Structure-preserving and efficient numerical methods for ion transport

•Structure-preserving finite difference schemes are proposed for PNP equations.•A novel Newton's method is developed for the nonlinear system after discretization.•Numerical analysis rigorously proves desired physical properties.•The solvability/stability of a linearized problem in the Newton&#...

Full description

Saved in:
Bibliographic Details
Published inJournal of computational physics Vol. 418; p. 109597
Main Authors Ding, Jie, Wang, Zhongming, Zhou, Shenggao
Format Journal Article
LanguageEnglish
Published Cambridge Elsevier Inc 01.10.2020
Elsevier Science Ltd
Subjects
Online AccessGet full text
ISSN0021-9991
1090-2716
DOI10.1016/j.jcp.2020.109597

Cover

Abstract •Structure-preserving finite difference schemes are proposed for PNP equations.•A novel Newton's method is developed for the nonlinear system after discretization.•Numerical analysis rigorously proves desired physical properties.•The solvability/stability of a linearized problem in the Newton's method are established. Ion transport, often described by the Poisson–Nernst–Planck (PNP) equations, is ubiquitous in electrochemical devices and many biological processes of significance. In this work, we develop conservative, positivity-preserving, energy dissipating, and implicit finite difference schemes for solving the multi-dimensional PNP equations. A central-differencing discretization based on harmonic-mean approximations is employed for the Nernst–Planck (NP) equations. The backward Euler discretization in time is employed to derive a fully implicit nonlinear system, which is efficiently solved by a newly proposed Newton's method. The improved computational efficiency of the Newton's method originates from the usage of the electrostatic potential as the iteration variable, rather than the unknowns of the nonlinear system that involves both the potential and concentration of multiple ionic species. Numerical analysis proves that the numerical schemes respect three desired analytical properties (conservation, positivity preserving, and energy dissipation) fully discretely. Based on advantages brought by the harmonic-mean approximations, we are able to establish estimate on the upper bound of condition numbers of coefficient matrices in linear systems that are solved iteratively. The solvability and stability of the linearized problem in the Newton's method are rigorously established as well. Numerical tests are performed to confirm the anticipated numerical accuracy, computational efficiency, and structure-preserving properties of the developed schemes. Adaptive time stepping is implemented for further efficiency improvement. Finally, the proposed numerical approaches are applied to characterize ion transport subject to a sinusoidal applied potential.
AbstractList •Structure-preserving finite difference schemes are proposed for PNP equations.•A novel Newton's method is developed for the nonlinear system after discretization.•Numerical analysis rigorously proves desired physical properties.•The solvability/stability of a linearized problem in the Newton's method are established. Ion transport, often described by the Poisson–Nernst–Planck (PNP) equations, is ubiquitous in electrochemical devices and many biological processes of significance. In this work, we develop conservative, positivity-preserving, energy dissipating, and implicit finite difference schemes for solving the multi-dimensional PNP equations. A central-differencing discretization based on harmonic-mean approximations is employed for the Nernst–Planck (NP) equations. The backward Euler discretization in time is employed to derive a fully implicit nonlinear system, which is efficiently solved by a newly proposed Newton's method. The improved computational efficiency of the Newton's method originates from the usage of the electrostatic potential as the iteration variable, rather than the unknowns of the nonlinear system that involves both the potential and concentration of multiple ionic species. Numerical analysis proves that the numerical schemes respect three desired analytical properties (conservation, positivity preserving, and energy dissipation) fully discretely. Based on advantages brought by the harmonic-mean approximations, we are able to establish estimate on the upper bound of condition numbers of coefficient matrices in linear systems that are solved iteratively. The solvability and stability of the linearized problem in the Newton's method are rigorously established as well. Numerical tests are performed to confirm the anticipated numerical accuracy, computational efficiency, and structure-preserving properties of the developed schemes. Adaptive time stepping is implemented for further efficiency improvement. Finally, the proposed numerical approaches are applied to characterize ion transport subject to a sinusoidal applied potential.
Ion transport, often described by the Poisson–Nernst–Planck (PNP) equations, is ubiquitous in electrochemical devices and many biological processes of significance. In this work, we develop conservative, positivity-preserving, energy dissipating, and implicit finite difference schemes for solving the multi-dimensional PNP equations. A central-differencing discretization based on harmonic-mean approximations is employed for the Nernst–Planck (NP) equations. The backward Euler discretization in time is employed to derive a fully implicit nonlinear system, which is efficiently solved by a newly proposed Newton's method. The improved computational efficiency of the Newton's method originates from the usage of the electrostatic potential as the iteration variable, rather than the unknowns of the nonlinear system that involves both the potential and concentration of multiple ionic species. Numerical analysis proves that the numerical schemes respect three desired analytical properties (conservation, positivity preserving, and energy dissipation) fully discretely. Based on advantages brought by the harmonic-mean approximations, we are able to establish estimate on the upper bound of condition numbers of coefficient matrices in linear systems that are solved iteratively. The solvability and stability of the linearized problem in the Newton's method are rigorously established as well. Numerical tests are performed to confirm the anticipated numerical accuracy, computational efficiency, and structure-preserving properties of the developed schemes. Adaptive time stepping is implemented for further efficiency improvement. Finally, the proposed numerical approaches are applied to characterize ion transport subject to a sinusoidal applied potential.
ArticleNumber 109597
Author Ding, Jie
Wang, Zhongming
Zhou, Shenggao
Author_xml – sequence: 1
  givenname: Jie
  surname: Ding
  fullname: Ding, Jie
  organization: Department of Mathematics and Mathematical Center for Interdiscipline Research, Soochow University, 1 Shizi Street, Suzhou 215006, Jiangsu, China
– sequence: 2
  givenname: Zhongming
  orcidid: 0000-0003-0096-0514
  surname: Wang
  fullname: Wang, Zhongming
  organization: Department of Mathematics and Statistics, Florida International University, Miami, FL 33199, USA
– sequence: 3
  givenname: Shenggao
  orcidid: 0000-0001-9097-8392
  surname: Zhou
  fullname: Zhou, Shenggao
  email: sgzhou@suda.edu.cn
  organization: Department of Mathematics and Mathematical Center for Interdiscipline Research, Soochow University, 1 Shizi Street, Suzhou 215006, Jiangsu, China
BookMark eNp9kMFKAzEQhoNUsFYfwNuC561Jutls8CTFqlDwoJ5DmsxqljZZk2zBtzfLevLQ08zAfDP83yWaOe8AoRuClwST-q5bdrpfUkzHWTDBz9A8N7iknNQzNMeYklIIQS7QZYwdxrhhVTNHm7cUBp2GAGUfIEI4WvdZKGcKaFurLbhUuOEAwWq1Lw6QvryJRetDYb0rUlAu9j6kK3Teqn2E67-6QB-bx_f1c7l9fXpZP2xLvaIslS1jtOaqJRgLo4niteAmz8rUFZiGcsMMo4xQpUjDm50WZgUca9C7HVa1Xi3Q7XS3D_57gJhk54fg8ktJq6oRFc_J8haZtnTwMQZoZR_sQYUfSbAcdclOZl1y1CUnXZnh_xhtk0o5ZQ5p9yfJ-4mEHPxoIcg4etNgbACdpPH2BP0Ly_iHnQ
CitedBy_id crossref_primary_10_1007_s10915_024_02669_0
crossref_primary_10_1021_acsnano_4c09154
crossref_primary_10_1016_j_cam_2024_115759
crossref_primary_10_1016_j_jcp_2020_109908
crossref_primary_10_3934_dcdsb_2024184
crossref_primary_10_1016_j_jcp_2024_113094
crossref_primary_10_1090_mcom_3642
crossref_primary_10_1016_j_cam_2021_114017
crossref_primary_10_1016_j_cam_2024_115983
crossref_primary_10_1016_j_cam_2024_115784
crossref_primary_10_1002_mma_8015
crossref_primary_10_1088_1402_4896_abe9ef
crossref_primary_10_1016_j_jcp_2021_110777
crossref_primary_10_1016_j_apnum_2023_11_012
crossref_primary_10_1016_j_jcp_2022_111845
crossref_primary_10_1016_j_cnsns_2024_108351
crossref_primary_10_1016_j_jcp_2023_112206
Cites_doi 10.1016/j.jcp.2019.108864
10.4208/nmtma.OA-2018-0058
10.1063/1.4872330
10.1016/j.jcp.2014.02.036
10.1137/16M1108583
10.1007/s11425-016-5137-2
10.4310/CMS.2014.v12.n1.a7
10.1007/s11425-015-5055-8
10.1016/j.cis.2009.10.001
10.1137/100812781
10.1103/PhysRevE.84.021901
10.1016/j.cam.2016.01.028
10.1016/j.jcp.2016.10.008
10.1137/16M110383X
10.4208/cicp.040913.120514a
10.1016/j.jcp.2015.10.053
10.4310/CMS.2018.v16.n1.a12
10.1080/00411450008205893
10.1021/acs.jpcb.8b00854
10.1007/s10955-016-1470-7
10.1021/jp511702w
10.4208/cicp.OA-2017-0134
10.1016/0362-546X(94)90101-5
10.1016/j.jcp.2010.05.035
10.1088/0953-8984/26/28/284102
10.1007/s10915-018-0727-5
10.1103/RevModPhys.80.839
10.1021/jp305273n
10.1007/s10825-013-0506-3
10.1137/18M1167218
10.1006/jdeq.1995.1172
10.1088/0951-7715/26/10/2899
10.1016/j.bpj.2011.03.059
10.1002/zamm.19960760502
10.1016/j.jcp.2011.03.020
10.1007/s10825-017-0969-8
10.1007/s10915-017-0400-4
10.1103/PhysRevE.70.021506
10.1103/PhysRevE.90.013307
10.1016/S0006-3495(00)76275-8
10.1007/s00211-008-0194-2
10.1007/s00211-020-01109-z
10.1016/j.jcp.2019.02.028
10.1007/s000230050003
10.1006/jdeq.1995.1173
10.1016/j.jcp.2014.06.039
10.4208/cicp.101112.100413a
10.1016/0022-247X(86)90330-6
ContentType Journal Article
Copyright 2020 Elsevier Inc.
Copyright Elsevier Science Ltd. Oct 1, 2020
Copyright_xml – notice: 2020 Elsevier Inc.
– notice: Copyright Elsevier Science Ltd. Oct 1, 2020
DBID AAYXX
CITATION
7SC
7SP
7U5
8FD
JQ2
L7M
L~C
L~D
DOI 10.1016/j.jcp.2020.109597
DatabaseName CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Technology Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
EISSN 1090-2716
ExternalDocumentID 10_1016_j_jcp_2020_109597
S0021999120303715
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
6OB
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
AAYFN
ABBOA
ABFRF
ABJNI
ABMAC
ABNEU
ABYKQ
ACBEA
ACDAQ
ACFVG
ACGFO
ACGFS
ACNCT
ACRLP
ACZNC
ADBBV
ADEZE
AEBSH
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AIVDX
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
AXJTR
BKOJK
BLXMC
CS3
DM4
DU5
EBS
EFBJH
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HLZ
HVGLF
IHE
J1W
K-O
KOM
LG5
LX9
LZ4
M37
M41
MO0
N9A
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SPD
SSQ
SSV
SSZ
T5K
TN5
UPT
YQT
ZMT
ZU3
~02
~G-
29K
6TJ
8WZ
A6W
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABFNM
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADFGL
ADIYS
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BBWZM
CAG
CITATION
COF
D-I
EFKBS
EJD
FGOYB
G-2
HME
HMV
HZ~
NDZJH
R2-
SBC
SEW
SHN
SPG
T9H
UQL
WUQ
ZY4
~HD
7SC
7SP
7U5
8FD
AFXIZ
AGCQF
AGRNS
BNPGV
JQ2
L7M
L~C
L~D
SSH
ID FETCH-LOGICAL-c325t-f55267af1009dc1a7697d7afad64ed827d5d52512aa1878bc9d3e70cecbb0a6c3
IEDL.DBID .~1
ISSN 0021-9991
IngestDate Fri Jul 25 05:40:39 EDT 2025
Wed Oct 01 02:36:51 EDT 2025
Thu Apr 24 23:00:15 EDT 2025
Fri Feb 23 02:46:25 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Ion transport
Newton's method
Energy dissipation
Harmonic-mean approximation
Conservation
Positivity
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c325t-f55267af1009dc1a7697d7afad64ed827d5d52512aa1878bc9d3e70cecbb0a6c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-9097-8392
0000-0003-0096-0514
PQID 2448947000
PQPubID 2047462
ParticipantIDs proquest_journals_2448947000
crossref_primary_10_1016_j_jcp_2020_109597
crossref_citationtrail_10_1016_j_jcp_2020_109597
elsevier_sciencedirect_doi_10_1016_j_jcp_2020_109597
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-10-01
2020-10-00
20201001
PublicationDateYYYYMMDD 2020-10-01
PublicationDate_xml – month: 10
  year: 2020
  text: 2020-10-01
  day: 01
PublicationDecade 2020
PublicationPlace Cambridge
PublicationPlace_xml – name: Cambridge
PublicationTitle Journal of computational physics
PublicationYear 2020
Publisher Elsevier Inc
Elsevier Science Ltd
Publisher_xml – name: Elsevier Inc
– name: Elsevier Science Ltd
References Meng, Zheng, Lin, Sushko (br0410) 2014; 16
Lin, Eisenberg (br0320) 2014; 12
Fang, Ito (br0130) 1995; 123
Schoch, Han, Renaud (br0490) 2008; 80
Fang, Ito (br0140) 1995; 123
Metti, Xu, Liu (br0420) 2016; 306
Siddiqua, Wang, Zhou (br0500) 2018; 16
Flavell, Kabre, Li (br0150) 2017; 16
Prohl, Schmuck (br0440) 2009; 111
Lu, Holst, McCammon, Zhou (br0380) 2010; 229
Biler, Dolbeault (br0060) 2000; 1
Golub, Loan (br0220) 1996
Li, Qiao, Zhang (br0310) 2016; 59
Markowich (br0400) 1986
Lu, Zhou (br0390) 2011; 100
Cardenas, Coalson, Kurnikova (br0080) 2000; 79
Gao, Sun (br0200) 2018; 77
Qiao, Zhang, Tang (br0480) 2011; 33
Zheng, Chen, Wei (br0550) 2011; 230
Gao, He (br0190) 2017; 72
Hu, Huang (br0230) 2020; 145
Hyon, Eisenberg, Liu (br0240) 2010; 9
Gajewski, Gröger (br0180) 1986; 113
Zheng, Trudeau (br0540) 2015
Arnold, Markowich, Toscani (br0020) 2000; 29
Bazant, Thornton, Ajdari (br0040) 2004; 70
Liu, Wang (br0340) 2017; 328
Bazant, Kilic, Storey, Ajdari (br0030) 2009; 152
Sun, Sun, Zheng, Lin (br0510) 2016; 301
Qiao, Tu, Lu (br0470) 2014; 140
Wang, Zhou, Kekenes-Huskey, Li, McCammon (br0520) 2014; 118
Mirzadeh, Gibou (br0430) 2014; 274
Chaudhry, Comer, Aksimentiev, Olson (br0090) 2014; 15
Amrei, Bukosky, Rader, Ristenpart, Miller (br0010) 2018; 121
Ding, Wang, Zhou (br0120) 2019; 397
Liu, Ji, Xu (br0350) 2018; 78
Gajewski, Gärtner (br0170) 1996; 76
Kilic, Bazant, Ajdari (br0280) 2007; 75
Berman, Plemmons (br0050) 1994
Xu, Ma, Liu (br0530) 2014; 90
Ding, Wang, Zhou (br0110) 2019; 12
Qiao, Liu, Chen, Lu (br0460) 2016; 163
Qian, Wang, Zhou (br0450) 2019; 386
Gavish, Liu, Eisenberg (br0210) 2018; 22
Jiang, Cao, Jiang, Wu (br0270) 2014; 26
Kilic, Bazant, Ajdari (br0290) 2007; 75
Zhou, Wang, Li (br0560) 2011; 84
Biler, Hebisch, Nadzieja (br0070) 1994; 23
Ji, Liu, Xu, Zhou (br0260) 2018; 78
Hyon, Liu, Eisenberg (br0250) 2012; 116
Flavell, Machen, Eisenberg, Kabre, Liu, Li (br0160) 2014; 13
Ding, Sun, Wang, Zhou (br0100) 2018; 23
Liu, Qiao, Lu (br0360) 2018; 78
Li, Liu, Xu, Zhou (br0300) 2013; 26
Liu, Wang (br0330) 2014; 268
Liu, Shu (br0370) 2016; 59
Xu (10.1016/j.jcp.2020.109597_br0530) 2014; 90
Biler (10.1016/j.jcp.2020.109597_br0060) 2000; 1
Chaudhry (10.1016/j.jcp.2020.109597_br0090) 2014; 15
Ji (10.1016/j.jcp.2020.109597_br0260) 2018; 78
Gao (10.1016/j.jcp.2020.109597_br0190) 2017; 72
Zheng (10.1016/j.jcp.2020.109597_br0550) 2011; 230
Amrei (10.1016/j.jcp.2020.109597_br0010) 2018; 121
Gajewski (10.1016/j.jcp.2020.109597_br0170) 1996; 76
Siddiqua (10.1016/j.jcp.2020.109597_br0500) 2018; 16
Arnold (10.1016/j.jcp.2020.109597_br0020) 2000; 29
Cardenas (10.1016/j.jcp.2020.109597_br0080) 2000; 79
Kilic (10.1016/j.jcp.2020.109597_br0290) 2007; 75
Bazant (10.1016/j.jcp.2020.109597_br0040) 2004; 70
Flavell (10.1016/j.jcp.2020.109597_br0160) 2014; 13
Hu (10.1016/j.jcp.2020.109597_br0230) 2020; 145
Li (10.1016/j.jcp.2020.109597_br0300) 2013; 26
Liu (10.1016/j.jcp.2020.109597_br0330) 2014; 268
Flavell (10.1016/j.jcp.2020.109597_br0150) 2017; 16
Meng (10.1016/j.jcp.2020.109597_br0410) 2014; 16
Zheng (10.1016/j.jcp.2020.109597_br0540) 2015
Qiao (10.1016/j.jcp.2020.109597_br0480) 2011; 33
Sun (10.1016/j.jcp.2020.109597_br0510) 2016; 301
Gajewski (10.1016/j.jcp.2020.109597_br0180) 1986; 113
Jiang (10.1016/j.jcp.2020.109597_br0270) 2014; 26
Berman (10.1016/j.jcp.2020.109597_br0050) 1994
Li (10.1016/j.jcp.2020.109597_br0310) 2016; 59
Qian (10.1016/j.jcp.2020.109597_br0450) 2019; 386
Qiao (10.1016/j.jcp.2020.109597_br0470) 2014; 140
Markowich (10.1016/j.jcp.2020.109597_br0400) 1986
Mirzadeh (10.1016/j.jcp.2020.109597_br0430) 2014; 274
Hyon (10.1016/j.jcp.2020.109597_br0240) 2010; 9
Kilic (10.1016/j.jcp.2020.109597_br0280) 2007; 75
Liu (10.1016/j.jcp.2020.109597_br0360) 2018; 78
Fang (10.1016/j.jcp.2020.109597_br0140) 1995; 123
Bazant (10.1016/j.jcp.2020.109597_br0030) 2009; 152
Wang (10.1016/j.jcp.2020.109597_br0520) 2014; 118
Fang (10.1016/j.jcp.2020.109597_br0130) 1995; 123
Liu (10.1016/j.jcp.2020.109597_br0370) 2016; 59
Lu (10.1016/j.jcp.2020.109597_br0390) 2011; 100
Qiao (10.1016/j.jcp.2020.109597_br0460) 2016; 163
Schoch (10.1016/j.jcp.2020.109597_br0490) 2008; 80
Liu (10.1016/j.jcp.2020.109597_br0340) 2017; 328
Gao (10.1016/j.jcp.2020.109597_br0200) 2018; 77
Gavish (10.1016/j.jcp.2020.109597_br0210) 2018; 22
Liu (10.1016/j.jcp.2020.109597_br0350) 2018; 78
Hyon (10.1016/j.jcp.2020.109597_br0250) 2012; 116
Lu (10.1016/j.jcp.2020.109597_br0380) 2010; 229
Golub (10.1016/j.jcp.2020.109597_br0220) 1996
Ding (10.1016/j.jcp.2020.109597_br0120) 2019; 397
Zhou (10.1016/j.jcp.2020.109597_br0560) 2011; 84
Ding (10.1016/j.jcp.2020.109597_br0100) 2018; 23
Ding (10.1016/j.jcp.2020.109597_br0110) 2019; 12
Prohl (10.1016/j.jcp.2020.109597_br0440) 2009; 111
Biler (10.1016/j.jcp.2020.109597_br0070) 1994; 23
Lin (10.1016/j.jcp.2020.109597_br0320) 2014; 12
Metti (10.1016/j.jcp.2020.109597_br0420) 2016; 306
References_xml – volume: 386
  start-page: 22
  year: 2019
  end-page: 36
  ident: br0450
  article-title: A conservative, free energy dissipating, and positivity preserving finite difference scheme for multi-dimensional nonlocal Fokker–Planck equation
  publication-title: J. Comput. Phys.
– volume: 79
  start-page: 80
  year: 2000
  end-page: 93
  ident: br0080
  article-title: Three-dimensional Poisson-Nernst-Planck theory studies: influence of membrane electrostatics on gramicidin A channel conductance
  publication-title: Biophys. J.
– volume: 76
  start-page: 247
  year: 1996
  end-page: 264
  ident: br0170
  article-title: On the discretization of Van Roosbroeck's equations with magnetic field
  publication-title: Z. Angew. Math. Mech.
– volume: 123
  start-page: 523
  year: 1995
  end-page: 566
  ident: br0140
  article-title: Global solutions of the time-dependent drift-diffusion semiconductor equations
  publication-title: J. Differ. Equ.
– volume: 163
  start-page: 156
  year: 2016
  end-page: 174
  ident: br0460
  article-title: A local approximation of fundamental measure theory incorporated into three dimensional Poisson–Nernst–Planck equations to account for hard sphere repulsion among ions
  publication-title: J. Stat. Phys.
– volume: 22
  start-page: 5183
  year: 2018
  end-page: 5192
  ident: br0210
  article-title: Do bistable steric Poisson–Nernst–Planck models describe single-channel gating?
  publication-title: J. Phys. Chem. B
– volume: 145
  start-page: 77
  year: 2020
  end-page: 115
  ident: br0230
  article-title: A fully discrete positivity-preserving and energy-dissipative finite difference scheme for Poisson–Nernst–Planck equations
  publication-title: Numer. Math.
– volume: 397
  year: 2019
  ident: br0120
  article-title: Positivity preserving finite difference methods for Poisson-Nernst-Planck equations with steric interactions: application to slit-shaped nanopore conductance
  publication-title: J. Comput. Phys.
– volume: 77
  start-page: 793
  year: 2018
  end-page: 817
  ident: br0200
  article-title: A linearized conservative mixed finite element method for Poisson–Nernst–Planck equations
  publication-title: J. Sci. Comput.
– volume: 26
  start-page: 2899
  year: 2013
  ident: br0300
  article-title: Ionic size effects: generalized Boltzmann distributions, counterion stratification, and modified Debye length
  publication-title: Nonlinearity
– volume: 12
  start-page: 607
  year: 2019
  end-page: 626
  ident: br0110
  article-title: Optimal rate convergence analysis of a second order numerical scheme for the Poisson–Nernst–Planck system
  publication-title: Numer. Math., Theory Methods Appl.
– volume: 33
  start-page: 1395
  year: 2011
  end-page: 1414
  ident: br0480
  article-title: An adaptive time-stepping strategy for the molecular beam epitaxy models
  publication-title: SIAM J. Sci. Comput.
– volume: 274
  start-page: 633
  year: 2014
  end-page: 653
  ident: br0430
  article-title: A conservative discretization of the Poisson-Nernst-Planck equations on adaptive cartesian grids
  publication-title: J. Comput. Phys.
– volume: 12
  start-page: 149
  year: 2014
  end-page: 173
  ident: br0320
  article-title: A new approach to the Lennard-Jones potential and a new model: PNP-steric equations
  publication-title: Commun. Math. Sci.
– volume: 121
  year: 2018
  ident: br0010
  article-title: Oscillating electric fields in liquids create a long-range steady field
  publication-title: Phys. Rev. Lett.
– volume: 23
  start-page: 1189
  year: 1994
  end-page: 1209
  ident: br0070
  article-title: The Debye system: existence and large time behavior of solutions
  publication-title: Nonlinear Anal.
– volume: 140
  year: 2014
  ident: br0470
  article-title: Ionic size effects to molecular solvation energy and to ion current across a channel resulted from the nonuniform size-modified PNP equations
  publication-title: J. Chem. Phys.
– year: 2015
  ident: br0540
  article-title: Handbook of Ion Channels
– volume: 123
  start-page: 567
  year: 1995
  end-page: 587
  ident: br0130
  article-title: Asymptotic behavior of the drift-diffusion semiconductor equations
  publication-title: J. Differ. Equ.
– volume: 113
  start-page: 12
  year: 1986
  end-page: 35
  ident: br0180
  article-title: On the basic equations for carrier transport in semiconductors
  publication-title: J. Math. Anal. Appl.
– volume: 16
  start-page: 431
  year: 2017
  end-page: 441
  ident: br0150
  article-title: An energy-preserving discretization for the Poisson-Nernst-Planck equations
  publication-title: J. Comput. Electron.
– volume: 111
  start-page: 591
  year: 2009
  end-page: 630
  ident: br0440
  article-title: Convergent discretizations for the Nernst–Planck–Poisson system
  publication-title: Numer. Math.
– volume: 328
  start-page: 413
  year: 2017
  end-page: 437
  ident: br0340
  article-title: A free energy satisfying discontinuous Galerkin method for one-dimensional Poisson-Nernst-Planck systems
  publication-title: J. Comput. Phys.
– volume: 16
  start-page: 251
  year: 2018
  end-page: 271
  ident: br0500
  article-title: A modified Poisson–Nernst–Planck model with excluded volume effect: theory and numerical implementation
  publication-title: Commun. Math. Sci.
– volume: 26
  year: 2014
  ident: br0270
  article-title: Time-dependent density functional theory for ion diffusion in electrochemical systems
  publication-title: J. Phys. Condens. Matter
– year: 1986
  ident: br0400
  article-title: The Stationary Semiconductor Device Equations
– volume: 16
  start-page: 1298
  year: 2014
  end-page: 1322
  ident: br0410
  article-title: Numerical solution of 3D Poisson-Nernst-Planck equations coupled with classical density functional theory for modeling ion and electron transport in confined environment
  publication-title: Commun. Comput. Phys.
– volume: 1
  start-page: 461
  year: 2000
  end-page: 472
  ident: br0060
  article-title: Long time behavior of solutions to Nernst-Planck and Debye-Hückel drift-diffusion systems
  publication-title: Ann. Henri Poincaré
– volume: 13
  start-page: 235
  year: 2014
  end-page: 249
  ident: br0160
  article-title: A conservative finite difference scheme for Poisson-Nernst-Planck equations
  publication-title: J. Comput. Electron.
– volume: 268
  start-page: 363
  year: 2014
  end-page: 376
  ident: br0330
  article-title: A free energy satisfying finite difference method for Poisson-Nernst-Planck equations
  publication-title: J. Comput. Phys.
– volume: 9
  start-page: 459
  year: 2010
  end-page: 475
  ident: br0240
  article-title: A mathematical model for the hard sphere repulsion in ionic solutions
  publication-title: Commun. Math. Sci.
– volume: 15
  start-page: 93
  year: 2014
  end-page: 125
  ident: br0090
  article-title: A stabilized finite element method for modified Poisson-Nernst-Planck equations to determine ion flow through a nanopore
  publication-title: Commun. Comput. Phys.
– volume: 229
  start-page: 6979
  year: 2010
  end-page: 6994
  ident: br0380
  article-title: Poisson-Nernst-Planck equations for simulating biomolecular diffusion-reaction processes I: finite element solutions
  publication-title: J. Comput. Phys.
– volume: 90
  year: 2014
  ident: br0530
  article-title: Self-energy-modified Poisson–Nernst–Planck equations: WKB approximation and finite-difference approaches
  publication-title: Phys. Rev. E
– volume: 80
  start-page: 839
  year: 2008
  end-page: 883
  ident: br0490
  article-title: Transport phenomena in nanofluidics
  publication-title: Rev. Mod. Phys.
– volume: 75
  year: 2007
  ident: br0280
  article-title: Steric effects in the dynamics of electrolytes at large applied voltages. II. Modified Poisson–Nernst–Planck equations
  publication-title: Phys. Rev. E
– volume: 152
  start-page: 48
  year: 2009
  end-page: 88
  ident: br0030
  article-title: Towards an understanding of induced-charge electrokinetics at large applied voltages in concentrated solutions
  publication-title: Adv. Colloid Interface Sci.
– volume: 78
  start-page: 1802
  year: 2018
  end-page: 1822
  ident: br0260
  article-title: Asymptotic analysis on dielectric boundary effects of modified Poisson–Nernst–Planck equations
  publication-title: SIAM J. Appl. Math.
– volume: 118
  start-page: 14827
  year: 2014
  end-page: 14832
  ident: br0520
  article-title: Poisson-Boltzmann vs. size-modified Poisson-Boltzmann electrostatics applied to lipid bilayers
  publication-title: J. Phys. Chem. B
– volume: 70
  year: 2004
  ident: br0040
  article-title: Diffuse-charge dynamics in electrochemical systems
  publication-title: Phys. Rev. E
– volume: 72
  start-page: 1269
  year: 2017
  end-page: 1289
  ident: br0190
  article-title: Linearized conservative finite element methods for the Nernst–Planck–Poisson equations
  publication-title: J. Sci. Comput.
– year: 1994
  ident: br0050
  article-title: Nonnegative Matrices in the Mathematical Sciences
– volume: 301
  start-page: 28
  year: 2016
  end-page: 43
  ident: br0510
  article-title: Error analysis of finite element method for Poisson–Nernst–Planck equations
  publication-title: J. Comput. Appl. Math.
– volume: 29
  start-page: 571
  year: 2000
  end-page: 581
  ident: br0020
  article-title: On large time asymptotics for drift-diffusion-Poisson systems
  publication-title: Transp. Theory Stat. Phys.
– year: 1996
  ident: br0220
  article-title: Matrix Computations
  publication-title: Johns Hopkins Studies in the Mathematical Sciences
– volume: 306
  start-page: 1
  year: 2016
  end-page: 18
  ident: br0420
  article-title: Energetically stable discretizations for charge transport and electrokinetic models
  publication-title: J. Comput. Phys.
– volume: 230
  start-page: 5239
  year: 2011
  end-page: 5262
  ident: br0550
  article-title: Second-order Poisson-Nernst-Planck solver for ion channel transport
  publication-title: J. Comput. Phys.
– volume: 59
  start-page: 115
  year: 2016
  end-page: 140
  ident: br0370
  article-title: Analysis of the local discontinuous Galerkin method for the drift-diffusion model of semiconductor devices
  publication-title: Sci. China Math.
– volume: 75
  year: 2007
  ident: br0290
  article-title: Steric effects in the dynamics of electrolytes at large applied voltages. I. Double-layer charging
  publication-title: Phys. Rev. E
– volume: 59
  start-page: 1815
  year: 2016
  end-page: 1834
  ident: br0310
  article-title: An unconditionally energy stable finite difference scheme for a stochastic Cahn-Hilliard equation
  publication-title: Sci. China Math.
– volume: 100
  start-page: 2475
  year: 2011
  end-page: 2485
  ident: br0390
  article-title: Poisson-Nernst-Planck equations for simulating biomolecular diffusion-reaction processes II: size effects on ionic distributions and diffusion-reaction rates
  publication-title: Biophys. J.
– volume: 78
  start-page: 226
  year: 2018
  end-page: 245
  ident: br0350
  article-title: Modified Poisson–Nernst–Planck model with accurate Coulomb correlation in variable media
  publication-title: SIAM J. Appl. Math.
– volume: 23
  start-page: 1549
  year: 2018
  end-page: 1572
  ident: br0100
  article-title: Computational study on hysteresis of ion channels: multiple solutions to steady-state Poisson–Nernst–Planck equations
  publication-title: Commun. Comput. Phys.
– volume: 116
  start-page: 11422
  year: 2012
  end-page: 11441
  ident: br0250
  article-title: PNP equations with steric effects: a model of ion flow through channels
  publication-title: J. Phys. Chem. B
– volume: 78
  start-page: 1131
  year: 2018
  end-page: 1154
  ident: br0360
  article-title: Analysis of the mean field free energy functional of electrolyte solution with non-homogenous boundary conditions and the generalized PB/PNP equations with inhomogeneous dielectric permittivity
  publication-title: SIAM J. Appl. Math.
– volume: 84
  year: 2011
  ident: br0560
  article-title: Mean-field description of ionic size effects with non-uniform ionic sizes: a numerical approach
  publication-title: Phys. Rev. E
– volume: 397
  year: 2019
  ident: 10.1016/j.jcp.2020.109597_br0120
  article-title: Positivity preserving finite difference methods for Poisson-Nernst-Planck equations with steric interactions: application to slit-shaped nanopore conductance
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2019.108864
– volume: 12
  start-page: 607
  year: 2019
  ident: 10.1016/j.jcp.2020.109597_br0110
  article-title: Optimal rate convergence analysis of a second order numerical scheme for the Poisson–Nernst–Planck system
  publication-title: Numer. Math., Theory Methods Appl.
  doi: 10.4208/nmtma.OA-2018-0058
– volume: 140
  year: 2014
  ident: 10.1016/j.jcp.2020.109597_br0470
  article-title: Ionic size effects to molecular solvation energy and to ion current across a channel resulted from the nonuniform size-modified PNP equations
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.4872330
– volume: 268
  start-page: 363
  year: 2014
  ident: 10.1016/j.jcp.2020.109597_br0330
  article-title: A free energy satisfying finite difference method for Poisson-Nernst-Planck equations
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2014.02.036
– volume: 78
  start-page: 1131
  year: 2018
  ident: 10.1016/j.jcp.2020.109597_br0360
  article-title: Analysis of the mean field free energy functional of electrolyte solution with non-homogenous boundary conditions and the generalized PB/PNP equations with inhomogeneous dielectric permittivity
  publication-title: SIAM J. Appl. Math.
  doi: 10.1137/16M1108583
– volume: 59
  start-page: 1815
  issue: 9
  year: 2016
  ident: 10.1016/j.jcp.2020.109597_br0310
  article-title: An unconditionally energy stable finite difference scheme for a stochastic Cahn-Hilliard equation
  publication-title: Sci. China Math.
  doi: 10.1007/s11425-016-5137-2
– volume: 12
  start-page: 149
  year: 2014
  ident: 10.1016/j.jcp.2020.109597_br0320
  article-title: A new approach to the Lennard-Jones potential and a new model: PNP-steric equations
  publication-title: Commun. Math. Sci.
  doi: 10.4310/CMS.2014.v12.n1.a7
– volume: 59
  start-page: 115
  year: 2016
  ident: 10.1016/j.jcp.2020.109597_br0370
  article-title: Analysis of the local discontinuous Galerkin method for the drift-diffusion model of semiconductor devices
  publication-title: Sci. China Math.
  doi: 10.1007/s11425-015-5055-8
– volume: 152
  start-page: 48
  year: 2009
  ident: 10.1016/j.jcp.2020.109597_br0030
  article-title: Towards an understanding of induced-charge electrokinetics at large applied voltages in concentrated solutions
  publication-title: Adv. Colloid Interface Sci.
  doi: 10.1016/j.cis.2009.10.001
– volume: 33
  start-page: 1395
  year: 2011
  ident: 10.1016/j.jcp.2020.109597_br0480
  article-title: An adaptive time-stepping strategy for the molecular beam epitaxy models
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/100812781
– year: 1996
  ident: 10.1016/j.jcp.2020.109597_br0220
  article-title: Matrix Computations
– year: 1994
  ident: 10.1016/j.jcp.2020.109597_br0050
– volume: 84
  year: 2011
  ident: 10.1016/j.jcp.2020.109597_br0560
  article-title: Mean-field description of ionic size effects with non-uniform ionic sizes: a numerical approach
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.84.021901
– volume: 301
  start-page: 28
  year: 2016
  ident: 10.1016/j.jcp.2020.109597_br0510
  article-title: Error analysis of finite element method for Poisson–Nernst–Planck equations
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/j.cam.2016.01.028
– volume: 328
  start-page: 413
  year: 2017
  ident: 10.1016/j.jcp.2020.109597_br0340
  article-title: A free energy satisfying discontinuous Galerkin method for one-dimensional Poisson-Nernst-Planck systems
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2016.10.008
– volume: 78
  start-page: 226
  year: 2018
  ident: 10.1016/j.jcp.2020.109597_br0350
  article-title: Modified Poisson–Nernst–Planck model with accurate Coulomb correlation in variable media
  publication-title: SIAM J. Appl. Math.
  doi: 10.1137/16M110383X
– volume: 16
  start-page: 1298
  year: 2014
  ident: 10.1016/j.jcp.2020.109597_br0410
  article-title: Numerical solution of 3D Poisson-Nernst-Planck equations coupled with classical density functional theory for modeling ion and electron transport in confined environment
  publication-title: Commun. Comput. Phys.
  doi: 10.4208/cicp.040913.120514a
– volume: 306
  start-page: 1
  year: 2016
  ident: 10.1016/j.jcp.2020.109597_br0420
  article-title: Energetically stable discretizations for charge transport and electrokinetic models
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2015.10.053
– volume: 16
  start-page: 251
  issue: 1
  year: 2018
  ident: 10.1016/j.jcp.2020.109597_br0500
  article-title: A modified Poisson–Nernst–Planck model with excluded volume effect: theory and numerical implementation
  publication-title: Commun. Math. Sci.
  doi: 10.4310/CMS.2018.v16.n1.a12
– volume: 29
  start-page: 571
  issue: 3–5
  year: 2000
  ident: 10.1016/j.jcp.2020.109597_br0020
  article-title: On large time asymptotics for drift-diffusion-Poisson systems
  publication-title: Transp. Theory Stat. Phys.
  doi: 10.1080/00411450008205893
– volume: 22
  start-page: 5183
  issue: 20
  year: 2018
  ident: 10.1016/j.jcp.2020.109597_br0210
  article-title: Do bistable steric Poisson–Nernst–Planck models describe single-channel gating?
  publication-title: J. Phys. Chem. B
  doi: 10.1021/acs.jpcb.8b00854
– volume: 163
  start-page: 156
  year: 2016
  ident: 10.1016/j.jcp.2020.109597_br0460
  article-title: A local approximation of fundamental measure theory incorporated into three dimensional Poisson–Nernst–Planck equations to account for hard sphere repulsion among ions
  publication-title: J. Stat. Phys.
  doi: 10.1007/s10955-016-1470-7
– volume: 118
  start-page: 14827
  issue: 51
  year: 2014
  ident: 10.1016/j.jcp.2020.109597_br0520
  article-title: Poisson-Boltzmann vs. size-modified Poisson-Boltzmann electrostatics applied to lipid bilayers
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp511702w
– volume: 23
  start-page: 1549
  issue: 5
  year: 2018
  ident: 10.1016/j.jcp.2020.109597_br0100
  article-title: Computational study on hysteresis of ion channels: multiple solutions to steady-state Poisson–Nernst–Planck equations
  publication-title: Commun. Comput. Phys.
  doi: 10.4208/cicp.OA-2017-0134
– volume: 23
  start-page: 1189
  year: 1994
  ident: 10.1016/j.jcp.2020.109597_br0070
  article-title: The Debye system: existence and large time behavior of solutions
  publication-title: Nonlinear Anal.
  doi: 10.1016/0362-546X(94)90101-5
– volume: 229
  start-page: 6979
  issue: 19
  year: 2010
  ident: 10.1016/j.jcp.2020.109597_br0380
  article-title: Poisson-Nernst-Planck equations for simulating biomolecular diffusion-reaction processes I: finite element solutions
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2010.05.035
– volume: 9
  start-page: 459
  year: 2010
  ident: 10.1016/j.jcp.2020.109597_br0240
  article-title: A mathematical model for the hard sphere repulsion in ionic solutions
  publication-title: Commun. Math. Sci.
– volume: 26
  year: 2014
  ident: 10.1016/j.jcp.2020.109597_br0270
  article-title: Time-dependent density functional theory for ion diffusion in electrochemical systems
  publication-title: J. Phys. Condens. Matter
  doi: 10.1088/0953-8984/26/28/284102
– year: 2015
  ident: 10.1016/j.jcp.2020.109597_br0540
– volume: 77
  start-page: 793
  year: 2018
  ident: 10.1016/j.jcp.2020.109597_br0200
  article-title: A linearized conservative mixed finite element method for Poisson–Nernst–Planck equations
  publication-title: J. Sci. Comput.
  doi: 10.1007/s10915-018-0727-5
– volume: 80
  start-page: 839
  year: 2008
  ident: 10.1016/j.jcp.2020.109597_br0490
  article-title: Transport phenomena in nanofluidics
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.80.839
– volume: 75
  year: 2007
  ident: 10.1016/j.jcp.2020.109597_br0280
  article-title: Steric effects in the dynamics of electrolytes at large applied voltages. II. Modified Poisson–Nernst–Planck equations
  publication-title: Phys. Rev. E
– volume: 116
  start-page: 11422
  year: 2012
  ident: 10.1016/j.jcp.2020.109597_br0250
  article-title: PNP equations with steric effects: a model of ion flow through channels
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp305273n
– volume: 13
  start-page: 235
  year: 2014
  ident: 10.1016/j.jcp.2020.109597_br0160
  article-title: A conservative finite difference scheme for Poisson-Nernst-Planck equations
  publication-title: J. Comput. Electron.
  doi: 10.1007/s10825-013-0506-3
– volume: 78
  start-page: 1802
  year: 2018
  ident: 10.1016/j.jcp.2020.109597_br0260
  article-title: Asymptotic analysis on dielectric boundary effects of modified Poisson–Nernst–Planck equations
  publication-title: SIAM J. Appl. Math.
  doi: 10.1137/18M1167218
– volume: 123
  start-page: 523
  year: 1995
  ident: 10.1016/j.jcp.2020.109597_br0140
  article-title: Global solutions of the time-dependent drift-diffusion semiconductor equations
  publication-title: J. Differ. Equ.
  doi: 10.1006/jdeq.1995.1172
– volume: 26
  start-page: 2899
  issue: 10
  year: 2013
  ident: 10.1016/j.jcp.2020.109597_br0300
  article-title: Ionic size effects: generalized Boltzmann distributions, counterion stratification, and modified Debye length
  publication-title: Nonlinearity
  doi: 10.1088/0951-7715/26/10/2899
– volume: 100
  start-page: 2475
  year: 2011
  ident: 10.1016/j.jcp.2020.109597_br0390
  article-title: Poisson-Nernst-Planck equations for simulating biomolecular diffusion-reaction processes II: size effects on ionic distributions and diffusion-reaction rates
  publication-title: Biophys. J.
  doi: 10.1016/j.bpj.2011.03.059
– volume: 76
  start-page: 247
  issue: 5
  year: 1996
  ident: 10.1016/j.jcp.2020.109597_br0170
  article-title: On the discretization of Van Roosbroeck's equations with magnetic field
  publication-title: Z. Angew. Math. Mech.
  doi: 10.1002/zamm.19960760502
– volume: 230
  start-page: 5239
  issue: 13
  year: 2011
  ident: 10.1016/j.jcp.2020.109597_br0550
  article-title: Second-order Poisson-Nernst-Planck solver for ion channel transport
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2011.03.020
– volume: 16
  start-page: 431
  year: 2017
  ident: 10.1016/j.jcp.2020.109597_br0150
  article-title: An energy-preserving discretization for the Poisson-Nernst-Planck equations
  publication-title: J. Comput. Electron.
  doi: 10.1007/s10825-017-0969-8
– volume: 121
  year: 2018
  ident: 10.1016/j.jcp.2020.109597_br0010
  article-title: Oscillating electric fields in liquids create a long-range steady field
  publication-title: Phys. Rev. Lett.
– volume: 72
  start-page: 1269
  year: 2017
  ident: 10.1016/j.jcp.2020.109597_br0190
  article-title: Linearized conservative finite element methods for the Nernst–Planck–Poisson equations
  publication-title: J. Sci. Comput.
  doi: 10.1007/s10915-017-0400-4
– volume: 75
  year: 2007
  ident: 10.1016/j.jcp.2020.109597_br0290
  article-title: Steric effects in the dynamics of electrolytes at large applied voltages. I. Double-layer charging
  publication-title: Phys. Rev. E
– year: 1986
  ident: 10.1016/j.jcp.2020.109597_br0400
– volume: 70
  issue: 2
  year: 2004
  ident: 10.1016/j.jcp.2020.109597_br0040
  article-title: Diffuse-charge dynamics in electrochemical systems
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.70.021506
– volume: 90
  year: 2014
  ident: 10.1016/j.jcp.2020.109597_br0530
  article-title: Self-energy-modified Poisson–Nernst–Planck equations: WKB approximation and finite-difference approaches
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.90.013307
– volume: 79
  start-page: 80
  issue: 1
  year: 2000
  ident: 10.1016/j.jcp.2020.109597_br0080
  article-title: Three-dimensional Poisson-Nernst-Planck theory studies: influence of membrane electrostatics on gramicidin A channel conductance
  publication-title: Biophys. J.
  doi: 10.1016/S0006-3495(00)76275-8
– volume: 111
  start-page: 591
  year: 2009
  ident: 10.1016/j.jcp.2020.109597_br0440
  article-title: Convergent discretizations for the Nernst–Planck–Poisson system
  publication-title: Numer. Math.
  doi: 10.1007/s00211-008-0194-2
– volume: 145
  start-page: 77
  year: 2020
  ident: 10.1016/j.jcp.2020.109597_br0230
  article-title: A fully discrete positivity-preserving and energy-dissipative finite difference scheme for Poisson–Nernst–Planck equations
  publication-title: Numer. Math.
  doi: 10.1007/s00211-020-01109-z
– volume: 386
  start-page: 22
  year: 2019
  ident: 10.1016/j.jcp.2020.109597_br0450
  article-title: A conservative, free energy dissipating, and positivity preserving finite difference scheme for multi-dimensional nonlocal Fokker–Planck equation
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2019.02.028
– volume: 1
  start-page: 461
  issue: 3
  year: 2000
  ident: 10.1016/j.jcp.2020.109597_br0060
  article-title: Long time behavior of solutions to Nernst-Planck and Debye-Hückel drift-diffusion systems
  publication-title: Ann. Henri Poincaré
  doi: 10.1007/s000230050003
– volume: 123
  start-page: 567
  year: 1995
  ident: 10.1016/j.jcp.2020.109597_br0130
  article-title: Asymptotic behavior of the drift-diffusion semiconductor equations
  publication-title: J. Differ. Equ.
  doi: 10.1006/jdeq.1995.1173
– volume: 274
  start-page: 633
  year: 2014
  ident: 10.1016/j.jcp.2020.109597_br0430
  article-title: A conservative discretization of the Poisson-Nernst-Planck equations on adaptive cartesian grids
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2014.06.039
– volume: 15
  start-page: 93
  year: 2014
  ident: 10.1016/j.jcp.2020.109597_br0090
  article-title: A stabilized finite element method for modified Poisson-Nernst-Planck equations to determine ion flow through a nanopore
  publication-title: Commun. Comput. Phys.
  doi: 10.4208/cicp.101112.100413a
– volume: 113
  start-page: 12
  year: 1986
  ident: 10.1016/j.jcp.2020.109597_br0180
  article-title: On the basic equations for carrier transport in semiconductors
  publication-title: J. Math. Anal. Appl.
  doi: 10.1016/0022-247X(86)90330-6
SSID ssj0008548
Score 2.4534948
Snippet •Structure-preserving finite difference schemes are proposed for PNP equations.•A novel Newton's method is developed for the nonlinear system after...
Ion transport, often described by the Poisson–Nernst–Planck (PNP) equations, is ubiquitous in electrochemical devices and many biological processes of...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 109597
SubjectTerms Biological activity
Computational efficiency
Computational physics
Computing time
Conservation
Discretization
Efficiency
Energy conservation
Energy dissipation
Finite difference method
Harmonic-mean approximation
Ion transport
Iterative methods
Linear systems
Mathematical analysis
Matrix methods
Newton methods
Newton's method
Nonlinear systems
Numerical analysis
Numerical methods
Positivity
Upper bounds
Title Structure-preserving and efficient numerical methods for ion transport
URI https://dx.doi.org/10.1016/j.jcp.2020.109597
https://www.proquest.com/docview/2448947000
Volume 418
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1090-2716
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0008548
  issn: 0021-9991
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect
  customDbUrl:
  eissn: 1090-2716
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0008548
  issn: 0021-9991
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1090-2716
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0008548
  issn: 0021-9991
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1090-2716
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0008548
  issn: 0021-9991
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1090-2716
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0008548
  issn: 0021-9991
  databaseCode: AKRWK
  dateStart: 19660801
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NSwMxEA2lXrz4LVZrycGTsLabzdceS7FUhV600FvIJqm0lLXY9upvN5PNKor04DFLsiwzk8lb8uYNQje5zplwMk90z7CEMthzhMjE2MJybtN05gLLd8xHE_o4ZdMGGtS1MECrjLm_yukhW8cn3WjN7mo-hxpfAjX0KfFxmolQaE6pgC4Gdx_fNA_JaJWNgYrgZ9c3m4HjtTAgWUmCqBID3ae_z6ZfWTocPcMjdBAxI-5Xn3WMGq48QYcRP-K4O9enaPgcxGC37y4BeitkgfIV69JiF4Qi_PmCy211RbPEVe_oNfaoFXvn4E0tc36GJsP7l8EoiX0SEpMRtklmjBEu9Cz1eMmaVAueC-vH2nLqrCTCMssAx2idSiELk9vMiZ5xpih6mpvsHDXLt9JdIKz9D6N0TGQOdMas1JzllgvjKDQAz1wL9WoLKRNFxKGXxVLVbLGF8kZVYFRVGbWFbr-WrCoFjV2TaW129SMMlM_wu5a1axepuAfXygMXmVPhY-Dyf2-9Qvswqqh7bdT0PnTXHoJsik6IsQ7a6z88jcaf-5faDw
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PT8IwFG4IHvTibyOK2oMnkwnr-mtHQySoyEVIuDVdWwyETCJw9W-3b-s0GsPB47p2WV5fv76m3_seQtepTplwMo1027CIMlhzhMjI2MxybuN44gqW74D3RvRxzMY11KlyYYBWGbC_xPQCrUNLK1iztZhOIceXQA59TLyfJgISzbcoIwJOYLcf3zwPyWgJx8BF8N2rq82C5DUzoFlJClUlBsJPf29Ov2C62Hu6-2g3BI34rvyvA1Rz-SHaCwEkDstzeYS6L4Ua7PrdRcBvBRjIX7HOLXaFUoTfYHC-Lu9o5rgsHr3EPmzFfnbwqtI5P0aj7v2w04tCoYTIJIStogljhAs9iX3AZE2sBU-F9c_acuqsJMIyyyCQ0TqWQmYmtYkTbeNMlrU1N8kJqudvuTtFWPsTo3RMJA6ExqzUnKWWC-MoVABPXAO1KwspE1TEoZjFXFV0sZnyRlVgVFUatYFuvoYsSgmNTZ1pZXb1ww-Uh_hNw5rVFKmwCJfKRy4ypcL7wNn_vnqFtnvD577qPwyeztEOvCl5fE1U9_PpLnw8ssouC3_7BCpB26Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Structure-preserving+and+efficient+numerical+methods+for+ion+transport&rft.jtitle=Journal+of+computational+physics&rft.au=Ding%2C+Jie&rft.au=Wang%2C+Zhongming&rft.au=Zhou%2C+Shenggao&rft.date=2020-10-01&rft.issn=0021-9991&rft.volume=418&rft.spage=109597&rft_id=info:doi/10.1016%2Fj.jcp.2020.109597&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jcp_2020_109597
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9991&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9991&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9991&client=summon