Synthesis of iron and vanadium co‐doped mesoporous cobalt oxide: An efficient and robust catalysts for electrochemical water oxidation

Summary Dual metal doping and optimization are considered as vital approaches for enhancing the electrocatalytic features toward oxygen evolution reaction. Herein, a sequence of Fe and V dual metal‐doped mesoporous cobalt oxide (FeV/meso‐Co) electrocatalysts was successfully synthesized through citr...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of energy research Vol. 45; no. 6; pp. 9422 - 9437
Main Authors Amer, Mabrook S., Arunachalam, Prabhakarn, Ghanem, Mohamed A., Al‐Shalwi, Matar, Ahmad, Ashfaq, Alharthi, Abdulrahman I., Al‐Mayouf, Abdullah M.
Format Journal Article
LanguageEnglish
Published Chichester, UK John Wiley & Sons, Inc 01.05.2021
Subjects
Online AccessGet full text
ISSN0363-907X
1099-114X
DOI10.1002/er.6471

Cover

Abstract Summary Dual metal doping and optimization are considered as vital approaches for enhancing the electrocatalytic features toward oxygen evolution reaction. Herein, a sequence of Fe and V dual metal‐doped mesoporous cobalt oxide (FeV/meso‐Co) electrocatalysts was successfully synthesized through citric acid‐assisted evaporation‐induced self‐assembly (EISA) method. The textural, morphological, crystallinity, and electrochemical activities of Fe/V‐promoted meso‐Co (124 m2/g) are found strongly associated with dual (Fe and V) metal concentration. Benefiting from the combined effect of FeV‐doping, the FeV/meso‐Co exhibited an extremely lower overpotential of 280 mV to reach 10 mA/cm2 for oxygen evolution reaction (OER) in 1M KOH electrolyte, which was the considerably lowest value among the earlier catalysts, and the FeV/meso‐Co showed similar features as IrO2 electrodes. Furthermore, FeV/meso‐Co electrodes display highly durable (>30 hours) electrocatalytic performance for OER. This inexpensive approach of producing transition dual metal‐doped mesoporous materials offers excellent promise for fabricating efficient catalysts and other electrochemical energy‐conversion devices. In this paper, an Fe and V co‐doped mesoporous Fe and V co‐doped mesoporous cobalt (meso‐Co, 124 m2/g SA) electrocatalysts through citric acid‐assisted evaporation‐induced self‐assembly method and applied as a durable and efficient electrocatalysts for the electrochemical water reaction. These combined co‐doping strategies of ternary composite materials comprise only abundant elements creating them favourable materials for energy‐related applications.
AbstractList Summary Dual metal doping and optimization are considered as vital approaches for enhancing the electrocatalytic features toward oxygen evolution reaction. Herein, a sequence of Fe and V dual metal‐doped mesoporous cobalt oxide (FeV/meso‐Co) electrocatalysts was successfully synthesized through citric acid‐assisted evaporation‐induced self‐assembly (EISA) method. The textural, morphological, crystallinity, and electrochemical activities of Fe/V‐promoted meso‐Co (124 m2/g) are found strongly associated with dual (Fe and V) metal concentration. Benefiting from the combined effect of FeV‐doping, the FeV/meso‐Co exhibited an extremely lower overpotential of 280 mV to reach 10 mA/cm2 for oxygen evolution reaction (OER) in 1M KOH electrolyte, which was the considerably lowest value among the earlier catalysts, and the FeV/meso‐Co showed similar features as IrO2 electrodes. Furthermore, FeV/meso‐Co electrodes display highly durable (>30 hours) electrocatalytic performance for OER. This inexpensive approach of producing transition dual metal‐doped mesoporous materials offers excellent promise for fabricating efficient catalysts and other electrochemical energy‐conversion devices. In this paper, an Fe and V co‐doped mesoporous Fe and V co‐doped mesoporous cobalt (meso‐Co, 124 m2/g SA) electrocatalysts through citric acid‐assisted evaporation‐induced self‐assembly method and applied as a durable and efficient electrocatalysts for the electrochemical water reaction. These combined co‐doping strategies of ternary composite materials comprise only abundant elements creating them favourable materials for energy‐related applications.
Dual metal doping and optimization are considered as vital approaches for enhancing the electrocatalytic features toward oxygen evolution reaction. Herein, a sequence of Fe and V dual metal‐doped mesoporous cobalt oxide (FeV/meso‐Co) electrocatalysts was successfully synthesized through citric acid‐assisted evaporation‐induced self‐assembly (EISA) method. The textural, morphological, crystallinity, and electrochemical activities of Fe/V‐promoted meso‐Co (124 m2/g) are found strongly associated with dual (Fe and V) metal concentration. Benefiting from the combined effect of FeV‐doping, the FeV/meso‐Co exhibited an extremely lower overpotential of 280 mV to reach 10 mA/cm2 for oxygen evolution reaction (OER) in 1M KOH electrolyte, which was the considerably lowest value among the earlier catalysts, and the FeV/meso‐Co showed similar features as IrO2 electrodes. Furthermore, FeV/meso‐Co electrodes display highly durable (>30 hours) electrocatalytic performance for OER. This inexpensive approach of producing transition dual metal‐doped mesoporous materials offers excellent promise for fabricating efficient catalysts and other electrochemical energy‐conversion devices.
Author Al‐Shalwi, Matar
Amer, Mabrook S.
Ghanem, Mohamed A.
Ahmad, Ashfaq
Arunachalam, Prabhakarn
Alharthi, Abdulrahman I.
Al‐Mayouf, Abdullah M.
Author_xml – sequence: 1
  givenname: Mabrook S.
  surname: Amer
  fullname: Amer, Mabrook S.
  organization: K.A.CARE Energy Research and Innovation Center at Riyadh
– sequence: 2
  givenname: Prabhakarn
  orcidid: 0000-0002-6293-1631
  surname: Arunachalam
  fullname: Arunachalam, Prabhakarn
  email: parunachalam@ksu.edu.sa
  organization: College of Science, King Saud University
– sequence: 3
  givenname: Mohamed A.
  surname: Ghanem
  fullname: Ghanem, Mohamed A.
  organization: College of Science, King Saud University
– sequence: 4
  givenname: Matar
  surname: Al‐Shalwi
  fullname: Al‐Shalwi, Matar
  organization: College of Science, King Saud University
– sequence: 5
  givenname: Ashfaq
  surname: Ahmad
  fullname: Ahmad, Ashfaq
  organization: College of Science, King Saud University
– sequence: 6
  givenname: Abdulrahman I.
  surname: Alharthi
  fullname: Alharthi, Abdulrahman I.
  organization: College of Science and Humanities, Prince Sattam Bin Abdulaziz University
– sequence: 7
  givenname: Abdullah M.
  surname: Al‐Mayouf
  fullname: Al‐Mayouf, Abdullah M.
  organization: College of Science, King Saud University
BookMark eNp1kE1LxDAQhoMouKviXwh48CDVTNPthzdZ1g8QBD9gbyVNphjpJjVJ1b159Ohv9JfY7XoSncswM8-8M7xjsmmsQUL2gR0DY_EJuuM0yWCDjIAVRQSQzDfJiPGURwXL5ttk7P0TY_0MshH5uFua8Ihee2prqp01VBhFX4QRSncLKu3X-6eyLSq6QG9b62zn-24lmkDtm1Z4Ss8MxbrWUqMJw7azVecDlSKIZumDp7V1FBuUwVn5iAstRUNfRUA3SIigrdklW7VoPO795B3ycD67n15G1zcXV9Oz60jyOIUohayqIC0AKhVnXMWymIgi5cAxrrIEJGDRh1JcpELlMsEEAZO8gr4QLOM75GCt2zr73KEP5ZPtnOlPlvEEJpAXcc57KlpT0lnvHdal1GH4MzihmxJYuTK7RFeuzO75w1986_RCuOUf5NGafNUNLv_DytntQH8DXBWSJQ
CitedBy_id crossref_primary_10_1007_s12274_023_5670_6
crossref_primary_10_1016_j_jiec_2022_05_043
crossref_primary_10_3390_catal14060369
crossref_primary_10_1016_j_heliyon_2025_e42966
crossref_primary_10_1021_acsaem_3c02299
crossref_primary_10_1002_ece2_29
crossref_primary_10_1016_j_cattod_2021_09_036
crossref_primary_10_1002_er_7792
crossref_primary_10_1002_er_7651
crossref_primary_10_1002_smll_202105763
crossref_primary_10_1039_D3RA03394E
crossref_primary_10_1039_D4MA00088A
crossref_primary_10_1002_er_6934
crossref_primary_10_1016_j_envres_2023_116818
crossref_primary_10_1002_er_7744
Cites_doi 10.1002/adma.201606793
10.1021/ja403102j
10.1016/j.fuel.2020.118235
10.3390/nano9101502
10.1007/s40843-017-9113-1
10.1038/s41467-018-05341-y
10.1016/j.arabjc.2019.08.006
10.1021/jp105640j
10.1002/aenm.201601492
10.1002/cphc.201900498
10.1038/s41467-018-06081-9
10.1021/cs501049r
10.1021/jacs.5b00281
10.1021/acsomega.9b01385
10.1351/pac198557040603
10.1038/ncomms7616
10.1039/C8TA10952D
10.1021/acs.jpcc.7b04348
10.1002/anie.201412389
10.1039/C5RA00995B
10.1007/s10800-016-1028-z
10.1039/C9TA07918A
10.1021/ja407115p
10.1039/D0NR02881A
10.1016/j.apcatb.2020.119367
10.1021/acs.nanolett.6b03803
10.1021/jacs.7b03507
10.1039/C7TA07956G
10.1002/aenm.201701686
10.1039/C8QI01320A
10.1016/j.electacta.2016.04.172
10.1039/C8EE00611C
10.1002/er.4359
10.1039/C8TA04721A
10.1126/science.aad1920
10.1021/cm5005888
10.1002/cssc.201300975
10.1039/C5TA07586F
10.1149/2.0061807jes
10.1038/s41427-018-0072-z
10.1126/science.aad4998
10.1002/er.5026
10.1021/ja511559d
10.1038/nature11115
10.1149/2.0031611jes
10.3390/catal9100836
10.1021/ja400555q
10.1021/acsami.6b06103
10.1002/anie.201503407
10.1039/C7PP00006E
10.1016/j.apsusc.2013.01.084
10.1039/C4TA05537C
10.1002/adma.201502696
10.1021/acs.jpcc.5b11868
10.1021/acscatal.7b03198
10.1021/acscatal.6b02573
10.1002/smll.201503187
10.1007/s12274-019-2389-5
10.1016/0021-9517(85)90149-6
10.1021/acscatal.5b01481
10.1021/jp035751c
10.1039/c2ee21754f
10.1021/ja502379c
10.1021/cm0101069
10.1016/j.ultsonch.2020.105111
10.1002/er.5419
10.1021/acscatal.6b03126
10.1039/b814844a
10.1007/BF01007821
10.1021/acs.chemrev.6b00398
10.1021/jacs.5b06814
10.1021/acs.nanolett.7b01030
10.1007/s12274-018-2050-8
10.1016/j.apsusc.2020.145831
10.1016/j.apcatb.2019.118575
ContentType Journal Article
Copyright 2021 John Wiley & Sons Ltd
2021 John Wiley & Sons, Ltd.
Copyright_xml – notice: 2021 John Wiley & Sons Ltd
– notice: 2021 John Wiley & Sons, Ltd.
DBID AAYXX
CITATION
7SP
7ST
7TB
7TN
8FD
C1K
F1W
F28
FR3
H96
KR7
L.G
L7M
SOI
DOI 10.1002/er.6471
DatabaseName CrossRef
Electronics & Communications Abstracts
Environment Abstracts
Mechanical & Transportation Engineering Abstracts
Oceanic Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
Environment Abstracts
DatabaseTitle CrossRef
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
Environmental Sciences and Pollution Management
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Oceanic Abstracts
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Environment Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
DatabaseTitleList
Civil Engineering Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1099-114X
EndPage 9437
ExternalDocumentID 10_1002_er_6471
ER6471
Genre article
GrantInformation_xml – fundername: Deanship of Scientific Research, King Saud University
GroupedDBID .3N
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
24P
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
8WZ
930
A03
A6W
AAESR
AAEVG
AAHHS
AAJEY
AANHP
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABDPE
ABEML
ABIJN
ABJCF
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCMX
ACCZN
ACGFS
ACIWK
ACPOU
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIMD
AENEX
AEQDE
AEUQT
AEUYN
AFBPY
AFGKR
AFKRA
AFPWT
AFRAH
AFZJQ
AI.
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ARAPS
ASPBG
ATCPS
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BENPR
BFHJK
BGLVJ
BHBCM
BHPHI
BKSAR
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CCPQU
CMOOK
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
EJD
F00
FEDTE
G-S
G.N
GNP
GODZA
GROUPED_DOAJ
H.T
H.X
H13
HCIFZ
HF~
HHY
HVGLF
HZ~
H~9
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M59
M7S
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
PATMY
PCBAR
PIMPY
PTHSS
PYCSY
Q.N
Q11
QB0
QRW
R.K
RHX
RIWAO
RJQFR
RNS
ROL
RWI
RX1
RYL
SAMSI
SUPJJ
TN5
UB1
V2E
VH1
W8V
W99
WBKPD
WH7
WIH
WIK
WLBEL
WOHZO
WQJ
WWI
WXSBR
WYISQ
XG1
XPP
XV2
ZZTAW
~02
~IA
~WT
AAYXX
ADMLS
AGQPQ
CITATION
PHGZM
PHGZT
7SP
7ST
7TB
7TN
8FD
C1K
F1W
F28
FR3
H96
KR7
L.G
L7M
SOI
ID FETCH-LOGICAL-c3261-617bb16911bd273d2c95a96313e2b741c1e9999dd3a6ad8c4e4e1e48b1d8ca073
IEDL.DBID DR2
ISSN 0363-907X
IngestDate Wed Aug 13 05:06:19 EDT 2025
Tue Jul 01 01:41:34 EDT 2025
Thu Apr 24 23:02:12 EDT 2025
Wed Jan 22 16:57:56 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3261-617bb16911bd273d2c95a96313e2b741c1e9999dd3a6ad8c4e4e1e48b1d8ca073
Notes Funding information
Deanship of Scientific Research, King Saud University
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-6293-1631
PQID 2515189283
PQPubID 996365
PageCount 16
ParticipantIDs proquest_journals_2515189283
crossref_citationtrail_10_1002_er_6471
crossref_primary_10_1002_er_6471
wiley_primary_10_1002_er_6471_ER6471
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate May 2021
PublicationDateYYYYMMDD 2021-05-01
PublicationDate_xml – month: 05
  year: 2021
  text: May 2021
PublicationDecade 2020
PublicationPlace Chichester, UK
PublicationPlace_xml – name: Chichester, UK
– name: Bognor Regis
PublicationTitle International journal of energy research
PublicationYear 2021
Publisher John Wiley & Sons, Inc
Publisher_xml – name: John Wiley & Sons, Inc
References 2017; 7
2018; 165
2012; 486
2017; 47
2019; 12
2014; 26
2020; 13
2016; 2016
2020; 12
2017; 355
2014; 136
2018; 6
2009; 11
2018; 9
2018; 8
2014; 4
2015; 137
2019; 20
2010; 114
2016; 116
2020; 44
1985; 93
2017; 121
2014; 7
2001; 13
2013; 270
2016; 351
1985; 57
2019; 7
2019; 9
2019; 4
2015; 6
2015; 5
2019; 6
2015; 3
2016; 207
2015; 54
2020; 266
2017; 29
2018; 61
2016; 16
2016; 120
1987; 17
2016; 163
2016; 12
2017; 139
2016; 4
2016; 6
2003; 107
2017; 17
2019; 43
2017; 16
2013; 135
2020; 513
2020; 277
2020; 279
2020; 66
2016; 28
2018; 11
2018; 10
2012; 5
e_1_2_9_75_1
e_1_2_9_31_1
e_1_2_9_52_1
e_1_2_9_50_1
e_1_2_9_73_1
e_1_2_9_10_1
e_1_2_9_35_1
e_1_2_9_56_1
e_1_2_9_12_1
e_1_2_9_33_1
e_1_2_9_54_1
e_1_2_9_71_1
e_1_2_9_14_1
e_1_2_9_39_1
e_1_2_9_16_1
e_1_2_9_37_1
e_1_2_9_58_1
e_1_2_9_18_1
e_1_2_9_41_1
e_1_2_9_64_1
e_1_2_9_20_1
e_1_2_9_62_1
e_1_2_9_22_1
e_1_2_9_45_1
e_1_2_9_68_1
e_1_2_9_24_1
e_1_2_9_43_1
e_1_2_9_66_1
e_1_2_9_8_1
e_1_2_9_6_1
e_1_2_9_4_1
e_1_2_9_60_1
e_1_2_9_2_1
e_1_2_9_26_1
e_1_2_9_49_1
e_1_2_9_28_1
e_1_2_9_47_1
e_1_2_9_30_1
e_1_2_9_53_1
e_1_2_9_74_1
e_1_2_9_51_1
e_1_2_9_72_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_57_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_55_1
e_1_2_9_76_1
e_1_2_9_70_1
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_59_1
e_1_2_9_19_1
e_1_2_9_42_1
e_1_2_9_63_1
e_1_2_9_40_1
e_1_2_9_61_1
e_1_2_9_21_1
e_1_2_9_46_1
e_1_2_9_67_1
e_1_2_9_23_1
e_1_2_9_44_1
e_1_2_9_65_1
e_1_2_9_7_1
e_1_2_9_5_1
e_1_2_9_3_1
e_1_2_9_9_1
e_1_2_9_25_1
e_1_2_9_27_1
e_1_2_9_48_1
e_1_2_9_69_1
e_1_2_9_29_1
References_xml – volume: 266
  year: 2020
  article-title: High catalytic performance of tungsten disulphide rodes in oxygen evolution reactions in alkaline solutions
  publication-title: Appl Catal B Environ
– volume: 16
  start-page: 7718
  year: 2016
  end-page: 7725
  article-title: Plasma‐assisted synthesis of NiCoP for efficient overall water splitting
  publication-title: Nano Lett
– volume: 9
  start-page: 1502
  issue: 10
  year: 2019
  article-title: Mesoporous tungsten trioxide photoanodes modified with nitrogen‐doped carbon quantum dots for enhanced oxygen evolution photo‐reaction
  publication-title: Nanomaterials
– volume: 93
  start-page: 38
  issue: 1
  year: 1985
  end-page: 54
  article-title: Temperature‐programmed reduction of CoOAI O catalysts
  publication-title: J Catal
– volume: 277
  year: 2020
  article-title: One‐pot synthesis of Fe3O4@ graphite sheets as electrocatalyst for water electrolysis
  publication-title: Fuel
– volume: 11
  start-page: 1736
  year: 2018
  end-page: 1741
  article-title: Ultrathin amorphous cobalt–vanadium hydr (oxy) oxide catalysts for the oxygen evolution reaction
  publication-title: Energy Environ Sci
– volume: 207
  start-page: 177
  year: 2016
  end-page: 186
  article-title: Mesoporous cobalt hydroxide prepared using liquid crystal template for efficient oxygen evolution in alkaline media
  publication-title: Electrochim Acta
– volume: 116
  start-page: 14120
  year: 2016
  end-page: 14136
  article-title: Earth‐abundant heterogeneous water oxidation catalysts
  publication-title: Chem Rev
– volume: 11
  start-page: 3509
  year: 2018
  end-page: 3518
  article-title: Tuning oxygen vacancies in two‐dimensional iron‐cobalt oxide nanosheets through hydrogenation for enhanced oxygen evolution activity
  publication-title: Nano Res
– volume: 16
  start-page: 766
  year: 2017
  end-page: 778
  article-title: High performance multifunctional green Co O spinel nanoparticles: photodegradation of textile dye effluents, catalytic hydrogenation of nitro‐aromatics and antibacterial potential
  publication-title: Photochem Photobiol Sci
– volume: 120
  start-page: 2562
  issue: 5
  year: 2016
  end-page: 2573
  article-title: IrO coated on RuO as efficient and stable electroactive nanocatalysts for electrochemical water splitting
  publication-title: J Phys Chem C
– volume: 9
  start-page: 1
  issue: 1
  year: 2018
  end-page: 12
  article-title: Atomic‐level insight into super‐efficient electrocatalytic oxygen evolution on iron and vanadium co‐doped nickel (oxy) hydroxide
  publication-title: Nat Commun
– volume: 57
  start-page: 603
  year: 1985
  end-page: 619
  article-title: International union of pure and applied chemistry physical chemistry division reporting physisorption data for gas/soils systems with special reference to the determination of surface area and porosity
  publication-title: Pure Appl Chem
– volume: 163
  start-page: F3020
  year: 2016
  end-page: F3028
  article-title: Enhancing activity and stability of cobalt oxide electrocatalysts for the oxygen evolution reaction via transition metal doping
  publication-title: J Electrochem Soc
– volume: 7
  start-page: 21911
  year: 2019
  end-page: 21917
  article-title: Vanadium–cobalt oxyhydroxide shows ultralow overpotential for the oxygen evolution reaction
  publication-title: J Mater Chem A
– volume: 13
  start-page: 3169
  year: 2001
  end-page: 3183
  article-title: Gas adsorption characterization of ordered organic−inorganic nanocomposite materials
  publication-title: Chem Mater
– volume: 107
  start-page: 12643
  year: 2003
  end-page: 12649
  article-title: Dimensional control of cobalt‐hydroxide‐carbonate nanorods and their thermal conversion to one‐dimensional arrays of Co O nanoparticles
  publication-title: J Phys Chem B
– volume: 5
  start-page: 27823
  issue: 35
  year: 2015
  end-page: 27828
  article-title: Reduction‐induced surface amorphization enhances the oxygen evolution activity in Co O
  publication-title: RSC Adv
– volume: 139
  start-page: 8320
  year: 2017
  end-page: 8328
  article-title: Electronic and morphological dual modulation of cobalt carbonate hydroxides by Mn doping toward highly efficient and stable bifunctional electrocatalysts for overall water splitting
  publication-title: J Am Chem Soc
– volume: 7
  issue: 1
  year: 2017
  article-title: Seamlessly conductive 3D nanoarchitecture of core–shell Ni‐Co nanowire network for highly efficient oxygen evolution
  publication-title: Adv Energy Mater
– volume: 7
  start-page: 82
  issue: 1
  year: 2014
  end-page: 86
  article-title: Gold nanoparticles embedded within mesoporous cobalt oxide enhance electrochemical oxygen evolution
  publication-title: ChemSusChem
– volume: 135
  start-page: 11580
  year: 2013
  end-page: 11586
  article-title: Water oxidation catalysis: electrocatalytic response to metal stoichiometry in amorphous metal oxide films containing iron, cobalt, and nickel
  publication-title: J Am Chem Soc
– volume: 3
  start-page: 1828
  year: 2015
  end-page: 1832
  article-title: Self‐assembled three‐dimensional hierarchical porous V O /graphene hybrid aerogels for supercapacitors with high energy density and long cycle life
  publication-title: J Mater Chem A
– volume: 9
  start-page: 836
  year: 2019
  article-title: Bifunctional electrocatalyst of low‐symmetry mesoporous titanium dioxide modified with cobalt oxide for oxygen evolution and reduction reactions
  publication-title: Catalysts
– volume: 12
  start-page: 13680
  year: 2020
  end-page: 13687
  article-title: Fe, Al‐Codoped NiSe2 nanoparticles on reduced Graphene oxide as an efficient bifunctional electrocatalyst for overall water splitting
  publication-title: Nanoscale
– volume: 43
  start-page: 1460
  year: 2019
  end-page: 1467
  article-title: Synthesis of high crystalline nickel‐iron hydrotalcite‐like compound as an efficient electrocatalyst for oxygen evolution reaction
  publication-title: Int J Energy Res
– volume: 12
  start-page: 2281
  year: 2019
  end-page: 2287
  article-title: Ternary mesoporous cobalt‐iron‐nickel oxide efficiently catalyzing oxygen/hydrogen evolution reactions and overall water splitting
  publication-title: Nano Res
– volume: 28
  start-page: 215
  year: 2016
  end-page: 230
  article-title: Recent progress in cobalt‐based heterogeneous catalysts for electrochemical water splitting
  publication-title: Adv Mater
– volume: 44
  start-page: 1789
  year: 2020
  end-page: 1797
  article-title: NiFeCo oxide as an efficient and sustainable catalyst for the oxygen evolution reaction
  publication-title: Int J Energy Res
– volume: 6
  start-page: 155
  year: 2016
  end-page: 161
  article-title: Charge‐transfer effects in Ni–Fe and Ni–Fe–Co mixed‐metal oxides for the alkaline oxygen evolution reaction
  publication-title: ACS Catal
– volume: 8
  start-page: 1701686
  year: 2018
  article-title: Unraveling geometrical site confinement in highly efficient iron‐doped electrocatalysts toward oxygen evolution reaction
  publication-title: Adv Energy Mater
– volume: 7
  start-page: 1248
  year: 2017
  end-page: 1258
  article-title: An operando investigation of (Ni–Fe–Co–Ce) O x system as highly efficient electrocatalyst for oxygen evolution reaction
  publication-title: ACS Catal
– volume: 17
  start-page: 4202
  year: 2017
  end-page: 4209
  article-title: Integrated hierarchical cobalt sulfide/nickel selenide hybrid nanosheets as an efficient three‐dimensional electrode for electrochemical and photoelectrochemical water splitting
  publication-title: Nano Lett
– volume: 5
  start-page: 9246
  issue: 11
  year: 2012
  end-page: 9256
  article-title: The road from animal electricity to green energy: combining experiment and theory in electrocatalysis
  publication-title: Energy Environ Sci
– volume: 17
  start-page: 828
  year: 1987
  end-page: 840
  article-title: Electrochemical surface properties of Co O electrodes
  publication-title: J Appl Electrochem
– volume: 135
  start-page: 16977
  year: 2013
  end-page: 16987
  article-title: Benchmarking heterogeneous electrocatalysts for the oxygen evolution reaction
  publication-title: J Am Chem Soc
– volume: 135
  start-page: 4516
  year: 2013
  end-page: 4521
  article-title: Ordered mesoporous cobalt oxide as highly efficient oxygen evolution catalyst
  publication-title: J Am Chem Soc
– volume: 7
  start-page: 469
  year: 2017
  end-page: 479
  article-title: Tuning electronic structures of nonprecious ternary alloys encapsulated in graphene layers for optimizing overall water splitting activity
  publication-title: ACS Catal
– volume: 4
  start-page: 3068
  year: 2016
  end-page: 3076
  article-title: Benchmarking nanoparticulate metal oxide electrocatalysts for the alkaline water oxidation reaction
  publication-title: J Mater Chem A
– volume: 10
  start-page: 800
  year: 2018
  end-page: 809
  article-title: A general ligand‐assisted self‐assembly approach to crystalline mesoporous metal oxides
  publication-title: NPG Asia Mater
– volume: 47
  start-page: 157
  year: 2017
  end-page: 166
  article-title: Cockscomb‐like Mn‐doped Mn x Fe 1− x CO 3 as anode materials for a high‐performance lithium‐ion battery
  publication-title: J Appl Electrochem
– volume: 54
  start-page: 4870
  year: 2015
  end-page: 4875
  article-title: Fast and simple preparation of iron‐based thin films as highly efficient water‐oxidation catalysts in neutral aqueous solution
  publication-title: Angew Chem Int Ed
– volume: 114
  start-page: 18779
  year: 2010
  end-page: 18784
  article-title: Binary Fe−Co alloy nanoparticles showing significant enhancement in electrocatalytic activity compared with bulk alloys
  publication-title: J Phys Chem C
– volume: 6
  start-page: 16810
  year: 2018
  end-page: 16817
  article-title: Nanostructured NiFe (oxy) hydroxide with easily oxidized Ni towards efficient oxygen evolution reactions
  publication-title: J Mater Chem A
– volume: 486
  start-page: 43
  year: 2012
  end-page: 51
  article-title: Electrocatalyst approaches and challenges for automotive fuel cells
  publication-title: Nature
– volume: 13
  start-page: 4294
  year: 2020
  end-page: 4309
  article-title: A review on non‐noble metal based electrocatalysis for the oxygen evolution reaction
  publication-title: Arab J Chem
– volume: 61
  start-page: 80
  year: 2018
  end-page: 90
  article-title: Cobalt‐vanadium bimetal‐based nanoplates for efficient overall water splitting
  publication-title: Sci China Mater
– volume: 11
  start-page: 2195
  year: 2009
  end-page: 2202
  article-title: Improvement of the capacitive performances for Co–Al layered double hydroxide by adding hexacyanoferrate into the electrolyte
  publication-title: Phys Chem Chem Phys
– volume: 44
  start-page: 7057
  year: 2020
  end-page: 7067
  article-title: NiS‐FeS/N, S co‐doped carbon hybrid: synergistic effect between NiS and FeS facilitating electrochemical oxygen evolution reaction
  publication-title: Int J Energy Res
– volume: 66
  year: 2020
  article-title: Direct pyrolysis and ultrasound assisted preparation of N, S co‐doped graphene/Fe3C nanocomposite as an efficient electrocatalyst for oxygen reduction and oxygen evolution reactions
  publication-title: Ultrason Sonochem
– volume: 29
  issue: 17
  year: 2017
  article-title: Ultrathin iron‐cobalt oxide nanosheets with abundant oxygen vacancies for the oxygen evolution reaction
  publication-title: Adv Mater
– volume: 6
  start-page: 167
  year: 2018
  end-page: 178
  article-title: A Co‐doped Ni–Fe mixed oxide mesoporous nanosheet array with low overpotential and high stability towards overall water splitting
  publication-title: J Mater Chem A
– volume: 9
  start-page: 1
  year: 2018
  end-page: 12
  article-title: Atomic‐level insight into super‐efficient electrocatalytic oxygen evolution on iron and vanadium co‐doped nickel (oxy) hydroxide
  publication-title: Nat Commun
– volume: 137
  start-page: 1305
  year: 2015
  end-page: 1313
  article-title: Identification of highly active Fe sites in (Ni, Fe) OOH for electrocatalytic water splitting
  publication-title: J Am Chem Soc
– volume: 6
  start-page: 687
  year: 2019
  end-page: 693
  article-title: Amorphous cobalt–iron hydroxides as high‐efficiency oxygen‐evolution catalysts based on a facile electrospinning process
  publication-title: Inorg Chem Front
– volume: 8
  start-page: 644
  year: 2018
  end-page: 650
  article-title: Amorphous cobalt vanadium oxide as a highly active electrocatalyst for oxygen evolution
  publication-title: ACS Catal
– volume: 351
  year: 2016
  article-title: Research opportunities to advance solar energy utilization
  publication-title: Science
– volume: 270
  start-page: 545
  year: 2013
  end-page: 552
  article-title: Effect of magnetism on the ethanol sensitivity of undoped and Mn‐doped CuO nanoflakes
  publication-title: Appl Surf Sci
– volume: 137
  start-page: 15112
  year: 2015
  end-page: 15121
  article-title: In situ observation of active oxygen species in Fe‐containing Ni‐based oxygen evolution catalysts: the effect of pH on electrochemical activity
  publication-title: J Am Chem Soc
– volume: 6
  start-page: 1
  year: 2015
  end-page: 7
  article-title: Electrodeposition of hierarchically structured three‐dimensional nickel–iron electrodes for efficient oxygen evolution at high current densities
  publication-title: Nat Commun
– volume: 355
  start-page: 6321
  year: 2017
  article-title: Combining theory and experiment in electrocatalysis: insights into materials design
  publication-title: Science
– volume: 136
  start-page: 6744
  year: 2014
  end-page: 6753
  article-title: Nickel–iron oxyhydroxide oxygen‐evolution electrocatalysts: the role of intentional and incidental iron incorporation
  publication-title: J Am Chem Soc
– volume: 279
  year: 2020
  article-title: Construction of N‐doped carbon nanotube encapsulated active nanoparticles in hierarchically porous carbonized wood frameworks to boost the oxygen evolution reaction
  publication-title: Appl Catal B Environ
– volume: 4
  start-page: 4143
  year: 2014
  end-page: 4152
  article-title: Promoting effects of In O on Co O for CO oxidation: tuning O activation and CO adsorption strength simultaneously
  publication-title: ACS Catal
– volume: 12
  start-page: 1709
  year: 2016
  end-page: 1715
  article-title: Ordered mesoporous cobalt phosphate with crystallized walls toward highly active water oxidation electrocatalysts
  publication-title: Small
– volume: 165
  start-page: H300
  year: 2018
  end-page: H309
  article-title: Low‐symmetry mesoporous titanium dioxide (lsm‐TiO ) electrocatalyst for efficient and durable oxygen evolution in aqueous alkali
  publication-title: J Electrochem Soc
– volume: 26
  start-page: 3162
  year: 2014
  end-page: 3168
  article-title: Influence of Fe doping on structure and water oxidation activity of nanocast Co3O4
  publication-title: Chem Mater
– volume: 4
  start-page: 12671
  year: 2019
  end-page: 12679
  article-title: Direct deposition of amorphous cobalt–vanadium mixed oxide films for electrocatalytic water oxidation
  publication-title: ACS Omega
– volume: 54
  start-page: 9351
  year: 2015
  end-page: 9355
  article-title: NiSe nanowire film supported on nickel foam: an efficient and stable 3D bifunctional electrode for full water splitting
  publication-title: Angew Chem Int Ed
– volume: 137
  start-page: 3638
  issue: 10
  year: 2015
  end-page: 3648
  article-title: Cobalt–iron (oxy) hydroxide oxygen evolution electrocatalysts: the role of structure and composition on activity, stability, and mechanism
  publication-title: J Am Chem Soc
– volume: 121
  start-page: 15256
  year: 2017
  end-page: 15265
  article-title: Low‐temperature CO oxidation over combustion made Fe‐and Cr‐doped Co O catalysts: role of dopant's nature toward achieving superior catalytic activity and stability
  publication-title: J Phys Chem C
– volume: 7
  start-page: 3090
  year: 2019
  end-page: 3100
  article-title: Mesoporous cobalt–iron–organic frameworks: a plasma‐enhanced oxygen evolution electrocatalyst
  publication-title: J Mater Chem A
– volume: 2016
  start-page: 20802
  issue: 8
  year: 2016
  end-page: 20813
  article-title: Ni‐and Mn‐promoted mesoporous Co O : a stable bifunctional catalyst with surface‐structure‐dependent activity for oxygen reduction reaction and oxygen evolution reaction
  publication-title: ACS Appl Mater Interfaces
– volume: 20
  start-page: 3112
  year: 2019
  end-page: 3119
  article-title: Electrodeposition at highly negative potentials of an iron‐cobalt oxide catalyst for use in electrochemical water splitting
  publication-title: ChemPhysChem
– volume: 513
  year: 2020
  article-title: Enriched active surface structure in nanosized tungsten‐cobalt oxides electrocatalysts for efficient oxygen redox reactions
  publication-title: Appl Surf Sci
– ident: e_1_2_9_18_1
  doi: 10.1002/adma.201606793
– ident: e_1_2_9_32_1
  doi: 10.1021/ja403102j
– ident: e_1_2_9_15_1
  doi: 10.1016/j.fuel.2020.118235
– ident: e_1_2_9_19_1
  doi: 10.3390/nano9101502
– ident: e_1_2_9_51_1
  doi: 10.1007/s40843-017-9113-1
– ident: e_1_2_9_69_1
  doi: 10.1038/s41467-018-05341-y
– ident: e_1_2_9_11_1
  doi: 10.1016/j.arabjc.2019.08.006
– ident: e_1_2_9_31_1
  doi: 10.1021/jp105640j
– ident: e_1_2_9_17_1
  doi: 10.1002/aenm.201601492
– ident: e_1_2_9_35_1
  doi: 10.1002/cphc.201900498
– ident: e_1_2_9_52_1
  doi: 10.1038/s41467-018-06081-9
– ident: e_1_2_9_63_1
  doi: 10.1021/cs501049r
– ident: e_1_2_9_27_1
  doi: 10.1021/jacs.5b00281
– ident: e_1_2_9_50_1
  doi: 10.1021/acsomega.9b01385
– ident: e_1_2_9_59_1
  doi: 10.1351/pac198557040603
– ident: e_1_2_9_64_1
  doi: 10.1038/ncomms7616
– ident: e_1_2_9_36_1
  doi: 10.1039/C8TA10952D
– ident: e_1_2_9_66_1
  doi: 10.1021/acs.jpcc.7b04348
– ident: e_1_2_9_65_1
  doi: 10.1002/anie.201412389
– ident: e_1_2_9_68_1
  doi: 10.1039/C5RA00995B
– ident: e_1_2_9_42_1
  doi: 10.1007/s10800-016-1028-z
– ident: e_1_2_9_49_1
  doi: 10.1039/C9TA07918A
– ident: e_1_2_9_4_1
  doi: 10.1021/ja407115p
– ident: e_1_2_9_72_1
  doi: 10.1039/D0NR02881A
– ident: e_1_2_9_13_1
  doi: 10.1016/j.apcatb.2020.119367
– ident: e_1_2_9_71_1
  doi: 10.1021/acs.nanolett.6b03803
– ident: e_1_2_9_74_1
  doi: 10.1021/jacs.7b03507
– ident: e_1_2_9_40_1
  doi: 10.1039/C7TA07956G
– ident: e_1_2_9_45_1
  doi: 10.1002/aenm.201701686
– ident: e_1_2_9_34_1
  doi: 10.1039/C8QI01320A
– ident: e_1_2_9_41_1
  doi: 10.1016/j.electacta.2016.04.172
– ident: e_1_2_9_48_1
  doi: 10.1039/C8EE00611C
– ident: e_1_2_9_10_1
  doi: 10.1002/er.4359
– ident: e_1_2_9_43_1
  doi: 10.1039/C8TA04721A
– ident: e_1_2_9_26_1
  doi: 10.1126/science.aad1920
– ident: e_1_2_9_29_1
  doi: 10.1021/cm5005888
– ident: e_1_2_9_21_1
  doi: 10.1002/cssc.201300975
– ident: e_1_2_9_25_1
  doi: 10.1039/C5TA07586F
– ident: e_1_2_9_24_1
  doi: 10.1149/2.0061807jes
– ident: e_1_2_9_38_1
  doi: 10.1038/s41427-018-0072-z
– ident: e_1_2_9_3_1
  doi: 10.1126/science.aad4998
– ident: e_1_2_9_9_1
  doi: 10.1002/er.5026
– ident: e_1_2_9_44_1
  doi: 10.1021/ja511559d
– ident: e_1_2_9_6_1
  doi: 10.1038/nature11115
– ident: e_1_2_9_39_1
  doi: 10.1149/2.0031611jes
– ident: e_1_2_9_23_1
  doi: 10.3390/catal9100836
– ident: e_1_2_9_20_1
  doi: 10.1021/ja400555q
– ident: e_1_2_9_62_1
  doi: 10.1021/acsami.6b06103
– ident: e_1_2_9_76_1
  doi: 10.1002/anie.201503407
– ident: e_1_2_9_54_1
  doi: 10.1039/C7PP00006E
– ident: e_1_2_9_55_1
  doi: 10.1016/j.apsusc.2013.01.084
– ident: e_1_2_9_58_1
  doi: 10.1039/C4TA05537C
– ident: e_1_2_9_5_1
  doi: 10.1002/adma.201502696
– ident: e_1_2_9_16_1
  doi: 10.1021/acs.jpcc.5b11868
– ident: e_1_2_9_53_1
  doi: 10.1021/acscatal.7b03198
– ident: e_1_2_9_75_1
  doi: 10.1021/acscatal.6b02573
– ident: e_1_2_9_22_1
  doi: 10.1002/smll.201503187
– ident: e_1_2_9_37_1
  doi: 10.1007/s12274-019-2389-5
– ident: e_1_2_9_70_1
  doi: 10.1016/0021-9517(85)90149-6
– ident: e_1_2_9_46_1
  doi: 10.1021/acscatal.5b01481
– ident: e_1_2_9_57_1
  doi: 10.1021/jp035751c
– ident: e_1_2_9_12_1
  doi: 10.1039/c2ee21754f
– ident: e_1_2_9_28_1
  doi: 10.1021/ja502379c
– ident: e_1_2_9_60_1
  doi: 10.1021/cm0101069
– ident: e_1_2_9_14_1
  doi: 10.1016/j.ultsonch.2020.105111
– ident: e_1_2_9_8_1
  doi: 10.1002/er.5419
– ident: e_1_2_9_47_1
  doi: 10.1021/acscatal.6b03126
– ident: e_1_2_9_61_1
  doi: 10.1039/b814844a
– ident: e_1_2_9_67_1
  doi: 10.1007/BF01007821
– ident: e_1_2_9_2_1
  doi: 10.1021/acs.chemrev.6b00398
– ident: e_1_2_9_30_1
  doi: 10.1021/jacs.5b06814
– ident: e_1_2_9_73_1
  doi: 10.1021/acs.nanolett.7b01030
– ident: e_1_2_9_33_1
  doi: 10.1007/s12274-018-2050-8
– ident: e_1_2_9_56_1
  doi: 10.1016/j.apsusc.2020.145831
– ident: e_1_2_9_7_1
  doi: 10.1016/j.apcatb.2019.118575
SSID ssj0009917
Score 2.3765388
Snippet Summary Dual metal doping and optimization are considered as vital approaches for enhancing the electrocatalytic features toward oxygen evolution reaction....
Dual metal doping and optimization are considered as vital approaches for enhancing the electrocatalytic features toward oxygen evolution reaction. Herein, a...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 9422
SubjectTerms bimetallic doping
Catalysts
Citric acid
Cobalt
Cobalt oxides
Doping
Electrocatalysts
Electrochemistry
Electrodes
Evaporation
evaporation induced self‐assembly
Evolution
Heavy metals
Iron
iron‐vanadium
mesoporous cobalt oxide
Metal concentrations
Optimization
Oxidation
Oxygen
oxygen evolution reaction
Oxygen evolution reactions
Vanadium
Title Synthesis of iron and vanadium co‐doped mesoporous cobalt oxide: An efficient and robust catalysts for electrochemical water oxidation
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fer.6471
https://www.proquest.com/docview/2515189283
Volume 45
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ05T8MwFMctVBYYuBGFgjxUbGlxriZsFQUhBAyUShVL5KtSRZugOOGaGBn5jHwSnp2UFhASYsohv8jK84t_dvz-RqhuS4d7HoWR6iAMLdexhRVCt2F5pMX9FqUsoDob-eLSP-25Z32vP7PVV6EP8TnhpiPDfK91gFOmmlPRUJk2fNdkjxPH16r5naupcBRQT2vylxKGf_0iXVZbNku7r_3QFC5nEdX0MSfL6GZSu2JpyW0jz1iDP38TbvxX9VfQUkmeuF00lVU0J-M1tDijR7iOXrtPMQChGiqcDLBOgMM0FvjeLAzLx5gn7y9vIrmTAo-lSgDdk1zBXUZHGU4eh0Ie4naMpZGlgN7MWKcJy1WGzTzRk8oUBkzG5e47vJQrwA-AvKl5hGkpG6h3cnx9dGqVWzVY3NEzWMBBjGndHcIEAJGweehRiG3iSJsBtHAigURDIRzqUxFwV7qSSDdgBC4ofGY2USVOYrmFMLiOtzw-oAMGtEQOmOO4fhC4lHpwTmQV7U8cF_FSx1xvpzGKCgVmO5JppF9tFeHPgneFdMfPIrWJ56MydlUExOeRIATuqqK6ceFv5tHxlT5s_63YDlqw9YIYs1qyhipZmstdIJqM7aH5dufivLtnGvEH1L33Vg
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ05T8MwFMctVAZg4EaU00PFloJzNWFDiKpAYYBWqsQQ-apU0SZVDq6JkZHPyCfh2UkPQEiIKYfsKImvn5_f-xuhiikt7jgUZqpd3zdsyxSGD8OG4ZAad2uUMo-qaOSra7fRti86TqfwqlSxMLk-xNjgplqG7q9VA1cG6cOJaqiMq66twsdn9eqcAqKbiXQUcE9ttE4JE8BOHjCrsh4WGb-ORBO8nIZUPcrUl9Dd6P1y55L7apayKn_5Jt34vw9YRosFfOKTvLasoBkZrqKFKUnCNfR2-xwCEya9BEddrGLgMA0FftC-YdkA8-jj9V1EQynwQCYR0HuUJXCX0X6Ko6eekMf4JMRSK1PAgKZzxxHLkhRrU9FzkiYYSBkXG_DwQrEAPwL1xvoRurKso3b9rHXaMIrdGgxuKSMWoBBjSnqHMAFMJEzuOxSaN7GkyYBbOJEAo74QFnWp8LgtbUmk7TECFxR6mg1UCqNQbiIMZcdrDu_SLgNgIkfMsmzX82xKHTgnsowORiUX8ELKXO2o0Q9yEWYzkHGgfm0Z4XHCYa7e8TPJzqjog6L5JgFAn0M8H9CrjCq6DH_LHpzdqMPW35Lto7lG66oZNM-vL7fRvKn8Y7Tz5A4qpXEmdwFwUrana_IncBD54A
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ1JS8QwFMeDKIge3MXRUXMQbx1Nm3Zab4M6uCMuMHgp2QqitkMXt5NHj35GP4kvaccZFUE8dSEpoS-v75c07x-E1mzlCNdlMFKNgsCiji2tAMKG5ZKm8JqMcZ_pbOTjE2_vkh503M7AVl-lPsTnhJv2DPO91g7eldFGXzRUpQ2P6uzxEepBkNQ8dNZXjgLsafZ-U8L4r1Pmy-qqG1XFr4GoT5eDjGqCTHsSXfWaV64tuWkUOW-I52_Kjf9q_xSaqNATt8q-Mo2GVDyDxgcECWfR6_lTDESYXWc4ibDOgMMslvjerAwr7rBI3l_eZNJVEt-pLAF2T4oM7nJ2m-Pk8VqqLdyKsTK6FBDOTO004UWWYzNR9JTlGQZOxtX2O6LSK8APwLypeYTpKnPosr17sb1nVXs1WMLRU1gAQpxr4R3CJRCRtEXgMnBu4iibA7UIogBFAykd5jHpC6qoIor6nMAFg-_MPBqOk1gtIAymE01XRCzigEtkkzsO9XyfMubCOVE1tN4zXCgqIXO9n8ZtWEow26FKQ_1qawh_FuyW2h0_i9R7lg8r581CQD6X-AGAVw2tGRP-Vj3cPdOHxb8VW0Wjpzvt8Gj_5HAJjdl6cYxZOVlHw3laqGWgm5yvmH78AZeK-I8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Synthesis+of+iron+and+vanadium+co%E2%80%90doped+mesoporous+cobalt+oxide%3A+An+efficient+and+robust+catalysts+for+electrochemical+water+oxidation&rft.jtitle=International+journal+of+energy+research&rft.au=Amer%2C+Mabrook+S.&rft.au=Arunachalam%2C+Prabhakarn&rft.au=Ghanem%2C+Mohamed+A.&rft.au=Al%E2%80%90Shalwi%2C+Matar&rft.date=2021-05-01&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.issn=0363-907X&rft.eissn=1099-114X&rft.volume=45&rft.issue=6&rft.spage=9422&rft.epage=9437&rft_id=info:doi/10.1002%2Fer.6471&rft.externalDBID=10.1002%252Fer.6471&rft.externalDocID=ER6471
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0363-907X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0363-907X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0363-907X&client=summon