Comparison Analysis of Linear Discriminant Analysis and Cuckoo-Search Algorithm in the Classification of Breast Cancer from Digital Mammograms

Objective: Breast cancer is the most common invasive severity which leads to the second primary cause of death among women. The objective of this paper is to propose a computer-aided approach for the breast cancer classification from the digital mammograms. Methods: Designing an effective classifica...

Full description

Saved in:
Bibliographic Details
Published inAsian Pacific journal of cancer prevention : APJCP Vol. 20; no. 8; pp. 2333 - 2337
Main Authors S R, Sannasi Chakravarthy, Rajaguru, Harikumar
Format Journal Article
LanguageEnglish
Published Thailand West Asia Organization for Cancer Prevention 01.08.2019
Subjects
Online AccessGet full text
ISSN1513-7368
2476-762X
2476-762X
DOI10.31557/APJCP.2019.20.8.2333

Cover

Abstract Objective: Breast cancer is the most common invasive severity which leads to the second primary cause of death among women. The objective of this paper is to propose a computer-aided approach for the breast cancer classification from the digital mammograms. Methods: Designing an effective classification approach will assist in resolving the difficulties in analyzing digital mammograms. The proposed work utilized the Mammogram Image Analysis Society (MIAS) database for the analysis of breast cancer. Five distinct wavelet families are used for extraction of features from the mammograms of MIAS database. These extracted features are statistical in nature and served as input to the Linear Discriminant Analysis (LDA) and Cuckoo-Search Algorithm (CSA) classifiers. Results: Error rate, Sensitivity, Specificity and Accuracy are the performance measures used and the obtained results clearly state that the CSA used as a classifier affords an accuracy of 97.5% while compared with the LDA classifier. Conclusion: The results of comparative performance analysis show that the CSA classifier outperforms the performance of LDA in terms of breast cancer classification.
AbstractList Objective: Breast cancer is the most common invasive severity which leads to the second primary cause of death among women. The objective of this paper is to propose a computer-aided approach for the breast cancer classification from the digital mammograms. Methods: Designing an effective classification approach will assist in resolving the difficulties in analyzing digital mammograms. The proposed work utilized the Mammogram Image Analysis Society (MIAS) database for the analysis of breast cancer. Five distinct wavelet families are used for extraction of features from the mammograms of MIAS database. These extracted features are statistical in nature and served as input to the Linear Discriminant Analysis (LDA) and Cuckoo-Search Algorithm (CSA) classifiers. Results: Error rate, Sensitivity, Specificity and Accuracy are the performance measures used and the obtained results clearly state that the CSA used as a classifier affords an accuracy of 97.5% while compared with the LDA classifier. Conclusion: The results of comparative performance analysis show that the CSA classifier outperforms the performance of LDA in terms of breast cancer classification.
Author Rajaguru, Harikumar
S R, Sannasi Chakravarthy
AuthorAffiliation Department of Electronics and Communication Engineering, Anna University (Bannari Amman Institute of Technology), Sathyamangalam, India
AuthorAffiliation_xml – name: Department of Electronics and Communication Engineering, Anna University (Bannari Amman Institute of Technology), Sathyamangalam, India
Author_xml – sequence: 1
  givenname: Sannasi Chakravarthy
  orcidid: 0000-0002-0162-7206
  surname: S R
  fullname: S R, Sannasi Chakravarthy
  email: elektroniqz@gmail.com
  organization: Department of Electronics and Communication Engineering, Anna University (Bannari Amman Institute of Technology), Sathyamangalam, India.Email:elektroniqz@gmail.com
– sequence: 2
  givenname: Harikumar
  surname: Rajaguru
  fullname: Rajaguru, Harikumar
  email: elektroniqz@gmail.com
  organization: Department of Electronics and Communication Engineering, Anna University (Bannari Amman Institute of Technology), Sathyamangalam, India.Email:elektroniqz@gmail.com
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31450903$$D View this record in MEDLINE/PubMed
BookMark eNpVkd1O3DAQha0KVBbKI7TyC2Sx49hObiptw7-2AolW4s6aOM6uaWJHdrbVvgTPjBcKtHMxc3HmfNKcOUR7zjuD0GdK5oxyLk8Wt9f17TwntEptXs5zxtgHNMsLKTIp8vs9NKOcskwyUR6gwxgfCCl4KflHdMBowUlF2Aw91n4YIdjoHV446LfRRuw7vLTOQMCnNupgB-vATe86uBbXG_3L--wubek1XvQrH-y0HrB1eFobXPcQo-2shskmdCJ-CwbihGtw2gTcBT8k-spO0OPvMAx-FWCIn9B-B300x3_nEfp5fvajvsyWNxdX9WKZaZYLlrV5RTg0BnRpGtoxasCIvIWmIy2VujWCSM66wpiikrRsCmhS0QpMQXTHBDtC4oW7cSNs_0DfqzHdCWGrKFHPASsYH_SodgGnpkq1CzgZv74Yx00zmFYbNwV4N3uw6n_F2bVa-d9KlDwvmUyAL_8C3pyvL2FP60GU9g
CitedBy_id crossref_primary_10_1002_ima_22924
crossref_primary_10_1088_1757_899X_1084_1_012002
crossref_primary_10_1002_ima_22493
crossref_primary_10_1007_s11831_022_09738_3
crossref_primary_10_1088_1361_6560_abf38b
crossref_primary_10_1007_s11042_023_15828_6
crossref_primary_10_1002_ima_22782
crossref_primary_10_1007_s11517_021_02324_y
crossref_primary_10_1016_j_asoc_2023_110704
crossref_primary_10_3390_diagnostics14202287
crossref_primary_10_1007_s00521_022_07290_6
crossref_primary_10_1155_2020_6149174
ContentType Journal Article
DBID CGR
CUY
CVF
ECM
EIF
NPM
5PM
ADTOC
UNPAY
DOI 10.31557/APJCP.2019.20.8.2333
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
DatabaseTitleList MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 2476-762X
EndPage 2337
ExternalDocumentID 10.31557/apjcp.2019.20.8.2333
PMC6852837
31450903
Genre Journal Article
Comparative Study
GroupedDBID CGR
CUY
CVF
ECM
EIF
NPM
---
23N
2WC
53G
5GY
5PM
9ZL
ADBBV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BCNDV
E3Z
EBS
EJD
F5P
FRJ
GROUPED_DOAJ
GX1
HYE
JDI
OK1
OVT
RPM
TR2
W2D
WOW
.UV
ADTOC
C1A
UNPAY
ID FETCH-LOGICAL-c3263-d2905abeac8eb1f31eae62dabf0d17cde60753f4ee49718b4abbbb19ae40cf363
IEDL.DBID UNPAY
ISSN 1513-7368
2476-762X
IngestDate Sun Oct 26 04:08:12 EDT 2025
Thu Aug 21 14:09:45 EDT 2025
Thu Jan 02 22:59:36 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords Mammogram
breast cancer
discriminant Analysis
cuckoo-search
Language English
License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License (https://creativecommons.org/licenses/by-nc/4.0/)
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3263-d2905abeac8eb1f31eae62dabf0d17cde60753f4ee49718b4abbbb19ae40cf363
ORCID 0000-0002-0162-7206
OpenAccessLink https://proxy.k.utb.cz/login?url=http://journal.waocp.org/article_88686_c203f6e772f4fe387c0ec631eae30440.pdf
PMID 31450903
PageCount 5
ParticipantIDs unpaywall_primary_10_31557_apjcp_2019_20_8_2333
pubmedcentral_primary_oai_pubmedcentral_nih_gov_6852837
pubmed_primary_31450903
PublicationCentury 2000
PublicationDate 2019-08-01
PublicationDateYYYYMMDD 2019-08-01
PublicationDate_xml – month: 08
  year: 2019
  text: 2019-08-01
  day: 01
PublicationDecade 2010
PublicationPlace Thailand
PublicationPlace_xml – name: Thailand
– name: Iran
PublicationTitle Asian Pacific journal of cancer prevention : APJCP
PublicationTitleAlternate Asian Pac J Cancer Prev
PublicationYear 2019
Publisher West Asia Organization for Cancer Prevention
Publisher_xml – name: West Asia Organization for Cancer Prevention
SSID ssj0045875
Score 2.3215675
Snippet Objective: Breast cancer is the most common invasive severity which leads to the second primary cause of death among women. The objective of this paper is to...
SourceID unpaywall
pubmedcentral
pubmed
SourceType Open Access Repository
Index Database
StartPage 2333
SubjectTerms Algorithms
Breast Neoplasms - classification
Breast Neoplasms - diagnosis
Breast Neoplasms - diagnostic imaging
Databases, Factual
Diagnosis, Computer-Assisted - methods
Discriminant Analysis
Female
Humans
Image Interpretation, Computer-Assisted - methods
Mammography - methods
Prognosis
Title Comparison Analysis of Linear Discriminant Analysis and Cuckoo-Search Algorithm in the Classification of Breast Cancer from Digital Mammograms
URI https://www.ncbi.nlm.nih.gov/pubmed/31450903
https://pubmed.ncbi.nlm.nih.gov/PMC6852837
http://journal.waocp.org/article_88686_c203f6e772f4fe387c0ec631eae30440.pdf
UnpaywallVersion publishedVersion
Volume 20
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2476-762X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0045875
  issn: 1513-7368
  databaseCode: DOA
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 2476-762X
  dateEnd: 20250828
  omitProxy: true
  ssIdentifier: ssj0045875
  issn: 1513-7368
  databaseCode: RPM
  dateStart: 20160101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZgKwEX3o_yWPnANWkSO3ZyXBaqCmlXPbDScopsx26XLkm0ZFXBj-A3M2OnKYUTEjn4EMeWEn_2jJ1vviHkbaqcYUmZRZmrVcQLqyMlkWWheWqMzJTOMRp5sRQnK_5xna-v0wENHzC-VK3pgkxw-IBVUYhCVCZLmBMWXELHnWWFNIk1gqVWWYbJk-OudrfJgcjBMZ-Qg9XydPbZK6amLJLMB8ZlXIoIloB1iOdhYFDlkeq-GFSvTDF2JS7ijGEm3dEm_cmXvLtvOvX9Um23vxmj4wdkexXSEzgoF_G-17H58bfC4_94z4fk_uC00llo_Ijcss1jcmcx_JZ_Qn7Ox2yG9ErlhLaOwkYXJhJ9v8G1KXBurutVU9P53ly0bRQ4z3S2PWt3m_78K900FBxT6jN2IpfJwwd7fIcc-p7OEas7irEx0PsZJj6hCwVTCrlm356S1fGHT_OTaEj0EBnwHllUZ2WSKw02ALCSOv-aIquVdkmdSlNbAY4Nc9xaXoIt1VxpuNJSWZ4YxwR7RiZN29gXhMo6Y6UuSlXomnOXwHYJVh2e2TrVzuTykDwPY1l1Qc2jYinP8bDqkMgbozw-gALcN2uazbkX4hYFSuNAn0cjHsZWsLny0Ko8tCqEFhRVUSG0Xv5zi1fkHt4I1MPXZNLv9vYNuEO9nvpjBCiXp4upP62aDsD_BdUmDj0
linkProvider Unpaywall
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3LbtQwFLVgKkE3vB_lJS_YJo0fsZ3lMFBVSFOxYKRhFfnZDh2SaDqjCj6Cb-Y6TlMKKySyyCKOLdk-9r1Ozj0XobdEB8uKimY0OJ1x5U2mZWRZGE6slVSbMkYjz0_E8YJ_XJbL63RAwwDml7q1XZIJTgNYKyWUqC0tWBAeXMLAg2dK2sJbwYjXnsXkyXnnwm20J0pwzCdob3HyafqlV0wlLJOsD4yjXIoMtoBliudhYFDloe6-2qheSWLsSq5yymIm3dEm_cmXvLtrOv39Uq_Xvxmjo_tofRXSkzgo5_lua3L742-Fx__Rzwfo3uC04mmq_BDd8s0jdGc-_JZ_jH7OxmyG-ErlBLcBw0EXFhJ-v4p7U-LcXJfrxuHZzp63bZY4z3i6Pm03q-3ZN7xqMDimuM_YGblMPXxii-8ih36LZxGrGxxjY6D105j4BM81LKnINbt4ghZHHz7PjrMh0UNmwXtkmaNVUWoDNgCwQkLfTUGdNqFwRFrnBTg2LHDveQW21HBt4CKV9rywgQn2FE2atvHPEZaOssqoSivjOA8FHJdg1-HUO2KCLeUBepbmsu6SmkfNCC_jx6oDJG_M8vhCFOC-WdKsznohbqGiNA60eTjiYawFh6seWnUPrTpCC261qiO0XvxzjZdoPz5I1MNXaLLd7PxrcIe25s0A81_4bgss
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comparison+Analysis+of+Linear+Discriminant+Analysis+and+Cuckoo-Search+Algorithm+in+the+Classification+of+Breast+Cancer+from+Digital+Mammograms&rft.jtitle=Asian+Pacific+journal+of+cancer+prevention+%3A+APJCP&rft.au=Chakravarthy+S+R%2C+Sannasi&rft.au=Rajaguru%2C+Harikumar&rft.date=2019-08-01&rft.pub=West+Asia+Organization+for+Cancer+Prevention&rft.issn=1513-7368&rft.eissn=2476-762X&rft.volume=20&rft.issue=8&rft.spage=2333&rft.epage=2337&rft_id=info:doi/10.31557%2FAPJCP.2019.20.8.2333&rft_id=info%3Apmid%2F31450903&rft.externalDocID=PMC6852837
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1513-7368&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1513-7368&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1513-7368&client=summon