Empirical Mode Decomposition and Grassmann Manifold‐Based Cervical Cancer Detection

ABSTRACT Cervical cancer is a prevalent malignancy affecting the female reproductive system and is recognized as a prominent factor to female mortality on a global scale. Timely and precise detection of various stages of cervical cancer plays a crucial role in enhancing the chances of successful tre...

Full description

Saved in:
Bibliographic Details
Published inJournal of biophotonics Vol. 18; no. 7; pp. e202400584 - n/a
Main Authors Nayak, Sidharthenee, Deo, Bhaswati Singha, Pal, Mayukha, Panigrahi, Prasanta K., Pradhan, Asima
Format Journal Article
LanguageEnglish
Published Weinheim WILEY‐VCH Verlag GmbH & Co. KGaA 01.07.2025
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text
ISSN1864-063X
1864-0648
1864-0648
DOI10.1002/jbio.202400584

Cover

Abstract ABSTRACT Cervical cancer is a prevalent malignancy affecting the female reproductive system and is recognized as a prominent factor to female mortality on a global scale. Timely and precise detection of various stages of cervical cancer plays a crucial role in enhancing the chances of successful treatment and extending patient survival. Fluorescence spectroscopy stands out as a highly sensitive method for identifying biochemical alterations associated with cancer and numerous other pathological conditions. In our study, empirical mode decomposition (EMD) and Grassmann manifold (GM) learning are explored for reliable cancer detection using fluorescence spectral signals collected from 110 subjects representing various categories of the human cervix. Initially, EMD is used to decompose the signal into several multi‐feature intrinsic mode functions (IMFs) on a spectral scale. Each IMF demonstrates uniqueness by capturing the inherent frequency characteristics within the signal, thus facilitating the extraction of signal features. The GM representation of IMFs is employed for investigating the non‐linear subspace structure within spectral signals, which is subsequently followed by a low‐rank representation to transform and analyze the spectral signals. The GM allows for the extraction of relevant information, reduction of dimensionality, and exploration of complex relationships within data, ultimately contributing to improved diagnosis. Mutual information is further used for feature selection to reduce the number of features and hence the computational cost. When the selected features were employed for classification, the Random Forest (RF) classifier attained a high five‐fold validation accuracy of 99% and exhibited a minimal standard deviation of 0.02. Other state‐of‐the‐art machine learning classifiers were also used and compared with the RF model. The study proposes a cervical cancer detection method using fluorescence spectral signals. Empirical mode decomposition is used to extract intrinsic features, and Grassmann manifold projection combined with low‐rank transformation captures nonlinear structures. Mutual information is employed to select the most relevant features, facilitating high‐accuracy classification using models like Random Forest.
AbstractList Cervical cancer is a prevalent malignancy affecting the female reproductive system and is recognized as a prominent factor to female mortality on a global scale. Timely and precise detection of various stages of cervical cancer plays a crucial role in enhancing the chances of successful treatment and extending patient survival. Fluorescence spectroscopy stands out as a highly sensitive method for identifying biochemical alterations associated with cancer and numerous other pathological conditions. In our study, empirical mode decomposition (EMD) and Grassmann manifold (GM) learning are explored for reliable cancer detection using fluorescence spectral signals collected from 110 subjects representing various categories of the human cervix. Initially, EMD is used to decompose the signal into several multi-feature intrinsic mode functions (IMFs) on a spectral scale. Each IMF demonstrates uniqueness by capturing the inherent frequency characteristics within the signal, thus facilitating the extraction of signal features. The GM representation of IMFs is employed for investigating the non-linear subspace structure within spectral signals, which is subsequently followed by a low-rank representation to transform and analyze the spectral signals. The GM allows for the extraction of relevant information, reduction of dimensionality, and exploration of complex relationships within data, ultimately contributing to improved diagnosis. Mutual information is further used for feature selection to reduce the number of features and hence the computational cost. When the selected features were employed for classification, the Random Forest (RF) classifier attained a high five-fold validation accuracy of 99% and exhibited a minimal standard deviation of 0.02. Other state-of-the-art machine learning classifiers were also used and compared with the RF model.Cervical cancer is a prevalent malignancy affecting the female reproductive system and is recognized as a prominent factor to female mortality on a global scale. Timely and precise detection of various stages of cervical cancer plays a crucial role in enhancing the chances of successful treatment and extending patient survival. Fluorescence spectroscopy stands out as a highly sensitive method for identifying biochemical alterations associated with cancer and numerous other pathological conditions. In our study, empirical mode decomposition (EMD) and Grassmann manifold (GM) learning are explored for reliable cancer detection using fluorescence spectral signals collected from 110 subjects representing various categories of the human cervix. Initially, EMD is used to decompose the signal into several multi-feature intrinsic mode functions (IMFs) on a spectral scale. Each IMF demonstrates uniqueness by capturing the inherent frequency characteristics within the signal, thus facilitating the extraction of signal features. The GM representation of IMFs is employed for investigating the non-linear subspace structure within spectral signals, which is subsequently followed by a low-rank representation to transform and analyze the spectral signals. The GM allows for the extraction of relevant information, reduction of dimensionality, and exploration of complex relationships within data, ultimately contributing to improved diagnosis. Mutual information is further used for feature selection to reduce the number of features and hence the computational cost. When the selected features were employed for classification, the Random Forest (RF) classifier attained a high five-fold validation accuracy of 99% and exhibited a minimal standard deviation of 0.02. Other state-of-the-art machine learning classifiers were also used and compared with the RF model.
Cervical cancer is a prevalent malignancy affecting the female reproductive system and is recognized as a prominent factor to female mortality on a global scale. Timely and precise detection of various stages of cervical cancer plays a crucial role in enhancing the chances of successful treatment and extending patient survival. Fluorescence spectroscopy stands out as a highly sensitive method for identifying biochemical alterations associated with cancer and numerous other pathological conditions. In our study, empirical mode decomposition (EMD) and Grassmann manifold (GM) learning are explored for reliable cancer detection using fluorescence spectral signals collected from 110 subjects representing various categories of the human cervix. Initially, EMD is used to decompose the signal into several multi-feature intrinsic mode functions (IMFs) on a spectral scale. Each IMF demonstrates uniqueness by capturing the inherent frequency characteristics within the signal, thus facilitating the extraction of signal features. The GM representation of IMFs is employed for investigating the non-linear subspace structure within spectral signals, which is subsequently followed by a low-rank representation to transform and analyze the spectral signals. The GM allows for the extraction of relevant information, reduction of dimensionality, and exploration of complex relationships within data, ultimately contributing to improved diagnosis. Mutual information is further used for feature selection to reduce the number of features and hence the computational cost. When the selected features were employed for classification, the Random Forest (RF) classifier attained a high five-fold validation accuracy of 99% and exhibited a minimal standard deviation of 0.02. Other state-of-the-art machine learning classifiers were also used and compared with the RF model.
ABSTRACT Cervical cancer is a prevalent malignancy affecting the female reproductive system and is recognized as a prominent factor to female mortality on a global scale. Timely and precise detection of various stages of cervical cancer plays a crucial role in enhancing the chances of successful treatment and extending patient survival. Fluorescence spectroscopy stands out as a highly sensitive method for identifying biochemical alterations associated with cancer and numerous other pathological conditions. In our study, empirical mode decomposition (EMD) and Grassmann manifold (GM) learning are explored for reliable cancer detection using fluorescence spectral signals collected from 110 subjects representing various categories of the human cervix. Initially, EMD is used to decompose the signal into several multi‐feature intrinsic mode functions (IMFs) on a spectral scale. Each IMF demonstrates uniqueness by capturing the inherent frequency characteristics within the signal, thus facilitating the extraction of signal features. The GM representation of IMFs is employed for investigating the non‐linear subspace structure within spectral signals, which is subsequently followed by a low‐rank representation to transform and analyze the spectral signals. The GM allows for the extraction of relevant information, reduction of dimensionality, and exploration of complex relationships within data, ultimately contributing to improved diagnosis. Mutual information is further used for feature selection to reduce the number of features and hence the computational cost. When the selected features were employed for classification, the Random Forest (RF) classifier attained a high five‐fold validation accuracy of 99% and exhibited a minimal standard deviation of 0.02. Other state‐of‐the‐art machine learning classifiers were also used and compared with the RF model. The study proposes a cervical cancer detection method using fluorescence spectral signals. Empirical mode decomposition is used to extract intrinsic features, and Grassmann manifold projection combined with low‐rank transformation captures nonlinear structures. Mutual information is employed to select the most relevant features, facilitating high‐accuracy classification using models like Random Forest.
Author Pal, Mayukha
Panigrahi, Prasanta K.
Pradhan, Asima
Nayak, Sidharthenee
Deo, Bhaswati Singha
Author_xml – sequence: 1
  givenname: Sidharthenee
  surname: Nayak
  fullname: Nayak, Sidharthenee
  organization: Indian Institute of Technology
– sequence: 2
  givenname: Bhaswati Singha
  surname: Deo
  fullname: Deo, Bhaswati Singha
  organization: Indian Institute of Technology Kanpur
– sequence: 3
  givenname: Mayukha
  orcidid: 0000-0001-6037-1338
  surname: Pal
  fullname: Pal, Mayukha
  email: mayukha.pal@in.abb.com
  organization: Asea Brown Boveri Company
– sequence: 4
  givenname: Prasanta K.
  surname: Panigrahi
  fullname: Panigrahi, Prasanta K.
  organization: Siksha ‘O’ Anusandhan University
– sequence: 5
  givenname: Asima
  orcidid: 0000-0002-3351-0141
  surname: Pradhan
  fullname: Pradhan, Asima
  email: asima@iitk.ac.in
  organization: Indian Institute of Technology Kanpur
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40433755$$D View this record in MEDLINE/PubMed
BookMark eNqFkT1PwzAQhi1URD9gZUSRWFhSHH_kY6SllKJWXajEFjnORXKV2MVuQd34CfxGfgkuLR1YGE53w_OcTvd2UUsbDQhdRrgfYUxul4UyfYIJw5in7AR1ojRmIY5Z2jrO9KWNus4tMY4x5fQMtRlmlCacd9Bi1KyUVVLUwcyUENyDNM3KOLVWRgdCl8HYCucaoXUwE1pVpi6_Pj4HwkEZDMG-_ahDoSVYL69B7sRzdFqJ2sHFoffQ4mH0PHwMp_PxZHg3DSUlMQ-Bs0IWWVFRQmWckRKXIksSyDhOGM8ioKzKSl8kYsApZzHwNMPAvVx4g_bQzX7vyprXDbh13ignoa6FBrNxOSURSVJOaOLR6z_o0mys9td5iqRpkrKYeurqQG2KBsp8ZVUj7Db_fZgH-ntAWuOcheqIRDjfJZLvEsmPiXiB74V3VcP2Hzp_GkzmiR85_QZo740V
Cites_doi 10.1109/tpami.2012.88
10.1111/j.1751-1097.1998.tb02521.x
10.1002/ijc.31937
10.1364/AO.41.004024
10.1109/TBCAS.2015.2481940
10.1016/S2214-109X(19)30482-6
10.1016/j.tice.2020.101347
10.1016/j.eswa.2021.116048
10.1109/EMBC.2013.6610500
10.1109/IJCNN.2019.8852410
10.1038/s41598-022-15007-x
10.1007/s11517-013-1051-8
10.3389/fphar.2019.00484
10.1177/1043659619846247
10.1109/TITB.2011.2181403
10.1093/jnci/djq562
10.1007/s10462-019-09755-y
10.1016/j.pdpdt.2019.05.029
10.1007/s10895-023-03152-z
10.7717/peerj.8152
10.1098/rspa.1998.0193
10.1007/s00521-013-1368-0
10.1016/j.compbiomed.2023.106574
10.1088/2040-8986/ac59e2
10.3322/caac.21628
10.1109/CVPR.2011.5995365
10.1088/2057-1976/ad403a
10.1016/0016-5085(90)91242-X
10.1002/jbio.202300363
10.1109/APSIT58554.2023.10201695
10.1038/bjc.2013.22
10.1016/B978-0-323-48067-3.00012-3
10.1111/j.1751-1097.1996.tb03130.x
10.1016/j.saa.2023.122339
10.3322/caac.21660
10.1016/j.eswa.2021.115642
10.1109/ICCV.2013.387
10.1016/j.eswa.2019.112951
10.1117/1.JBO.23.1.015005
10.1364/OE.11.003320
ContentType Journal Article
Copyright 2025 Wiley‐VCH GmbH.
2025 Wiley‐VCH GmbH
Copyright_xml – notice: 2025 Wiley‐VCH GmbH.
– notice: 2025 Wiley‐VCH GmbH
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7SP
7SR
7U5
8FD
FR3
JG9
K9.
L7M
P64
7X8
DOI 10.1002/jbio.202400584
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Biotechnology Research Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Engineering Research Database
Materials Research Database
ProQuest Health & Medical Complete (Alumni)
Advanced Technologies Database with Aerospace
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Engineered Materials Abstracts
Biotechnology Research Abstracts
Technology Research Database
Electronics & Communications Abstracts
ProQuest Health & Medical Complete (Alumni)
Solid State and Superconductivity Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE

CrossRef
Materials Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1864-0648
EndPage n/a
ExternalDocumentID 40433755
10_1002_jbio_202400584
JBIO70055
Genre researchArticle
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: BIRAC:DBT India
  funderid: BIRACSRISTIPMU‐2016/018
– fundername: IMPRINT India
  funderid: 5163
– fundername: IMPRINT India
  grantid: 5163
– fundername: BIRAC:DBT India
  grantid: BIRACSRISTIPMU-2016/018
GroupedDBID ---
05W
0R~
1OC
31~
33P
3SF
4.4
52U
52V
53G
5DZ
5GY
66C
8-0
8-1
AAESR
AAEVG
AAHQN
AAIPD
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCUV
ABJNI
ABLJU
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCZN
ACGFS
ACGOF
ACIWK
ACMXC
ACPOU
ACPRK
ACRPL
ACXBN
ACXQS
ACYXJ
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFFPM
AFGKR
AFRAH
AFWVQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AHMBA
AIACR
AIDQK
AIDYY
AITYG
AIURR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZFZN
AZVAB
BDRZF
BFHJK
BHBCM
BMXJE
BNHUX
BOGZA
BRXPI
CS3
DCZOG
DR2
DRFUL
DRMAN
DRSTM
EBD
EBS
EJD
EMOBN
F5P
FEDTE
FUBAC
G-S
GODZA
HGLYW
HVGLF
HZ~
IX1
KBYEO
LATKE
LEEKS
LH4
LITHE
LOXES
LUTES
LW6
LYRES
MEWTI
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
MY~
NNB
O9-
OIG
P2W
PQQKQ
ROL
SUPJJ
SV3
W99
WBKPD
WIH
WIJ
WIK
WOHZO
WXSBR
XV2
ZZTAW
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7SP
7SR
7U5
8FD
FR3
JG9
K9.
L7M
P64
7X8
ID FETCH-LOGICAL-c3265-e54bcb9bf323c692d0da977e95074591e34f9d4f9214e53546e5890e5265b3c63
IEDL.DBID DR2
ISSN 1864-063X
1864-0648
IngestDate Fri Jul 11 17:13:20 EDT 2025
Tue Jul 29 16:55:14 EDT 2025
Thu Aug 28 04:48:17 EDT 2025
Wed Jul 16 16:47:46 EDT 2025
Sat Jul 12 03:16:34 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords fluorescence spectroscopy
Grassmann manifold
empirical mode decomposition
mutual information
cervical cancer
random Forest
Language English
License 2025 Wiley‐VCH GmbH.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3265-e54bcb9bf323c692d0da977e95074591e34f9d4f9214e53546e5890e5265b3c63
Notes Asima Pradhan would like to acknowledge IMPACTING Research INnovation and Technology (IMPRINT) India (Project number: 5163) and Biotechnology Industry Research Assistance Council (BIRAC): Department of Biotechnology (DBT) India (BIRAC SRISTI PMU‐2016/018) for funding this in vivo study.
Funding
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-3351-0141
0000-0001-6037-1338
PMID 40433755
PQID 3228878463
PQPubID 1006377
PageCount 11
ParticipantIDs proquest_miscellaneous_3212785237
proquest_journals_3228878463
pubmed_primary_40433755
crossref_primary_10_1002_jbio_202400584
wiley_primary_10_1002_jbio_202400584_JBIO70055
PublicationCentury 2000
PublicationDate July 2025
PublicationDateYYYYMMDD 2025-07-01
PublicationDate_xml – month: 07
  year: 2025
  text: July 2025
PublicationDecade 2020
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
– name: Germany
– name: Jena
PublicationTitle Journal of biophotonics
PublicationTitleAlternate J Biophotonics
PublicationYear 2025
Publisher WILEY‐VCH Verlag GmbH & Co. KGaA
Wiley Subscription Services, Inc
Publisher_xml – name: WILEY‐VCH Verlag GmbH & Co. KGaA
– name: Wiley Subscription Services, Inc
References 2019; 7
1990; 99
2023; 33
2020; 141
2013; 108
2011
2010
2022; 190
2019; 10
2022; 24
2014; 24
2024; 10
2021; 185
2024
2018; 23
2021; 71
2015; 9
2011; 3
2011; 16
1998; 454
2024; 17
2019; 144
2003; 11
1998; 68
2020; 8
2011; 103
2023; 291
2020; 31
2002; 41
2023
2020; 53
2013; 35
2013; 51
2020; 70
2023; 154
2022; 12
2019
2019; 27
2020; 65
2013
2014; 7
1996; 64
e_1_2_11_10_1
e_1_2_11_31_1
e_1_2_11_30_1
e_1_2_11_36_1
e_1_2_11_14_1
e_1_2_11_13_1
e_1_2_11_35_1
e_1_2_11_12_1
e_1_2_11_11_1
e_1_2_11_7_1
e_1_2_11_29_1
e_1_2_11_6_1
e_1_2_11_28_1
e_1_2_11_5_1
Deo B. S. (e_1_2_11_25_1) 2024
e_1_2_11_27_1
e_1_2_11_4_1
e_1_2_11_26_1
e_1_2_11_3_1
e_1_2_11_2_1
Maheshwari S. (e_1_2_11_34_1) 2014; 7
Zeiler A. (e_1_2_11_33_1) 2010
e_1_2_11_21_1
e_1_2_11_44_1
e_1_2_11_20_1
e_1_2_11_45_1
e_1_2_11_46_1
e_1_2_11_40_1
e_1_2_11_24_1
e_1_2_11_41_1
e_1_2_11_9_1
e_1_2_11_23_1
e_1_2_11_42_1
e_1_2_11_8_1
e_1_2_11_22_1
e_1_2_11_43_1
e_1_2_11_18_1
e_1_2_11_17_1
e_1_2_11_16_1
e_1_2_11_15_1
Jayalakshmi T. (e_1_2_11_32_1) 2011; 3
e_1_2_11_37_1
e_1_2_11_38_1
e_1_2_11_39_1
e_1_2_11_19_1
References_xml – volume: 7
  start-page: 8152
  year: 2019
  article-title: Evaluation of Human‐Papillomavirus Screening for Cervical Cancer in China's Rural Population
  publication-title: PeerJ
– volume: 70
  start-page: 321
  issue: 5
  year: 2020
  end-page: 346
  article-title: Cervical Cancer Screening for Individuals at Average Risk: 2020 Guideline Update From the American Cancer Society
  publication-title: CA: A Cancer Journal for Clinicians
– volume: 31
  start-page: 121
  issue: 2
  year: 2020
  end-page: 127
  article-title: Barriers to Cervical Cancer Screening and Treatment in The Dominican Republic: Perspectives of Focus Group Participants in the Santo Domingo Area
  publication-title: Journal of Transcultural Nursing
– volume: 51
  start-page: 811
  year: 2013
  end-page: 821
  article-title: Pathological Speech Signal Analysis and Classification Using Empirical Mode Decomposition
  publication-title: Medical & Biological Engineering & Computing
– volume: 16
  start-page: 1135
  issue: 6
  year: 2011
  end-page: 1142
  article-title: Classification of Seizure and Nonseizure Eeg Signals Using Empirical Mode Decomposition
  publication-title: IEEE Transactions on Information Technology in Biomedicine
– start-page: 369
  year: 2023
  end-page: 372
– volume: 17
  issue: 3
  year: 2024
  article-title: Cervical Pre‐Cancer Classification Using Entropic Features and Cnn: In Vivo Validation With a Handheld Fluorescence Probe
  publication-title: Journal of Biophotonics
– start-page: 253
  year: 2019
  end-page: 328
– volume: 9
  start-page: 710
  issue: 5
  year: 2015
  end-page: 724
  article-title: Direct Extraction of Tumor Response Based on Ensemble Empirical Mode Decomposition for Image Reconstruction of Early Breast Cancer Detection by Uwb
  publication-title: IEEE Transactions on Biomedical Circuits and Systems
– volume: 35
  start-page: 171
  issue: 1
  year: 2013
  end-page: 184
  article-title: Robust Recovery of Subspace Structures by Low‐Rank Representation
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
– volume: 454
  start-page: 903
  issue: 1971
  year: 1998
  end-page: 995
  article-title: The Empirical Mode Decomposition and the Hilbert Spectrum for Nonlinear and Non‐Stationary Time Series Analysis
  publication-title: Proceedings of the Royal Society of London, Series A: Mathematical, Physical and Engineering Sciences
– volume: 7
  start-page: 873
  issue: 8
  year: 2014
  end-page: 878
  article-title: Empirical Mode Decomposition: Theory & Applications
  publication-title: International Journal of Electronic Engineering
– volume: 185
  year: 2021
  article-title: An Ensemble Method for Nuclei Detection of Overlapping Cervical Cells
  publication-title: Expert Systems with Applications
– volume: 103
  start-page: 368
  issue: 5
  year: 2011
  end-page: 383
  article-title: Human Papillomavirus Testing in the Prevention of Cervical Cancer
  publication-title: Journal of the National Cancer Institute
– volume: 108
  start-page: 908
  issue: 4
  year: 2013
  end-page: 913
  article-title: Comparing the Performance of Six Human Papillomavirus Tests in a Screening Population
  publication-title: British Journal of Cancer
– start-page: 4314
  year: 2013
  end-page: 4317
– volume: 41
  start-page: 4024
  issue: 19
  year: 2002
  end-page: 4035
  article-title: Determination of Optical Parameters of Human Breast Tissue From Spatially Resolved Fluorescence: A Diffusion Theory Model
  publication-title: Applied Optics
– volume: 144
  start-page: 1941
  issue: 8
  year: 2019
  end-page: 1953
  article-title: Estimating the Global Cancer Incidence and Mortality in 2018: Globocan Sources and Methods
  publication-title: International Journal of Cancer
– start-page: 1801
  year: 2011
  end-page: 1807
– volume: 12
  issue: 1
  year: 2022
  article-title: Design, Fabrication and Testing of 3d Printed Smartphone‐Based Device for Collection of Intrinsic Fluorescence From Human Cervix
  publication-title: Scientific Reports
– volume: 53
  start-page: 3059
  year: 2020
  end-page: 3088
  article-title: Identification of Epileptic Seizures in Eeg Signals Using Time‐Scale Decomposition (Itd), Discrete Wavelet Transform (Dwt), Phase Space Reconstruction (Psr) and Neural Networks
  publication-title: Artificial Intelligence Review
– volume: 24
  start-page: 175
  year: 2014
  end-page: 186
  article-title: A Review of Feature Selection Methods Based on Mutual Information
  publication-title: Neural Computing and Applications
– volume: 291
  year: 2023
  article-title: H‐Cnn Combined With Tissue Raman Spectroscopy for Cervical Cancer Detection
  publication-title: Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy
– volume: 71
  start-page: 209
  issue: 3
  year: 2021
  end-page: 249
  article-title: Global Cancer Statistics 2020: Globocan Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries
  publication-title: CA: A Cancer Journal for Clinicians
– volume: 190
  year: 2022
  article-title: Evaluation of a New Dataset for Visual Detection of Cervical Precancerous Lesions
  publication-title: Expert Systems with Applications
– start-page: 1
  year: 2010
  end-page: 8
– volume: 33
  start-page: 1375
  issue: 4
  year: 2023
  end-page: 1383
  article-title: In‐Vivo Testing of Oral Mucosal Lesions With an In‐House Developed Portable Imaging Device and Comparison With Spectroscopy Results
  publication-title: Journal of Fluorescence
– volume: 23
  issue: 1
  year: 2018
  article-title: Intrinsic Fluorescence for Cervical Precancer Detection Using Polarized Light Based In‐House Fabricated Portable Device
  publication-title: Journal of Biomedical Optics
– volume: 10
  start-page: 484
  year: 2019
  article-title: Cervical Cancer, Different Treatments and Importance of Bile Acids as Therapeutic Agents in This Disease
  publication-title: Frontiers in Pharmacology
– volume: 24
  issue: 5
  year: 2022
  article-title: Laser Induced Fluorescence of Cervical Tissues: An In‐Vitro Study for the Diagnosis of Cervical Cancer From the Cervicitis
  publication-title: Journal of Optics
– volume: 3
  start-page: 1793
  issue: 1
  year: 2011
  end-page: 8201
  article-title: Statistical Normalization and Back Propagation for Classification
  publication-title: International Journal of Computer Theory and Engineering
– volume: 65
  year: 2020
  article-title: A Comprehensive Study on the Multi‐Class Cervical Cancer Diagnostic Prediction on Pap Smear Images Using a Fusion‐Based Decision From Ensemble Deep Convolutional Neural Network
  publication-title: Tissue and Cell
– volume: 27
  start-page: 156
  year: 2019
  end-page: 161
  article-title: Diagnosis of Cervical Squamous Cell Carcinoma and Cervical Adenocarcinoma Based on Raman Spectroscopy and Support Vector Machine
  publication-title: Photodiagnosis and Photodynamic Therapy
– volume: 99
  start-page: 150
  issue: 1
  year: 1990
  end-page: 157
  article-title: Laser‐Induced Fluorescence Spectroscopy of Human Colonic Mucosa: Detection of Adenomatous Transformation
  publication-title: Gastroenterology
– volume: 11
  start-page: 3320
  issue: 24
  year: 2003
  end-page: 3331
  article-title: Recovery of Turbidity Free Fluorescence From Measured Fluorescence: An Experimental Approach
  publication-title: Optics Express
– volume: 68
  start-page: 603
  issue: 5
  year: 1998
  end-page: 632
  article-title: In Vivo Fluorescence Spectroscopy and Imaging for Oncological Applications
  publication-title: Photochemistry and Photobiology
– volume: 154
  year: 2023
  article-title: Interpretable Pap‐Smear Image Retrieval for Cervical Cancer Detection With Rotation Invariance Mask Generation Deep Hashing
  publication-title: Computers in Biology and Medicine
– volume: 141
  year: 2020
  article-title: A Fully‐Automated Deep Learning Pipeline for Cervical Cancer Classification
  publication-title: Expert Systems with Applications
– volume: 64
  start-page: 720
  issue: 4
  year: 1996
  end-page: 735
  article-title: Cervical Precancer Detection Using a Multivariate Statistical Algorithm Based on Laser‐Induced Fluorescence Spectra at Multiple Excitation Wavelengths
  publication-title: Photochemistry and Photobiology
– volume: 8
  start-page: 191
  issue: 2
  year: 2020
  end-page: 203
  article-title: Estimates of Incidence and Mortality of Cervical Cancer in 2018: A Worldwide Analysis
  publication-title: Lancet Global Health
– start-page: 1
  year: 2024
  end-page: 18
  article-title: An Ensemble Deep Learning Model With Empirical Wavelet Transform Feature for Oral Cancer Histopathological Image Classification
  publication-title: International Journal of Data Science and Analytics
– volume: 10
  year: 2024
  article-title: Wavelet Scattering Transform and Entropy Features in Fluorescence Spectral Signal Analysis for Cervical Cancer Diagnosis
  publication-title: Biomedical Physics & Engineering Express
– ident: e_1_2_11_38_1
  doi: 10.1109/tpami.2012.88
– ident: e_1_2_11_17_1
  doi: 10.1111/j.1751-1097.1998.tb02521.x
– ident: e_1_2_11_4_1
  doi: 10.1002/ijc.31937
– ident: e_1_2_11_19_1
  doi: 10.1364/AO.41.004024
– ident: e_1_2_11_23_1
  doi: 10.1109/TBCAS.2015.2481940
– ident: e_1_2_11_8_1
  doi: 10.1016/S2214-109X(19)30482-6
– ident: e_1_2_11_9_1
  doi: 10.1016/j.tice.2020.101347
– ident: e_1_2_11_7_1
  doi: 10.1016/j.eswa.2021.116048
– ident: e_1_2_11_27_1
  doi: 10.1109/EMBC.2013.6610500
– volume: 3
  start-page: 1793
  issue: 1
  year: 2011
  ident: e_1_2_11_32_1
  article-title: Statistical Normalization and Back Propagation for Classification
  publication-title: International Journal of Computer Theory and Engineering
– ident: e_1_2_11_41_1
  doi: 10.1109/IJCNN.2019.8852410
– ident: e_1_2_11_16_1
  doi: 10.1038/s41598-022-15007-x
– ident: e_1_2_11_28_1
  doi: 10.1007/s11517-013-1051-8
– ident: e_1_2_11_10_1
  doi: 10.3389/fphar.2019.00484
– ident: e_1_2_11_12_1
  doi: 10.1177/1043659619846247
– ident: e_1_2_11_35_1
  doi: 10.1109/TITB.2011.2181403
– ident: e_1_2_11_14_1
  doi: 10.1093/jnci/djq562
– ident: e_1_2_11_26_1
  doi: 10.1007/s10462-019-09755-y
– ident: e_1_2_11_43_1
  doi: 10.1016/j.pdpdt.2019.05.029
– ident: e_1_2_11_18_1
  doi: 10.1007/s10895-023-03152-z
– ident: e_1_2_11_13_1
  doi: 10.7717/peerj.8152
– ident: e_1_2_11_29_1
  doi: 10.1098/rspa.1998.0193
– ident: e_1_2_11_40_1
  doi: 10.1007/s00521-013-1368-0
– ident: e_1_2_11_6_1
  doi: 10.1016/j.compbiomed.2023.106574
– ident: e_1_2_11_44_1
  doi: 10.1088/2040-8986/ac59e2
– ident: e_1_2_11_5_1
  doi: 10.3322/caac.21628
– ident: e_1_2_11_39_1
  doi: 10.1109/CVPR.2011.5995365
– ident: e_1_2_11_46_1
  doi: 10.1088/2057-1976/ad403a
– ident: e_1_2_11_20_1
  doi: 10.1016/0016-5085(90)91242-X
– ident: e_1_2_11_45_1
  doi: 10.1002/jbio.202300363
– ident: e_1_2_11_24_1
  doi: 10.1109/APSIT58554.2023.10201695
– ident: e_1_2_11_15_1
  doi: 10.1038/bjc.2013.22
– volume: 7
  start-page: 873
  issue: 8
  year: 2014
  ident: e_1_2_11_34_1
  article-title: Empirical Mode Decomposition: Theory & Applications
  publication-title: International Journal of Electronic Engineering
– ident: e_1_2_11_21_1
  doi: 10.1016/B978-0-323-48067-3.00012-3
– ident: e_1_2_11_22_1
  doi: 10.1111/j.1751-1097.1996.tb03130.x
– start-page: 1
  year: 2024
  ident: e_1_2_11_25_1
  article-title: An Ensemble Deep Learning Model With Empirical Wavelet Transform Feature for Oral Cancer Histopathological Image Classification
  publication-title: International Journal of Data Science and Analytics
– ident: e_1_2_11_42_1
  doi: 10.1016/j.saa.2023.122339
– ident: e_1_2_11_3_1
  doi: 10.3322/caac.21660
– ident: e_1_2_11_36_1
– start-page: 1
  volume-title: The 2010 International Joint Conference on Neural Networks (IJCNN)
  year: 2010
  ident: e_1_2_11_33_1
– ident: e_1_2_11_2_1
  doi: 10.1016/j.eswa.2021.115642
– ident: e_1_2_11_37_1
  doi: 10.1109/ICCV.2013.387
– ident: e_1_2_11_11_1
  doi: 10.1016/j.eswa.2019.112951
– ident: e_1_2_11_30_1
  doi: 10.1117/1.JBO.23.1.015005
– ident: e_1_2_11_31_1
  doi: 10.1364/OE.11.003320
SSID ssj0060353
Score 2.3944695
Snippet ABSTRACT Cervical cancer is a prevalent malignancy affecting the female reproductive system and is recognized as a prominent factor to female mortality on a...
Cervical cancer is a prevalent malignancy affecting the female reproductive system and is recognized as a prominent factor to female mortality on a global...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Publisher
StartPage e202400584
SubjectTerms Cancer
Cervical cancer
Cervix
Decomposition
empirical mode decomposition
Female
Females
Fluorescence
Fluorescence spectroscopy
Grassmann manifold
Humans
Machine Learning
Malignancy
Manifolds (mathematics)
mutual information
Radio frequency
random Forest
Representations
Reproductive system
Spectrometry, Fluorescence
Uterine Cervical Neoplasms - diagnosis
Uterine Cervical Neoplasms - diagnostic imaging
Title Empirical Mode Decomposition and Grassmann Manifold‐Based Cervical Cancer Detection
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjbio.202400584
https://www.ncbi.nlm.nih.gov/pubmed/40433755
https://www.proquest.com/docview/3228878463
https://www.proquest.com/docview/3212785237
Volume 18
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9tAEB4hTuXQUiitaVoZCaknQ7wPb3xsEigg0UqISLlZ-4oUWjYoj0tP_Qn9jfwSZvwqgUNV9WDJ0nrk9X47M5_t2W8BDh2VJlqlk1xJmwjv8MzmPkHAXSq8EcbTeufLr9nZSFyM5fjRKv5KH6L94EaeUcZrcnBtFsd_RENvzJQW71ENJCZRDMIpz0g8f3jV6kdlXV7KUKa9TCSYi8eNamOXHa-br2elZ1RznbmWqef0Feim01XFyfej1dIc2Z9P9Bz_56m24WXNS-PP1UR6DRs-7MDWI7XCXRid3N5NS0WRmHZQi4ee6tHroq9YBxd_mSMVv9UhxJc6TCezH-7-1-8-5kkXD8qYhKYDmmZzNF6WRWDhDYxOT64HZ0m9K0NikerJxEthrMnNhDNus5y5rtNIIn2OzFLIPPVcTHKHB0OsJZci87KXdz3p8Bu04HuwGWbBv4PYKS2NQwqJbUIroycZEx5hs04xK0UEnxpUirtKfKOoZJZZQQNVtAMVQacBraidcFFgrMIQigSLR3DQNqP70D8RHfxsRdekTPXwbVxF8LYCu70VCQ9xJWUEFWR_6UNx0T__pkjUbP9fDd7DC0b7CpdlwB3YXM5X_gOSnaX5WE7oB8Sv9wI
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3PT9swFH5icNh2gG0wlsG2TJrEKbR17Lg5QvlRGGUSohK3yL8qdQwXde2FE38Cf-P-Et5zmoyOA0I7RIrkPMXx8_P7Yn_-DPDNEjXRSJXkUpiEO4t3JncJOty2uNNcO9rv3DvNun1-fCEqNiHthSn1IeoJN4qMMF5TgNOEdOOvauhPPaTde0SCxCz6ApbCIh3horNaQSprpkGIstXOeILZ-KLSbWyyxrz9fF56BDbnsWtIPgcroKtql5yTy-3pRG-bm38UHf_ru97A8gyaxjtlX3oLC86_g9cPBAtXob9_dT0MoiIxHaIW7zmipM94X7HyNj4cIxq_Ut7HPeWHg9Ev--f2bhdTpY07YVhC0w71tDEaTwIPzK9B_2D_vNNNZgczJAbRnkic4NroXA9SlposZ7ZpFeJIlyO45CJvuZQPcosXQ3eLVPDMiXbedCTFr9EifQ-LfuTdB4itVEJbRJFYxpXUapAx7tBvxkpmBI9gq3JLcV3qbxSl0jIrqKGKuqEi2Ky8Vszi8HeBwxWOooix0gi-1sUYQbQsorwbTemZFpNt_CGXEayX3q5fRdpDqRQigtJnT9ShON49-iFJ1-zjcw2-wMvuee-kODk6_b4BrxgdMxxYwZuwOBlP3SfEPhP9OfTue0KD-yA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9tAEB7xkCo4tKWF4pIWV6rUk0my3vXGRxIIb1pVRMrN2pelFNhEaXLpqT-hv5FfwoyduIQeEOrBkqX1yOv9dmY-27PfAny2VJpopIpSKUzEncUzk7oIAbdN7jTXjtY7X1wmxz1-2hf9B6v4S32I6oMbeUYRr8nBRzav_xUN_aEHtHiPaiAxiS7DKk8wVxIt-l4JSCWNuNChbLYSHmEy7s9lGxusvmi_mJb-4ZqL1LXIPd1XoOa9LktOrvemE71nfj0SdPyfx3oNL2fENNwvZ9IGLDn_BtYfyBW-hd7h7WhQSIqEtIVaeOCoIH1W9RUqb8OjMXLxW-V9eKH8IB_e2Lvff9qYKG3YKYISmnZono3ReFJUgflN6HUPrzrH0Wxbhsgg1xORE1wbneo8ZrFJUmYbViGLdClSSy7Spot5nlo8GIItYsETJ1ppw5EQv0aLeAtW_NC7bQitVEJb5JDYxpXUKk8YdwibsZIZwQP4MkclG5XqG1mps8wyGqisGqgAanPQspkX_swwWGEMRYYVB_Cpakb_oZ8iyrvhlK5pMtnC13EZwLsS7OpWpDwUSyECKCF7og_ZafvkqyRVs_fPNdiFF98Outn5yeXZDqwx2mO4KAmuwcpkPHUfkPhM9Mdibt8DUjz5zw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Empirical+Mode+Decomposition+and+Grassmann+Manifold%E2%80%90Based+Cervical+Cancer+Detection&rft.jtitle=Journal+of+biophotonics&rft.au=Nayak%2C+Sidharthenee&rft.au=Deo%2C+Bhaswati+Singha&rft.au=Pal%2C+Mayukha&rft.au=Panigrahi%2C+Prasanta+K&rft.date=2025-07-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1864-063X&rft.eissn=1864-0648&rft.volume=18&rft.issue=7&rft_id=info:doi/10.1002%2Fjbio.202400584&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1864-063X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1864-063X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1864-063X&client=summon