Novel Therapeutic Targets in Heart Failure: The Phospholipase Cβ1b-Shank3 Interface
Inotropic agents are often used to improve the contractile performance of the failing myocardium, but this is often at a cost of increased myocardial ischemia and arrhythmia. Myocyte contractility depends on the release of Ca2+ from the sarcoplasmic reticulum, and this Ca2+ is subject to regulation...
Saved in:
Published in | Clinical medicine insights. Therapeutics Vol. 2015; no. 7; p. 11 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
London, England
SAGE Publishing
06.05.2015
SAGE Publications Sage Publications Ltd. (UK) |
Subjects | |
Online Access | Get full text |
ISSN | 1179-559X 1179-559X |
DOI | 10.4137/CMT.S18480 |
Cover
Abstract | Inotropic agents are often used to improve the contractile performance of the failing myocardium, but this is often at a cost of increased myocardial ischemia and arrhythmia. Myocyte contractility depends on the release of Ca2+ from the sarcoplasmic reticulum, and this Ca2+ is subject to regulation by the phosphorylation status of phospholamban (PLN). Many currently used inotropic agents function by increasing the phosphorylation of PLN, but these also heighten the risk of ischemia. Another approach is to reduce the dephosphorylation of PLN, which can be achieved by inhibiting pathways upstream or downstream of the protein kinase Cα. Phospholipase Cβ1b is responsible for activating protein kinase Cα, and its activity is substantially heightened in failing myocardium. We propose phospholipase Cβ1b, a cardiac-specific enzyme, as a promising target for the development of a new class of inotropic agents. By reversing changes that accompany the transition to heart failure, it may be possible to provide well-tolerated improvement in pump performance. |
---|---|
AbstractList | Inotropic agents are often used to improve the contractile performance of the failing myocardium, but this is often at a cost of increased myocardial ischemia and arrhythmia. Myocyte contractility depends on the release of [Ca.sup.2+] from the sarcoplasmic reticulum, and this [Ca.sup.2+] is subject to regulation by the phosphorylation status of phospholamban (PLN). Many currently used inotropic agents function by increasing the phosphorylation of PLN, but these also heighten the risk of ischemia. Another approach is to reduce the dephosphorylation of PLN, which can be achieved by inhibiting pathways upstream or downstream of the protein kinase Cα. Phospholipase Cβ1b is responsible for activating protein kinase Cα, and its activity is substantially heightened in failing myocardium. We propose phospholipase Cβ1b, a cardiac-specific enzyme, as a promising target for the development of a new class of inotropic agents. By reversing changes that accompany the transition to heart failure, it may be possible to provide well-tolerated improvement in pump performance. Inotropic agents are often used to improve the contractile performance of the failing myocardium, but this is often at a cost of increased myocardial ischemia and arrhythmia. Myocyte contractility depends on the release of [Ca.sup.2+] from the sarcoplasmic reticulum, and this [Ca.sup.2+] is subject to regulation by the phosphorylation status of phospholamban (PLN). Many currently used inotropic agents function by increasing the phosphorylation of PLN, but these also heighten the risk of ischemia. Another approach is to reduce the dephosphorylation of PLN, which can be achieved by inhibiting pathways upstream or downstream of the protein kinase Cα. Phospholipase Cβ1b is responsible for activating protein kinase Cα, and its activity is substantially heightened in failing myocardium. We propose phospholipase Cβ1b, a cardiac-specific enzyme, as a promising target for the development of a new class of inotropic agents. By reversing changes that accompany the transition to heart failure, it may be possible to provide well-tolerated improvement in pump performance. KEYWORDS: cardiac contractility, inotropic agent, splice variant, protein scaffold Inotropic agents are often used to improve the contractile performance of the failing myocardium, but this is often at a cost of increased myocardial ischemia and arrhythmia. Myocyte contractility depends on the release of Ca 2+ from the sarcoplasmic reticulum, and this Ca 2+ is subject to regulation by the phosphorylation status of phospholamban (PLN). Many currently used inotropic agents function by increasing the phosphorylation of PLN, but these also heighten the risk of ischemia. Another approach is to reduce the dephosphorylation of PLN, which can be achieved by inhibiting pathways upstream or downstream of the protein kinase Cα. Phospholipase Cβ1b is responsible for activating protein kinase Cα, and its activity is substantially heightened in failing myocardium. We propose phospholipase Cβ1b, a cardiac-specific enzyme, as a promising target for the development of a new class of inotropic agents. By reversing changes that accompany the transition to heart failure, it may be possible to provide well-tolerated improvement in pump performance. Inotropic agents are often used to improve the contractile performance of the failing myocardium, but this is often at a cost of increased myocardial ischemia and arrhythmia. Myocyte contractility depends on the release of Ca2+ from the sarcoplasmic reticulum, and this Ca2+ is subject to regulation by the phosphorylation status of phospholamban (PLN). Many currently used inotropic agents function by increasing the phosphorylation of PLN, but these also heighten the risk of ischemia. Another approach is to reduce the dephosphorylation of PLN, which can be achieved by inhibiting pathways upstream or downstream of the protein kinase Cα. Phospholipase Cβ1b is responsible for activating protein kinase Cα, and its activity is substantially heightened in failing myocardium. We propose phospholipase Cβ1b, a cardiac-specific enzyme, as a promising target for the development of a new class of inotropic agents. By reversing changes that accompany the transition to heart failure, it may be possible to provide well-tolerated improvement in pump performance. |
Audience | Academic |
Author | Elizabeth A. Woodcock David R. Grubb |
Author_xml | – sequence: 1 givenname: Elizabeth A. surname: Woodcock fullname: Woodcock, Elizabeth A. email: liz.woodcock@bakeridi.edu.au – sequence: 2 givenname: David R. surname: Grubb fullname: Grubb, David R. |
BookMark | eNptkdtKxDAQhoMoeLzxCQqCgtA1abJp64UgiyfwBFbwLkzT6TbabZakK_haPojPZJaKqEggmcx8Mwz_v0lWO9shIbuMjgTj6dHkphg9sExkdIVsMJbm8XicP63-iNfJjvfPlNIkEVLyfIMUt_YV26ho0MEcF73RUQFuir2PTBddIrg-OgfTLhweL6novrF-3tjWzMFjNPl4Z2X80ED3wqOrrkdXg8ZtslZD63Hn690ij-dnxeQyvr67uJqcXseaJ5LG1XKFSoyzKk21hIQioqgFozLcmPGyTCou02QMvKxZ-DCkIHOBwIVI85xvkb1h7hRaVKarbe9Az4zX6lQwIXMuJAvU6B8qnApnRgcJaxPyvxr2fzQ0CG3feNsGcWznf4OHA6id9d5hrebOzMC9KUbV0hIVLFGDJQE-GGAPU1TPduG6oM3_5MlAtqZE14P_2hW-x1sw6k9Rg9J2pkTGJP8EpoGhew |
Cites_doi | 10.1097/FJC.0b013e3181d8bec5 10.1042/bj3270545 10.1016/j.yjmcc.2011.01.012 10.1007/BF01868717 10.1074/jbc.M111.231993 10.1016/j.jacc.2005.03.051 10.1074/jbc.M106572200 10.1242/jcs.113.11.1851 10.1161/01.RES.0000234780.06115.2c 10.1161/CIRCRESAHA.111.259754 10.1016/j.neulet.2008.02.067 10.1016/j.jacc.2014.01.016 10.1096/fj.10-171470 10.33549/physiolres.931948 10.1161/CIRCRESAHA.112.273896 10.1016/1050-1738(96)00013-8 10.1038/nm1000 10.1096/fj.09-133983 10.1038/mt.2014.127 10.1074/jbc.M506810200 10.1161/01.RES.0000093399.11734.B3 10.1124/mol.108.047837 10.1016/j.yjmcc.2012.03.005 10.1161/CIRCRESAHA.109.209809 10.1161/CIRCRESAHA.113.300308 10.1016/S0021-9258(18)35680-1 10.1016/0955-0674(94)90140-6 10.1046/j.1471-4159.2002.00931.x 10.1042/bj3240645 10.1093/emboj/20.4.743 10.1126/science.1846707 10.1093/eurjhf/hfq234 10.1006/bbrc.2001.5710 10.1161/01.CIR.95.2.423 10.1161/CIRCRESAHA.112.273839 10.1161/01.RES.0000196578.15385.bb 10.1007/978-94-007-2888-2_28 10.1172/JCI62834 10.1016/j.cardfail.2008.02.005 10.1016/j.yjmcc.2010.10.004 10.1161/CIRCRESAHA.111.255687 10.1161/CIRCRESAHA.109.195313 10.1016/S0014-5793(03)00608-2 10.1016/j.advenzreg.2009.01.004 10.1016/j.yjmcc.2008.07.006 10.1074/jbc.M110.191783 10.1152/physiol.00009.2012 10.1111/bph.12472 10.1038/gt.2008.120 10.1016/S0022-3565(24)36954-X 10.1161/CIRCULATIONAHA.105.592550 10.1016/S0021-9258(17)37185-5 10.1038/415198a 10.1161/CIRCRESAHA.111.252981 10.1146/annurev.physiol.010908.163111 10.1073/pnas.97.2.793 10.1016/j.cell.2013.02.047 10.1111/apha.12287 10.1016/j.jacc.2011.06.058 10.1161/CIRCULATIONAHA.111.022889 10.1146/annurev.biochem.70.1.281 10.1016/j.yjmcc.2009.08.020 10.1007/s00395-012-0279-z 10.1161/CIRCHEARTFAILURE.112.971325 10.1074/jbc.M006889200 10.1161/CIRCRESAHA.109.207423 10.1007/s00228-014-1671-4 10.1126/science.1411571 |
ContentType | Journal Article |
Copyright | 2015 SAGE Publications. COPYRIGHT 2015 Sage Publications Ltd. (UK) |
Copyright_xml | – notice: 2015 SAGE Publications. – notice: COPYRIGHT 2015 Sage Publications Ltd. (UK) |
DBID | AFRWT AAYXX CITATION |
DOI | 10.4137/CMT.S18480 |
DatabaseName | Sage Journals Open Access CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
Database_xml | – sequence: 1 dbid: AFRWT name: Sage Journals GOLD Open Access 2024 url: http://journals.sagepub.com/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Pharmacy, Therapeutics, & Pharmacology |
EISSN | 1179-559X |
ExternalDocumentID | A414693461 10_4137_CMT_S18480 10.4137_CMT.S18480 oai_libertasacademica_com_4816 |
GroupedDBID | - 04C 0R 188 2UF 5VS 7RV 7X7 8FI 8FJ AAWTL ABQXT ABUWG ACGFS ADACO ADBBV AEWDL AFKRA AFRWT ALMA_UNASSIGNED_HOLDINGS AUTPY AYAGU AYAKG BBAFP BENPR BKEYQ BPHCQ BVXVI DV7 EBD EBS EJD FYUFA GROUPED_SAGE_PREMIER_JOURNAL_COLLECTION GX1 H13 IAO IHR IHW IPNFZ ITC J8X K.F KQ8 NAPCQ O9- OK1 PIMPY PQEST PQQKQ PQUKI PRINS PROAC RIG SFC TR2 UZ5 --- 6PF AASGM AFCOW AINHJ ALIPV BMSDO C1A CCPQU CEFSP CNMHZ EIHBH HMCUK PHGZM PHGZT SAUOL SCNPE UKHRP AAYXX CITATION PMFND |
ID | FETCH-LOGICAL-c3260-d6639d458d77c6a20eee4f41064f4e83bb2d36725a3bf1b2d1e0a694ea3447993 |
IEDL.DBID | AFRWT |
ISSN | 1179-559X |
IngestDate | Tue Jun 17 21:07:29 EDT 2025 Tue Jun 10 20:37:05 EDT 2025 Thu May 22 21:20:59 EDT 2025 Sun Jul 06 05:06:35 EDT 2025 Tue Jun 17 22:37:25 EDT 2025 Thu Dec 16 16:54:49 EST 2021 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Keywords | protein scaffold inotropic agent cardiac contractility splice variant |
Language | English |
License | This article is distributed under the terms of the Creative Commons Attribution-NonCommercial 3.0 License (http://www.creativecommons.org/licenses/by-nc/3.0/) which permits non-commercial use, reproduction and distribution of the work without further permission provided the original work is attributed as specified on the SAGE and Open Access page (https://us.sagepub.com/en-us/nam/open-access-at-sage). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3260-d6639d458d77c6a20eee4f41064f4e83bb2d36725a3bf1b2d1e0a694ea3447993 |
OpenAccessLink | https://journals.sagepub.com/doi/full/10.4137/CMT.S18480?utm_source=summon&utm_medium=discovery-provider |
ParticipantIDs | gale_infotracmisc_A414693461 gale_infotracacademiconefile_A414693461 gale_healthsolutions_A414693461 crossref_primary_10_4137_CMT_S18480 sage_journals_10_4137_CMT_S18480 libertasacademia_primary_oai_libertasacademica_com_4816 |
PublicationCentury | 2000 |
PublicationDate | 2015-05-06 |
PublicationDateYYYYMMDD | 2015-05-06 |
PublicationDate_xml | – month: 05 year: 2015 text: 2015-05-06 day: 06 |
PublicationDecade | 2010 |
PublicationPlace | London, England |
PublicationPlace_xml | – name: London, England |
PublicationTitle | Clinical medicine insights. Therapeutics |
PublicationYear | 2015 |
Publisher | SAGE Publishing SAGE Publications Sage Publications Ltd. (UK) |
Publisher_xml | – name: SAGE Publishing – name: SAGE Publications – name: Sage Publications Ltd. (UK) |
References | Sikkel, Hayward, MacLeod, Harding, Lyon 2014; 171 Streb, Bayerdorffer, Haase, Irvine, Schulz 1984; 81 Sheng, Kim 2000; 113 Bahk, Lee, Lee, Seo, Ryu, Suh 1994; 269 Hambleton, Hahn, Pleger 2006; 114 Hajjar, Kang, Gwathmey, Rosenzweig 1997; 95 Tilemann, Ishikawa, Weber, Hajjar 2012; 110 Wittkopper, Fabritz, Neef 2010; 120 Klose, Huth, Alzheimer 2008; 74 Ishikawa, Fish, Tilemann 2014; 22 Woodcock, Mitchell, Biden 2003; 546 Liu, Molkentin 2011; 51 Filtz, Grubb, McLeod-Dryden, Luo, Woodcock 2009; 23 Jessup, Greenberg, Mancini 2011; 124 Woodcock, Grubb, Filtz 2009; 47 Gonzalez, Ravassa, Beaumont, Lopez, Diez 2011; 58 Hajjar, Zsebo, Deckelbaum 2008; 14 Zhang, Malik, Pang 2013; 153 Francis, Bartos, Adatya 2014; 63 Smrcka, Hepler, Brown, Sternweis 1991; 251 Whelan, Kaplinskiy, Kitsis 2010; 72 Sugden, Bogoyevitch 1996; 6 Bunney, Baxendale, Katan 2009; 49 Bers 2002; 415 Grubb, Ma, Luo 2013; 128 Lymperopoulos, Rengo, Koch 2013; 113 Zhang, Guo, Mishra 2010; 106 Zhang, Szeto, Gao 2013; 112 Grubb, Iliades, Cooley 2011; 25 Liu, Chen, Macdonnell 2009; 105 Wang, Oestreich, Maekawa 2005; 97 Souders, Bowers, Baudino 2009; 105 Mariani, Smolic, Preovolos, Byrne, Power, Kaye 2011; 13 Oh, Jeong, Cha 2012; 53 Exton 1994; 6 Mogami, Mills, Gallagher 1997; 324 Rhee 2001; 70 Hu, Liu, Shen, Wang, Tang, Yang 2011; 60 Anderson, Brown, Bers 2011; 51 Vasilevski, Grubb, Filtz 2008; 45 Florea, Anjak, Cai 2012; 107 Wu, Katz, Lee, Simon 1992; 267 Abraham, Adams, Fonarow 2005; 46 Arthur, Matkovich, Mitchell, Biden, Woodcock 2001; 276 Sickmann, Klose, Huth, Alzheimer 2008; 436 Boeckers, Bockmann, Kreutz, Gundelfinger 2002; 81 Miyamoto, delMonte, Schmidt 2000; 97 Muto, Nagao, Urushidani 1997; 282 Allen, Swigart, Cheung, Cockcroft, Katan 1997; 327 Suh, Hwang, Ryu, Donowitz, Kim 2001; 288 Fish, Ladage, Kawase 2013; 6 Guzun, Kaambre, Bagur 2014; 213 Nishizuka 1992; 258 George, Rajaram, Shanmugam, VijayaKumar 2014; 70 Steinberg 2012; 27 Zeng, Webster, Newton 2012; 740 Klein, Bourdon, Costales 2011; 286 Jeong, Cha, Kim 2006; 99 Ibarra, Vicencio, Estrada 2013; 112 Kranias, Hajjar 2012; 110 Sato, Kiriazis, Yatani 2001; 276 Braz, Gregory, Pathak 2004; 10 Zhang, Malik, Kelley, Kapiloff, Smrcka 2011; 286 Ladage, Tilemann, Ishikawa 2011; 109 Burgdorf, Schafer, Richardt, Kurz 2010; 55 Shannon, Pogwizd, Bers 2003; 93 Marks 2013; 123 Kelley, Reks, Ondrako, Smrcka 2001; 20 Byrne, Power, Preovolos, Mariani, Hajjar, Kaye 2008; 15 Fan, Jiang, Lu 2005; 280 bibr6-CMT.S18480 bibr17-CMT.S18480 bibr3-CMT.S18480 bibr52-CMT.S18480 bibr14-CMT.S18480 bibr57-CMT.S18480 bibr34-CMT.S18480 bibr62-CMT.S18480 Bahk Y.Y. (bibr66-CMT.S18480) 1994; 269 bibr24-CMT.S18480 bibr27-CMT.S18480 bibr67-CMT.S18480 bibr37-CMT.S18480 bibr47-CMT.S18480 bibr48-CMT.S18480 bibr51-CMT.S18480 bibr1-CMT.S18480 bibr8-CMT.S18480 bibr38-CMT.S18480 bibr41-CMT.S18480 bibr58-CMT.S18480 bibr61-CMT.S18480 bibr28-CMT.S18480 bibr31-CMT.S18480 bibr68-CMT.S18480 bibr11-CMT.S18480 bibr21-CMT.S18480 bibr42-CMT.S18480 bibr2-CMT.S18480 bibr29-CMT.S18480 bibr39-CMT.S18480 bibr60-CMT.S18480 bibr9-CMT.S18480 bibr22-CMT.S18480 bibr19-CMT.S18480 bibr32-CMT.S18480 bibr70-CMT.S18480 Wittkopper K. (bibr35-CMT.S18480) 2010; 120 bibr49-CMT.S18480 bibr12-CMT.S18480 bibr23-CMT.S18480 bibr33-CMT.S18480 bibr56-CMT.S18480 Wu D. (bibr46-CMT.S18480) 1992; 267 Grubb D.R. (bibr59-CMT.S18480) 2013; 128 bibr36-CMT.S18480 bibr40-CMT.S18480 bibr13-CMT.S18480 bibr50-CMT.S18480 bibr7-CMT.S18480 bibr30-CMT.S18480 bibr63-CMT.S18480 bibr4-CMT.S18480 bibr18-CMT.S18480 bibr20-CMT.S18480 bibr43-CMT.S18480 bibr53-CMT.S18480 bibr10-CMT.S18480 bibr15-CMT.S18480 bibr25-CMT.S18480 bibr54-CMT.S18480 bibr5-CMT.S18480 bibr44-CMT.S18480 bibr65-CMT.S18480 bibr26-CMT.S18480 bibr45-CMT.S18480 Muto Y. (bibr64-CMT.S18480) 1997; 282 bibr55-CMT.S18480 Sheng M. (bibr69-CMT.S18480) 2000; 113 bibr16-CMT.S18480 |
References_xml | – volume: 81 start-page: 241 year: 1984 end-page: 53 article-title: Effect of inositol-1,4,5- phosphate on isolated subcellular fractions of rat pancreas publication-title: J Memb Biol. – volume: 286 start-page: 23012 year: 2011 end-page: 21 article-title: Phospholipase CΕ scaffolds to muscle-specific A kinase anchoring protein (mAKAPβ) and integrates multiple hypertrophic stimuli in cardiac myocytes publication-title: J Biol Chem. – volume: 120 start-page: 617 year: 2010 end-page: 26 article-title: Constitutively active phosphatase inhibitor-1 improves cardiac contractility in young mice but is deleterious after catecholaminergic stress and with aging publication-title: J Clin Invest. – volume: 107 start-page: 279 year: 2012 article-title: Constitutive phosphorylation of inhibitor-1 at Ser67 and Thr75 depresses calcium cycling in cardiomyocytes and leads to remodeling upon aging publication-title: Basic Res Cardiol. – volume: 282 start-page: 1379 year: 1997 end-page: 88 article-title: The putative phospholipase c inhibitor u73122 and its negative control, U73343, elicit unexpected effects on the rabbit parietal cell publication-title: J Pharmacol Exp Ther. – volume: 106 start-page: 354 year: 2010 end-page: 62 article-title: Phospholamban ablation rescues sarcoplasmic reticulum Ca handling but exacerbates cardiac dysfunction in CaMKIIδ(c) transgenic mice publication-title: Circ Res. – volume: 740 start-page: 639 year: 2012 end-page: 61 article-title: The biology of protein kinase C publication-title: Adv Exp Med Biol. – volume: 112 start-page: 236 year: 2013 end-page: 45 article-title: Local control of nuclear calcium signaling in cardiac myocytes by perinuclear microdomains of sarcolemmal insulin-like growth factor 1 receptors publication-title: Circ Res. – volume: 46 start-page: 57 year: 2005 end-page: 64 article-title: In-hospital mortality in patients with acute decompensated heart failure requiring intravenous vasoactive medications: an analysis from the acute decompensated heart failure national registry (adhere) publication-title: J Am Coll Cardiol. – volume: 213 start-page: 84 year: 2014 end-page: 106 article-title: Modular organization of cardiac energy metabolism: energy conversion, transfer and feedback regulation publication-title: Acta Physiol (Oxf). – volume: 58 start-page: 1833 year: 2011 end-page: 43 article-title: New targets to treat the structural remodeling of the myocardium publication-title: J Am Coll Cardiol. – volume: 72 start-page: 19 year: 2010 end-page: 44 article-title: Cell death in the pathogenesis of heart disease: mechanisms and significance publication-title: Annu Rev Physiol. – volume: 267 start-page: 25798 year: 1992 end-page: 802 article-title: Activation of phospholipase C by α -adrenergic receptors is mediated by the a subunits of Gq family publication-title: J Biol Chem. – volume: 23 start-page: 3564 year: 2009 end-page: 70 article-title: Gq-initiated cardiomyocyte hypertrophy is mediated by phospholipase Cβ1b publication-title: FASEB J. – volume: 10 start-page: 248 year: 2004 end-page: 54 article-title: PKC-alpha regulates cardiac contractility and propensity toward heart failure publication-title: Nat Med. – volume: 27 start-page: 130 year: 2012 end-page: 9 article-title: Cardiac actions of protein kinase C isoforms publication-title: Physiology. – volume: 6 start-page: 87 year: 1996 end-page: 94 article-title: Endothelin-1-dependent signaling pathways in the myocardium publication-title: Trend Cardiovasc Med. – volume: 70 start-page: 281 year: 2001 end-page: 312 article-title: Regulation of phosphoinositide-specific phospholipase C publication-title: Annu Rev Biochem. – volume: 324 start-page: 645 year: 1997 end-page: 51 article-title: Phospholipase c inhibitor, U73122, releases intracellular Ca , potentiates Ins(1,4,5)P -mediated Ca release and directly activates inn channels in mouse pancreatic acinar cells publication-title: Biochem J. – volume: 109 start-page: 1396 year: 2011 end-page: 400 article-title: Inhibition of PKC(alpha/beta) with ruboxistaurin antagonizes heart failure in pigs after myocardial infarction injury publication-title: Circ Res. – volume: 105 start-page: 194 year: 2009 end-page: 200 article-title: Protein kinase cα, but not PKCβ or PKCγa, regulates contractility and heart failure susceptibility: implications for ruboxistaurin as a novel therapeutic approach publication-title: Circ Res. – volume: 99 start-page: 307 year: 2006 end-page: 14 article-title: PICOT inhibits cardiac hypertrophy and enhances ventricular function and cardiomyocyte contractility publication-title: Circ Res. – volume: 110 start-page: 1646 year: 2012 end-page: 60 article-title: Modulation of cardiac contractility by the phospholamban/SERCA2a regulatome publication-title: Circ Res. – volume: 97 start-page: 793 year: 2000 end-page: 8 article-title: Adenoviral gene transfer of SERCA2a improves left-ventricular function in aortic-banded rats in transition to heart failure publication-title: Proc Natl Acad Sci USA. – volume: 112 start-page: 498 year: 2013 end-page: 509 article-title: Cardiotoxic and cardioprotective features of chronic beta-adrenergic signaling publication-title: Circ Res. – volume: 20 start-page: 743 year: 2001 end-page: 54 article-title: Phospholipase CΕ: a novel Ras effector publication-title: EMBO J. – volume: 45 start-page: 679 year: 2008 end-page: 84 article-title: Ins(1,4,5)P regulates phospholipase Cβ1 expression in cardiomyocytes publication-title: J Mol Cell Cardiol. – volume: 276 start-page: 37341 year: 2001 end-page: 46 article-title: Evidence for selective coupling of α -adrenergic receptors to phospholipase Cβ1 in rat neonatal cardiomyocytes publication-title: J Biol Chem. – volume: 114 start-page: 574 year: 2006 end-page: 82 article-title: Pharmacological- and gene therapy-based inhibition of protein kinase C(alpha/beta) enhances cardiac contractility and attenuates heart failure publication-title: Circulation. – volume: 269 start-page: 8240 year: 1994 end-page: 5 article-title: Two forms of phospholipase Cβ1 generated by alternative splicing publication-title: J Biol Chem. – volume: 124 start-page: 304 year: 2011 end-page: 13 article-title: Calcium upregulation by percutaneous administration of gene therapy in cardiac disease (CUPID): a phase 2 trial of intracoronary gene therapy of sarcoplasmic reticulum Ca -ATPase in patients with advanced heart failure publication-title: Circulation. – volume: 14 start-page: 355 year: 2008 end-page: 67 article-title: Design of a phase 1/2 trial of intracoronary administration of AAV1/SERCA2a in patients with heart failure publication-title: J Cardiac Failure. – volume: 113 start-page: 739 year: 2013 end-page: 53 article-title: Adrenergic nervous system in heart failure: pathophysiology and therapy publication-title: Circ Res. – volume: 95 start-page: 423 year: 1997 end-page: 9 article-title: Physiological effects of adenoviral gene transfer of sarcoplasmic reticulum calcium ATPase in isolated rat myocytes publication-title: Circulation. – volume: 123 start-page: 46 year: 2013 end-page: 52 article-title: Calcium cycling proteins and heart failure: mechanisms and therapeutics publication-title: J Clin Invest. – volume: 6 start-page: 226 year: 1994 end-page: 9 article-title: Messenger molecules derived from membrane lipids publication-title: Curr Opin Cell Biol. – volume: 286 start-page: 12407 year: 2011 end-page: 16 article-title: Direct activation of human phospholipase C by its well known inhibitor U73122 publication-title: J Biol Chem. – volume: 415 start-page: 198 year: 2002 end-page: 205 article-title: Cardiac excitation-contraction coupling publication-title: Nature. – volume: 171 start-page: 38 year: 2014 end-page: 54 article-title: SERCA2a gene therapy in heart failure: an anti-arrhythmic positive inotrope publication-title: Br J Pharmacol. – volume: 25 start-page: 1040 year: 2011 end-page: 7 article-title: Phospholipase Cβ1b associates with a Shank3 complex at the cardiac sarcolemma publication-title: FASEB J. – volume: 97 start-page: 1305 year: 2005 end-page: 13 article-title: Phospholipase CΕ modulates β-adrenergic receptor dependent cardiac contraction and inhibits cardiac hypertrophy publication-title: Circ Res. – volume: 47 start-page: 676 year: 2009 end-page: 83 article-title: Selective activation of the “b” splice variant of phospholipase Cβ1 in chronically dilated human and mouse atria publication-title: J Mol Cell Cardiol. – volume: 327 start-page: 545 issue: 2 year: 1997 end-page: 52 article-title: Regulation of inositol lipid-specific phospholipase Cδ by changes in Ca ion concentrations publication-title: Biochem J. – volume: 258 start-page: 607 year: 1992 end-page: 14 article-title: Intracellular signaling by hydrolysis of phospholipids and activation of protein kinase-C publication-title: Science. – volume: 128 start-page: A13416 year: 2013 article-title: Phospholipase Cβ1b depletes sarcoplasmic reticulum calcium content and causes cardiac contractile dysfunction publication-title: Circulation. – volume: 55 start-page: 555 year: 2010 end-page: 9 article-title: U73122, an aminosteroid phospholipase c inhibitor, is a potent inhibitor of cardiac phospholipase D by a PIP -dependent mechanism publication-title: J Cardiovasc Pharmacol. – volume: 63 start-page: 2069 year: 2014 end-page: 78 article-title: Inotropes publication-title: J Am Coll Cardiol. – volume: 105 start-page: 1164 year: 2009 end-page: 76 article-title: Cardiac fibroblast the renaissance cell publication-title: Circ Res. – volume: 276 start-page: 9392 year: 2001 end-page: 9 article-title: Rescue of contractile parameters and myocyte hypertrophy in calsequestrin overexpressing myocardium by phospholamban ablation publication-title: J Biol Chem. – volume: 60 start-page: 27 year: 2011 end-page: 37 article-title: Defective Ca handling proteins regulation during heart failure publication-title: Physiol Res. – volume: 74 start-page: 1203 year: 2008 end-page: 14 article-title: 1-[6-[[(17beta)-3-methoxyestra-1,3,5(10)-trien-17-yl]amino]hexyl]-1h-pyrro le-2,5-dione (U73122) selectively inhibits K and BK channels in a phospholipase C-independent fashion publication-title: Mol Pharmacol. – volume: 113 start-page: 1851 issue: 11 year: 2000 end-page: 6 article-title: The Shank family of scaffold proteins publication-title: J Cell Sci. – volume: 81 start-page: 903 year: 2002 end-page: 10 article-title: ProSap/Shank proteins – a family of higher order organizing molecules of the postsynaptic density with an emerging role in human neurological disease publication-title: J Neurochem. – volume: 51 start-page: 468 year: 2011 end-page: 73 article-title: CaMKII in myocardial hypertrophy and heart failure publication-title: J Mol Cell Cardiol. – volume: 22 start-page: 2038 year: 2014 end-page: 45 article-title: Cardiac I-1c overexpression with reengineered AAV improves cardiac function in swine ischemic heart failure publication-title: Mol Ther. – volume: 93 start-page: 592 year: 2003 end-page: 4 article-title: Elevated sarcoplasmic reticulum Ca leak in intact ventricular myocytes from rabbits in heart failure publication-title: Circ Res. – volume: 110 start-page: 777 year: 2012 end-page: 93 article-title: Gene therapy for heart failure publication-title: Circ Res. – volume: 251 start-page: 804 year: 1991 end-page: 7 article-title: Regulation of polyphosphoinositide-specific phospholipase C activity by purified Gq publication-title: Science. – volume: 13 start-page: 247 year: 2011 end-page: 53 article-title: Augmentation of left ventricular mechanics by recirculation-mediated AAV2/1-SERCA2a gene delivery in experimental heart failure publication-title: Eur J Heart Failure. – volume: 15 start-page: 1550 year: 2008 end-page: 7 article-title: Recirculating cardiac delivery of AAV2/1SERCA2a improves myocardial function in an experimental model of heart failure in large animals publication-title: Gene Ther. – volume: 51 start-page: 474 year: 2011 end-page: 8 article-title: Protein kinase C(alpha) as a heart failure therapeutic target publication-title: J Mol Cell Cardiol. – volume: 280 start-page: 40337 year: 2005 end-page: 46 article-title: A transgenic mouse model of heart failure using inducible Gαq publication-title: J Biol Chem. – volume: 49 start-page: 54 year: 2009 end-page: 8 article-title: Regulatory links between PLC enzymes and Ras superfamily GTPases: signalling via PLCs publication-title: Adv Enzyme Regul. – volume: 153 start-page: 216 year: 2013 end-page: 27 article-title: Phospholipase CΕ hydrolyzes perinuclear phosphatidylinositol 4-phosphate to regulate cardiac hypertrophy publication-title: Cell. – volume: 70 start-page: 765 year: 2014 end-page: 74 article-title: Novel drug targets in clinical development for heart failure publication-title: Eur J Clin Pharmacol. – volume: 436 start-page: 102 year: 2008 end-page: 6 article-title: Unexpected suppression of neuronal G protein-activated, inwardly rectifying K current by common phospholipase C inhibitor publication-title: Neurosci Lett. – volume: 288 start-page: 1 year: 2001 end-page: 7 article-title: The roles of PDZ-containing proteins in PLCβ-mediated signaling publication-title: Biochem Biophys Res Commun. – volume: 53 start-page: 53 year: 2012 end-page: 63 article-title: PICOT increases cardiac contractility by inhibiting PKCζ activity publication-title: J Mol Cell Cardiol. – volume: 546 start-page: 325 year: 2003 end-page: 8 article-title: Phospholipase Cδ1 does not mediate Ca responses in neonatal rat cardiomyocytes publication-title: FEBS Lett. – volume: 6 start-page: 310 year: 2013 end-page: 7 article-title: AAV9.I-1c delivered via direct coronary infusion in a porcine model of heart failure improves contractility and mitigates adverse remodeling publication-title: Circ Heart Failure. – ident: bibr61-CMT.S18480 doi: 10.1097/FJC.0b013e3181d8bec5 – ident: bibr48-CMT.S18480 doi: 10.1042/bj3270545 – ident: bibr26-CMT.S18480 doi: 10.1016/j.yjmcc.2011.01.012 – ident: bibr43-CMT.S18480 doi: 10.1007/BF01868717 – ident: bibr44-CMT.S18480 doi: 10.1074/jbc.M111.231993 – ident: bibr1-CMT.S18480 doi: 10.1016/j.jacc.2005.03.051 – ident: bibr54-CMT.S18480 doi: 10.1074/jbc.M106572200 – volume: 113 start-page: 1851 issue: 11 year: 2000 ident: bibr69-CMT.S18480 publication-title: J Cell Sci. doi: 10.1242/jcs.113.11.1851 – volume: 120 start-page: 617 year: 2010 ident: bibr35-CMT.S18480 publication-title: J Clin Invest. – ident: bibr38-CMT.S18480 doi: 10.1161/01.RES.0000234780.06115.2c – volume: 128 start-page: A13416 year: 2013 ident: bibr59-CMT.S18480 publication-title: Circulation. – ident: bibr8-CMT.S18480 doi: 10.1161/CIRCRESAHA.111.259754 – ident: bibr62-CMT.S18480 doi: 10.1016/j.neulet.2008.02.067 – ident: bibr4-CMT.S18480 doi: 10.1016/j.jacc.2014.01.016 – ident: bibr68-CMT.S18480 doi: 10.1096/fj.10-171470 – ident: bibr15-CMT.S18480 doi: 10.33549/physiolres.931948 – ident: bibr27-CMT.S18480 doi: 10.1161/CIRCRESAHA.112.273896 – ident: bibr47-CMT.S18480 doi: 10.1016/1050-1738(96)00013-8 – ident: bibr12-CMT.S18480 doi: 10.1038/nm1000 – ident: bibr52-CMT.S18480 doi: 10.1096/fj.09-133983 – ident: bibr36-CMT.S18480 doi: 10.1038/mt.2014.127 – ident: bibr51-CMT.S18480 doi: 10.1074/jbc.M506810200 – ident: bibr9-CMT.S18480 doi: 10.1161/01.RES.0000093399.11734.B3 – ident: bibr63-CMT.S18480 doi: 10.1124/mol.108.047837 – ident: bibr37-CMT.S18480 doi: 10.1016/j.yjmcc.2012.03.005 – ident: bibr6-CMT.S18480 doi: 10.1161/CIRCRESAHA.109.209809 – ident: bibr2-CMT.S18480 doi: 10.1161/CIRCRESAHA.113.300308 – volume: 267 start-page: 25798 year: 1992 ident: bibr46-CMT.S18480 publication-title: J Biol Chem. doi: 10.1016/S0021-9258(18)35680-1 – ident: bibr41-CMT.S18480 doi: 10.1016/0955-0674(94)90140-6 – ident: bibr70-CMT.S18480 doi: 10.1046/j.1471-4159.2002.00931.x – ident: bibr65-CMT.S18480 doi: 10.1042/bj3240645 – ident: bibr49-CMT.S18480 doi: 10.1093/emboj/20.4.743 – ident: bibr45-CMT.S18480 doi: 10.1126/science.1846707 – ident: bibr20-CMT.S18480 doi: 10.1093/eurjhf/hfq234 – ident: bibr67-CMT.S18480 doi: 10.1006/bbrc.2001.5710 – ident: bibr17-CMT.S18480 doi: 10.1161/01.CIR.95.2.423 – ident: bibr53-CMT.S18480 doi: 10.1161/CIRCRESAHA.112.273839 – ident: bibr57-CMT.S18480 doi: 10.1161/01.RES.0000196578.15385.bb – ident: bibr39-CMT.S18480 doi: 10.1007/978-94-007-2888-2_28 – ident: bibr11-CMT.S18480 doi: 10.1172/JCI62834 – ident: bibr22-CMT.S18480 doi: 10.1016/j.cardfail.2008.02.005 – ident: bibr13-CMT.S18480 doi: 10.1016/j.yjmcc.2010.10.004 – ident: bibr31-CMT.S18480 doi: 10.1161/CIRCRESAHA.111.255687 – ident: bibr33-CMT.S18480 doi: 10.1161/CIRCRESAHA.109.195313 – ident: bibr56-CMT.S18480 doi: 10.1016/S0014-5793(03)00608-2 – ident: bibr50-CMT.S18480 doi: 10.1016/j.advenzreg.2009.01.004 – ident: bibr55-CMT.S18480 doi: 10.1016/j.yjmcc.2008.07.006 – ident: bibr60-CMT.S18480 doi: 10.1074/jbc.M110.191783 – ident: bibr29-CMT.S18480 doi: 10.1152/physiol.00009.2012 – ident: bibr10-CMT.S18480 doi: 10.1111/bph.12472 – ident: bibr21-CMT.S18480 doi: 10.1038/gt.2008.120 – volume: 282 start-page: 1379 year: 1997 ident: bibr64-CMT.S18480 publication-title: J Pharmacol Exp Ther. doi: 10.1016/S0022-3565(24)36954-X – ident: bibr32-CMT.S18480 doi: 10.1161/CIRCULATIONAHA.105.592550 – volume: 269 start-page: 8240 year: 1994 ident: bibr66-CMT.S18480 publication-title: J Biol Chem. doi: 10.1016/S0021-9258(17)37185-5 – ident: bibr7-CMT.S18480 doi: 10.1038/415198a – ident: bibr19-CMT.S18480 doi: 10.1161/CIRCRESAHA.111.252981 – ident: bibr5-CMT.S18480 doi: 10.1146/annurev.physiol.010908.163111 – ident: bibr18-CMT.S18480 doi: 10.1073/pnas.97.2.793 – ident: bibr58-CMT.S18480 doi: 10.1016/j.cell.2013.02.047 – ident: bibr28-CMT.S18480 doi: 10.1111/apha.12287 – ident: bibr3-CMT.S18480 doi: 10.1016/j.jacc.2011.06.058 – ident: bibr23-CMT.S18480 doi: 10.1161/CIRCULATIONAHA.111.022889 – ident: bibr42-CMT.S18480 doi: 10.1146/annurev.biochem.70.1.281 – ident: bibr14-CMT.S18480 doi: 10.1016/j.yjmcc.2009.08.020 – ident: bibr30-CMT.S18480 doi: 10.1007/s00395-012-0279-z – ident: bibr34-CMT.S18480 doi: 10.1161/CIRCHEARTFAILURE.112.971325 – ident: bibr24-CMT.S18480 doi: 10.1074/jbc.M006889200 – ident: bibr25-CMT.S18480 doi: 10.1161/CIRCRESAHA.109.207423 – ident: bibr16-CMT.S18480 doi: 10.1007/s00228-014-1671-4 – ident: bibr40-CMT.S18480 doi: 10.1126/science.1411571 |
SSID | ssj0002246639 |
Score | 1.9369135 |
SecondaryResourceType | review_article |
Snippet | Inotropic agents are often used to improve the contractile performance of the failing myocardium, but this is often at a cost of increased myocardial ischemia... |
SourceID | gale crossref sage libertasacademia |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 11 |
SubjectTerms | Drug targeting Drug therapy Health aspects Heart failure Innovations Phospholipases |
Title | Novel Therapeutic Targets in Heart Failure: The Phospholipase Cβ1b-Shank3 Interface |
URI | http://insights.sagepub.com/novel-therapeutic-targets-in-heart-failure-the-phospholipase-cb1bshank-article-a4816 https://journals.sagepub.com/doi/full/10.4137/CMT.S18480 |
Volume | 2015 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3NbtQwEB6V9sIFyp9YKGAJVC5N2SSOk-WCllVXK6SuVm0KvVmO7air0nTVZA976zvwJjwID8GTMBMnW7JC4pIo8URxxp7xzHjmC8C7TFiBSg61X6wCj1ufe0mmcUByk0SBiaOBJkfxeComZ_zLeXS-BRdtLUzDwfKQ0qqwR7WyJummaDSJOCrd-MPoOD08Rd8k6X9aVlfSxbnb32nQHdqYXl7RnramTMiV19a13YMdwixHWdgZjk--pet4DAGr4WrtEEw3XtJZsxrN_dCh36pSuTx21UkFq1en8S48aMxKNnTz4BFs2eIx7M8cLvXqgKV3ZVblAdtnszvE6tUT-DrF7n__m4ildYZ4yeYFm6AwVGys5pTB_pGo8PHrcoF6c77ARZCNfv30s9-3P04vVHEZsjrImCttn8LZ-CgdTbzmhwueRiuu7xnigOFRYuJYCxX0rbU85-g14tEmYZYFJhRxEKkwy3288G1fiQG3inAD0dJ5BtvFdWGfAxMaNUOIbMwjqloXipvABJqb0CS5HqgevG1ZKhcOV0OiP0KMl8h46RjfgzfEbelqQtfCKIccFfwg5MLvwfuagsSxusGxaKoKsBcEbNWh3OtQohjpTnO8OaLrjhEE90ajVhJnpuSJL3rAaOBlO3X_8R0v_k_yEu6jLRbVuZRiD7arm6V9hfZOlb1upiqePx9NZyd_AE0OBIg |
linkProvider | SAGE Publications |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3NbtpAEB5FcGgu_Uuj0pJkpVT0gim212vTG0JFJAWEgkm5rda7axW1MgjTSrn1HfImfZA-RJ8ks7aBGFXqxZK1s9J6_mc18xngXcQ0QyeH3s8XjkW1Ta0gkiiQWAWeo3yvI02hOBqzwYxez715McdtZmEKDqYt01aFJ8qcdWHd6G_9D71R2JpiWRJgnV6lXpsFFah2-zdfwt3VisFIw8Cbg5EebCqFn8IJP8uBbEUq8pZ0UerqygJN_zk8LTJE0s1F-gKOdPISGpMcYvquScL9xFTaJA0y2YNP353A7Xj5U39_TETCrNk7JYuEDFCvN6QvFqYZ_aOhwu3LdIUucLHCeEZ6f37b0d9f99OvIvnmkuy-MBZSv4JZ_1PYG1jFvxMsiQlZ21KGA4p6gfJ9yYTT1lrTmGIBiE8duFHkKJf5jifcKLbxxdZtwTpUCwMBiEnLKVSSZaJfA2ESjdxFNsaeGUBngipHOZIqVwWx7IgaXG5Zylc5RAbH0sIwniPjec74GlwYbvN8vHNnV7xL0Vd3XMrsGrzPKIxlbdYoi2JAAE9hMKpKlPUSJVqELC37hxLdHcygaR8sSsFRyTgNbFYDYgTPt1r4j-9483-SC3gyCEdDPrwaf34Lx5hieVmLJKtDZbP-oc8wjdlE54XaPgBx7fBM |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3NTttAEB5VQap6gbYUkULLSiB6wTS212uHW5TWSvmJomIot9V6d61GICfCaSVufYe-CQ_CQ_AknbFNqCMkLpasnZXW8z-rmc8AO6mwAp0cer9QeQ63LneiVKNAMhMFngmDrqZC8WQoBmf88CK4qK8uaBam5mCxT21VeKLSWZN1T01GFo4-N_zcP0n2T7E0ibBWX8J6Juq0YKkXf_-RzK9XCCcNg28FSLqwqRGCake8UoHZqkJVbemq0dlVBpv4NSzXWSLrVWJ9Ay9s_hZ2RxXM9M0eSx6npoo9tstGjwDUN6twPpz8tlf_E7GkbPgu2DhnA9TtGYvVmBrSD4gKt0-KKbrB8RRjGuvf3brp_Z-_pz9Vfumz8s4wU9q-g7P4a9IfOPX_ExyNSVnHMcQBw4PIhKEWyutYa3nGsQjEp438NPWML0IvUH6aufji2o4SXW4VwQBi4rIGrXyS23VgQqOh-8jGLKAhdKG48YynufFNlOmuasP2A0vltILJkFheEOMlMl5WjG_DFnFbViOec9uSPY7-uutz4bbhU0lB1jW7RlnUQwJ4CsKpalBuNijRKnRjOVyU6PxghKi9sKiVREWTPHJFGxgJXj5o4hPf8f55ki14OfoSy-Nvw6MNeIVZVlB2SYpNaM2uf9kPmMnM0o-11v4D7uvxXA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Novel+therapeutic+targets+in+heart+failure%3A+the+phospholipase+C%CE%B21b-Shank3+interface&rft.jtitle=Clinical+medicine+insights.+Therapeutics&rft.au=Woodcock%2C+Elizabeth+A&rft.au=Grubb%2C+David+R&rft.date=2015-05-06&rft.pub=Sage+Publications+Ltd.+%28UK%29&rft.issn=1179-559X&rft.eissn=1179-559X&rft.spage=11&rft_id=info:doi/10.4137%2FCMT.S18480&rft.externalDocID=A414693461 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1179-559X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1179-559X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1179-559X&client=summon |