Structure-preserving and efficient numerical methods for ion transport
•Structure-preserving finite difference schemes are proposed for PNP equations.•A novel Newton's method is developed for the nonlinear system after discretization.•Numerical analysis rigorously proves desired physical properties.•The solvability/stability of a linearized problem in the Newton...
Saved in:
| Published in | Journal of computational physics Vol. 418; p. 109597 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
Cambridge
Elsevier Inc
01.10.2020
Elsevier Science Ltd |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0021-9991 1090-2716 |
| DOI | 10.1016/j.jcp.2020.109597 |
Cover
| Abstract | •Structure-preserving finite difference schemes are proposed for PNP equations.•A novel Newton's method is developed for the nonlinear system after discretization.•Numerical analysis rigorously proves desired physical properties.•The solvability/stability of a linearized problem in the Newton's method are established.
Ion transport, often described by the Poisson–Nernst–Planck (PNP) equations, is ubiquitous in electrochemical devices and many biological processes of significance. In this work, we develop conservative, positivity-preserving, energy dissipating, and implicit finite difference schemes for solving the multi-dimensional PNP equations. A central-differencing discretization based on harmonic-mean approximations is employed for the Nernst–Planck (NP) equations. The backward Euler discretization in time is employed to derive a fully implicit nonlinear system, which is efficiently solved by a newly proposed Newton's method. The improved computational efficiency of the Newton's method originates from the usage of the electrostatic potential as the iteration variable, rather than the unknowns of the nonlinear system that involves both the potential and concentration of multiple ionic species. Numerical analysis proves that the numerical schemes respect three desired analytical properties (conservation, positivity preserving, and energy dissipation) fully discretely. Based on advantages brought by the harmonic-mean approximations, we are able to establish estimate on the upper bound of condition numbers of coefficient matrices in linear systems that are solved iteratively. The solvability and stability of the linearized problem in the Newton's method are rigorously established as well. Numerical tests are performed to confirm the anticipated numerical accuracy, computational efficiency, and structure-preserving properties of the developed schemes. Adaptive time stepping is implemented for further efficiency improvement. Finally, the proposed numerical approaches are applied to characterize ion transport subject to a sinusoidal applied potential. |
|---|---|
| AbstractList | •Structure-preserving finite difference schemes are proposed for PNP equations.•A novel Newton's method is developed for the nonlinear system after discretization.•Numerical analysis rigorously proves desired physical properties.•The solvability/stability of a linearized problem in the Newton's method are established.
Ion transport, often described by the Poisson–Nernst–Planck (PNP) equations, is ubiquitous in electrochemical devices and many biological processes of significance. In this work, we develop conservative, positivity-preserving, energy dissipating, and implicit finite difference schemes for solving the multi-dimensional PNP equations. A central-differencing discretization based on harmonic-mean approximations is employed for the Nernst–Planck (NP) equations. The backward Euler discretization in time is employed to derive a fully implicit nonlinear system, which is efficiently solved by a newly proposed Newton's method. The improved computational efficiency of the Newton's method originates from the usage of the electrostatic potential as the iteration variable, rather than the unknowns of the nonlinear system that involves both the potential and concentration of multiple ionic species. Numerical analysis proves that the numerical schemes respect three desired analytical properties (conservation, positivity preserving, and energy dissipation) fully discretely. Based on advantages brought by the harmonic-mean approximations, we are able to establish estimate on the upper bound of condition numbers of coefficient matrices in linear systems that are solved iteratively. The solvability and stability of the linearized problem in the Newton's method are rigorously established as well. Numerical tests are performed to confirm the anticipated numerical accuracy, computational efficiency, and structure-preserving properties of the developed schemes. Adaptive time stepping is implemented for further efficiency improvement. Finally, the proposed numerical approaches are applied to characterize ion transport subject to a sinusoidal applied potential. Ion transport, often described by the Poisson–Nernst–Planck (PNP) equations, is ubiquitous in electrochemical devices and many biological processes of significance. In this work, we develop conservative, positivity-preserving, energy dissipating, and implicit finite difference schemes for solving the multi-dimensional PNP equations. A central-differencing discretization based on harmonic-mean approximations is employed for the Nernst–Planck (NP) equations. The backward Euler discretization in time is employed to derive a fully implicit nonlinear system, which is efficiently solved by a newly proposed Newton's method. The improved computational efficiency of the Newton's method originates from the usage of the electrostatic potential as the iteration variable, rather than the unknowns of the nonlinear system that involves both the potential and concentration of multiple ionic species. Numerical analysis proves that the numerical schemes respect three desired analytical properties (conservation, positivity preserving, and energy dissipation) fully discretely. Based on advantages brought by the harmonic-mean approximations, we are able to establish estimate on the upper bound of condition numbers of coefficient matrices in linear systems that are solved iteratively. The solvability and stability of the linearized problem in the Newton's method are rigorously established as well. Numerical tests are performed to confirm the anticipated numerical accuracy, computational efficiency, and structure-preserving properties of the developed schemes. Adaptive time stepping is implemented for further efficiency improvement. Finally, the proposed numerical approaches are applied to characterize ion transport subject to a sinusoidal applied potential. |
| ArticleNumber | 109597 |
| Author | Ding, Jie Wang, Zhongming Zhou, Shenggao |
| Author_xml | – sequence: 1 givenname: Jie surname: Ding fullname: Ding, Jie organization: Department of Mathematics and Mathematical Center for Interdiscipline Research, Soochow University, 1 Shizi Street, Suzhou 215006, Jiangsu, China – sequence: 2 givenname: Zhongming orcidid: 0000-0003-0096-0514 surname: Wang fullname: Wang, Zhongming organization: Department of Mathematics and Statistics, Florida International University, Miami, FL 33199, USA – sequence: 3 givenname: Shenggao orcidid: 0000-0001-9097-8392 surname: Zhou fullname: Zhou, Shenggao email: sgzhou@suda.edu.cn organization: Department of Mathematics and Mathematical Center for Interdiscipline Research, Soochow University, 1 Shizi Street, Suzhou 215006, Jiangsu, China |
| BookMark | eNp9kMFKAzEQhoNUsFYfwNuC561Jutls8CTFqlDwoJ5DmsxqljZZk2zBtzfLevLQ08zAfDP83yWaOe8AoRuClwST-q5bdrpfUkzHWTDBz9A8N7iknNQzNMeYklIIQS7QZYwdxrhhVTNHm7cUBp2GAGUfIEI4WvdZKGcKaFurLbhUuOEAwWq1Lw6QvryJRetDYb0rUlAu9j6kK3Teqn2E67-6QB-bx_f1c7l9fXpZP2xLvaIslS1jtOaqJRgLo4niteAmz8rUFZiGcsMMo4xQpUjDm50WZgUca9C7HVa1Xi3Q7XS3D_57gJhk54fg8ktJq6oRFc_J8haZtnTwMQZoZR_sQYUfSbAcdclOZl1y1CUnXZnh_xhtk0o5ZQ5p9yfJ-4mEHPxoIcg4etNgbACdpPH2BP0Ly_iHnQ |
| CitedBy_id | crossref_primary_10_1007_s10915_024_02669_0 crossref_primary_10_1021_acsnano_4c09154 crossref_primary_10_1016_j_cam_2024_115759 crossref_primary_10_1016_j_jcp_2020_109908 crossref_primary_10_3934_dcdsb_2024184 crossref_primary_10_1016_j_jcp_2024_113094 crossref_primary_10_1090_mcom_3642 crossref_primary_10_1016_j_cam_2021_114017 crossref_primary_10_1016_j_cam_2024_115983 crossref_primary_10_1016_j_cam_2024_115784 crossref_primary_10_1002_mma_8015 crossref_primary_10_1088_1402_4896_abe9ef crossref_primary_10_1016_j_jcp_2021_110777 crossref_primary_10_1016_j_apnum_2023_11_012 crossref_primary_10_1016_j_jcp_2022_111845 crossref_primary_10_1016_j_cnsns_2024_108351 crossref_primary_10_1016_j_jcp_2023_112206 |
| Cites_doi | 10.1016/j.jcp.2019.108864 10.4208/nmtma.OA-2018-0058 10.1063/1.4872330 10.1016/j.jcp.2014.02.036 10.1137/16M1108583 10.1007/s11425-016-5137-2 10.4310/CMS.2014.v12.n1.a7 10.1007/s11425-015-5055-8 10.1016/j.cis.2009.10.001 10.1137/100812781 10.1103/PhysRevE.84.021901 10.1016/j.cam.2016.01.028 10.1016/j.jcp.2016.10.008 10.1137/16M110383X 10.4208/cicp.040913.120514a 10.1016/j.jcp.2015.10.053 10.4310/CMS.2018.v16.n1.a12 10.1080/00411450008205893 10.1021/acs.jpcb.8b00854 10.1007/s10955-016-1470-7 10.1021/jp511702w 10.4208/cicp.OA-2017-0134 10.1016/0362-546X(94)90101-5 10.1016/j.jcp.2010.05.035 10.1088/0953-8984/26/28/284102 10.1007/s10915-018-0727-5 10.1103/RevModPhys.80.839 10.1021/jp305273n 10.1007/s10825-013-0506-3 10.1137/18M1167218 10.1006/jdeq.1995.1172 10.1088/0951-7715/26/10/2899 10.1016/j.bpj.2011.03.059 10.1002/zamm.19960760502 10.1016/j.jcp.2011.03.020 10.1007/s10825-017-0969-8 10.1007/s10915-017-0400-4 10.1103/PhysRevE.70.021506 10.1103/PhysRevE.90.013307 10.1016/S0006-3495(00)76275-8 10.1007/s00211-008-0194-2 10.1007/s00211-020-01109-z 10.1016/j.jcp.2019.02.028 10.1007/s000230050003 10.1006/jdeq.1995.1173 10.1016/j.jcp.2014.06.039 10.4208/cicp.101112.100413a 10.1016/0022-247X(86)90330-6 |
| ContentType | Journal Article |
| Copyright | 2020 Elsevier Inc. Copyright Elsevier Science Ltd. Oct 1, 2020 |
| Copyright_xml | – notice: 2020 Elsevier Inc. – notice: Copyright Elsevier Science Ltd. Oct 1, 2020 |
| DBID | AAYXX CITATION 7SC 7SP 7U5 8FD JQ2 L7M L~C L~D |
| DOI | 10.1016/j.jcp.2020.109597 |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Technology Research Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences |
| EISSN | 1090-2716 |
| ExternalDocumentID | 10_1016_j_jcp_2020_109597 S0021999120303715 |
| GroupedDBID | --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 6OB 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO AAYFN ABBOA ABFRF ABJNI ABMAC ABNEU ABYKQ ACBEA ACDAQ ACFVG ACGFO ACGFS ACNCT ACRLP ACZNC ADBBV ADEZE AEBSH AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHZHX AIALX AIEXJ AIKHN AITUG AIVDX AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD AXJTR BKOJK BLXMC CS3 DM4 DU5 EBS EFBJH EFLBG EO8 EO9 EP2 EP3 F5P FDB FEDTE FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HLZ HVGLF IHE J1W K-O KOM LG5 LX9 LZ4 M37 M41 MO0 N9A O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SDF SDG SDP SES SPC SPCBC SPD SSQ SSV SSZ T5K TN5 UPT YQT ZMT ZU3 ~02 ~G- 29K 6TJ 8WZ A6W AAQXK AATTM AAXKI AAYWO AAYXX ABFNM ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADFGL ADIYS ADJOM ADMUD ADNMO AEIPS AEUPX AFFNX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BBWZM CAG CITATION COF D-I EFKBS EJD FGOYB G-2 HME HMV HZ~ NDZJH R2- SBC SEW SHN SPG T9H UQL WUQ ZY4 ~HD 7SC 7SP 7U5 8FD AFXIZ AGCQF AGRNS BNPGV JQ2 L7M L~C L~D SSH |
| ID | FETCH-LOGICAL-c325t-f55267af1009dc1a7697d7afad64ed827d5d52512aa1878bc9d3e70cecbb0a6c3 |
| IEDL.DBID | .~1 |
| ISSN | 0021-9991 |
| IngestDate | Fri Jul 25 05:40:39 EDT 2025 Wed Oct 01 02:36:51 EDT 2025 Thu Apr 24 23:00:15 EDT 2025 Fri Feb 23 02:46:25 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Ion transport Newton's method Energy dissipation Harmonic-mean approximation Conservation Positivity |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c325t-f55267af1009dc1a7697d7afad64ed827d5d52512aa1878bc9d3e70cecbb0a6c3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-9097-8392 0000-0003-0096-0514 |
| PQID | 2448947000 |
| PQPubID | 2047462 |
| ParticipantIDs | proquest_journals_2448947000 crossref_primary_10_1016_j_jcp_2020_109597 crossref_citationtrail_10_1016_j_jcp_2020_109597 elsevier_sciencedirect_doi_10_1016_j_jcp_2020_109597 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2020-10-01 2020-10-00 20201001 |
| PublicationDateYYYYMMDD | 2020-10-01 |
| PublicationDate_xml | – month: 10 year: 2020 text: 2020-10-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Cambridge |
| PublicationPlace_xml | – name: Cambridge |
| PublicationTitle | Journal of computational physics |
| PublicationYear | 2020 |
| Publisher | Elsevier Inc Elsevier Science Ltd |
| Publisher_xml | – name: Elsevier Inc – name: Elsevier Science Ltd |
| References | Meng, Zheng, Lin, Sushko (br0410) 2014; 16 Lin, Eisenberg (br0320) 2014; 12 Fang, Ito (br0130) 1995; 123 Schoch, Han, Renaud (br0490) 2008; 80 Fang, Ito (br0140) 1995; 123 Metti, Xu, Liu (br0420) 2016; 306 Siddiqua, Wang, Zhou (br0500) 2018; 16 Flavell, Kabre, Li (br0150) 2017; 16 Prohl, Schmuck (br0440) 2009; 111 Lu, Holst, McCammon, Zhou (br0380) 2010; 229 Biler, Dolbeault (br0060) 2000; 1 Golub, Loan (br0220) 1996 Li, Qiao, Zhang (br0310) 2016; 59 Markowich (br0400) 1986 Lu, Zhou (br0390) 2011; 100 Cardenas, Coalson, Kurnikova (br0080) 2000; 79 Gao, Sun (br0200) 2018; 77 Qiao, Zhang, Tang (br0480) 2011; 33 Zheng, Chen, Wei (br0550) 2011; 230 Gao, He (br0190) 2017; 72 Hu, Huang (br0230) 2020; 145 Hyon, Eisenberg, Liu (br0240) 2010; 9 Gajewski, Gröger (br0180) 1986; 113 Zheng, Trudeau (br0540) 2015 Arnold, Markowich, Toscani (br0020) 2000; 29 Bazant, Thornton, Ajdari (br0040) 2004; 70 Liu, Wang (br0340) 2017; 328 Bazant, Kilic, Storey, Ajdari (br0030) 2009; 152 Sun, Sun, Zheng, Lin (br0510) 2016; 301 Qiao, Tu, Lu (br0470) 2014; 140 Wang, Zhou, Kekenes-Huskey, Li, McCammon (br0520) 2014; 118 Mirzadeh, Gibou (br0430) 2014; 274 Chaudhry, Comer, Aksimentiev, Olson (br0090) 2014; 15 Amrei, Bukosky, Rader, Ristenpart, Miller (br0010) 2018; 121 Ding, Wang, Zhou (br0120) 2019; 397 Liu, Ji, Xu (br0350) 2018; 78 Gajewski, Gärtner (br0170) 1996; 76 Kilic, Bazant, Ajdari (br0280) 2007; 75 Berman, Plemmons (br0050) 1994 Xu, Ma, Liu (br0530) 2014; 90 Ding, Wang, Zhou (br0110) 2019; 12 Qiao, Liu, Chen, Lu (br0460) 2016; 163 Qian, Wang, Zhou (br0450) 2019; 386 Gavish, Liu, Eisenberg (br0210) 2018; 22 Jiang, Cao, Jiang, Wu (br0270) 2014; 26 Kilic, Bazant, Ajdari (br0290) 2007; 75 Zhou, Wang, Li (br0560) 2011; 84 Biler, Hebisch, Nadzieja (br0070) 1994; 23 Ji, Liu, Xu, Zhou (br0260) 2018; 78 Hyon, Liu, Eisenberg (br0250) 2012; 116 Flavell, Machen, Eisenberg, Kabre, Liu, Li (br0160) 2014; 13 Ding, Sun, Wang, Zhou (br0100) 2018; 23 Liu, Qiao, Lu (br0360) 2018; 78 Li, Liu, Xu, Zhou (br0300) 2013; 26 Liu, Wang (br0330) 2014; 268 Liu, Shu (br0370) 2016; 59 Xu (10.1016/j.jcp.2020.109597_br0530) 2014; 90 Biler (10.1016/j.jcp.2020.109597_br0060) 2000; 1 Chaudhry (10.1016/j.jcp.2020.109597_br0090) 2014; 15 Ji (10.1016/j.jcp.2020.109597_br0260) 2018; 78 Gao (10.1016/j.jcp.2020.109597_br0190) 2017; 72 Zheng (10.1016/j.jcp.2020.109597_br0550) 2011; 230 Amrei (10.1016/j.jcp.2020.109597_br0010) 2018; 121 Gajewski (10.1016/j.jcp.2020.109597_br0170) 1996; 76 Siddiqua (10.1016/j.jcp.2020.109597_br0500) 2018; 16 Arnold (10.1016/j.jcp.2020.109597_br0020) 2000; 29 Cardenas (10.1016/j.jcp.2020.109597_br0080) 2000; 79 Kilic (10.1016/j.jcp.2020.109597_br0290) 2007; 75 Bazant (10.1016/j.jcp.2020.109597_br0040) 2004; 70 Flavell (10.1016/j.jcp.2020.109597_br0160) 2014; 13 Hu (10.1016/j.jcp.2020.109597_br0230) 2020; 145 Li (10.1016/j.jcp.2020.109597_br0300) 2013; 26 Liu (10.1016/j.jcp.2020.109597_br0330) 2014; 268 Flavell (10.1016/j.jcp.2020.109597_br0150) 2017; 16 Meng (10.1016/j.jcp.2020.109597_br0410) 2014; 16 Zheng (10.1016/j.jcp.2020.109597_br0540) 2015 Qiao (10.1016/j.jcp.2020.109597_br0480) 2011; 33 Sun (10.1016/j.jcp.2020.109597_br0510) 2016; 301 Gajewski (10.1016/j.jcp.2020.109597_br0180) 1986; 113 Jiang (10.1016/j.jcp.2020.109597_br0270) 2014; 26 Berman (10.1016/j.jcp.2020.109597_br0050) 1994 Li (10.1016/j.jcp.2020.109597_br0310) 2016; 59 Qian (10.1016/j.jcp.2020.109597_br0450) 2019; 386 Qiao (10.1016/j.jcp.2020.109597_br0470) 2014; 140 Markowich (10.1016/j.jcp.2020.109597_br0400) 1986 Mirzadeh (10.1016/j.jcp.2020.109597_br0430) 2014; 274 Hyon (10.1016/j.jcp.2020.109597_br0240) 2010; 9 Kilic (10.1016/j.jcp.2020.109597_br0280) 2007; 75 Liu (10.1016/j.jcp.2020.109597_br0360) 2018; 78 Fang (10.1016/j.jcp.2020.109597_br0140) 1995; 123 Bazant (10.1016/j.jcp.2020.109597_br0030) 2009; 152 Wang (10.1016/j.jcp.2020.109597_br0520) 2014; 118 Fang (10.1016/j.jcp.2020.109597_br0130) 1995; 123 Liu (10.1016/j.jcp.2020.109597_br0370) 2016; 59 Lu (10.1016/j.jcp.2020.109597_br0390) 2011; 100 Qiao (10.1016/j.jcp.2020.109597_br0460) 2016; 163 Schoch (10.1016/j.jcp.2020.109597_br0490) 2008; 80 Liu (10.1016/j.jcp.2020.109597_br0340) 2017; 328 Gao (10.1016/j.jcp.2020.109597_br0200) 2018; 77 Gavish (10.1016/j.jcp.2020.109597_br0210) 2018; 22 Liu (10.1016/j.jcp.2020.109597_br0350) 2018; 78 Hyon (10.1016/j.jcp.2020.109597_br0250) 2012; 116 Lu (10.1016/j.jcp.2020.109597_br0380) 2010; 229 Golub (10.1016/j.jcp.2020.109597_br0220) 1996 Ding (10.1016/j.jcp.2020.109597_br0120) 2019; 397 Zhou (10.1016/j.jcp.2020.109597_br0560) 2011; 84 Ding (10.1016/j.jcp.2020.109597_br0100) 2018; 23 Ding (10.1016/j.jcp.2020.109597_br0110) 2019; 12 Prohl (10.1016/j.jcp.2020.109597_br0440) 2009; 111 Biler (10.1016/j.jcp.2020.109597_br0070) 1994; 23 Lin (10.1016/j.jcp.2020.109597_br0320) 2014; 12 Metti (10.1016/j.jcp.2020.109597_br0420) 2016; 306 |
| References_xml | – volume: 386 start-page: 22 year: 2019 end-page: 36 ident: br0450 article-title: A conservative, free energy dissipating, and positivity preserving finite difference scheme for multi-dimensional nonlocal Fokker–Planck equation publication-title: J. Comput. Phys. – volume: 79 start-page: 80 year: 2000 end-page: 93 ident: br0080 article-title: Three-dimensional Poisson-Nernst-Planck theory studies: influence of membrane electrostatics on gramicidin A channel conductance publication-title: Biophys. J. – volume: 76 start-page: 247 year: 1996 end-page: 264 ident: br0170 article-title: On the discretization of Van Roosbroeck's equations with magnetic field publication-title: Z. Angew. Math. Mech. – volume: 123 start-page: 523 year: 1995 end-page: 566 ident: br0140 article-title: Global solutions of the time-dependent drift-diffusion semiconductor equations publication-title: J. Differ. Equ. – volume: 163 start-page: 156 year: 2016 end-page: 174 ident: br0460 article-title: A local approximation of fundamental measure theory incorporated into three dimensional Poisson–Nernst–Planck equations to account for hard sphere repulsion among ions publication-title: J. Stat. Phys. – volume: 22 start-page: 5183 year: 2018 end-page: 5192 ident: br0210 article-title: Do bistable steric Poisson–Nernst–Planck models describe single-channel gating? publication-title: J. Phys. Chem. B – volume: 145 start-page: 77 year: 2020 end-page: 115 ident: br0230 article-title: A fully discrete positivity-preserving and energy-dissipative finite difference scheme for Poisson–Nernst–Planck equations publication-title: Numer. Math. – volume: 397 year: 2019 ident: br0120 article-title: Positivity preserving finite difference methods for Poisson-Nernst-Planck equations with steric interactions: application to slit-shaped nanopore conductance publication-title: J. Comput. Phys. – volume: 77 start-page: 793 year: 2018 end-page: 817 ident: br0200 article-title: A linearized conservative mixed finite element method for Poisson–Nernst–Planck equations publication-title: J. Sci. Comput. – volume: 26 start-page: 2899 year: 2013 ident: br0300 article-title: Ionic size effects: generalized Boltzmann distributions, counterion stratification, and modified Debye length publication-title: Nonlinearity – volume: 12 start-page: 607 year: 2019 end-page: 626 ident: br0110 article-title: Optimal rate convergence analysis of a second order numerical scheme for the Poisson–Nernst–Planck system publication-title: Numer. Math., Theory Methods Appl. – volume: 33 start-page: 1395 year: 2011 end-page: 1414 ident: br0480 article-title: An adaptive time-stepping strategy for the molecular beam epitaxy models publication-title: SIAM J. Sci. Comput. – volume: 274 start-page: 633 year: 2014 end-page: 653 ident: br0430 article-title: A conservative discretization of the Poisson-Nernst-Planck equations on adaptive cartesian grids publication-title: J. Comput. Phys. – volume: 12 start-page: 149 year: 2014 end-page: 173 ident: br0320 article-title: A new approach to the Lennard-Jones potential and a new model: PNP-steric equations publication-title: Commun. Math. Sci. – volume: 121 year: 2018 ident: br0010 article-title: Oscillating electric fields in liquids create a long-range steady field publication-title: Phys. Rev. Lett. – volume: 23 start-page: 1189 year: 1994 end-page: 1209 ident: br0070 article-title: The Debye system: existence and large time behavior of solutions publication-title: Nonlinear Anal. – volume: 140 year: 2014 ident: br0470 article-title: Ionic size effects to molecular solvation energy and to ion current across a channel resulted from the nonuniform size-modified PNP equations publication-title: J. Chem. Phys. – year: 2015 ident: br0540 article-title: Handbook of Ion Channels – volume: 123 start-page: 567 year: 1995 end-page: 587 ident: br0130 article-title: Asymptotic behavior of the drift-diffusion semiconductor equations publication-title: J. Differ. Equ. – volume: 113 start-page: 12 year: 1986 end-page: 35 ident: br0180 article-title: On the basic equations for carrier transport in semiconductors publication-title: J. Math. Anal. Appl. – volume: 16 start-page: 431 year: 2017 end-page: 441 ident: br0150 article-title: An energy-preserving discretization for the Poisson-Nernst-Planck equations publication-title: J. Comput. Electron. – volume: 111 start-page: 591 year: 2009 end-page: 630 ident: br0440 article-title: Convergent discretizations for the Nernst–Planck–Poisson system publication-title: Numer. Math. – volume: 328 start-page: 413 year: 2017 end-page: 437 ident: br0340 article-title: A free energy satisfying discontinuous Galerkin method for one-dimensional Poisson-Nernst-Planck systems publication-title: J. Comput. Phys. – volume: 16 start-page: 251 year: 2018 end-page: 271 ident: br0500 article-title: A modified Poisson–Nernst–Planck model with excluded volume effect: theory and numerical implementation publication-title: Commun. Math. Sci. – volume: 26 year: 2014 ident: br0270 article-title: Time-dependent density functional theory for ion diffusion in electrochemical systems publication-title: J. Phys. Condens. Matter – year: 1986 ident: br0400 article-title: The Stationary Semiconductor Device Equations – volume: 16 start-page: 1298 year: 2014 end-page: 1322 ident: br0410 article-title: Numerical solution of 3D Poisson-Nernst-Planck equations coupled with classical density functional theory for modeling ion and electron transport in confined environment publication-title: Commun. Comput. Phys. – volume: 1 start-page: 461 year: 2000 end-page: 472 ident: br0060 article-title: Long time behavior of solutions to Nernst-Planck and Debye-Hückel drift-diffusion systems publication-title: Ann. Henri Poincaré – volume: 13 start-page: 235 year: 2014 end-page: 249 ident: br0160 article-title: A conservative finite difference scheme for Poisson-Nernst-Planck equations publication-title: J. Comput. Electron. – volume: 268 start-page: 363 year: 2014 end-page: 376 ident: br0330 article-title: A free energy satisfying finite difference method for Poisson-Nernst-Planck equations publication-title: J. Comput. Phys. – volume: 9 start-page: 459 year: 2010 end-page: 475 ident: br0240 article-title: A mathematical model for the hard sphere repulsion in ionic solutions publication-title: Commun. Math. Sci. – volume: 15 start-page: 93 year: 2014 end-page: 125 ident: br0090 article-title: A stabilized finite element method for modified Poisson-Nernst-Planck equations to determine ion flow through a nanopore publication-title: Commun. Comput. Phys. – volume: 229 start-page: 6979 year: 2010 end-page: 6994 ident: br0380 article-title: Poisson-Nernst-Planck equations for simulating biomolecular diffusion-reaction processes I: finite element solutions publication-title: J. Comput. Phys. – volume: 90 year: 2014 ident: br0530 article-title: Self-energy-modified Poisson–Nernst–Planck equations: WKB approximation and finite-difference approaches publication-title: Phys. Rev. E – volume: 80 start-page: 839 year: 2008 end-page: 883 ident: br0490 article-title: Transport phenomena in nanofluidics publication-title: Rev. Mod. Phys. – volume: 75 year: 2007 ident: br0280 article-title: Steric effects in the dynamics of electrolytes at large applied voltages. II. Modified Poisson–Nernst–Planck equations publication-title: Phys. Rev. E – volume: 152 start-page: 48 year: 2009 end-page: 88 ident: br0030 article-title: Towards an understanding of induced-charge electrokinetics at large applied voltages in concentrated solutions publication-title: Adv. Colloid Interface Sci. – volume: 78 start-page: 1802 year: 2018 end-page: 1822 ident: br0260 article-title: Asymptotic analysis on dielectric boundary effects of modified Poisson–Nernst–Planck equations publication-title: SIAM J. Appl. Math. – volume: 118 start-page: 14827 year: 2014 end-page: 14832 ident: br0520 article-title: Poisson-Boltzmann vs. size-modified Poisson-Boltzmann electrostatics applied to lipid bilayers publication-title: J. Phys. Chem. B – volume: 70 year: 2004 ident: br0040 article-title: Diffuse-charge dynamics in electrochemical systems publication-title: Phys. Rev. E – volume: 72 start-page: 1269 year: 2017 end-page: 1289 ident: br0190 article-title: Linearized conservative finite element methods for the Nernst–Planck–Poisson equations publication-title: J. Sci. Comput. – year: 1994 ident: br0050 article-title: Nonnegative Matrices in the Mathematical Sciences – volume: 301 start-page: 28 year: 2016 end-page: 43 ident: br0510 article-title: Error analysis of finite element method for Poisson–Nernst–Planck equations publication-title: J. Comput. Appl. Math. – volume: 29 start-page: 571 year: 2000 end-page: 581 ident: br0020 article-title: On large time asymptotics for drift-diffusion-Poisson systems publication-title: Transp. Theory Stat. Phys. – year: 1996 ident: br0220 article-title: Matrix Computations publication-title: Johns Hopkins Studies in the Mathematical Sciences – volume: 306 start-page: 1 year: 2016 end-page: 18 ident: br0420 article-title: Energetically stable discretizations for charge transport and electrokinetic models publication-title: J. Comput. Phys. – volume: 230 start-page: 5239 year: 2011 end-page: 5262 ident: br0550 article-title: Second-order Poisson-Nernst-Planck solver for ion channel transport publication-title: J. Comput. Phys. – volume: 59 start-page: 115 year: 2016 end-page: 140 ident: br0370 article-title: Analysis of the local discontinuous Galerkin method for the drift-diffusion model of semiconductor devices publication-title: Sci. China Math. – volume: 75 year: 2007 ident: br0290 article-title: Steric effects in the dynamics of electrolytes at large applied voltages. I. Double-layer charging publication-title: Phys. Rev. E – volume: 59 start-page: 1815 year: 2016 end-page: 1834 ident: br0310 article-title: An unconditionally energy stable finite difference scheme for a stochastic Cahn-Hilliard equation publication-title: Sci. China Math. – volume: 100 start-page: 2475 year: 2011 end-page: 2485 ident: br0390 article-title: Poisson-Nernst-Planck equations for simulating biomolecular diffusion-reaction processes II: size effects on ionic distributions and diffusion-reaction rates publication-title: Biophys. J. – volume: 78 start-page: 226 year: 2018 end-page: 245 ident: br0350 article-title: Modified Poisson–Nernst–Planck model with accurate Coulomb correlation in variable media publication-title: SIAM J. Appl. Math. – volume: 23 start-page: 1549 year: 2018 end-page: 1572 ident: br0100 article-title: Computational study on hysteresis of ion channels: multiple solutions to steady-state Poisson–Nernst–Planck equations publication-title: Commun. Comput. Phys. – volume: 116 start-page: 11422 year: 2012 end-page: 11441 ident: br0250 article-title: PNP equations with steric effects: a model of ion flow through channels publication-title: J. Phys. Chem. B – volume: 78 start-page: 1131 year: 2018 end-page: 1154 ident: br0360 article-title: Analysis of the mean field free energy functional of electrolyte solution with non-homogenous boundary conditions and the generalized PB/PNP equations with inhomogeneous dielectric permittivity publication-title: SIAM J. Appl. Math. – volume: 84 year: 2011 ident: br0560 article-title: Mean-field description of ionic size effects with non-uniform ionic sizes: a numerical approach publication-title: Phys. Rev. E – volume: 397 year: 2019 ident: 10.1016/j.jcp.2020.109597_br0120 article-title: Positivity preserving finite difference methods for Poisson-Nernst-Planck equations with steric interactions: application to slit-shaped nanopore conductance publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2019.108864 – volume: 12 start-page: 607 year: 2019 ident: 10.1016/j.jcp.2020.109597_br0110 article-title: Optimal rate convergence analysis of a second order numerical scheme for the Poisson–Nernst–Planck system publication-title: Numer. Math., Theory Methods Appl. doi: 10.4208/nmtma.OA-2018-0058 – volume: 140 year: 2014 ident: 10.1016/j.jcp.2020.109597_br0470 article-title: Ionic size effects to molecular solvation energy and to ion current across a channel resulted from the nonuniform size-modified PNP equations publication-title: J. Chem. Phys. doi: 10.1063/1.4872330 – volume: 268 start-page: 363 year: 2014 ident: 10.1016/j.jcp.2020.109597_br0330 article-title: A free energy satisfying finite difference method for Poisson-Nernst-Planck equations publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2014.02.036 – volume: 78 start-page: 1131 year: 2018 ident: 10.1016/j.jcp.2020.109597_br0360 article-title: Analysis of the mean field free energy functional of electrolyte solution with non-homogenous boundary conditions and the generalized PB/PNP equations with inhomogeneous dielectric permittivity publication-title: SIAM J. Appl. Math. doi: 10.1137/16M1108583 – volume: 59 start-page: 1815 issue: 9 year: 2016 ident: 10.1016/j.jcp.2020.109597_br0310 article-title: An unconditionally energy stable finite difference scheme for a stochastic Cahn-Hilliard equation publication-title: Sci. China Math. doi: 10.1007/s11425-016-5137-2 – volume: 12 start-page: 149 year: 2014 ident: 10.1016/j.jcp.2020.109597_br0320 article-title: A new approach to the Lennard-Jones potential and a new model: PNP-steric equations publication-title: Commun. Math. Sci. doi: 10.4310/CMS.2014.v12.n1.a7 – volume: 59 start-page: 115 year: 2016 ident: 10.1016/j.jcp.2020.109597_br0370 article-title: Analysis of the local discontinuous Galerkin method for the drift-diffusion model of semiconductor devices publication-title: Sci. China Math. doi: 10.1007/s11425-015-5055-8 – volume: 152 start-page: 48 year: 2009 ident: 10.1016/j.jcp.2020.109597_br0030 article-title: Towards an understanding of induced-charge electrokinetics at large applied voltages in concentrated solutions publication-title: Adv. Colloid Interface Sci. doi: 10.1016/j.cis.2009.10.001 – volume: 33 start-page: 1395 year: 2011 ident: 10.1016/j.jcp.2020.109597_br0480 article-title: An adaptive time-stepping strategy for the molecular beam epitaxy models publication-title: SIAM J. Sci. Comput. doi: 10.1137/100812781 – year: 1996 ident: 10.1016/j.jcp.2020.109597_br0220 article-title: Matrix Computations – year: 1994 ident: 10.1016/j.jcp.2020.109597_br0050 – volume: 84 year: 2011 ident: 10.1016/j.jcp.2020.109597_br0560 article-title: Mean-field description of ionic size effects with non-uniform ionic sizes: a numerical approach publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.84.021901 – volume: 301 start-page: 28 year: 2016 ident: 10.1016/j.jcp.2020.109597_br0510 article-title: Error analysis of finite element method for Poisson–Nernst–Planck equations publication-title: J. Comput. Appl. Math. doi: 10.1016/j.cam.2016.01.028 – volume: 328 start-page: 413 year: 2017 ident: 10.1016/j.jcp.2020.109597_br0340 article-title: A free energy satisfying discontinuous Galerkin method for one-dimensional Poisson-Nernst-Planck systems publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2016.10.008 – volume: 78 start-page: 226 year: 2018 ident: 10.1016/j.jcp.2020.109597_br0350 article-title: Modified Poisson–Nernst–Planck model with accurate Coulomb correlation in variable media publication-title: SIAM J. Appl. Math. doi: 10.1137/16M110383X – volume: 16 start-page: 1298 year: 2014 ident: 10.1016/j.jcp.2020.109597_br0410 article-title: Numerical solution of 3D Poisson-Nernst-Planck equations coupled with classical density functional theory for modeling ion and electron transport in confined environment publication-title: Commun. Comput. Phys. doi: 10.4208/cicp.040913.120514a – volume: 306 start-page: 1 year: 2016 ident: 10.1016/j.jcp.2020.109597_br0420 article-title: Energetically stable discretizations for charge transport and electrokinetic models publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2015.10.053 – volume: 16 start-page: 251 issue: 1 year: 2018 ident: 10.1016/j.jcp.2020.109597_br0500 article-title: A modified Poisson–Nernst–Planck model with excluded volume effect: theory and numerical implementation publication-title: Commun. Math. Sci. doi: 10.4310/CMS.2018.v16.n1.a12 – volume: 29 start-page: 571 issue: 3–5 year: 2000 ident: 10.1016/j.jcp.2020.109597_br0020 article-title: On large time asymptotics for drift-diffusion-Poisson systems publication-title: Transp. Theory Stat. Phys. doi: 10.1080/00411450008205893 – volume: 22 start-page: 5183 issue: 20 year: 2018 ident: 10.1016/j.jcp.2020.109597_br0210 article-title: Do bistable steric Poisson–Nernst–Planck models describe single-channel gating? publication-title: J. Phys. Chem. B doi: 10.1021/acs.jpcb.8b00854 – volume: 163 start-page: 156 year: 2016 ident: 10.1016/j.jcp.2020.109597_br0460 article-title: A local approximation of fundamental measure theory incorporated into three dimensional Poisson–Nernst–Planck equations to account for hard sphere repulsion among ions publication-title: J. Stat. Phys. doi: 10.1007/s10955-016-1470-7 – volume: 118 start-page: 14827 issue: 51 year: 2014 ident: 10.1016/j.jcp.2020.109597_br0520 article-title: Poisson-Boltzmann vs. size-modified Poisson-Boltzmann electrostatics applied to lipid bilayers publication-title: J. Phys. Chem. B doi: 10.1021/jp511702w – volume: 23 start-page: 1549 issue: 5 year: 2018 ident: 10.1016/j.jcp.2020.109597_br0100 article-title: Computational study on hysteresis of ion channels: multiple solutions to steady-state Poisson–Nernst–Planck equations publication-title: Commun. Comput. Phys. doi: 10.4208/cicp.OA-2017-0134 – volume: 23 start-page: 1189 year: 1994 ident: 10.1016/j.jcp.2020.109597_br0070 article-title: The Debye system: existence and large time behavior of solutions publication-title: Nonlinear Anal. doi: 10.1016/0362-546X(94)90101-5 – volume: 229 start-page: 6979 issue: 19 year: 2010 ident: 10.1016/j.jcp.2020.109597_br0380 article-title: Poisson-Nernst-Planck equations for simulating biomolecular diffusion-reaction processes I: finite element solutions publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2010.05.035 – volume: 9 start-page: 459 year: 2010 ident: 10.1016/j.jcp.2020.109597_br0240 article-title: A mathematical model for the hard sphere repulsion in ionic solutions publication-title: Commun. Math. Sci. – volume: 26 year: 2014 ident: 10.1016/j.jcp.2020.109597_br0270 article-title: Time-dependent density functional theory for ion diffusion in electrochemical systems publication-title: J. Phys. Condens. Matter doi: 10.1088/0953-8984/26/28/284102 – year: 2015 ident: 10.1016/j.jcp.2020.109597_br0540 – volume: 77 start-page: 793 year: 2018 ident: 10.1016/j.jcp.2020.109597_br0200 article-title: A linearized conservative mixed finite element method for Poisson–Nernst–Planck equations publication-title: J. Sci. Comput. doi: 10.1007/s10915-018-0727-5 – volume: 80 start-page: 839 year: 2008 ident: 10.1016/j.jcp.2020.109597_br0490 article-title: Transport phenomena in nanofluidics publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.80.839 – volume: 75 year: 2007 ident: 10.1016/j.jcp.2020.109597_br0280 article-title: Steric effects in the dynamics of electrolytes at large applied voltages. II. Modified Poisson–Nernst–Planck equations publication-title: Phys. Rev. E – volume: 116 start-page: 11422 year: 2012 ident: 10.1016/j.jcp.2020.109597_br0250 article-title: PNP equations with steric effects: a model of ion flow through channels publication-title: J. Phys. Chem. B doi: 10.1021/jp305273n – volume: 13 start-page: 235 year: 2014 ident: 10.1016/j.jcp.2020.109597_br0160 article-title: A conservative finite difference scheme for Poisson-Nernst-Planck equations publication-title: J. Comput. Electron. doi: 10.1007/s10825-013-0506-3 – volume: 78 start-page: 1802 year: 2018 ident: 10.1016/j.jcp.2020.109597_br0260 article-title: Asymptotic analysis on dielectric boundary effects of modified Poisson–Nernst–Planck equations publication-title: SIAM J. Appl. Math. doi: 10.1137/18M1167218 – volume: 123 start-page: 523 year: 1995 ident: 10.1016/j.jcp.2020.109597_br0140 article-title: Global solutions of the time-dependent drift-diffusion semiconductor equations publication-title: J. Differ. Equ. doi: 10.1006/jdeq.1995.1172 – volume: 26 start-page: 2899 issue: 10 year: 2013 ident: 10.1016/j.jcp.2020.109597_br0300 article-title: Ionic size effects: generalized Boltzmann distributions, counterion stratification, and modified Debye length publication-title: Nonlinearity doi: 10.1088/0951-7715/26/10/2899 – volume: 100 start-page: 2475 year: 2011 ident: 10.1016/j.jcp.2020.109597_br0390 article-title: Poisson-Nernst-Planck equations for simulating biomolecular diffusion-reaction processes II: size effects on ionic distributions and diffusion-reaction rates publication-title: Biophys. J. doi: 10.1016/j.bpj.2011.03.059 – volume: 76 start-page: 247 issue: 5 year: 1996 ident: 10.1016/j.jcp.2020.109597_br0170 article-title: On the discretization of Van Roosbroeck's equations with magnetic field publication-title: Z. Angew. Math. Mech. doi: 10.1002/zamm.19960760502 – volume: 230 start-page: 5239 issue: 13 year: 2011 ident: 10.1016/j.jcp.2020.109597_br0550 article-title: Second-order Poisson-Nernst-Planck solver for ion channel transport publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2011.03.020 – volume: 16 start-page: 431 year: 2017 ident: 10.1016/j.jcp.2020.109597_br0150 article-title: An energy-preserving discretization for the Poisson-Nernst-Planck equations publication-title: J. Comput. Electron. doi: 10.1007/s10825-017-0969-8 – volume: 121 year: 2018 ident: 10.1016/j.jcp.2020.109597_br0010 article-title: Oscillating electric fields in liquids create a long-range steady field publication-title: Phys. Rev. Lett. – volume: 72 start-page: 1269 year: 2017 ident: 10.1016/j.jcp.2020.109597_br0190 article-title: Linearized conservative finite element methods for the Nernst–Planck–Poisson equations publication-title: J. Sci. Comput. doi: 10.1007/s10915-017-0400-4 – volume: 75 year: 2007 ident: 10.1016/j.jcp.2020.109597_br0290 article-title: Steric effects in the dynamics of electrolytes at large applied voltages. I. Double-layer charging publication-title: Phys. Rev. E – year: 1986 ident: 10.1016/j.jcp.2020.109597_br0400 – volume: 70 issue: 2 year: 2004 ident: 10.1016/j.jcp.2020.109597_br0040 article-title: Diffuse-charge dynamics in electrochemical systems publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.70.021506 – volume: 90 year: 2014 ident: 10.1016/j.jcp.2020.109597_br0530 article-title: Self-energy-modified Poisson–Nernst–Planck equations: WKB approximation and finite-difference approaches publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.90.013307 – volume: 79 start-page: 80 issue: 1 year: 2000 ident: 10.1016/j.jcp.2020.109597_br0080 article-title: Three-dimensional Poisson-Nernst-Planck theory studies: influence of membrane electrostatics on gramicidin A channel conductance publication-title: Biophys. J. doi: 10.1016/S0006-3495(00)76275-8 – volume: 111 start-page: 591 year: 2009 ident: 10.1016/j.jcp.2020.109597_br0440 article-title: Convergent discretizations for the Nernst–Planck–Poisson system publication-title: Numer. Math. doi: 10.1007/s00211-008-0194-2 – volume: 145 start-page: 77 year: 2020 ident: 10.1016/j.jcp.2020.109597_br0230 article-title: A fully discrete positivity-preserving and energy-dissipative finite difference scheme for Poisson–Nernst–Planck equations publication-title: Numer. Math. doi: 10.1007/s00211-020-01109-z – volume: 386 start-page: 22 year: 2019 ident: 10.1016/j.jcp.2020.109597_br0450 article-title: A conservative, free energy dissipating, and positivity preserving finite difference scheme for multi-dimensional nonlocal Fokker–Planck equation publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2019.02.028 – volume: 1 start-page: 461 issue: 3 year: 2000 ident: 10.1016/j.jcp.2020.109597_br0060 article-title: Long time behavior of solutions to Nernst-Planck and Debye-Hückel drift-diffusion systems publication-title: Ann. Henri Poincaré doi: 10.1007/s000230050003 – volume: 123 start-page: 567 year: 1995 ident: 10.1016/j.jcp.2020.109597_br0130 article-title: Asymptotic behavior of the drift-diffusion semiconductor equations publication-title: J. Differ. Equ. doi: 10.1006/jdeq.1995.1173 – volume: 274 start-page: 633 year: 2014 ident: 10.1016/j.jcp.2020.109597_br0430 article-title: A conservative discretization of the Poisson-Nernst-Planck equations on adaptive cartesian grids publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2014.06.039 – volume: 15 start-page: 93 year: 2014 ident: 10.1016/j.jcp.2020.109597_br0090 article-title: A stabilized finite element method for modified Poisson-Nernst-Planck equations to determine ion flow through a nanopore publication-title: Commun. Comput. Phys. doi: 10.4208/cicp.101112.100413a – volume: 113 start-page: 12 year: 1986 ident: 10.1016/j.jcp.2020.109597_br0180 article-title: On the basic equations for carrier transport in semiconductors publication-title: J. Math. Anal. Appl. doi: 10.1016/0022-247X(86)90330-6 |
| SSID | ssj0008548 |
| Score | 2.4534948 |
| Snippet | •Structure-preserving finite difference schemes are proposed for PNP equations.•A novel Newton's method is developed for the nonlinear system after... Ion transport, often described by the Poisson–Nernst–Planck (PNP) equations, is ubiquitous in electrochemical devices and many biological processes of... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 109597 |
| SubjectTerms | Biological activity Computational efficiency Computational physics Computing time Conservation Discretization Efficiency Energy conservation Energy dissipation Finite difference method Harmonic-mean approximation Ion transport Iterative methods Linear systems Mathematical analysis Matrix methods Newton methods Newton's method Nonlinear systems Numerical analysis Numerical methods Positivity Upper bounds |
| Title | Structure-preserving and efficient numerical methods for ion transport |
| URI | https://dx.doi.org/10.1016/j.jcp.2020.109597 https://www.proquest.com/docview/2448947000 |
| Volume | 418 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1090-2716 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0008548 issn: 0021-9991 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect customDbUrl: eissn: 1090-2716 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0008548 issn: 0021-9991 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1090-2716 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0008548 issn: 0021-9991 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1090-2716 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0008548 issn: 0021-9991 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1090-2716 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0008548 issn: 0021-9991 databaseCode: AKRWK dateStart: 19660801 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NSwMxEA2lXrz4LVZrycGTsLabzdceS7FUhV600FvIJqm0lLXY9upvN5PNKor04DFLsiwzk8lb8uYNQje5zplwMk90z7CEMthzhMjE2MJybtN05gLLd8xHE_o4ZdMGGtS1MECrjLm_yukhW8cn3WjN7mo-hxpfAjX0KfFxmolQaE6pgC4Gdx_fNA_JaJWNgYrgZ9c3m4HjtTAgWUmCqBID3ae_z6ZfWTocPcMjdBAxI-5Xn3WMGq48QYcRP-K4O9enaPgcxGC37y4BeitkgfIV69JiF4Qi_PmCy211RbPEVe_oNfaoFXvn4E0tc36GJsP7l8EoiX0SEpMRtklmjBEu9Cz1eMmaVAueC-vH2nLqrCTCMssAx2idSiELk9vMiZ5xpih6mpvsHDXLt9JdIKz9D6N0TGQOdMas1JzllgvjKDQAz1wL9WoLKRNFxKGXxVLVbLGF8kZVYFRVGbWFbr-WrCoFjV2TaW129SMMlM_wu5a1axepuAfXygMXmVPhY-Dyf2-9Qvswqqh7bdT0PnTXHoJsik6IsQ7a6z88jcaf-5faDw |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PT8IwFG4IHvTibyOK2oMnkwnr-mtHQySoyEVIuDVdWwyETCJw9W-3b-s0GsPB47p2WV5fv76m3_seQtepTplwMo1027CIMlhzhMjI2MxybuN44gqW74D3RvRxzMY11KlyYYBWGbC_xPQCrUNLK1iztZhOIceXQA59TLyfJgISzbcoIwJOYLcf3zwPyWgJx8BF8N2rq82C5DUzoFlJClUlBsJPf29Ov2C62Hu6-2g3BI34rvyvA1Rz-SHaCwEkDstzeYS6L4Ua7PrdRcBvBRjIX7HOLXaFUoTfYHC-Lu9o5rgsHr3EPmzFfnbwqtI5P0aj7v2w04tCoYTIJIStogljhAs9iX3AZE2sBU-F9c_acuqsJMIyyyCQ0TqWQmYmtYkTbeNMlrU1N8kJqudvuTtFWPsTo3RMJA6ExqzUnKWWC-MoVABPXAO1KwspE1TEoZjFXFV0sZnyRlVgVFUatYFuvoYsSgmNTZ1pZXb1ww-Uh_hNw5rVFKmwCJfKRy4ypcL7wNn_vnqFtnvD577qPwyeztEOvCl5fE1U9_PpLnw8ssouC3_7BCpB26Q |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Structure-preserving+and+efficient+numerical+methods+for+ion+transport&rft.jtitle=Journal+of+computational+physics&rft.au=Ding%2C+Jie&rft.au=Wang%2C+Zhongming&rft.au=Zhou%2C+Shenggao&rft.date=2020-10-01&rft.issn=0021-9991&rft.volume=418&rft.spage=109597&rft_id=info:doi/10.1016%2Fj.jcp.2020.109597&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jcp_2020_109597 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9991&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9991&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9991&client=summon |