) 2016; 149
Pedregosa (CR35) 2011; 12
King (CR11) 2009; 10
CR33
CR32
CR31
Chawla, Bowyer, Hall, Kegelmeyer (CR28) 2002; 16
Kruszka (CR41) 2017; 173
Hennocq (CR40) 2023; 191
Su (CR48) 2021; 11
Liehr (CR43) 2018; 93
Ting, Song, Huang, Tian (CR12) 2022; 199
CR2
Porras, Rosenbaum, Tor-Diez, Summar, Linguraru (CR23) 2021; 3
CR49
Hennocq, Khonsari, Benoît, Rio, Garcelon (CR17) 2021; 122
Zelko (CR37) 2022; 33
Wang (CR22) 2022; 10
Ogata (CR8) 2020; 20
Zhao (CR50) 2014; 18
Slattery (CR36) 2023; 163
Turk, Pentland (CR30) 1991; 3
CR16
CR15
Mahwish, Saherawala, Jhancy (CR19) 2022; 9
Todd (CR9) 2006; 59
Yang, Adu, Chen, Zhang, Tang (CR14) 2020; 1634
Slattery (CR5) 2022; 33
Mensah, Ott, Horn, Pantel (CR21) 2022; 4
Pantel (CR46) 2020; 22
Čaplovičová (CR42) 2018; 176
McCradden, Chad (CR45) 2021; 3
Hong (CR47) 2021; 16
Li, Luo, Duan, Zhi, Yin (CR13) 2021; 1802
Sirovich, Kirby (CR29) 1987; 4
Paszke (CR34) 2019; 32
Zhou (CR1) 2021; 23
Solomon (CR10) 2023; 191
Trang (CR6) 2020; 15
Bachetti, Ceccherini (CR7) 2020; 97
McCradden, Joshi, Mazwi, Anderson (CR44) 2020; 2
Attallah (CR20) 2022; 8
Chen (CR39) 2018; 8
CR27
CR26
CR25
CR24
Weese-Mayer (CR4) 2010; 181
Jennings (CR3) 2012; 47
A Paszke (2990_CR34) 2019; 32
MA Mensah (2990_CR21) 2022; 4
D Hong (2990_CR47) 2021; 16
MD McCradden (2990_CR44) 2020; 2
Z Su (2990_CR48) 2021; 11
NV Chawla (2990_CR28) 2002; 16
2990_CR31
Q Hennocq (2990_CR17) 2021; 122
J Wang (2990_CR22) 2022; 10
2990_CR32
P Kruszka (2990_CR41) 2017; 173
AJM Dingemans (2990_CR51) 2023; 55
T Liehr (2990_CR43) 2018; 93
2990_CR33
Y Gurovich (2990_CR18) 2019; 25
LJ Jennings (2990_CR3) 2012; 47
D Weese-Mayer (2990_CR4) 2010; 181
F Pedregosa (2990_CR35) 2011; 12
A Zhou (2990_CR1) 2021; 23
X Li (2990_CR13) 2021; 1802
M Turk (2990_CR30) 1991; 3
Q Zhao (2990_CR50) 2014; 18
J Yang (2990_CR14) 2020; 1634
H Trang (2990_CR6) 2020; 15
2990_CR49
L Sirovich (2990_CR29) 1987; 4
BD Solomon (2990_CR10) 2023; 191
M Čaplovičová (2990_CR42) 2018; 176
SM Slattery (2990_CR36) 2023; 163
T Ogata (2990_CR8) 2020; 20
N Mahwish (2990_CR19) 2022; 9
SM Slattery (2990_CR5) 2022; 33
2990_CR2
AJ Charnay (2990_CR38) 2016; 149
D King (2990_CR11) 2009; 10
2990_CR15
FA Zelko (2990_CR37) 2022; 33
2990_CR16
J Ting (2990_CR12) 2022; 199
O Attallah (2990_CR20) 2022; 8
AR Porras (2990_CR23) 2021; 3
MD McCradden (2990_CR45) 2021; 3
ES Todd (2990_CR9) 2006; 59
S Chen (2990_CR39) 2018; 8
JT Pantel (2990_CR46) 2020; 22
2990_CR26
Q Hennocq (2990_CR40) 2023; 191
T Bachetti (2990_CR7) 2020; 97
2990_CR27
2990_CR24
2990_CR25
References_xml – volume: 12
  start-page: 2825
  year: 2011
  ident: CR35
  article-title: Scikit-learn: machine learning in Python
  publication-title: J. Mach. Learn. Res.
– ident: CR49
– ident: CR16
– volume: 149
  start-page: 809
  year: 2016
  ident: CR38
  article-title: Congenital central hypoventilation syndrome: neurocognition already reduced in preschool-aged children
  publication-title: Chest
  doi: 10.1378/chest.15-0402
– volume: 16
  start-page: 321
  year: 2002
  end-page: 357
  ident: CR28
  article-title: SMOTE: synthetic minority over-sampling technique
  publication-title: J. Artif. Intell. Res.
  doi: 10.1613/jair.953
– volume: 16
  year: 2021
  ident: CR47
  article-title: Genetic syndromes screening by facial recognition technology: VGG-16 screening model construction and evaluation
  publication-title: Orphanet J. Rare Dis.
  doi: 10.1186/s13023-021-01979-y
– volume: 3
  start-page: 71
  year: 1991
  end-page: 86
  ident: CR30
  article-title: Eigenfaces for recognition
  publication-title: J. Cogn. Neurosci.
  doi: 10.1162/jocn.1991.3.1.71
– volume: 173
  start-page: 879
  issue: Pt A
  year: 2017
  end-page: 888
  ident: CR41
  article-title: 22q11.2 deletion syndrome in diverse populations: 22q11.2 Deletion Syndrome
  publication-title: Am. J. Med. Genet.
  doi: 10.1002/ajmg.a.38199
– volume: 33
  start-page: 231
  year: 2022
  end-page: 249
  ident: CR5
  article-title: Transitional care and clinical management of adolescents, young adults, and suspected new adult patients with congenital central hypoventilation syndrome
  publication-title: Clin. Auton. Res.
  doi: 10.1007/s10286-022-00908-8
– volume: 20
  start-page: 342
  year: 2020
  end-page: 342
  ident: CR8
  article-title: Neurodevelopmental outcome and respiratory management of congenital central hypoventilation syndrome: a retrospective study
  publication-title: BMC Pediatr.
  doi: 10.1186/s12887-020-02239-x
– ident: CR25
– volume: 33
  start-page: 217
  year: 2022
  end-page: 230
  ident: CR37
  article-title: Neurocognition as a biomarker in the rare autonomic disorders of CCHS and ROHHAD
  publication-title: Clin. Auton. Res.
  doi: 10.1007/s10286-022-00901-1
– volume: 32
  start-page: 1
  year: 2019
  end-page: 12
  ident: CR34
  article-title: PyTorch: an imperative style, high-performance deep learning library
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 191
  start-page: 659
  issue: Pt A
  year: 2023
  end-page: 671
  ident: CR10
  article-title: Perspectives on the future of dysmorphology
  publication-title: Am. J. Med. Genet.
  doi: 10.1002/ajmg.a.63060
– ident: CR15
– volume: 199
  start-page: 1444
  year: 2022
  end-page: 1449
  ident: CR12
  article-title: A comprehensive dataset for machine-learning-based lip-reading algorithm
  publication-title: Proc. Comput. Sci.
  doi: 10.1016/j.procs.2022.01.183
– volume: 122
  start-page: e71
  year: 2021
  end-page: e75
  ident: CR17
  article-title: Computational diagnostic methods on 2D photographs: a review of the literature
  publication-title: J. Stomatol. Oral Maxillofac. Surg.
  doi: 10.1016/j.jormas.2021.04.003
– ident: CR32
– volume: 25
  start-page: 60
  year: 2019
  end-page: 64
  ident: CR18
  article-title: Identifying facial phenotypes of genetic disorders using deep learning
  publication-title: Nat. Med.
  doi: 10.1038/s41591-018-0279-0
– ident: CR26
– volume: 1634
  start-page: 12080
  year: 2020
  ident: CR14
  article-title: A facial expression recongnition method based on Dlib, RI-LBP and ResNet
  publication-title: J. Phys.
– volume: 8
  start-page: 20552076221124432
  year: 2022
  ident: CR20
  article-title: A deep learning-based diagnostic tool for identifying various diseases via facial images
  publication-title: Digital Health
  doi: 10.1177/20552076221124432
– volume: 11
  start-page: e047549
  year: 2021
  ident: CR48
  article-title: Deep learning-based facial image analysis in medical research: a systematic review protocol
  publication-title: BMJ Open
  doi: 10.1136/bmjopen-2020-047549
– volume: 18
  start-page: 699
  year: 2014
  end-page: 710
  ident: CR50
  article-title: Digital facial dysmorphology for genetic screening: Hierarchical constrained local model using ICA
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2014.04.002
– volume: 163
  start-page: 1555
  year: 2023
  end-page: 1564
  ident: CR36
  article-title: Ventilatory and orthostatic challenges reveal biomarkers for neurocognition in children and young adults with congenital central hypoventilation syndrome
  publication-title: Chest
  doi: 10.1016/j.chest.2022.12.028
– volume: 1802
  start-page: 22044
  year: 2021
  ident: CR13
  article-title: Real-time detection of fatigue driving based on face recognition
  publication-title: J. Phys.
– volume: 10
  start-page: 1755
  year: 2009
  end-page: 1758
  ident: CR11
  article-title: Dlib-ml: a machine learning toolkit
  publication-title: J. Mach. Learn. Res.
– ident: CR2
– volume: 3
  start-page: e615
  year: 2021
  end-page: e616
  ident: CR45
  article-title: Screening for facial differences worldwide: equity and ethics
  publication-title: Lancet Digital Health
  doi: 10.1016/S2589-7500(21)00179-5
– ident: CR33
– volume: 9
  start-page: 366
  year: 2022
  end-page: 374
  ident: CR19
  article-title: Clinical decision making in dysmorphology- emerging role of artificial intelligence
  publication-title: Br. J. Healthc. Med. Res.
– volume: 15
  start-page: 252
  year: 2020
  end-page: 252
  ident: CR6
  article-title: Guidelines for diagnosis and management of congenital central hypoventilation syndrome
  publication-title: Orphanet J. Rare Dis.
  doi: 10.1186/s13023-020-01460-2
– ident: CR27
– volume: 2
  start-page: e221
  year: 2020
  end-page: e223
  ident: CR44
  article-title: Ethical limitations of algorithmic fairness solutions in health care machine learning
  publication-title: Lancet Digital Health
  doi: 10.1016/S2589-7500(20)30065-0
– volume: 55
  start-page: 1598
  year: 2023
  end-page: 1607
  ident: CR51
  article-title: PhenoScore quantifies phenotypic variation for rare genetic diseases by combining facial analysis with other clinical features using a machine-learning framework
  publication-title: Nat. Genet.
  doi: 10.1038/s41588-023-01469-w
– volume: 10
  start-page: 117084
  year: 2022
  end-page: 117092
  ident: CR22
  article-title: Multiple genetic syndromes recognition based on a deep learning framework and cross-loss training
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2022.3218160
– volume: 47
  start-page: 153
  year: 2012
  end-page: 161
  ident: CR3
  article-title: Variable human phenotype associated with novel deletions of the PHOX2B gene
  publication-title: Pediatr. Pulmonol.
  doi: 10.1002/ppul.21527
– volume: 59
  start-page: 39
  year: 2006
  end-page: 45
  ident: CR9
  article-title: Facial phenotype in children and young adults with PHOX2B –determined congenital central hypoventilation syndrome: quantitative pattern of dysmorphology
  publication-title: Pediatr. Res.
  doi: 10.1203/01.pdr.0000191814.73340.1d
– volume: 97
  start-page: 103
  year: 2020
  end-page: 113
  ident: CR7
  article-title: Causative and common PHOX2B variants define a broad phenotypic spectrum
  publication-title: Clin. Genet.
  doi: 10.1111/cge.13633
– volume: 4
  start-page: 519
  year: 1987
  ident: CR29
  article-title: Low-dimensional procedure for the characterization of human faces
  publication-title: J. Optical Soc. Am. A
  doi: 10.1364/JOSAA.4.000519
– ident: CR31
– volume: 181
  start-page: 626
  year: 2010
  ident: CR4
  article-title: An official ATS clinical policy statement: congenital central hypoventilation syndrome: genetic basis, diagnosis, and management
  publication-title: Am. J. Respir. Crit. Care Med.
  doi: 10.1164/rccm.200807-1069ST
– volume: 93
  start-page: 378
  year: 2018
  end-page: 381
  ident: CR43
  article-title: Next generation phenotyping in Emanuel and Pallister-Killian syndrome using computer-aided facial dysmorphology analysis of 2D photos
  publication-title: Clin. Genet.
  doi: 10.1111/cge.13087
– volume: 3
  start-page: e635
  year: 2021
  end-page: e643
  ident: CR23
  article-title: Development and evaluation of a machine learning-based point-of-care screening tool for genetic syndromes in children: a multinational retrospective study
  publication-title: Lancet
– volume: 4
  start-page: e295
  year: 2022
  ident: CR21
  article-title: A machine learning-based screening tool for genetic syndromes in children
  publication-title: Lancet Digital Health
  doi: 10.1016/S2589-7500(22)00050-4
– volume: 23
  start-page: 1656
  year: 2021
  end-page: 1663
  ident: CR1
  article-title: Paired-like homeobox gene (PHOX2B) nonpolyalanine repeat expansion mutations (NPARMs): genotype–phenotype correlation in congenital central hypoventilation syndrome (CCHS)
  publication-title: Genet. Med.
  doi: 10.1038/s41436-021-01178-x
– volume: 176
  start-page: 2604
  issue: Pt A
  year: 2018
  end-page: 2613
  ident: CR42
  article-title: Modeling age‐specific facial development in Williams–Beuren‐, Noonan‐, and 22q11.2 deletion syndromes in cohorts of Czech patients aged 3–18 years: a cross‐sectional three‐dimensional geometric morphometry analysis of their facial gestalt
  publication-title: Am. J. Med. Genet.
  doi: 10.1002/ajmg.a.40659
– volume: 191
  start-page: 1210
  issue: Pt A
  year: 2023
  end-page: 1221
  ident: CR40
  article-title: An automatic facial landmarking for children with rare diseases
  publication-title: Am. J. Med. Genet.
  doi: 10.1002/ajmg.a.63126
– volume: 22
  start-page: e19263
  year: 2020
  ident: CR46
  article-title: Efficiency of computer-aided facial phenotyping (DeepGestalt) in individuals with and without a genetic syndrome: diagnostic accuracy study
  publication-title: J. Med. Internet Res.
  doi: 10.2196/19263
– ident: CR24
– volume: 8
  year: 2018
  ident: CR39
  article-title: Development of a computer-aided tool for the pattern recognition of facial features in diagnosing Turner syndrome: comparison of diagnostic accuracy with clinical workers
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-018-27586-9
– volume: 12
  start-page: 2825
  year: 2011
  ident: 2990_CR35
  publication-title: J. Mach. Learn. Res.
– volume: 97
  start-page: 103
  year: 2020
  ident: 2990_CR7
  publication-title: Clin. Genet.
  doi: 10.1111/cge.13633
– ident: 2990_CR49
  doi: 10.1101/2022.08.26.22279217
– volume: 10
  start-page: 117084
  year: 2022
  ident: 2990_CR22
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2022.3218160
– volume: 47
  start-page: 153
  year: 2012
  ident: 2990_CR3
  publication-title: Pediatr. Pulmonol.
  doi: 10.1002/ppul.21527
– ident: 2990_CR27
– volume: 3
  start-page: 71
  year: 1991
  ident: 2990_CR30
  publication-title: J. Cogn. Neurosci.
  doi: 10.1162/jocn.1991.3.1.71
– volume: 33
  start-page: 231
  year: 2022
  ident: 2990_CR5
  publication-title: Clin. Auton. Res.
  doi: 10.1007/s10286-022-00908-8
– volume: 199
  start-page: 1444
  year: 2022
  ident: 2990_CR12
  publication-title: Proc. Comput. Sci.
  doi: 10.1016/j.procs.2022.01.183
– volume: 3
  start-page: e635
  year: 2021
  ident: 2990_CR23
  publication-title: Lancet
– volume: 23
  start-page: 1656
  year: 2021
  ident: 2990_CR1
  publication-title: Genet. Med.
  doi: 10.1038/s41436-021-01178-x
– volume: 191
  start-page: 1210
  issue: Pt A
  year: 2023
  ident: 2990_CR40
  publication-title: Am. J. Med. Genet.
  doi: 10.1002/ajmg.a.63126
– ident: 2990_CR15
  doi: 10.1117/12.2282829
– volume: 176
  start-page: 2604
  issue: Pt A
  year: 2018
  ident: 2990_CR42
  publication-title: Am. J. Med. Genet.
  doi: 10.1002/ajmg.a.40659
– volume: 32
  start-page: 1
  year: 2019
  ident: 2990_CR34
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 15
  start-page: 252
  year: 2020
  ident: 2990_CR6
  publication-title: Orphanet J. Rare Dis.
  doi: 10.1186/s13023-020-01460-2
– volume: 33
  start-page: 217
  year: 2022
  ident: 2990_CR37
  publication-title: Clin. Auton. Res.
  doi: 10.1007/s10286-022-00901-1
– ident: 2990_CR24
– volume: 122
  start-page: e71
  year: 2021
  ident: 2990_CR17
  publication-title: J. Stomatol. Oral Maxillofac. Surg.
  doi: 10.1016/j.jormas.2021.04.003
– volume: 191
  start-page: 659
  issue: Pt A
  year: 2023
  ident: 2990_CR10
  publication-title: Am. J. Med. Genet.
  doi: 10.1002/ajmg.a.63060
– volume: 1802
  start-page: 22044
  year: 2021
  ident: 2990_CR13
  publication-title: J. Phys.
– volume: 3
  start-page: e615
  year: 2021
  ident: 2990_CR45
  publication-title: Lancet Digital Health
  doi: 10.1016/S2589-7500(21)00179-5
– volume: 2
  start-page: e221
  year: 2020
  ident: 2990_CR44
  publication-title: Lancet Digital Health
  doi: 10.1016/S2589-7500(20)30065-0
– volume: 4
  start-page: 519
  year: 1987
  ident: 2990_CR29
  publication-title: J. Optical Soc. Am. A
  doi: 10.1364/JOSAA.4.000519
– volume: 59
  start-page: 39
  year: 2006
  ident: 2990_CR9
  publication-title: Pediatr. Res.
  doi: 10.1203/01.pdr.0000191814.73340.1d
– volume: 1634
  start-page: 12080
  year: 2020
  ident: 2990_CR14
  publication-title: J. Phys.
– ident: 2990_CR16
  doi: 10.1109/DSMP.2018.8478556
– volume: 16
  start-page: 321
  year: 2002
  ident: 2990_CR28
  publication-title: J. Artif. Intell. Res.
  doi: 10.1613/jair.953
– volume: 149
  start-page: 809
  year: 2016
  ident: 2990_CR38
  publication-title: Chest
  doi: 10.1378/chest.15-0402
– volume: 18
  start-page: 699
  year: 2014
  ident: 2990_CR50
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2014.04.002
– volume: 10
  start-page: 1755
  year: 2009
  ident: 2990_CR11
  publication-title: J. Mach. Learn. Res.
– volume: 163
  start-page: 1555
  year: 2023
  ident: 2990_CR36
  publication-title: Chest
  doi: 10.1016/j.chest.2022.12.028
– volume: 181
  start-page: 626
  year: 2010
  ident: 2990_CR4
  publication-title: Am. J. Respir. Crit. Care Med.
  doi: 10.1164/rccm.200807-1069ST
– volume: 93
  start-page: 378
  year: 2018
  ident: 2990_CR43
  publication-title: Clin. Genet.
  doi: 10.1111/cge.13087
– ident: 2990_CR2
– ident: 2990_CR31
– volume: 8
  start-page: 205520762211244
  year: 2022
  ident: 2990_CR20
  publication-title: Digital Health
  doi: 10.1177/20552076221124432
– ident: 2990_CR25
  doi: 10.1109/CVPR.2017.463
– volume: 20
  start-page: 342
  year: 2020
  ident: 2990_CR8
  publication-title: BMC Pediatr.
  doi: 10.1186/s12887-020-02239-x
– volume: 173
  start-page: 879
  issue: Pt A
  year: 2017
  ident: 2990_CR41
  publication-title: Am. J. Med. Genet.
  doi: 10.1002/ajmg.a.38199
– volume: 4
  start-page: e295
  year: 2022
  ident: 2990_CR21
  publication-title: Lancet Digital Health
  doi: 10.1016/S2589-7500(22)00050-4
– volume: 25
  start-page: 60
  year: 2019
  ident: 2990_CR18
  publication-title: Nat. Med.
  doi: 10.1038/s41591-018-0279-0
– ident: 2990_CR33
  doi: 10.1145/2939672.2939785
– volume: 9
  start-page: 366
  year: 2022
  ident: 2990_CR19
  publication-title: Br. J. Healthc. Med. Res.
– volume: 16
  year: 2021
  ident: 2990_CR47
  publication-title: Orphanet J. Rare Dis.
  doi: 10.1186/s13023-021-01979-y
– ident: 2990_CR26
– volume: 8
  year: 2018
  ident: 2990_CR39
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-018-27586-9
– ident: 2990_CR32
– volume: 55
  start-page: 1598
  year: 2023
  ident: 2990_CR51
  publication-title: Nat. Genet.
  doi: 10.1038/s41588-023-01469-w
– volume: 11
  start-page: e047549
  year: 2021
  ident: 2990_CR48
  publication-title: BMJ Open
  doi: 10.1136/bmjopen-2020-047549
– volume: 22
  start-page: e19263
  year: 2020
  ident: 2990_CR46
  publication-title: J. Med. Internet Res.
  doi: 10.2196/19263
SSID ssj0014584
Score 2.4353354
Snippet Background Congenital Central Hypoventilation Syndrome (CCHS) has devastating consequences if not diagnosed promptly. Despite identification of the...
Congenital Central Hypoventilation Syndrome (CCHS) has devastating consequences if not diagnosed promptly. Despite identification of the disease-defining gene...
BackgroundCongenital Central Hypoventilation Syndrome (CCHS) has devastating consequences if not diagnosed promptly. Despite identification of the...
SourceID proquest
pubmed
crossref
springer
SourceType Aggregation Database
Index Database
Publisher
StartPage 1843
SubjectTerms Automation
Childrens health
Clinical Research Article
Congenital diseases
Genotype & phenotype
Hypoventilation
Machine learning
Medical diagnosis
Medicine
Medicine & Public Health
Pediatric Surgery
Pediatrics
Principal components analysis
Young adults
Title Computer-aided diagnostic screen for Congenital Central Hypoventilation Syndrome with facial phenotype
URI https://link.springer.com/article/10.1038/s41390-023-02990-8
https://www.ncbi.nlm.nih.gov/pubmed/38238566
https://www.proquest.com/docview/3079594117
https://www.proquest.com/docview/2929059136
Volume 95
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 1530-0447
  dateEnd: 20241002
  omitProxy: true
  ssIdentifier: ssj0014584
  issn: 0031-3998
  databaseCode: DIK
  dateStart: 19670101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1530-0447
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014584
  issn: 0031-3998
  databaseCode: AFBBN
  dateStart: 19970101
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1530-0447
  dateEnd: 20241002
  omitProxy: true
  ssIdentifier: ssj0014584
  issn: 0031-3998
  databaseCode: 7X7
  dateStart: 20160101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1530-0447
  dateEnd: 20241002
  omitProxy: true
  ssIdentifier: ssj0014584
  issn: 0031-3998
  databaseCode: BENPR
  dateStart: 20160101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Public Health Database
  customDbUrl:
  eissn: 1530-0447
  dateEnd: 20241002
  omitProxy: true
  ssIdentifier: ssj0014584
  issn: 0031-3998
  databaseCode: 8C1
  dateStart: 20230101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/publichealth
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LS8NAEB60BfEivq2PsoI3Dc1m02RzEi0tRWgRtdDbkmx2j0217cF_70yyaZGih-SQhGSZmex88wa4y8OIa2skGjkI30hIvCSkpp8adTVC5jQXVJw8GkfDSfgy7U6dw23h0irrPbHcqPNCk4-8g7KYdJOQ8_hx_unR1CiKrroRGrvQ5AhVSKrj6drg4hQDrNoycg8VsXRFM76QnQVu3onvocbCI6Fy6t-KaQttbkVKSwU0OIQDhxzZU8XqI9gxs2PYG7nY-AnYekCDR10fc5ZXSXT4NMOtAc1VhviU9QoqpqJJIcw5dtnwe16UWY9VWhx7d00MGPlomU3Jqc4oFawgf-0pTAb9j97Qc1MUPI3QbOnxIA2CONCppVmRaF2k0ho048rOOVqgveTnNo6ln2QyQesjtobbyIio2xXW2kycQWNWzMwFMO0n1J7HzzIrQ4m2RayF5kEkcxMavNKC-5qEal41y1BlkFtIVRFcIcFVSXCFT1_XVFbux1moDZtbcLu-jSJPcYx0ZorVQgXIaUSFXEQtOK-4s_4chTUlQtQWPNTs2rz877Vc_r-WK9gPEMxUKWLX0Fh-rcwNgpFl1i4lDs-yx9vQfO6PX99-AMkb2vY
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV07b9swED64LpBmKfpK4jRtGaCdWiEiKUvUUBSFW8OJH0tswBsjUeRoObGNIH8qv7F3ouSgMNrNgxaJoIjjkffdG-BzEcXcOKtQyUH4RkwSpBEV_TQoqxEyZ4Wk5OTxJB7Moqt5d96CxyYXhsIqmzuxuqiL0pCN_AJ5Me2mEefJj-VtQF2jyLvatNDwbDG0D_eosq2-X_7C_f0iRP_3tDcI6q4CgUGosg64yIRIhMkc9U5EtJ0pZ1GtqSrJGIn6Q1i4JFFhmqsU0XjiLHexlXG3K51zucR5n8HzSIYR1epP5lsFj5PP0ZeB5AEKflUn6YRSXaxQWKRhgBISn5TSt_8WhDvodsczWwm8_it4WSNV9tOz1mto2cUbOBjXvvi34JqGEAFVmSxY4YP2cDTDqwjVY4Z4mPVKSt6iziSsNiSzwcOyrKIsfRgeu66LJjCyCTOXkRGfUehZSfbhdzDbC32PoL0oF_YEmAlTKgcU5rlTkUJdJjHScBGrwkYW33Tga0NCvfTFOXTlVJdKe4JrJLiuCK5x9FlDZV0f1JV-YqsOnG8_4xEjv0m2sOVmpQVCSEShXMYdOPa7s_0duVEVQuIOfGu262nyf6_l9P9r-QQvBtPxSI8uJ8P3cCgQSPnwtDNor-829gMCoXX-seI-Bjf7Zvc_d8kTog
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1PT9swFH8qTEJcJjY2VuiYkeC0RY3tNHEO04RgVQu0msSQejOJYx-bQotQvxqfjvfipAghuHHIJbEc6_nZ7_f-AxwWUcyNswqVHIRvxCRBGlHRT4OyGiFzVkhKTh6N48FVdDbpTVrw0OTCUFhlcydWF3VRGrKRd5EX014acZ50XR0W8e-0_2d2E1AHKfK0Nu00PIuc2-U9qm_z38NT3OsjIfp__58MgrrDQGAQtiwCLjIhEmEyR30UEXlnyllUcaqqMkaiLhEWLklUmOYqRWSeOMtdbGXc60nnXC5x3jX4kMhIUjhZMlkpe5z8j74kJA8QBKg6YSeUqjtHwZGGAUpLfFJK5X4uFF8g3Rde2kr49bfgY41a2bFns0_QstPPsDGq_fLb4JrmEAFVnCxY4QP4cDTDawlVZYbYmJ2UlMhFXUpYbVRmg-WsrCIufUgeu6wLKDCyDzOXkUGfURhaSbbiL3D1LvT9CuvTcmq_ATNhSqWBwjx3KlKo1yRGGi5iVdjI4ps2_GxIqGe-UIeuHOxSaU9wjQTXFcE1ju40VNb1oZ3rJxZrw8HqMx438qFkU1vezbVAOImIlMu4DTt-d1a_I5eqQnjchl_Ndj1N_vpadt9eyw_YQEbXF8Px-R5sCsRUPlKtA-uL2zv7HTHRIt-vmI_B9Xtz-yOAbhfd
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Computer-aided+diagnostic+screen+for+Congenital+Central+Hypoventilation+Syndrome+with+facial+phenotype&rft.jtitle=Pediatric+research&rft.au=Slattery%2C+Susan+M.&rft.au=Wilkinson%2C+James&rft.au=Mittal%2C+Angeli&rft.au=Zheng%2C+Charlie&rft.date=2024-06-01&rft.pub=Nature+Publishing+Group+US&rft.issn=0031-3998&rft.eissn=1530-0447&rft.volume=95&rft.issue=7&rft.spage=1843&rft.epage=1850&rft_id=info:doi/10.1038%2Fs41390-023-02990-8&rft.externalDocID=10_1038_s41390_023_02990_8
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0031-3998&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0031-3998&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0031-3998&client=summon