Biomimetic Marine-Sponge-Derived Spicule-Microparticle-Mediated Biomineralization and YAP/TAZ Pathway for Bone Regeneration In Vivo

Marine-sponge-derived spicule microparticles (SPMs) possess unique structural and compositional features suitable for bone tissue engineering. However, significant challenges remain in establishing their osteogenic mechanism and practical application in animal models. This study explores the biomime...

Full description

Saved in:
Bibliographic Details
Published inBiomaterials research Vol. 28; pp. 0056 - 813
Main Authors Choi, Sumi, Kim, Jung Hun, Kang, Tae Hoon, An, Young-Hyeon, Lee, Sang Jin, Hwang, Nathaniel S., Kim, Su-Hwan
Format Journal Article
LanguageEnglish
Published United States AAAS 2024
한국생체재료학회
Subjects
Online AccessGet full text
ISSN2055-7124
1226-4601
2055-7124
DOI10.34133/bmr.0056

Cover

More Information
Summary:Marine-sponge-derived spicule microparticles (SPMs) possess unique structural and compositional features suitable for bone tissue engineering. However, significant challenges remain in establishing their osteogenic mechanism and practical application in animal models. This study explores the biomimetic potential of SPM in orchestrating biomineralization behavior and modulating the Yes-associated protein 1/transcriptional coactivator with PDZ-binding motif (YAP/TAZ) pathway both in vitro and in vivo. Characterization of SPM revealed a structure comprising amorphous silica oxide mixed with collagen and trace amounts of calcium and phosphate ions, which have the potential to facilitate biomineralization. Structural analysis indicated dynamic biomineralization from SPM to hydroxyapatite, contributing to both in vitro and in vivo osteoconductions. In vitro assessment demonstrated dose-dependent increases in osteogenic gene expression and bone morphogenetic protein-2 protein in response to SPM. In addition, focal adhesion mediated by silica diatoms induced cell spreading on the surface of SPM, leading to cell alignment in the direction of SPM. Mechanical signals from SPM subsequently increased the expression of YAP/TAZ, thereby inducing osteogenic mechanotransduction. The osteogenic activity of SPM-reinforced injectable hydrogel was evaluated in a mouse calvaria defect model, demonstrating rapid vascularized bone regeneration. These findings suggest that biomimetic SPM holds significant promise for regenerating bone tissue.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
These authors contributed equally to this work.
https://spj.science.org/doi/pdf/10.34133/bmr.0056
ISSN:2055-7124
1226-4601
2055-7124
DOI:10.34133/bmr.0056