Synthesis of iron and vanadium co‐doped mesoporous cobalt oxide: An efficient and robust catalysts for electrochemical water oxidation
Summary Dual metal doping and optimization are considered as vital approaches for enhancing the electrocatalytic features toward oxygen evolution reaction. Herein, a sequence of Fe and V dual metal‐doped mesoporous cobalt oxide (FeV/meso‐Co) electrocatalysts was successfully synthesized through citr...
Saved in:
Published in | International journal of energy research Vol. 45; no. 6; pp. 9422 - 9437 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Chichester, UK
John Wiley & Sons, Inc
01.05.2021
|
Subjects | |
Online Access | Get full text |
ISSN | 0363-907X 1099-114X |
DOI | 10.1002/er.6471 |
Cover
Abstract | Summary
Dual metal doping and optimization are considered as vital approaches for enhancing the electrocatalytic features toward oxygen evolution reaction. Herein, a sequence of Fe and V dual metal‐doped mesoporous cobalt oxide (FeV/meso‐Co) electrocatalysts was successfully synthesized through citric acid‐assisted evaporation‐induced self‐assembly (EISA) method. The textural, morphological, crystallinity, and electrochemical activities of Fe/V‐promoted meso‐Co (124 m2/g) are found strongly associated with dual (Fe and V) metal concentration. Benefiting from the combined effect of FeV‐doping, the FeV/meso‐Co exhibited an extremely lower overpotential of 280 mV to reach 10 mA/cm2 for oxygen evolution reaction (OER) in 1M KOH electrolyte, which was the considerably lowest value among the earlier catalysts, and the FeV/meso‐Co showed similar features as IrO2 electrodes. Furthermore, FeV/meso‐Co electrodes display highly durable (>30 hours) electrocatalytic performance for OER. This inexpensive approach of producing transition dual metal‐doped mesoporous materials offers excellent promise for fabricating efficient catalysts and other electrochemical energy‐conversion devices.
In this paper, an Fe and V co‐doped mesoporous Fe and V co‐doped mesoporous cobalt (meso‐Co, 124 m2/g SA) electrocatalysts through citric acid‐assisted evaporation‐induced self‐assembly method and applied as a durable and efficient electrocatalysts for the electrochemical water reaction. These combined co‐doping strategies of ternary composite materials comprise only abundant elements creating them favourable materials for energy‐related applications. |
---|---|
AbstractList | Summary
Dual metal doping and optimization are considered as vital approaches for enhancing the electrocatalytic features toward oxygen evolution reaction. Herein, a sequence of Fe and V dual metal‐doped mesoporous cobalt oxide (FeV/meso‐Co) electrocatalysts was successfully synthesized through citric acid‐assisted evaporation‐induced self‐assembly (EISA) method. The textural, morphological, crystallinity, and electrochemical activities of Fe/V‐promoted meso‐Co (124 m2/g) are found strongly associated with dual (Fe and V) metal concentration. Benefiting from the combined effect of FeV‐doping, the FeV/meso‐Co exhibited an extremely lower overpotential of 280 mV to reach 10 mA/cm2 for oxygen evolution reaction (OER) in 1M KOH electrolyte, which was the considerably lowest value among the earlier catalysts, and the FeV/meso‐Co showed similar features as IrO2 electrodes. Furthermore, FeV/meso‐Co electrodes display highly durable (>30 hours) electrocatalytic performance for OER. This inexpensive approach of producing transition dual metal‐doped mesoporous materials offers excellent promise for fabricating efficient catalysts and other electrochemical energy‐conversion devices.
In this paper, an Fe and V co‐doped mesoporous Fe and V co‐doped mesoporous cobalt (meso‐Co, 124 m2/g SA) electrocatalysts through citric acid‐assisted evaporation‐induced self‐assembly method and applied as a durable and efficient electrocatalysts for the electrochemical water reaction. These combined co‐doping strategies of ternary composite materials comprise only abundant elements creating them favourable materials for energy‐related applications. Dual metal doping and optimization are considered as vital approaches for enhancing the electrocatalytic features toward oxygen evolution reaction. Herein, a sequence of Fe and V dual metal‐doped mesoporous cobalt oxide (FeV/meso‐Co) electrocatalysts was successfully synthesized through citric acid‐assisted evaporation‐induced self‐assembly (EISA) method. The textural, morphological, crystallinity, and electrochemical activities of Fe/V‐promoted meso‐Co (124 m2/g) are found strongly associated with dual (Fe and V) metal concentration. Benefiting from the combined effect of FeV‐doping, the FeV/meso‐Co exhibited an extremely lower overpotential of 280 mV to reach 10 mA/cm2 for oxygen evolution reaction (OER) in 1M KOH electrolyte, which was the considerably lowest value among the earlier catalysts, and the FeV/meso‐Co showed similar features as IrO2 electrodes. Furthermore, FeV/meso‐Co electrodes display highly durable (>30 hours) electrocatalytic performance for OER. This inexpensive approach of producing transition dual metal‐doped mesoporous materials offers excellent promise for fabricating efficient catalysts and other electrochemical energy‐conversion devices. |
Author | Al‐Shalwi, Matar Amer, Mabrook S. Ghanem, Mohamed A. Ahmad, Ashfaq Arunachalam, Prabhakarn Alharthi, Abdulrahman I. Al‐Mayouf, Abdullah M. |
Author_xml | – sequence: 1 givenname: Mabrook S. surname: Amer fullname: Amer, Mabrook S. organization: K.A.CARE Energy Research and Innovation Center at Riyadh – sequence: 2 givenname: Prabhakarn orcidid: 0000-0002-6293-1631 surname: Arunachalam fullname: Arunachalam, Prabhakarn email: parunachalam@ksu.edu.sa organization: College of Science, King Saud University – sequence: 3 givenname: Mohamed A. surname: Ghanem fullname: Ghanem, Mohamed A. organization: College of Science, King Saud University – sequence: 4 givenname: Matar surname: Al‐Shalwi fullname: Al‐Shalwi, Matar organization: College of Science, King Saud University – sequence: 5 givenname: Ashfaq surname: Ahmad fullname: Ahmad, Ashfaq organization: College of Science, King Saud University – sequence: 6 givenname: Abdulrahman I. surname: Alharthi fullname: Alharthi, Abdulrahman I. organization: College of Science and Humanities, Prince Sattam Bin Abdulaziz University – sequence: 7 givenname: Abdullah M. surname: Al‐Mayouf fullname: Al‐Mayouf, Abdullah M. organization: College of Science, King Saud University |
BookMark | eNp1kE1LxDAQhoMouKviXwh48CDVTNPthzdZ1g8QBD9gbyVNphjpJjVJ1b159Ohv9JfY7XoSncswM8-8M7xjsmmsQUL2gR0DY_EJuuM0yWCDjIAVRQSQzDfJiPGURwXL5ttk7P0TY_0MshH5uFua8Ihee2prqp01VBhFX4QRSncLKu3X-6eyLSq6QG9b62zn-24lmkDtm1Z4Ss8MxbrWUqMJw7azVecDlSKIZumDp7V1FBuUwVn5iAstRUNfRUA3SIigrdklW7VoPO795B3ycD67n15G1zcXV9Oz60jyOIUohayqIC0AKhVnXMWymIgi5cAxrrIEJGDRh1JcpELlMsEEAZO8gr4QLOM75GCt2zr73KEP5ZPtnOlPlvEEJpAXcc57KlpT0lnvHdal1GH4MzihmxJYuTK7RFeuzO75w1986_RCuOUf5NGafNUNLv_DytntQH8DXBWSJQ |
CitedBy_id | crossref_primary_10_1007_s12274_023_5670_6 crossref_primary_10_1016_j_jiec_2022_05_043 crossref_primary_10_3390_catal14060369 crossref_primary_10_1016_j_heliyon_2025_e42966 crossref_primary_10_1021_acsaem_3c02299 crossref_primary_10_1002_ece2_29 crossref_primary_10_1016_j_cattod_2021_09_036 crossref_primary_10_1002_er_7792 crossref_primary_10_1002_er_7651 crossref_primary_10_1002_smll_202105763 crossref_primary_10_1039_D3RA03394E crossref_primary_10_1039_D4MA00088A crossref_primary_10_1002_er_6934 crossref_primary_10_1016_j_envres_2023_116818 crossref_primary_10_1002_er_7744 |
Cites_doi | 10.1002/adma.201606793 10.1021/ja403102j 10.1016/j.fuel.2020.118235 10.3390/nano9101502 10.1007/s40843-017-9113-1 10.1038/s41467-018-05341-y 10.1016/j.arabjc.2019.08.006 10.1021/jp105640j 10.1002/aenm.201601492 10.1002/cphc.201900498 10.1038/s41467-018-06081-9 10.1021/cs501049r 10.1021/jacs.5b00281 10.1021/acsomega.9b01385 10.1351/pac198557040603 10.1038/ncomms7616 10.1039/C8TA10952D 10.1021/acs.jpcc.7b04348 10.1002/anie.201412389 10.1039/C5RA00995B 10.1007/s10800-016-1028-z 10.1039/C9TA07918A 10.1021/ja407115p 10.1039/D0NR02881A 10.1016/j.apcatb.2020.119367 10.1021/acs.nanolett.6b03803 10.1021/jacs.7b03507 10.1039/C7TA07956G 10.1002/aenm.201701686 10.1039/C8QI01320A 10.1016/j.electacta.2016.04.172 10.1039/C8EE00611C 10.1002/er.4359 10.1039/C8TA04721A 10.1126/science.aad1920 10.1021/cm5005888 10.1002/cssc.201300975 10.1039/C5TA07586F 10.1149/2.0061807jes 10.1038/s41427-018-0072-z 10.1126/science.aad4998 10.1002/er.5026 10.1021/ja511559d 10.1038/nature11115 10.1149/2.0031611jes 10.3390/catal9100836 10.1021/ja400555q 10.1021/acsami.6b06103 10.1002/anie.201503407 10.1039/C7PP00006E 10.1016/j.apsusc.2013.01.084 10.1039/C4TA05537C 10.1002/adma.201502696 10.1021/acs.jpcc.5b11868 10.1021/acscatal.7b03198 10.1021/acscatal.6b02573 10.1002/smll.201503187 10.1007/s12274-019-2389-5 10.1016/0021-9517(85)90149-6 10.1021/acscatal.5b01481 10.1021/jp035751c 10.1039/c2ee21754f 10.1021/ja502379c 10.1021/cm0101069 10.1016/j.ultsonch.2020.105111 10.1002/er.5419 10.1021/acscatal.6b03126 10.1039/b814844a 10.1007/BF01007821 10.1021/acs.chemrev.6b00398 10.1021/jacs.5b06814 10.1021/acs.nanolett.7b01030 10.1007/s12274-018-2050-8 10.1016/j.apsusc.2020.145831 10.1016/j.apcatb.2019.118575 |
ContentType | Journal Article |
Copyright | 2021 John Wiley & Sons Ltd 2021 John Wiley & Sons, Ltd. |
Copyright_xml | – notice: 2021 John Wiley & Sons Ltd – notice: 2021 John Wiley & Sons, Ltd. |
DBID | AAYXX CITATION 7SP 7ST 7TB 7TN 8FD C1K F1W F28 FR3 H96 KR7 L.G L7M SOI |
DOI | 10.1002/er.6471 |
DatabaseName | CrossRef Electronics & Communications Abstracts Environment Abstracts Mechanical & Transportation Engineering Abstracts Oceanic Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Advanced Technologies Database with Aerospace Environment Abstracts |
DatabaseTitle | CrossRef Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Technology Research Database Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts Environmental Sciences and Pollution Management Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Oceanic Abstracts ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Environment Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering |
DatabaseTitleList | Civil Engineering Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1099-114X |
EndPage | 9437 |
ExternalDocumentID | 10_1002_er_6471 ER6471 |
Genre | article |
GrantInformation_xml | – fundername: Deanship of Scientific Research, King Saud University |
GroupedDBID | .3N .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 24P 31~ 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 8WZ 930 A03 A6W AAESR AAEVG AAHHS AAJEY AANHP AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABDPE ABEML ABIJN ABJCF ABJNI ABPVW ACAHQ ACBWZ ACCFJ ACCMX ACCZN ACGFS ACIWK ACPOU ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN ADZOD AEEZP AEIMD AENEX AEQDE AEUQT AEUYN AFBPY AFGKR AFKRA AFPWT AFRAH AFZJQ AI. AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ARAPS ASPBG ATCPS ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BENPR BFHJK BGLVJ BHBCM BHPHI BKSAR BMNLL BMXJE BNHUX BROTX BRXPI BY8 CCPQU CMOOK CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS EJD F00 FEDTE G-S G.N GNP GODZA GROUPED_DOAJ H.T H.X H13 HCIFZ HF~ HHY HVGLF HZ~ H~9 IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M59 M7S MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG P2P P2W P2X P4D PALCI PATMY PCBAR PIMPY PTHSS PYCSY Q.N Q11 QB0 QRW R.K RHX RIWAO RJQFR RNS ROL RWI RX1 RYL SAMSI SUPJJ TN5 UB1 V2E VH1 W8V W99 WBKPD WH7 WIH WIK WLBEL WOHZO WQJ WWI WXSBR WYISQ XG1 XPP XV2 ZZTAW ~02 ~IA ~WT AAYXX ADMLS AGQPQ CITATION PHGZM PHGZT 7SP 7ST 7TB 7TN 8FD C1K F1W F28 FR3 H96 KR7 L.G L7M SOI |
ID | FETCH-LOGICAL-c3261-617bb16911bd273d2c95a96313e2b741c1e9999dd3a6ad8c4e4e1e48b1d8ca073 |
IEDL.DBID | DR2 |
ISSN | 0363-907X |
IngestDate | Wed Aug 13 05:06:19 EDT 2025 Tue Jul 01 01:41:34 EDT 2025 Thu Apr 24 23:02:12 EDT 2025 Wed Jan 22 16:57:56 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3261-617bb16911bd273d2c95a96313e2b741c1e9999dd3a6ad8c4e4e1e48b1d8ca073 |
Notes | Funding information Deanship of Scientific Research, King Saud University ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-6293-1631 |
PQID | 2515189283 |
PQPubID | 996365 |
PageCount | 16 |
ParticipantIDs | proquest_journals_2515189283 crossref_citationtrail_10_1002_er_6471 crossref_primary_10_1002_er_6471 wiley_primary_10_1002_er_6471_ER6471 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | May 2021 |
PublicationDateYYYYMMDD | 2021-05-01 |
PublicationDate_xml | – month: 05 year: 2021 text: May 2021 |
PublicationDecade | 2020 |
PublicationPlace | Chichester, UK |
PublicationPlace_xml | – name: Chichester, UK – name: Bognor Regis |
PublicationTitle | International journal of energy research |
PublicationYear | 2021 |
Publisher | John Wiley & Sons, Inc |
Publisher_xml | – name: John Wiley & Sons, Inc |
References | 2017; 7 2018; 165 2012; 486 2017; 47 2019; 12 2014; 26 2020; 13 2016; 2016 2020; 12 2017; 355 2014; 136 2018; 6 2009; 11 2018; 9 2018; 8 2014; 4 2015; 137 2019; 20 2010; 114 2016; 116 2020; 44 1985; 93 2017; 121 2014; 7 2001; 13 2013; 270 2016; 351 1985; 57 2019; 7 2019; 9 2019; 4 2015; 6 2015; 5 2019; 6 2015; 3 2016; 207 2015; 54 2020; 266 2017; 29 2018; 61 2016; 16 2016; 120 1987; 17 2016; 163 2016; 12 2017; 139 2016; 4 2016; 6 2003; 107 2017; 17 2019; 43 2017; 16 2013; 135 2020; 513 2020; 277 2020; 279 2020; 66 2016; 28 2018; 11 2018; 10 2012; 5 e_1_2_9_75_1 e_1_2_9_31_1 e_1_2_9_52_1 e_1_2_9_50_1 e_1_2_9_73_1 e_1_2_9_10_1 e_1_2_9_35_1 e_1_2_9_56_1 e_1_2_9_12_1 e_1_2_9_33_1 e_1_2_9_54_1 e_1_2_9_71_1 e_1_2_9_14_1 e_1_2_9_39_1 e_1_2_9_16_1 e_1_2_9_37_1 e_1_2_9_58_1 e_1_2_9_18_1 e_1_2_9_41_1 e_1_2_9_64_1 e_1_2_9_20_1 e_1_2_9_62_1 e_1_2_9_22_1 e_1_2_9_45_1 e_1_2_9_68_1 e_1_2_9_24_1 e_1_2_9_43_1 e_1_2_9_66_1 e_1_2_9_8_1 e_1_2_9_6_1 e_1_2_9_4_1 e_1_2_9_60_1 e_1_2_9_2_1 e_1_2_9_26_1 e_1_2_9_49_1 e_1_2_9_28_1 e_1_2_9_47_1 e_1_2_9_30_1 e_1_2_9_53_1 e_1_2_9_74_1 e_1_2_9_51_1 e_1_2_9_72_1 e_1_2_9_11_1 e_1_2_9_34_1 e_1_2_9_57_1 e_1_2_9_13_1 e_1_2_9_32_1 e_1_2_9_55_1 e_1_2_9_76_1 e_1_2_9_70_1 e_1_2_9_15_1 e_1_2_9_38_1 e_1_2_9_17_1 e_1_2_9_36_1 e_1_2_9_59_1 e_1_2_9_19_1 e_1_2_9_42_1 e_1_2_9_63_1 e_1_2_9_40_1 e_1_2_9_61_1 e_1_2_9_21_1 e_1_2_9_46_1 e_1_2_9_67_1 e_1_2_9_23_1 e_1_2_9_44_1 e_1_2_9_65_1 e_1_2_9_7_1 e_1_2_9_5_1 e_1_2_9_3_1 e_1_2_9_9_1 e_1_2_9_25_1 e_1_2_9_27_1 e_1_2_9_48_1 e_1_2_9_69_1 e_1_2_9_29_1 |
References_xml | – volume: 266 year: 2020 article-title: High catalytic performance of tungsten disulphide rodes in oxygen evolution reactions in alkaline solutions publication-title: Appl Catal B Environ – volume: 16 start-page: 7718 year: 2016 end-page: 7725 article-title: Plasma‐assisted synthesis of NiCoP for efficient overall water splitting publication-title: Nano Lett – volume: 9 start-page: 1502 issue: 10 year: 2019 article-title: Mesoporous tungsten trioxide photoanodes modified with nitrogen‐doped carbon quantum dots for enhanced oxygen evolution photo‐reaction publication-title: Nanomaterials – volume: 93 start-page: 38 issue: 1 year: 1985 end-page: 54 article-title: Temperature‐programmed reduction of CoOAI O catalysts publication-title: J Catal – volume: 277 year: 2020 article-title: One‐pot synthesis of Fe3O4@ graphite sheets as electrocatalyst for water electrolysis publication-title: Fuel – volume: 11 start-page: 1736 year: 2018 end-page: 1741 article-title: Ultrathin amorphous cobalt–vanadium hydr (oxy) oxide catalysts for the oxygen evolution reaction publication-title: Energy Environ Sci – volume: 207 start-page: 177 year: 2016 end-page: 186 article-title: Mesoporous cobalt hydroxide prepared using liquid crystal template for efficient oxygen evolution in alkaline media publication-title: Electrochim Acta – volume: 116 start-page: 14120 year: 2016 end-page: 14136 article-title: Earth‐abundant heterogeneous water oxidation catalysts publication-title: Chem Rev – volume: 11 start-page: 3509 year: 2018 end-page: 3518 article-title: Tuning oxygen vacancies in two‐dimensional iron‐cobalt oxide nanosheets through hydrogenation for enhanced oxygen evolution activity publication-title: Nano Res – volume: 16 start-page: 766 year: 2017 end-page: 778 article-title: High performance multifunctional green Co O spinel nanoparticles: photodegradation of textile dye effluents, catalytic hydrogenation of nitro‐aromatics and antibacterial potential publication-title: Photochem Photobiol Sci – volume: 120 start-page: 2562 issue: 5 year: 2016 end-page: 2573 article-title: IrO coated on RuO as efficient and stable electroactive nanocatalysts for electrochemical water splitting publication-title: J Phys Chem C – volume: 9 start-page: 1 issue: 1 year: 2018 end-page: 12 article-title: Atomic‐level insight into super‐efficient electrocatalytic oxygen evolution on iron and vanadium co‐doped nickel (oxy) hydroxide publication-title: Nat Commun – volume: 57 start-page: 603 year: 1985 end-page: 619 article-title: International union of pure and applied chemistry physical chemistry division reporting physisorption data for gas/soils systems with special reference to the determination of surface area and porosity publication-title: Pure Appl Chem – volume: 163 start-page: F3020 year: 2016 end-page: F3028 article-title: Enhancing activity and stability of cobalt oxide electrocatalysts for the oxygen evolution reaction via transition metal doping publication-title: J Electrochem Soc – volume: 7 start-page: 21911 year: 2019 end-page: 21917 article-title: Vanadium–cobalt oxyhydroxide shows ultralow overpotential for the oxygen evolution reaction publication-title: J Mater Chem A – volume: 13 start-page: 3169 year: 2001 end-page: 3183 article-title: Gas adsorption characterization of ordered organic−inorganic nanocomposite materials publication-title: Chem Mater – volume: 107 start-page: 12643 year: 2003 end-page: 12649 article-title: Dimensional control of cobalt‐hydroxide‐carbonate nanorods and their thermal conversion to one‐dimensional arrays of Co O nanoparticles publication-title: J Phys Chem B – volume: 5 start-page: 27823 issue: 35 year: 2015 end-page: 27828 article-title: Reduction‐induced surface amorphization enhances the oxygen evolution activity in Co O publication-title: RSC Adv – volume: 139 start-page: 8320 year: 2017 end-page: 8328 article-title: Electronic and morphological dual modulation of cobalt carbonate hydroxides by Mn doping toward highly efficient and stable bifunctional electrocatalysts for overall water splitting publication-title: J Am Chem Soc – volume: 7 issue: 1 year: 2017 article-title: Seamlessly conductive 3D nanoarchitecture of core–shell Ni‐Co nanowire network for highly efficient oxygen evolution publication-title: Adv Energy Mater – volume: 7 start-page: 82 issue: 1 year: 2014 end-page: 86 article-title: Gold nanoparticles embedded within mesoporous cobalt oxide enhance electrochemical oxygen evolution publication-title: ChemSusChem – volume: 135 start-page: 11580 year: 2013 end-page: 11586 article-title: Water oxidation catalysis: electrocatalytic response to metal stoichiometry in amorphous metal oxide films containing iron, cobalt, and nickel publication-title: J Am Chem Soc – volume: 3 start-page: 1828 year: 2015 end-page: 1832 article-title: Self‐assembled three‐dimensional hierarchical porous V O /graphene hybrid aerogels for supercapacitors with high energy density and long cycle life publication-title: J Mater Chem A – volume: 9 start-page: 836 year: 2019 article-title: Bifunctional electrocatalyst of low‐symmetry mesoporous titanium dioxide modified with cobalt oxide for oxygen evolution and reduction reactions publication-title: Catalysts – volume: 12 start-page: 13680 year: 2020 end-page: 13687 article-title: Fe, Al‐Codoped NiSe2 nanoparticles on reduced Graphene oxide as an efficient bifunctional electrocatalyst for overall water splitting publication-title: Nanoscale – volume: 43 start-page: 1460 year: 2019 end-page: 1467 article-title: Synthesis of high crystalline nickel‐iron hydrotalcite‐like compound as an efficient electrocatalyst for oxygen evolution reaction publication-title: Int J Energy Res – volume: 12 start-page: 2281 year: 2019 end-page: 2287 article-title: Ternary mesoporous cobalt‐iron‐nickel oxide efficiently catalyzing oxygen/hydrogen evolution reactions and overall water splitting publication-title: Nano Res – volume: 28 start-page: 215 year: 2016 end-page: 230 article-title: Recent progress in cobalt‐based heterogeneous catalysts for electrochemical water splitting publication-title: Adv Mater – volume: 44 start-page: 1789 year: 2020 end-page: 1797 article-title: NiFeCo oxide as an efficient and sustainable catalyst for the oxygen evolution reaction publication-title: Int J Energy Res – volume: 6 start-page: 155 year: 2016 end-page: 161 article-title: Charge‐transfer effects in Ni–Fe and Ni–Fe–Co mixed‐metal oxides for the alkaline oxygen evolution reaction publication-title: ACS Catal – volume: 8 start-page: 1701686 year: 2018 article-title: Unraveling geometrical site confinement in highly efficient iron‐doped electrocatalysts toward oxygen evolution reaction publication-title: Adv Energy Mater – volume: 7 start-page: 1248 year: 2017 end-page: 1258 article-title: An operando investigation of (Ni–Fe–Co–Ce) O x system as highly efficient electrocatalyst for oxygen evolution reaction publication-title: ACS Catal – volume: 17 start-page: 4202 year: 2017 end-page: 4209 article-title: Integrated hierarchical cobalt sulfide/nickel selenide hybrid nanosheets as an efficient three‐dimensional electrode for electrochemical and photoelectrochemical water splitting publication-title: Nano Lett – volume: 5 start-page: 9246 issue: 11 year: 2012 end-page: 9256 article-title: The road from animal electricity to green energy: combining experiment and theory in electrocatalysis publication-title: Energy Environ Sci – volume: 17 start-page: 828 year: 1987 end-page: 840 article-title: Electrochemical surface properties of Co O electrodes publication-title: J Appl Electrochem – volume: 135 start-page: 16977 year: 2013 end-page: 16987 article-title: Benchmarking heterogeneous electrocatalysts for the oxygen evolution reaction publication-title: J Am Chem Soc – volume: 135 start-page: 4516 year: 2013 end-page: 4521 article-title: Ordered mesoporous cobalt oxide as highly efficient oxygen evolution catalyst publication-title: J Am Chem Soc – volume: 7 start-page: 469 year: 2017 end-page: 479 article-title: Tuning electronic structures of nonprecious ternary alloys encapsulated in graphene layers for optimizing overall water splitting activity publication-title: ACS Catal – volume: 4 start-page: 3068 year: 2016 end-page: 3076 article-title: Benchmarking nanoparticulate metal oxide electrocatalysts for the alkaline water oxidation reaction publication-title: J Mater Chem A – volume: 10 start-page: 800 year: 2018 end-page: 809 article-title: A general ligand‐assisted self‐assembly approach to crystalline mesoporous metal oxides publication-title: NPG Asia Mater – volume: 47 start-page: 157 year: 2017 end-page: 166 article-title: Cockscomb‐like Mn‐doped Mn x Fe 1− x CO 3 as anode materials for a high‐performance lithium‐ion battery publication-title: J Appl Electrochem – volume: 54 start-page: 4870 year: 2015 end-page: 4875 article-title: Fast and simple preparation of iron‐based thin films as highly efficient water‐oxidation catalysts in neutral aqueous solution publication-title: Angew Chem Int Ed – volume: 114 start-page: 18779 year: 2010 end-page: 18784 article-title: Binary Fe−Co alloy nanoparticles showing significant enhancement in electrocatalytic activity compared with bulk alloys publication-title: J Phys Chem C – volume: 6 start-page: 16810 year: 2018 end-page: 16817 article-title: Nanostructured NiFe (oxy) hydroxide with easily oxidized Ni towards efficient oxygen evolution reactions publication-title: J Mater Chem A – volume: 486 start-page: 43 year: 2012 end-page: 51 article-title: Electrocatalyst approaches and challenges for automotive fuel cells publication-title: Nature – volume: 13 start-page: 4294 year: 2020 end-page: 4309 article-title: A review on non‐noble metal based electrocatalysis for the oxygen evolution reaction publication-title: Arab J Chem – volume: 61 start-page: 80 year: 2018 end-page: 90 article-title: Cobalt‐vanadium bimetal‐based nanoplates for efficient overall water splitting publication-title: Sci China Mater – volume: 11 start-page: 2195 year: 2009 end-page: 2202 article-title: Improvement of the capacitive performances for Co–Al layered double hydroxide by adding hexacyanoferrate into the electrolyte publication-title: Phys Chem Chem Phys – volume: 44 start-page: 7057 year: 2020 end-page: 7067 article-title: NiS‐FeS/N, S co‐doped carbon hybrid: synergistic effect between NiS and FeS facilitating electrochemical oxygen evolution reaction publication-title: Int J Energy Res – volume: 66 year: 2020 article-title: Direct pyrolysis and ultrasound assisted preparation of N, S co‐doped graphene/Fe3C nanocomposite as an efficient electrocatalyst for oxygen reduction and oxygen evolution reactions publication-title: Ultrason Sonochem – volume: 29 issue: 17 year: 2017 article-title: Ultrathin iron‐cobalt oxide nanosheets with abundant oxygen vacancies for the oxygen evolution reaction publication-title: Adv Mater – volume: 6 start-page: 167 year: 2018 end-page: 178 article-title: A Co‐doped Ni–Fe mixed oxide mesoporous nanosheet array with low overpotential and high stability towards overall water splitting publication-title: J Mater Chem A – volume: 9 start-page: 1 year: 2018 end-page: 12 article-title: Atomic‐level insight into super‐efficient electrocatalytic oxygen evolution on iron and vanadium co‐doped nickel (oxy) hydroxide publication-title: Nat Commun – volume: 137 start-page: 1305 year: 2015 end-page: 1313 article-title: Identification of highly active Fe sites in (Ni, Fe) OOH for electrocatalytic water splitting publication-title: J Am Chem Soc – volume: 6 start-page: 687 year: 2019 end-page: 693 article-title: Amorphous cobalt–iron hydroxides as high‐efficiency oxygen‐evolution catalysts based on a facile electrospinning process publication-title: Inorg Chem Front – volume: 8 start-page: 644 year: 2018 end-page: 650 article-title: Amorphous cobalt vanadium oxide as a highly active electrocatalyst for oxygen evolution publication-title: ACS Catal – volume: 351 year: 2016 article-title: Research opportunities to advance solar energy utilization publication-title: Science – volume: 270 start-page: 545 year: 2013 end-page: 552 article-title: Effect of magnetism on the ethanol sensitivity of undoped and Mn‐doped CuO nanoflakes publication-title: Appl Surf Sci – volume: 137 start-page: 15112 year: 2015 end-page: 15121 article-title: In situ observation of active oxygen species in Fe‐containing Ni‐based oxygen evolution catalysts: the effect of pH on electrochemical activity publication-title: J Am Chem Soc – volume: 6 start-page: 1 year: 2015 end-page: 7 article-title: Electrodeposition of hierarchically structured three‐dimensional nickel–iron electrodes for efficient oxygen evolution at high current densities publication-title: Nat Commun – volume: 355 start-page: 6321 year: 2017 article-title: Combining theory and experiment in electrocatalysis: insights into materials design publication-title: Science – volume: 136 start-page: 6744 year: 2014 end-page: 6753 article-title: Nickel–iron oxyhydroxide oxygen‐evolution electrocatalysts: the role of intentional and incidental iron incorporation publication-title: J Am Chem Soc – volume: 279 year: 2020 article-title: Construction of N‐doped carbon nanotube encapsulated active nanoparticles in hierarchically porous carbonized wood frameworks to boost the oxygen evolution reaction publication-title: Appl Catal B Environ – volume: 4 start-page: 4143 year: 2014 end-page: 4152 article-title: Promoting effects of In O on Co O for CO oxidation: tuning O activation and CO adsorption strength simultaneously publication-title: ACS Catal – volume: 12 start-page: 1709 year: 2016 end-page: 1715 article-title: Ordered mesoporous cobalt phosphate with crystallized walls toward highly active water oxidation electrocatalysts publication-title: Small – volume: 165 start-page: H300 year: 2018 end-page: H309 article-title: Low‐symmetry mesoporous titanium dioxide (lsm‐TiO ) electrocatalyst for efficient and durable oxygen evolution in aqueous alkali publication-title: J Electrochem Soc – volume: 26 start-page: 3162 year: 2014 end-page: 3168 article-title: Influence of Fe doping on structure and water oxidation activity of nanocast Co3O4 publication-title: Chem Mater – volume: 4 start-page: 12671 year: 2019 end-page: 12679 article-title: Direct deposition of amorphous cobalt–vanadium mixed oxide films for electrocatalytic water oxidation publication-title: ACS Omega – volume: 54 start-page: 9351 year: 2015 end-page: 9355 article-title: NiSe nanowire film supported on nickel foam: an efficient and stable 3D bifunctional electrode for full water splitting publication-title: Angew Chem Int Ed – volume: 137 start-page: 3638 issue: 10 year: 2015 end-page: 3648 article-title: Cobalt–iron (oxy) hydroxide oxygen evolution electrocatalysts: the role of structure and composition on activity, stability, and mechanism publication-title: J Am Chem Soc – volume: 121 start-page: 15256 year: 2017 end-page: 15265 article-title: Low‐temperature CO oxidation over combustion made Fe‐and Cr‐doped Co O catalysts: role of dopant's nature toward achieving superior catalytic activity and stability publication-title: J Phys Chem C – volume: 7 start-page: 3090 year: 2019 end-page: 3100 article-title: Mesoporous cobalt–iron–organic frameworks: a plasma‐enhanced oxygen evolution electrocatalyst publication-title: J Mater Chem A – volume: 2016 start-page: 20802 issue: 8 year: 2016 end-page: 20813 article-title: Ni‐and Mn‐promoted mesoporous Co O : a stable bifunctional catalyst with surface‐structure‐dependent activity for oxygen reduction reaction and oxygen evolution reaction publication-title: ACS Appl Mater Interfaces – volume: 20 start-page: 3112 year: 2019 end-page: 3119 article-title: Electrodeposition at highly negative potentials of an iron‐cobalt oxide catalyst for use in electrochemical water splitting publication-title: ChemPhysChem – volume: 513 year: 2020 article-title: Enriched active surface structure in nanosized tungsten‐cobalt oxides electrocatalysts for efficient oxygen redox reactions publication-title: Appl Surf Sci – ident: e_1_2_9_18_1 doi: 10.1002/adma.201606793 – ident: e_1_2_9_32_1 doi: 10.1021/ja403102j – ident: e_1_2_9_15_1 doi: 10.1016/j.fuel.2020.118235 – ident: e_1_2_9_19_1 doi: 10.3390/nano9101502 – ident: e_1_2_9_51_1 doi: 10.1007/s40843-017-9113-1 – ident: e_1_2_9_69_1 doi: 10.1038/s41467-018-05341-y – ident: e_1_2_9_11_1 doi: 10.1016/j.arabjc.2019.08.006 – ident: e_1_2_9_31_1 doi: 10.1021/jp105640j – ident: e_1_2_9_17_1 doi: 10.1002/aenm.201601492 – ident: e_1_2_9_35_1 doi: 10.1002/cphc.201900498 – ident: e_1_2_9_52_1 doi: 10.1038/s41467-018-06081-9 – ident: e_1_2_9_63_1 doi: 10.1021/cs501049r – ident: e_1_2_9_27_1 doi: 10.1021/jacs.5b00281 – ident: e_1_2_9_50_1 doi: 10.1021/acsomega.9b01385 – ident: e_1_2_9_59_1 doi: 10.1351/pac198557040603 – ident: e_1_2_9_64_1 doi: 10.1038/ncomms7616 – ident: e_1_2_9_36_1 doi: 10.1039/C8TA10952D – ident: e_1_2_9_66_1 doi: 10.1021/acs.jpcc.7b04348 – ident: e_1_2_9_65_1 doi: 10.1002/anie.201412389 – ident: e_1_2_9_68_1 doi: 10.1039/C5RA00995B – ident: e_1_2_9_42_1 doi: 10.1007/s10800-016-1028-z – ident: e_1_2_9_49_1 doi: 10.1039/C9TA07918A – ident: e_1_2_9_4_1 doi: 10.1021/ja407115p – ident: e_1_2_9_72_1 doi: 10.1039/D0NR02881A – ident: e_1_2_9_13_1 doi: 10.1016/j.apcatb.2020.119367 – ident: e_1_2_9_71_1 doi: 10.1021/acs.nanolett.6b03803 – ident: e_1_2_9_74_1 doi: 10.1021/jacs.7b03507 – ident: e_1_2_9_40_1 doi: 10.1039/C7TA07956G – ident: e_1_2_9_45_1 doi: 10.1002/aenm.201701686 – ident: e_1_2_9_34_1 doi: 10.1039/C8QI01320A – ident: e_1_2_9_41_1 doi: 10.1016/j.electacta.2016.04.172 – ident: e_1_2_9_48_1 doi: 10.1039/C8EE00611C – ident: e_1_2_9_10_1 doi: 10.1002/er.4359 – ident: e_1_2_9_43_1 doi: 10.1039/C8TA04721A – ident: e_1_2_9_26_1 doi: 10.1126/science.aad1920 – ident: e_1_2_9_29_1 doi: 10.1021/cm5005888 – ident: e_1_2_9_21_1 doi: 10.1002/cssc.201300975 – ident: e_1_2_9_25_1 doi: 10.1039/C5TA07586F – ident: e_1_2_9_24_1 doi: 10.1149/2.0061807jes – ident: e_1_2_9_38_1 doi: 10.1038/s41427-018-0072-z – ident: e_1_2_9_3_1 doi: 10.1126/science.aad4998 – ident: e_1_2_9_9_1 doi: 10.1002/er.5026 – ident: e_1_2_9_44_1 doi: 10.1021/ja511559d – ident: e_1_2_9_6_1 doi: 10.1038/nature11115 – ident: e_1_2_9_39_1 doi: 10.1149/2.0031611jes – ident: e_1_2_9_23_1 doi: 10.3390/catal9100836 – ident: e_1_2_9_20_1 doi: 10.1021/ja400555q – ident: e_1_2_9_62_1 doi: 10.1021/acsami.6b06103 – ident: e_1_2_9_76_1 doi: 10.1002/anie.201503407 – ident: e_1_2_9_54_1 doi: 10.1039/C7PP00006E – ident: e_1_2_9_55_1 doi: 10.1016/j.apsusc.2013.01.084 – ident: e_1_2_9_58_1 doi: 10.1039/C4TA05537C – ident: e_1_2_9_5_1 doi: 10.1002/adma.201502696 – ident: e_1_2_9_16_1 doi: 10.1021/acs.jpcc.5b11868 – ident: e_1_2_9_53_1 doi: 10.1021/acscatal.7b03198 – ident: e_1_2_9_75_1 doi: 10.1021/acscatal.6b02573 – ident: e_1_2_9_22_1 doi: 10.1002/smll.201503187 – ident: e_1_2_9_37_1 doi: 10.1007/s12274-019-2389-5 – ident: e_1_2_9_70_1 doi: 10.1016/0021-9517(85)90149-6 – ident: e_1_2_9_46_1 doi: 10.1021/acscatal.5b01481 – ident: e_1_2_9_57_1 doi: 10.1021/jp035751c – ident: e_1_2_9_12_1 doi: 10.1039/c2ee21754f – ident: e_1_2_9_28_1 doi: 10.1021/ja502379c – ident: e_1_2_9_60_1 doi: 10.1021/cm0101069 – ident: e_1_2_9_14_1 doi: 10.1016/j.ultsonch.2020.105111 – ident: e_1_2_9_8_1 doi: 10.1002/er.5419 – ident: e_1_2_9_47_1 doi: 10.1021/acscatal.6b03126 – ident: e_1_2_9_61_1 doi: 10.1039/b814844a – ident: e_1_2_9_67_1 doi: 10.1007/BF01007821 – ident: e_1_2_9_2_1 doi: 10.1021/acs.chemrev.6b00398 – ident: e_1_2_9_30_1 doi: 10.1021/jacs.5b06814 – ident: e_1_2_9_73_1 doi: 10.1021/acs.nanolett.7b01030 – ident: e_1_2_9_33_1 doi: 10.1007/s12274-018-2050-8 – ident: e_1_2_9_56_1 doi: 10.1016/j.apsusc.2020.145831 – ident: e_1_2_9_7_1 doi: 10.1016/j.apcatb.2019.118575 |
SSID | ssj0009917 |
Score | 2.3765388 |
Snippet | Summary
Dual metal doping and optimization are considered as vital approaches for enhancing the electrocatalytic features toward oxygen evolution reaction.... Dual metal doping and optimization are considered as vital approaches for enhancing the electrocatalytic features toward oxygen evolution reaction. Herein, a... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 9422 |
SubjectTerms | bimetallic doping Catalysts Citric acid Cobalt Cobalt oxides Doping Electrocatalysts Electrochemistry Electrodes Evaporation evaporation induced self‐assembly Evolution Heavy metals Iron iron‐vanadium mesoporous cobalt oxide Metal concentrations Optimization Oxidation Oxygen oxygen evolution reaction Oxygen evolution reactions Vanadium |
Title | Synthesis of iron and vanadium co‐doped mesoporous cobalt oxide: An efficient and robust catalysts for electrochemical water oxidation |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fer.6471 https://www.proquest.com/docview/2515189283 |
Volume | 45 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ05T8MwFMctVBYYuBGFgjxUbGlxriZsFQUhBAyUShVL5KtSRZugOOGaGBn5jHwSnp2UFhASYsohv8jK84t_dvz-RqhuS4d7HoWR6iAMLdexhRVCt2F5pMX9FqUsoDob-eLSP-25Z32vP7PVV6EP8TnhpiPDfK91gFOmmlPRUJk2fNdkjxPH16r5naupcBRQT2vylxKGf_0iXVZbNku7r_3QFC5nEdX0MSfL6GZSu2JpyW0jz1iDP38TbvxX9VfQUkmeuF00lVU0J-M1tDijR7iOXrtPMQChGiqcDLBOgMM0FvjeLAzLx5gn7y9vIrmTAo-lSgDdk1zBXUZHGU4eh0Ie4naMpZGlgN7MWKcJy1WGzTzRk8oUBkzG5e47vJQrwA-AvKl5hGkpG6h3cnx9dGqVWzVY3NEzWMBBjGndHcIEAJGweehRiG3iSJsBtHAigURDIRzqUxFwV7qSSDdgBC4ofGY2USVOYrmFMLiOtzw-oAMGtEQOmOO4fhC4lHpwTmQV7U8cF_FSx1xvpzGKCgVmO5JppF9tFeHPgneFdMfPIrWJ56MydlUExOeRIATuqqK6ceFv5tHxlT5s_63YDlqw9YIYs1qyhipZmstdIJqM7aH5dufivLtnGvEH1L33Vg |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ05T8MwFMctVAZg4EaU00PFloJzNWFDiKpAYYBWqsQQ-apU0SZVDq6JkZHPyCfh2UkPQEiIKYfsKImvn5_f-xuhiikt7jgUZqpd3zdsyxSGD8OG4ZAad2uUMo-qaOSra7fRti86TqfwqlSxMLk-xNjgplqG7q9VA1cG6cOJaqiMq66twsdn9eqcAqKbiXQUcE9ttE4JE8BOHjCrsh4WGb-ORBO8nIZUPcrUl9Dd6P1y55L7apayKn_5Jt34vw9YRosFfOKTvLasoBkZrqKFKUnCNfR2-xwCEya9BEddrGLgMA0FftC-YdkA8-jj9V1EQynwQCYR0HuUJXCX0X6Ko6eekMf4JMRSK1PAgKZzxxHLkhRrU9FzkiYYSBkXG_DwQrEAPwL1xvoRurKso3b9rHXaMIrdGgxuKSMWoBBjSnqHMAFMJEzuOxSaN7GkyYBbOJEAo74QFnWp8LgtbUmk7TECFxR6mg1UCqNQbiIMZcdrDu_SLgNgIkfMsmzX82xKHTgnsowORiUX8ELKXO2o0Q9yEWYzkHGgfm0Z4XHCYa7e8TPJzqjog6L5JgFAn0M8H9CrjCq6DH_LHpzdqMPW35Lto7lG66oZNM-vL7fRvKn8Y7Tz5A4qpXEmdwFwUrana_IncBD54A |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ1JS8QwFMeDKIge3MXRUXMQbx1Nm3Zab4M6uCMuMHgp2QqitkMXt5NHj35GP4kvaccZFUE8dSEpoS-v75c07x-E1mzlCNdlMFKNgsCiji2tAMKG5ZKm8JqMcZ_pbOTjE2_vkh503M7AVl-lPsTnhJv2DPO91g7eldFGXzRUpQ2P6uzxEepBkNQ8dNZXjgLsafZ-U8L4r1Pmy-qqG1XFr4GoT5eDjGqCTHsSXfWaV64tuWkUOW-I52_Kjf9q_xSaqNATt8q-Mo2GVDyDxgcECWfR6_lTDESYXWc4ibDOgMMslvjerAwr7rBI3l_eZNJVEt-pLAF2T4oM7nJ2m-Pk8VqqLdyKsTK6FBDOTO004UWWYzNR9JTlGQZOxtX2O6LSK8APwLypeYTpKnPosr17sb1nVXs1WMLRU1gAQpxr4R3CJRCRtEXgMnBu4iibA7UIogBFAykd5jHpC6qoIor6nMAFg-_MPBqOk1gtIAymE01XRCzigEtkkzsO9XyfMubCOVE1tN4zXCgqIXO9n8ZtWEow26FKQ_1qawh_FuyW2h0_i9R7lg8r581CQD6X-AGAVw2tGRP-Vj3cPdOHxb8VW0Wjpzvt8Gj_5HAJjdl6cYxZOVlHw3laqGWgm5yvmH78AZeK-I8 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Synthesis+of+iron+and+vanadium+co%E2%80%90doped+mesoporous+cobalt+oxide%3A+An+efficient+and+robust+catalysts+for+electrochemical+water+oxidation&rft.jtitle=International+journal+of+energy+research&rft.au=Amer%2C+Mabrook+S.&rft.au=Arunachalam%2C+Prabhakarn&rft.au=Ghanem%2C+Mohamed+A.&rft.au=Al%E2%80%90Shalwi%2C+Matar&rft.date=2021-05-01&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.issn=0363-907X&rft.eissn=1099-114X&rft.volume=45&rft.issue=6&rft.spage=9422&rft.epage=9437&rft_id=info:doi/10.1002%2Fer.6471&rft.externalDBID=10.1002%252Fer.6471&rft.externalDocID=ER6471 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0363-907X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0363-907X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0363-907X&client=summon |