Novel Therapeutic Targets in Heart Failure: The Phospholipase Cβ1b-Shank3 Interface

Inotropic agents are often used to improve the contractile performance of the failing myocardium, but this is often at a cost of increased myocardial ischemia and arrhythmia. Myocyte contractility depends on the release of Ca2+ from the sarcoplasmic reticulum, and this Ca2+ is subject to regulation...

Full description

Saved in:
Bibliographic Details
Published inClinical medicine insights. Therapeutics Vol. 2015; no. 7; p. 11
Main Authors Woodcock, Elizabeth A., Grubb, David R.
Format Journal Article
LanguageEnglish
Published London, England SAGE Publishing 06.05.2015
SAGE Publications
Sage Publications Ltd. (UK)
Subjects
Online AccessGet full text
ISSN1179-559X
1179-559X
DOI10.4137/CMT.S18480

Cover

Abstract Inotropic agents are often used to improve the contractile performance of the failing myocardium, but this is often at a cost of increased myocardial ischemia and arrhythmia. Myocyte contractility depends on the release of Ca2+ from the sarcoplasmic reticulum, and this Ca2+ is subject to regulation by the phosphorylation status of phospholamban (PLN). Many currently used inotropic agents function by increasing the phosphorylation of PLN, but these also heighten the risk of ischemia. Another approach is to reduce the dephosphorylation of PLN, which can be achieved by inhibiting pathways upstream or downstream of the protein kinase Cα. Phospholipase Cβ1b is responsible for activating protein kinase Cα, and its activity is substantially heightened in failing myocardium. We propose phospholipase Cβ1b, a cardiac-specific enzyme, as a promising target for the development of a new class of inotropic agents. By reversing changes that accompany the transition to heart failure, it may be possible to provide well-tolerated improvement in pump performance.
AbstractList Inotropic agents are often used to improve the contractile performance of the failing myocardium, but this is often at a cost of increased myocardial ischemia and arrhythmia. Myocyte contractility depends on the release of [Ca.sup.2+] from the sarcoplasmic reticulum, and this [Ca.sup.2+] is subject to regulation by the phosphorylation status of phospholamban (PLN). Many currently used inotropic agents function by increasing the phosphorylation of PLN, but these also heighten the risk of ischemia. Another approach is to reduce the dephosphorylation of PLN, which can be achieved by inhibiting pathways upstream or downstream of the protein kinase Cα. Phospholipase Cβ1b is responsible for activating protein kinase Cα, and its activity is substantially heightened in failing myocardium. We propose phospholipase Cβ1b, a cardiac-specific enzyme, as a promising target for the development of a new class of inotropic agents. By reversing changes that accompany the transition to heart failure, it may be possible to provide well-tolerated improvement in pump performance.
Inotropic agents are often used to improve the contractile performance of the failing myocardium, but this is often at a cost of increased myocardial ischemia and arrhythmia. Myocyte contractility depends on the release of [Ca.sup.2+] from the sarcoplasmic reticulum, and this [Ca.sup.2+] is subject to regulation by the phosphorylation status of phospholamban (PLN). Many currently used inotropic agents function by increasing the phosphorylation of PLN, but these also heighten the risk of ischemia. Another approach is to reduce the dephosphorylation of PLN, which can be achieved by inhibiting pathways upstream or downstream of the protein kinase Cα. Phospholipase Cβ1b is responsible for activating protein kinase Cα, and its activity is substantially heightened in failing myocardium. We propose phospholipase Cβ1b, a cardiac-specific enzyme, as a promising target for the development of a new class of inotropic agents. By reversing changes that accompany the transition to heart failure, it may be possible to provide well-tolerated improvement in pump performance. KEYWORDS: cardiac contractility, inotropic agent, splice variant, protein scaffold
Inotropic agents are often used to improve the contractile performance of the failing myocardium, but this is often at a cost of increased myocardial ischemia and arrhythmia. Myocyte contractility depends on the release of Ca 2+ from the sarcoplasmic reticulum, and this Ca 2+ is subject to regulation by the phosphorylation status of phospholamban (PLN). Many currently used inotropic agents function by increasing the phosphorylation of PLN, but these also heighten the risk of ischemia. Another approach is to reduce the dephosphorylation of PLN, which can be achieved by inhibiting pathways upstream or downstream of the protein kinase Cα. Phospholipase Cβ1b is responsible for activating protein kinase Cα, and its activity is substantially heightened in failing myocardium. We propose phospholipase Cβ1b, a cardiac-specific enzyme, as a promising target for the development of a new class of inotropic agents. By reversing changes that accompany the transition to heart failure, it may be possible to provide well-tolerated improvement in pump performance.
Inotropic agents are often used to improve the contractile performance of the failing myocardium, but this is often at a cost of increased myocardial ischemia and arrhythmia. Myocyte contractility depends on the release of Ca2+ from the sarcoplasmic reticulum, and this Ca2+ is subject to regulation by the phosphorylation status of phospholamban (PLN). Many currently used inotropic agents function by increasing the phosphorylation of PLN, but these also heighten the risk of ischemia. Another approach is to reduce the dephosphorylation of PLN, which can be achieved by inhibiting pathways upstream or downstream of the protein kinase Cα. Phospholipase Cβ1b is responsible for activating protein kinase Cα, and its activity is substantially heightened in failing myocardium. We propose phospholipase Cβ1b, a cardiac-specific enzyme, as a promising target for the development of a new class of inotropic agents. By reversing changes that accompany the transition to heart failure, it may be possible to provide well-tolerated improvement in pump performance.
Audience Academic
Author Elizabeth A. Woodcock
David R. Grubb
Author_xml – sequence: 1
  givenname: Elizabeth A.
  surname: Woodcock
  fullname: Woodcock, Elizabeth A.
  email: liz.woodcock@bakeridi.edu.au
– sequence: 2
  givenname: David R.
  surname: Grubb
  fullname: Grubb, David R.
BookMark eNptkdtKxDAQhoMoeLzxCQqCgtA1abJp64UgiyfwBFbwLkzT6TbabZakK_haPojPZJaKqEggmcx8Mwz_v0lWO9shIbuMjgTj6dHkphg9sExkdIVsMJbm8XicP63-iNfJjvfPlNIkEVLyfIMUt_YV26ho0MEcF73RUQFuir2PTBddIrg-OgfTLhweL6novrF-3tjWzMFjNPl4Z2X80ED3wqOrrkdXg8ZtslZD63Hn690ij-dnxeQyvr67uJqcXseaJ5LG1XKFSoyzKk21hIQioqgFozLcmPGyTCou02QMvKxZ-DCkIHOBwIVI85xvkb1h7hRaVKarbe9Az4zX6lQwIXMuJAvU6B8qnApnRgcJaxPyvxr2fzQ0CG3feNsGcWznf4OHA6id9d5hrebOzMC9KUbV0hIVLFGDJQE-GGAPU1TPduG6oM3_5MlAtqZE14P_2hW-x1sw6k9Rg9J2pkTGJP8EpoGhew
Cites_doi 10.1097/FJC.0b013e3181d8bec5
10.1042/bj3270545
10.1016/j.yjmcc.2011.01.012
10.1007/BF01868717
10.1074/jbc.M111.231993
10.1016/j.jacc.2005.03.051
10.1074/jbc.M106572200
10.1242/jcs.113.11.1851
10.1161/01.RES.0000234780.06115.2c
10.1161/CIRCRESAHA.111.259754
10.1016/j.neulet.2008.02.067
10.1016/j.jacc.2014.01.016
10.1096/fj.10-171470
10.33549/physiolres.931948
10.1161/CIRCRESAHA.112.273896
10.1016/1050-1738(96)00013-8
10.1038/nm1000
10.1096/fj.09-133983
10.1038/mt.2014.127
10.1074/jbc.M506810200
10.1161/01.RES.0000093399.11734.B3
10.1124/mol.108.047837
10.1016/j.yjmcc.2012.03.005
10.1161/CIRCRESAHA.109.209809
10.1161/CIRCRESAHA.113.300308
10.1016/S0021-9258(18)35680-1
10.1016/0955-0674(94)90140-6
10.1046/j.1471-4159.2002.00931.x
10.1042/bj3240645
10.1093/emboj/20.4.743
10.1126/science.1846707
10.1093/eurjhf/hfq234
10.1006/bbrc.2001.5710
10.1161/01.CIR.95.2.423
10.1161/CIRCRESAHA.112.273839
10.1161/01.RES.0000196578.15385.bb
10.1007/978-94-007-2888-2_28
10.1172/JCI62834
10.1016/j.cardfail.2008.02.005
10.1016/j.yjmcc.2010.10.004
10.1161/CIRCRESAHA.111.255687
10.1161/CIRCRESAHA.109.195313
10.1016/S0014-5793(03)00608-2
10.1016/j.advenzreg.2009.01.004
10.1016/j.yjmcc.2008.07.006
10.1074/jbc.M110.191783
10.1152/physiol.00009.2012
10.1111/bph.12472
10.1038/gt.2008.120
10.1016/S0022-3565(24)36954-X
10.1161/CIRCULATIONAHA.105.592550
10.1016/S0021-9258(17)37185-5
10.1038/415198a
10.1161/CIRCRESAHA.111.252981
10.1146/annurev.physiol.010908.163111
10.1073/pnas.97.2.793
10.1016/j.cell.2013.02.047
10.1111/apha.12287
10.1016/j.jacc.2011.06.058
10.1161/CIRCULATIONAHA.111.022889
10.1146/annurev.biochem.70.1.281
10.1016/j.yjmcc.2009.08.020
10.1007/s00395-012-0279-z
10.1161/CIRCHEARTFAILURE.112.971325
10.1074/jbc.M006889200
10.1161/CIRCRESAHA.109.207423
10.1007/s00228-014-1671-4
10.1126/science.1411571
ContentType Journal Article
Copyright 2015 SAGE Publications.
COPYRIGHT 2015 Sage Publications Ltd. (UK)
Copyright_xml – notice: 2015 SAGE Publications.
– notice: COPYRIGHT 2015 Sage Publications Ltd. (UK)
DBID AFRWT
AAYXX
CITATION
DOI 10.4137/CMT.S18480
DatabaseName Sage Journals Open Access
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

CrossRef


Database_xml – sequence: 1
  dbid: AFRWT
  name: Sage Journals GOLD Open Access 2024
  url: http://journals.sagepub.com/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Pharmacy, Therapeutics, & Pharmacology
EISSN 1179-559X
ExternalDocumentID A414693461
10_4137_CMT_S18480
10.4137_CMT.S18480
oai_libertasacademica_com_4816
GroupedDBID -
04C
0R
188
2UF
5VS
7RV
7X7
8FI
8FJ
AAWTL
ABQXT
ABUWG
ACGFS
ADACO
ADBBV
AEWDL
AFKRA
AFRWT
ALMA_UNASSIGNED_HOLDINGS
AUTPY
AYAGU
AYAKG
BBAFP
BENPR
BKEYQ
BPHCQ
BVXVI
DV7
EBD
EBS
EJD
FYUFA
GROUPED_SAGE_PREMIER_JOURNAL_COLLECTION
GX1
H13
IAO
IHR
IHW
IPNFZ
ITC
J8X
K.F
KQ8
NAPCQ
O9-
OK1
PIMPY
PQEST
PQQKQ
PQUKI
PRINS
PROAC
RIG
SFC
TR2
UZ5
---
6PF
AASGM
AFCOW
AINHJ
ALIPV
BMSDO
C1A
CCPQU
CEFSP
CNMHZ
EIHBH
HMCUK
PHGZM
PHGZT
SAUOL
SCNPE
UKHRP
AAYXX
CITATION
PMFND
ID FETCH-LOGICAL-c3260-d6639d458d77c6a20eee4f41064f4e83bb2d36725a3bf1b2d1e0a694ea3447993
IEDL.DBID AFRWT
ISSN 1179-559X
IngestDate Tue Jun 17 21:07:29 EDT 2025
Tue Jun 10 20:37:05 EDT 2025
Thu May 22 21:20:59 EDT 2025
Sun Jul 06 05:06:35 EDT 2025
Tue Jun 17 22:37:25 EDT 2025
Thu Dec 16 16:54:49 EST 2021
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords protein scaffold
inotropic agent
cardiac contractility
splice variant
Language English
License This article is distributed under the terms of the Creative Commons Attribution-NonCommercial 3.0 License (http://www.creativecommons.org/licenses/by-nc/3.0/) which permits non-commercial use, reproduction and distribution of the work without further permission provided the original work is attributed as specified on the SAGE and Open Access page (https://us.sagepub.com/en-us/nam/open-access-at-sage).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3260-d6639d458d77c6a20eee4f41064f4e83bb2d36725a3bf1b2d1e0a694ea3447993
OpenAccessLink https://journals.sagepub.com/doi/full/10.4137/CMT.S18480?utm_source=summon&utm_medium=discovery-provider
ParticipantIDs gale_infotracmisc_A414693461
gale_infotracacademiconefile_A414693461
gale_healthsolutions_A414693461
crossref_primary_10_4137_CMT_S18480
sage_journals_10_4137_CMT_S18480
libertasacademia_primary_oai_libertasacademica_com_4816
PublicationCentury 2000
PublicationDate 2015-05-06
PublicationDateYYYYMMDD 2015-05-06
PublicationDate_xml – month: 05
  year: 2015
  text: 2015-05-06
  day: 06
PublicationDecade 2010
PublicationPlace London, England
PublicationPlace_xml – name: London, England
PublicationTitle Clinical medicine insights. Therapeutics
PublicationYear 2015
Publisher SAGE Publishing
SAGE Publications
Sage Publications Ltd. (UK)
Publisher_xml – name: SAGE Publishing
– name: SAGE Publications
– name: Sage Publications Ltd. (UK)
References Sikkel, Hayward, MacLeod, Harding, Lyon 2014; 171
Streb, Bayerdorffer, Haase, Irvine, Schulz 1984; 81
Sheng, Kim 2000; 113
Bahk, Lee, Lee, Seo, Ryu, Suh 1994; 269
Hambleton, Hahn, Pleger 2006; 114
Hajjar, Kang, Gwathmey, Rosenzweig 1997; 95
Tilemann, Ishikawa, Weber, Hajjar 2012; 110
Wittkopper, Fabritz, Neef 2010; 120
Klose, Huth, Alzheimer 2008; 74
Ishikawa, Fish, Tilemann 2014; 22
Woodcock, Mitchell, Biden 2003; 546
Liu, Molkentin 2011; 51
Filtz, Grubb, McLeod-Dryden, Luo, Woodcock 2009; 23
Jessup, Greenberg, Mancini 2011; 124
Woodcock, Grubb, Filtz 2009; 47
Gonzalez, Ravassa, Beaumont, Lopez, Diez 2011; 58
Hajjar, Zsebo, Deckelbaum 2008; 14
Zhang, Malik, Pang 2013; 153
Francis, Bartos, Adatya 2014; 63
Smrcka, Hepler, Brown, Sternweis 1991; 251
Whelan, Kaplinskiy, Kitsis 2010; 72
Sugden, Bogoyevitch 1996; 6
Bunney, Baxendale, Katan 2009; 49
Bers 2002; 415
Grubb, Ma, Luo 2013; 128
Lymperopoulos, Rengo, Koch 2013; 113
Zhang, Guo, Mishra 2010; 106
Zhang, Szeto, Gao 2013; 112
Grubb, Iliades, Cooley 2011; 25
Liu, Chen, Macdonnell 2009; 105
Wang, Oestreich, Maekawa 2005; 97
Souders, Bowers, Baudino 2009; 105
Mariani, Smolic, Preovolos, Byrne, Power, Kaye 2011; 13
Oh, Jeong, Cha 2012; 53
Exton 1994; 6
Mogami, Mills, Gallagher 1997; 324
Rhee 2001; 70
Hu, Liu, Shen, Wang, Tang, Yang 2011; 60
Anderson, Brown, Bers 2011; 51
Vasilevski, Grubb, Filtz 2008; 45
Florea, Anjak, Cai 2012; 107
Wu, Katz, Lee, Simon 1992; 267
Abraham, Adams, Fonarow 2005; 46
Arthur, Matkovich, Mitchell, Biden, Woodcock 2001; 276
Sickmann, Klose, Huth, Alzheimer 2008; 436
Boeckers, Bockmann, Kreutz, Gundelfinger 2002; 81
Miyamoto, delMonte, Schmidt 2000; 97
Muto, Nagao, Urushidani 1997; 282
Allen, Swigart, Cheung, Cockcroft, Katan 1997; 327
Suh, Hwang, Ryu, Donowitz, Kim 2001; 288
Fish, Ladage, Kawase 2013; 6
Guzun, Kaambre, Bagur 2014; 213
Nishizuka 1992; 258
George, Rajaram, Shanmugam, VijayaKumar 2014; 70
Steinberg 2012; 27
Zeng, Webster, Newton 2012; 740
Klein, Bourdon, Costales 2011; 286
Jeong, Cha, Kim 2006; 99
Ibarra, Vicencio, Estrada 2013; 112
Kranias, Hajjar 2012; 110
Sato, Kiriazis, Yatani 2001; 276
Braz, Gregory, Pathak 2004; 10
Zhang, Malik, Kelley, Kapiloff, Smrcka 2011; 286
Ladage, Tilemann, Ishikawa 2011; 109
Burgdorf, Schafer, Richardt, Kurz 2010; 55
Shannon, Pogwizd, Bers 2003; 93
Marks 2013; 123
Kelley, Reks, Ondrako, Smrcka 2001; 20
Byrne, Power, Preovolos, Mariani, Hajjar, Kaye 2008; 15
Fan, Jiang, Lu 2005; 280
bibr6-CMT.S18480
bibr17-CMT.S18480
bibr3-CMT.S18480
bibr52-CMT.S18480
bibr14-CMT.S18480
bibr57-CMT.S18480
bibr34-CMT.S18480
bibr62-CMT.S18480
Bahk Y.Y. (bibr66-CMT.S18480) 1994; 269
bibr24-CMT.S18480
bibr27-CMT.S18480
bibr67-CMT.S18480
bibr37-CMT.S18480
bibr47-CMT.S18480
bibr48-CMT.S18480
bibr51-CMT.S18480
bibr1-CMT.S18480
bibr8-CMT.S18480
bibr38-CMT.S18480
bibr41-CMT.S18480
bibr58-CMT.S18480
bibr61-CMT.S18480
bibr28-CMT.S18480
bibr31-CMT.S18480
bibr68-CMT.S18480
bibr11-CMT.S18480
bibr21-CMT.S18480
bibr42-CMT.S18480
bibr2-CMT.S18480
bibr29-CMT.S18480
bibr39-CMT.S18480
bibr60-CMT.S18480
bibr9-CMT.S18480
bibr22-CMT.S18480
bibr19-CMT.S18480
bibr32-CMT.S18480
bibr70-CMT.S18480
Wittkopper K. (bibr35-CMT.S18480) 2010; 120
bibr49-CMT.S18480
bibr12-CMT.S18480
bibr23-CMT.S18480
bibr33-CMT.S18480
bibr56-CMT.S18480
Wu D. (bibr46-CMT.S18480) 1992; 267
Grubb D.R. (bibr59-CMT.S18480) 2013; 128
bibr36-CMT.S18480
bibr40-CMT.S18480
bibr13-CMT.S18480
bibr50-CMT.S18480
bibr7-CMT.S18480
bibr30-CMT.S18480
bibr63-CMT.S18480
bibr4-CMT.S18480
bibr18-CMT.S18480
bibr20-CMT.S18480
bibr43-CMT.S18480
bibr53-CMT.S18480
bibr10-CMT.S18480
bibr15-CMT.S18480
bibr25-CMT.S18480
bibr54-CMT.S18480
bibr5-CMT.S18480
bibr44-CMT.S18480
bibr65-CMT.S18480
bibr26-CMT.S18480
bibr45-CMT.S18480
Muto Y. (bibr64-CMT.S18480) 1997; 282
bibr55-CMT.S18480
Sheng M. (bibr69-CMT.S18480) 2000; 113
bibr16-CMT.S18480
References_xml – volume: 81
  start-page: 241
  year: 1984
  end-page: 53
  article-title: Effect of inositol-1,4,5- phosphate on isolated subcellular fractions of rat pancreas
  publication-title: J Memb Biol.
– volume: 286
  start-page: 23012
  year: 2011
  end-page: 21
  article-title: Phospholipase CΕ scaffolds to muscle-specific A kinase anchoring protein (mAKAPβ) and integrates multiple hypertrophic stimuli in cardiac myocytes
  publication-title: J Biol Chem.
– volume: 120
  start-page: 617
  year: 2010
  end-page: 26
  article-title: Constitutively active phosphatase inhibitor-1 improves cardiac contractility in young mice but is deleterious after catecholaminergic stress and with aging
  publication-title: J Clin Invest.
– volume: 107
  start-page: 279
  year: 2012
  article-title: Constitutive phosphorylation of inhibitor-1 at Ser67 and Thr75 depresses calcium cycling in cardiomyocytes and leads to remodeling upon aging
  publication-title: Basic Res Cardiol.
– volume: 282
  start-page: 1379
  year: 1997
  end-page: 88
  article-title: The putative phospholipase c inhibitor u73122 and its negative control, U73343, elicit unexpected effects on the rabbit parietal cell
  publication-title: J Pharmacol Exp Ther.
– volume: 106
  start-page: 354
  year: 2010
  end-page: 62
  article-title: Phospholamban ablation rescues sarcoplasmic reticulum Ca handling but exacerbates cardiac dysfunction in CaMKIIδ(c) transgenic mice
  publication-title: Circ Res.
– volume: 740
  start-page: 639
  year: 2012
  end-page: 61
  article-title: The biology of protein kinase C
  publication-title: Adv Exp Med Biol.
– volume: 112
  start-page: 236
  year: 2013
  end-page: 45
  article-title: Local control of nuclear calcium signaling in cardiac myocytes by perinuclear microdomains of sarcolemmal insulin-like growth factor 1 receptors
  publication-title: Circ Res.
– volume: 46
  start-page: 57
  year: 2005
  end-page: 64
  article-title: In-hospital mortality in patients with acute decompensated heart failure requiring intravenous vasoactive medications: an analysis from the acute decompensated heart failure national registry (adhere)
  publication-title: J Am Coll Cardiol.
– volume: 213
  start-page: 84
  year: 2014
  end-page: 106
  article-title: Modular organization of cardiac energy metabolism: energy conversion, transfer and feedback regulation
  publication-title: Acta Physiol (Oxf).
– volume: 58
  start-page: 1833
  year: 2011
  end-page: 43
  article-title: New targets to treat the structural remodeling of the myocardium
  publication-title: J Am Coll Cardiol.
– volume: 72
  start-page: 19
  year: 2010
  end-page: 44
  article-title: Cell death in the pathogenesis of heart disease: mechanisms and significance
  publication-title: Annu Rev Physiol.
– volume: 267
  start-page: 25798
  year: 1992
  end-page: 802
  article-title: Activation of phospholipase C by α -adrenergic receptors is mediated by the a subunits of Gq family
  publication-title: J Biol Chem.
– volume: 23
  start-page: 3564
  year: 2009
  end-page: 70
  article-title: Gq-initiated cardiomyocyte hypertrophy is mediated by phospholipase Cβ1b
  publication-title: FASEB J.
– volume: 10
  start-page: 248
  year: 2004
  end-page: 54
  article-title: PKC-alpha regulates cardiac contractility and propensity toward heart failure
  publication-title: Nat Med.
– volume: 27
  start-page: 130
  year: 2012
  end-page: 9
  article-title: Cardiac actions of protein kinase C isoforms
  publication-title: Physiology.
– volume: 6
  start-page: 87
  year: 1996
  end-page: 94
  article-title: Endothelin-1-dependent signaling pathways in the myocardium
  publication-title: Trend Cardiovasc Med.
– volume: 70
  start-page: 281
  year: 2001
  end-page: 312
  article-title: Regulation of phosphoinositide-specific phospholipase C
  publication-title: Annu Rev Biochem.
– volume: 324
  start-page: 645
  year: 1997
  end-page: 51
  article-title: Phospholipase c inhibitor, U73122, releases intracellular Ca , potentiates Ins(1,4,5)P -mediated Ca release and directly activates inn channels in mouse pancreatic acinar cells
  publication-title: Biochem J.
– volume: 109
  start-page: 1396
  year: 2011
  end-page: 400
  article-title: Inhibition of PKC(alpha/beta) with ruboxistaurin antagonizes heart failure in pigs after myocardial infarction injury
  publication-title: Circ Res.
– volume: 105
  start-page: 194
  year: 2009
  end-page: 200
  article-title: Protein kinase cα, but not PKCβ or PKCγa, regulates contractility and heart failure susceptibility: implications for ruboxistaurin as a novel therapeutic approach
  publication-title: Circ Res.
– volume: 99
  start-page: 307
  year: 2006
  end-page: 14
  article-title: PICOT inhibits cardiac hypertrophy and enhances ventricular function and cardiomyocyte contractility
  publication-title: Circ Res.
– volume: 110
  start-page: 1646
  year: 2012
  end-page: 60
  article-title: Modulation of cardiac contractility by the phospholamban/SERCA2a regulatome
  publication-title: Circ Res.
– volume: 97
  start-page: 793
  year: 2000
  end-page: 8
  article-title: Adenoviral gene transfer of SERCA2a improves left-ventricular function in aortic-banded rats in transition to heart failure
  publication-title: Proc Natl Acad Sci USA.
– volume: 112
  start-page: 498
  year: 2013
  end-page: 509
  article-title: Cardiotoxic and cardioprotective features of chronic beta-adrenergic signaling
  publication-title: Circ Res.
– volume: 20
  start-page: 743
  year: 2001
  end-page: 54
  article-title: Phospholipase CΕ: a novel Ras effector
  publication-title: EMBO J.
– volume: 45
  start-page: 679
  year: 2008
  end-page: 84
  article-title: Ins(1,4,5)P regulates phospholipase Cβ1 expression in cardiomyocytes
  publication-title: J Mol Cell Cardiol.
– volume: 276
  start-page: 37341
  year: 2001
  end-page: 46
  article-title: Evidence for selective coupling of α -adrenergic receptors to phospholipase Cβ1 in rat neonatal cardiomyocytes
  publication-title: J Biol Chem.
– volume: 114
  start-page: 574
  year: 2006
  end-page: 82
  article-title: Pharmacological- and gene therapy-based inhibition of protein kinase C(alpha/beta) enhances cardiac contractility and attenuates heart failure
  publication-title: Circulation.
– volume: 269
  start-page: 8240
  year: 1994
  end-page: 5
  article-title: Two forms of phospholipase Cβ1 generated by alternative splicing
  publication-title: J Biol Chem.
– volume: 124
  start-page: 304
  year: 2011
  end-page: 13
  article-title: Calcium upregulation by percutaneous administration of gene therapy in cardiac disease (CUPID): a phase 2 trial of intracoronary gene therapy of sarcoplasmic reticulum Ca -ATPase in patients with advanced heart failure
  publication-title: Circulation.
– volume: 14
  start-page: 355
  year: 2008
  end-page: 67
  article-title: Design of a phase 1/2 trial of intracoronary administration of AAV1/SERCA2a in patients with heart failure
  publication-title: J Cardiac Failure.
– volume: 113
  start-page: 739
  year: 2013
  end-page: 53
  article-title: Adrenergic nervous system in heart failure: pathophysiology and therapy
  publication-title: Circ Res.
– volume: 95
  start-page: 423
  year: 1997
  end-page: 9
  article-title: Physiological effects of adenoviral gene transfer of sarcoplasmic reticulum calcium ATPase in isolated rat myocytes
  publication-title: Circulation.
– volume: 123
  start-page: 46
  year: 2013
  end-page: 52
  article-title: Calcium cycling proteins and heart failure: mechanisms and therapeutics
  publication-title: J Clin Invest.
– volume: 6
  start-page: 226
  year: 1994
  end-page: 9
  article-title: Messenger molecules derived from membrane lipids
  publication-title: Curr Opin Cell Biol.
– volume: 286
  start-page: 12407
  year: 2011
  end-page: 16
  article-title: Direct activation of human phospholipase C by its well known inhibitor U73122
  publication-title: J Biol Chem.
– volume: 415
  start-page: 198
  year: 2002
  end-page: 205
  article-title: Cardiac excitation-contraction coupling
  publication-title: Nature.
– volume: 171
  start-page: 38
  year: 2014
  end-page: 54
  article-title: SERCA2a gene therapy in heart failure: an anti-arrhythmic positive inotrope
  publication-title: Br J Pharmacol.
– volume: 25
  start-page: 1040
  year: 2011
  end-page: 7
  article-title: Phospholipase Cβ1b associates with a Shank3 complex at the cardiac sarcolemma
  publication-title: FASEB J.
– volume: 97
  start-page: 1305
  year: 2005
  end-page: 13
  article-title: Phospholipase CΕ modulates β-adrenergic receptor dependent cardiac contraction and inhibits cardiac hypertrophy
  publication-title: Circ Res.
– volume: 47
  start-page: 676
  year: 2009
  end-page: 83
  article-title: Selective activation of the “b” splice variant of phospholipase Cβ1 in chronically dilated human and mouse atria
  publication-title: J Mol Cell Cardiol.
– volume: 327
  start-page: 545
  issue: 2
  year: 1997
  end-page: 52
  article-title: Regulation of inositol lipid-specific phospholipase Cδ by changes in Ca ion concentrations
  publication-title: Biochem J.
– volume: 258
  start-page: 607
  year: 1992
  end-page: 14
  article-title: Intracellular signaling by hydrolysis of phospholipids and activation of protein kinase-C
  publication-title: Science.
– volume: 128
  start-page: A13416
  year: 2013
  article-title: Phospholipase Cβ1b depletes sarcoplasmic reticulum calcium content and causes cardiac contractile dysfunction
  publication-title: Circulation.
– volume: 55
  start-page: 555
  year: 2010
  end-page: 9
  article-title: U73122, an aminosteroid phospholipase c inhibitor, is a potent inhibitor of cardiac phospholipase D by a PIP -dependent mechanism
  publication-title: J Cardiovasc Pharmacol.
– volume: 63
  start-page: 2069
  year: 2014
  end-page: 78
  article-title: Inotropes
  publication-title: J Am Coll Cardiol.
– volume: 105
  start-page: 1164
  year: 2009
  end-page: 76
  article-title: Cardiac fibroblast the renaissance cell
  publication-title: Circ Res.
– volume: 276
  start-page: 9392
  year: 2001
  end-page: 9
  article-title: Rescue of contractile parameters and myocyte hypertrophy in calsequestrin overexpressing myocardium by phospholamban ablation
  publication-title: J Biol Chem.
– volume: 60
  start-page: 27
  year: 2011
  end-page: 37
  article-title: Defective Ca handling proteins regulation during heart failure
  publication-title: Physiol Res.
– volume: 74
  start-page: 1203
  year: 2008
  end-page: 14
  article-title: 1-[6-[[(17beta)-3-methoxyestra-1,3,5(10)-trien-17-yl]amino]hexyl]-1h-pyrro le-2,5-dione (U73122) selectively inhibits K and BK channels in a phospholipase C-independent fashion
  publication-title: Mol Pharmacol.
– volume: 113
  start-page: 1851
  issue: 11
  year: 2000
  end-page: 6
  article-title: The Shank family of scaffold proteins
  publication-title: J Cell Sci.
– volume: 81
  start-page: 903
  year: 2002
  end-page: 10
  article-title: ProSap/Shank proteins – a family of higher order organizing molecules of the postsynaptic density with an emerging role in human neurological disease
  publication-title: J Neurochem.
– volume: 51
  start-page: 468
  year: 2011
  end-page: 73
  article-title: CaMKII in myocardial hypertrophy and heart failure
  publication-title: J Mol Cell Cardiol.
– volume: 22
  start-page: 2038
  year: 2014
  end-page: 45
  article-title: Cardiac I-1c overexpression with reengineered AAV improves cardiac function in swine ischemic heart failure
  publication-title: Mol Ther.
– volume: 93
  start-page: 592
  year: 2003
  end-page: 4
  article-title: Elevated sarcoplasmic reticulum Ca leak in intact ventricular myocytes from rabbits in heart failure
  publication-title: Circ Res.
– volume: 110
  start-page: 777
  year: 2012
  end-page: 93
  article-title: Gene therapy for heart failure
  publication-title: Circ Res.
– volume: 251
  start-page: 804
  year: 1991
  end-page: 7
  article-title: Regulation of polyphosphoinositide-specific phospholipase C activity by purified Gq
  publication-title: Science.
– volume: 13
  start-page: 247
  year: 2011
  end-page: 53
  article-title: Augmentation of left ventricular mechanics by recirculation-mediated AAV2/1-SERCA2a gene delivery in experimental heart failure
  publication-title: Eur J Heart Failure.
– volume: 15
  start-page: 1550
  year: 2008
  end-page: 7
  article-title: Recirculating cardiac delivery of AAV2/1SERCA2a improves myocardial function in an experimental model of heart failure in large animals
  publication-title: Gene Ther.
– volume: 51
  start-page: 474
  year: 2011
  end-page: 8
  article-title: Protein kinase C(alpha) as a heart failure therapeutic target
  publication-title: J Mol Cell Cardiol.
– volume: 280
  start-page: 40337
  year: 2005
  end-page: 46
  article-title: A transgenic mouse model of heart failure using inducible Gαq
  publication-title: J Biol Chem.
– volume: 49
  start-page: 54
  year: 2009
  end-page: 8
  article-title: Regulatory links between PLC enzymes and Ras superfamily GTPases: signalling via PLCs
  publication-title: Adv Enzyme Regul.
– volume: 153
  start-page: 216
  year: 2013
  end-page: 27
  article-title: Phospholipase CΕ hydrolyzes perinuclear phosphatidylinositol 4-phosphate to regulate cardiac hypertrophy
  publication-title: Cell.
– volume: 70
  start-page: 765
  year: 2014
  end-page: 74
  article-title: Novel drug targets in clinical development for heart failure
  publication-title: Eur J Clin Pharmacol.
– volume: 436
  start-page: 102
  year: 2008
  end-page: 6
  article-title: Unexpected suppression of neuronal G protein-activated, inwardly rectifying K current by common phospholipase C inhibitor
  publication-title: Neurosci Lett.
– volume: 288
  start-page: 1
  year: 2001
  end-page: 7
  article-title: The roles of PDZ-containing proteins in PLCβ-mediated signaling
  publication-title: Biochem Biophys Res Commun.
– volume: 53
  start-page: 53
  year: 2012
  end-page: 63
  article-title: PICOT increases cardiac contractility by inhibiting PKCζ activity
  publication-title: J Mol Cell Cardiol.
– volume: 546
  start-page: 325
  year: 2003
  end-page: 8
  article-title: Phospholipase Cδ1 does not mediate Ca responses in neonatal rat cardiomyocytes
  publication-title: FEBS Lett.
– volume: 6
  start-page: 310
  year: 2013
  end-page: 7
  article-title: AAV9.I-1c delivered via direct coronary infusion in a porcine model of heart failure improves contractility and mitigates adverse remodeling
  publication-title: Circ Heart Failure.
– ident: bibr61-CMT.S18480
  doi: 10.1097/FJC.0b013e3181d8bec5
– ident: bibr48-CMT.S18480
  doi: 10.1042/bj3270545
– ident: bibr26-CMT.S18480
  doi: 10.1016/j.yjmcc.2011.01.012
– ident: bibr43-CMT.S18480
  doi: 10.1007/BF01868717
– ident: bibr44-CMT.S18480
  doi: 10.1074/jbc.M111.231993
– ident: bibr1-CMT.S18480
  doi: 10.1016/j.jacc.2005.03.051
– ident: bibr54-CMT.S18480
  doi: 10.1074/jbc.M106572200
– volume: 113
  start-page: 1851
  issue: 11
  year: 2000
  ident: bibr69-CMT.S18480
  publication-title: J Cell Sci.
  doi: 10.1242/jcs.113.11.1851
– volume: 120
  start-page: 617
  year: 2010
  ident: bibr35-CMT.S18480
  publication-title: J Clin Invest.
– ident: bibr38-CMT.S18480
  doi: 10.1161/01.RES.0000234780.06115.2c
– volume: 128
  start-page: A13416
  year: 2013
  ident: bibr59-CMT.S18480
  publication-title: Circulation.
– ident: bibr8-CMT.S18480
  doi: 10.1161/CIRCRESAHA.111.259754
– ident: bibr62-CMT.S18480
  doi: 10.1016/j.neulet.2008.02.067
– ident: bibr4-CMT.S18480
  doi: 10.1016/j.jacc.2014.01.016
– ident: bibr68-CMT.S18480
  doi: 10.1096/fj.10-171470
– ident: bibr15-CMT.S18480
  doi: 10.33549/physiolres.931948
– ident: bibr27-CMT.S18480
  doi: 10.1161/CIRCRESAHA.112.273896
– ident: bibr47-CMT.S18480
  doi: 10.1016/1050-1738(96)00013-8
– ident: bibr12-CMT.S18480
  doi: 10.1038/nm1000
– ident: bibr52-CMT.S18480
  doi: 10.1096/fj.09-133983
– ident: bibr36-CMT.S18480
  doi: 10.1038/mt.2014.127
– ident: bibr51-CMT.S18480
  doi: 10.1074/jbc.M506810200
– ident: bibr9-CMT.S18480
  doi: 10.1161/01.RES.0000093399.11734.B3
– ident: bibr63-CMT.S18480
  doi: 10.1124/mol.108.047837
– ident: bibr37-CMT.S18480
  doi: 10.1016/j.yjmcc.2012.03.005
– ident: bibr6-CMT.S18480
  doi: 10.1161/CIRCRESAHA.109.209809
– ident: bibr2-CMT.S18480
  doi: 10.1161/CIRCRESAHA.113.300308
– volume: 267
  start-page: 25798
  year: 1992
  ident: bibr46-CMT.S18480
  publication-title: J Biol Chem.
  doi: 10.1016/S0021-9258(18)35680-1
– ident: bibr41-CMT.S18480
  doi: 10.1016/0955-0674(94)90140-6
– ident: bibr70-CMT.S18480
  doi: 10.1046/j.1471-4159.2002.00931.x
– ident: bibr65-CMT.S18480
  doi: 10.1042/bj3240645
– ident: bibr49-CMT.S18480
  doi: 10.1093/emboj/20.4.743
– ident: bibr45-CMT.S18480
  doi: 10.1126/science.1846707
– ident: bibr20-CMT.S18480
  doi: 10.1093/eurjhf/hfq234
– ident: bibr67-CMT.S18480
  doi: 10.1006/bbrc.2001.5710
– ident: bibr17-CMT.S18480
  doi: 10.1161/01.CIR.95.2.423
– ident: bibr53-CMT.S18480
  doi: 10.1161/CIRCRESAHA.112.273839
– ident: bibr57-CMT.S18480
  doi: 10.1161/01.RES.0000196578.15385.bb
– ident: bibr39-CMT.S18480
  doi: 10.1007/978-94-007-2888-2_28
– ident: bibr11-CMT.S18480
  doi: 10.1172/JCI62834
– ident: bibr22-CMT.S18480
  doi: 10.1016/j.cardfail.2008.02.005
– ident: bibr13-CMT.S18480
  doi: 10.1016/j.yjmcc.2010.10.004
– ident: bibr31-CMT.S18480
  doi: 10.1161/CIRCRESAHA.111.255687
– ident: bibr33-CMT.S18480
  doi: 10.1161/CIRCRESAHA.109.195313
– ident: bibr56-CMT.S18480
  doi: 10.1016/S0014-5793(03)00608-2
– ident: bibr50-CMT.S18480
  doi: 10.1016/j.advenzreg.2009.01.004
– ident: bibr55-CMT.S18480
  doi: 10.1016/j.yjmcc.2008.07.006
– ident: bibr60-CMT.S18480
  doi: 10.1074/jbc.M110.191783
– ident: bibr29-CMT.S18480
  doi: 10.1152/physiol.00009.2012
– ident: bibr10-CMT.S18480
  doi: 10.1111/bph.12472
– ident: bibr21-CMT.S18480
  doi: 10.1038/gt.2008.120
– volume: 282
  start-page: 1379
  year: 1997
  ident: bibr64-CMT.S18480
  publication-title: J Pharmacol Exp Ther.
  doi: 10.1016/S0022-3565(24)36954-X
– ident: bibr32-CMT.S18480
  doi: 10.1161/CIRCULATIONAHA.105.592550
– volume: 269
  start-page: 8240
  year: 1994
  ident: bibr66-CMT.S18480
  publication-title: J Biol Chem.
  doi: 10.1016/S0021-9258(17)37185-5
– ident: bibr7-CMT.S18480
  doi: 10.1038/415198a
– ident: bibr19-CMT.S18480
  doi: 10.1161/CIRCRESAHA.111.252981
– ident: bibr5-CMT.S18480
  doi: 10.1146/annurev.physiol.010908.163111
– ident: bibr18-CMT.S18480
  doi: 10.1073/pnas.97.2.793
– ident: bibr58-CMT.S18480
  doi: 10.1016/j.cell.2013.02.047
– ident: bibr28-CMT.S18480
  doi: 10.1111/apha.12287
– ident: bibr3-CMT.S18480
  doi: 10.1016/j.jacc.2011.06.058
– ident: bibr23-CMT.S18480
  doi: 10.1161/CIRCULATIONAHA.111.022889
– ident: bibr42-CMT.S18480
  doi: 10.1146/annurev.biochem.70.1.281
– ident: bibr14-CMT.S18480
  doi: 10.1016/j.yjmcc.2009.08.020
– ident: bibr30-CMT.S18480
  doi: 10.1007/s00395-012-0279-z
– ident: bibr34-CMT.S18480
  doi: 10.1161/CIRCHEARTFAILURE.112.971325
– ident: bibr24-CMT.S18480
  doi: 10.1074/jbc.M006889200
– ident: bibr25-CMT.S18480
  doi: 10.1161/CIRCRESAHA.109.207423
– ident: bibr16-CMT.S18480
  doi: 10.1007/s00228-014-1671-4
– ident: bibr40-CMT.S18480
  doi: 10.1126/science.1411571
SSID ssj0002246639
Score 1.9369135
SecondaryResourceType review_article
Snippet Inotropic agents are often used to improve the contractile performance of the failing myocardium, but this is often at a cost of increased myocardial ischemia...
SourceID gale
crossref
sage
libertasacademia
SourceType Aggregation Database
Index Database
Publisher
StartPage 11
SubjectTerms Drug targeting
Drug therapy
Health aspects
Heart failure
Innovations
Phospholipases
Title Novel Therapeutic Targets in Heart Failure: The Phospholipase Cβ1b-Shank3 Interface
URI http://insights.sagepub.com/novel-therapeutic-targets-in-heart-failure-the-phospholipase-cb1bshank-article-a4816
https://journals.sagepub.com/doi/full/10.4137/CMT.S18480
Volume 2015
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3NbtQwEB6V9sIFyp9YKGAJVC5N2SSOk-WCllVXK6SuVm0KvVmO7air0nTVZA976zvwJjwID8GTMBMnW7JC4pIo8URxxp7xzHjmC8C7TFiBSg61X6wCj1ufe0mmcUByk0SBiaOBJkfxeComZ_zLeXS-BRdtLUzDwfKQ0qqwR7WyJummaDSJOCrd-MPoOD08Rd8k6X9aVlfSxbnb32nQHdqYXl7RnramTMiV19a13YMdwixHWdgZjk--pet4DAGr4WrtEEw3XtJZsxrN_dCh36pSuTx21UkFq1en8S48aMxKNnTz4BFs2eIx7M8cLvXqgKV3ZVblAdtnszvE6tUT-DrF7n__m4ildYZ4yeYFm6AwVGys5pTB_pGo8PHrcoF6c77ARZCNfv30s9-3P04vVHEZsjrImCttn8LZ-CgdTbzmhwueRiuu7xnigOFRYuJYCxX0rbU85-g14tEmYZYFJhRxEKkwy3288G1fiQG3inAD0dJ5BtvFdWGfAxMaNUOIbMwjqloXipvABJqb0CS5HqgevG1ZKhcOV0OiP0KMl8h46RjfgzfEbelqQtfCKIccFfwg5MLvwfuagsSxusGxaKoKsBcEbNWh3OtQohjpTnO8OaLrjhEE90ajVhJnpuSJL3rAaOBlO3X_8R0v_k_yEu6jLRbVuZRiD7arm6V9hfZOlb1upiqePx9NZyd_AE0OBIg
linkProvider SAGE Publications
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3NbtpAEB5FcGgu_Uuj0pJkpVT0gim212vTG0JFJAWEgkm5rda7axW1MgjTSrn1HfImfZA-RJ8ks7aBGFXqxZK1s9J6_mc18xngXcQ0QyeH3s8XjkW1Ta0gkiiQWAWeo3yvI02hOBqzwYxez715McdtZmEKDqYt01aFJ8qcdWHd6G_9D71R2JpiWRJgnV6lXpsFFah2-zdfwt3VisFIw8Cbg5EebCqFn8IJP8uBbEUq8pZ0UerqygJN_zk8LTJE0s1F-gKOdPISGpMcYvquScL9xFTaJA0y2YNP353A7Xj5U39_TETCrNk7JYuEDFCvN6QvFqYZ_aOhwu3LdIUucLHCeEZ6f37b0d9f99OvIvnmkuy-MBZSv4JZ_1PYG1jFvxMsiQlZ21KGA4p6gfJ9yYTT1lrTmGIBiE8duFHkKJf5jifcKLbxxdZtwTpUCwMBiEnLKVSSZaJfA2ESjdxFNsaeGUBngipHOZIqVwWx7IgaXG5Zylc5RAbH0sIwniPjec74GlwYbvN8vHNnV7xL0Vd3XMrsGrzPKIxlbdYoi2JAAE9hMKpKlPUSJVqELC37hxLdHcygaR8sSsFRyTgNbFYDYgTPt1r4j-9483-SC3gyCEdDPrwaf34Lx5hieVmLJKtDZbP-oc8wjdlE54XaPgBx7fBM
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3NTttAEB5VQap6gbYUkULLSiB6wTS212uHW5TWSvmJomIot9V6d61GICfCaSVufYe-CQ_CQ_AknbFNqCMkLpasnZXW8z-rmc8AO6mwAp0cer9QeQ63LneiVKNAMhMFngmDrqZC8WQoBmf88CK4qK8uaBam5mCxT21VeKLSWZN1T01GFo4-N_zcP0n2T7E0ibBWX8J6Juq0YKkXf_-RzK9XCCcNg28FSLqwqRGCake8UoHZqkJVbemq0dlVBpv4NSzXWSLrVWJ9Ay9s_hZ2RxXM9M0eSx6npoo9tstGjwDUN6twPpz8tlf_E7GkbPgu2DhnA9TtGYvVmBrSD4gKt0-KKbrB8RRjGuvf3brp_Z-_pz9Vfumz8s4wU9q-g7P4a9IfOPX_ExyNSVnHMcQBw4PIhKEWyutYa3nGsQjEp438NPWML0IvUH6aufji2o4SXW4VwQBi4rIGrXyS23VgQqOh-8jGLKAhdKG48YynufFNlOmuasP2A0vltILJkFheEOMlMl5WjG_DFnFbViOec9uSPY7-uutz4bbhU0lB1jW7RlnUQwJ4CsKpalBuNijRKnRjOVyU6PxghKi9sKiVREWTPHJFGxgJXj5o4hPf8f55ki14OfoSy-Nvw6MNeIVZVlB2SYpNaM2uf9kPmMnM0o-11v4D7uvxXA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Novel+therapeutic+targets+in+heart+failure%3A+the+phospholipase+C%CE%B21b-Shank3+interface&rft.jtitle=Clinical+medicine+insights.+Therapeutics&rft.au=Woodcock%2C+Elizabeth+A&rft.au=Grubb%2C+David+R&rft.date=2015-05-06&rft.pub=Sage+Publications+Ltd.+%28UK%29&rft.issn=1179-559X&rft.eissn=1179-559X&rft.spage=11&rft_id=info:doi/10.4137%2FCMT.S18480&rft.externalDocID=A414693461
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1179-559X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1179-559X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1179-559X&client=summon