B2C-AFM: Bi-directional Co-Temporal and Cross-Spatial Attention Fusion Model for Human Action Recognition
Human Action Recognition plays a driving engine of many human-computer interaction applications. Most current researches focus on improving the model generalization by integrating multiple homogeneous modalities, including RGB images, human poses, and optical flows. Furthermore, contextual interacti...
Saved in:
| Published in | IEEE transactions on image processing Vol. 32; p. 1 |
|---|---|
| Main Authors | , , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
New York
IEEE
01.01.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1057-7149 1941-0042 1941-0042 |
| DOI | 10.1109/TIP.2023.3308750 |
Cover
| Abstract | Human Action Recognition plays a driving engine of many human-computer interaction applications. Most current researches focus on improving the model generalization by integrating multiple homogeneous modalities, including RGB images, human poses, and optical flows. Furthermore, contextual interactions and out-of-context sign languages have been validated to depend on scene category and human per se. Those attempts to integrate appearance features and human poses have shown positive results. However, with human poses' spatial errors and temporal ambiguities, existing methods are subject to poor scalability, limited robustness, and sub-optimal models. In this paper, inspired by the assumption that different modalities may maintain temporal consistency and spatial complementarity, we present a novel Bi-directional Co-temporal and Cross-spatial Attention Fusion Model (B2C-AFM). Our model is characterized by the asynchronous fusion strategy of multi-modal features along temporal and spatial dimensions. Besides, the novel explicit motion-oriented pose representations called Limb Flow Fields (Lff) are explored to alleviate the temporal ambiguity regarding human poses. Experiments on publicly available datasets validate our contributions. Abundant ablation studies experimentally show that B2C-AFM achieves robust performance across seen and unseen human actions. The codes are available here 1 . |
|---|---|
| AbstractList | Human Action Recognition plays a driving engine of many human-computer interaction applications. Most current researches focus on improving the model generalization by integrating multiple homogeneous modalities, including RGB images, human poses, and optical flows. Furthermore, contextual interactions and out-of-context sign languages have been validated to depend on scene category and human per se. Those attempts to integrate appearance features and human poses have shown positive results. However, with human poses' spatial errors and temporal ambiguities, existing methods are subject to poor scalability, limited robustness, and sub-optimal models. In this paper, inspired by the assumption that different modalities may maintain temporal consistency and spatial complementarity, we present a novel Bi-directional Co-temporal and Cross-spatial Attention Fusion Model (B2C-AFM). Our model is characterized by the asynchronous fusion strategy of multi-modal features along temporal and spatial dimensions. Besides, the novel explicit motion-oriented pose representations called Limb Flow Fields (Lff) are explored to alleviate the temporal ambiguity regarding human poses. Experiments on publicly available datasets validate our contributions. Abundant ablation studies experimentally show that B2C-AFM achieves robust performance across seen and unseen human actions. The codes are available at https://github.com/gftww/B2C.git.Human Action Recognition plays a driving engine of many human-computer interaction applications. Most current researches focus on improving the model generalization by integrating multiple homogeneous modalities, including RGB images, human poses, and optical flows. Furthermore, contextual interactions and out-of-context sign languages have been validated to depend on scene category and human per se. Those attempts to integrate appearance features and human poses have shown positive results. However, with human poses' spatial errors and temporal ambiguities, existing methods are subject to poor scalability, limited robustness, and sub-optimal models. In this paper, inspired by the assumption that different modalities may maintain temporal consistency and spatial complementarity, we present a novel Bi-directional Co-temporal and Cross-spatial Attention Fusion Model (B2C-AFM). Our model is characterized by the asynchronous fusion strategy of multi-modal features along temporal and spatial dimensions. Besides, the novel explicit motion-oriented pose representations called Limb Flow Fields (Lff) are explored to alleviate the temporal ambiguity regarding human poses. Experiments on publicly available datasets validate our contributions. Abundant ablation studies experimentally show that B2C-AFM achieves robust performance across seen and unseen human actions. The codes are available at https://github.com/gftww/B2C.git. Human Action Recognition plays a driving engine of many human-computer interaction applications. Most current researches focus on improving the model generalization by integrating multiple homogeneous modalities, including RGB images, human poses, and optical flows. Furthermore, contextual interactions and out-of-context sign languages have been validated to depend on scene category and human per se. Those attempts to integrate appearance features and human poses have shown positive results. However, with human poses’ spatial errors and temporal ambiguities, existing methods are subject to poor scalability, limited robustness, and sub-optimal models. In this paper, inspired by the assumption that different modalities may maintain temporal consistency and spatial complementarity, we present a novel Bi-directional Co-temporal and Cross-spatial Attention Fusion Model (B2C-AFM). Our model is characterized by the asynchronous fusion strategy of multi-modal features along temporal and spatial dimensions. Besides, the novel explicit motion-oriented pose representations called Limb Flow Fields (Lff) are explored to alleviate the temporal ambiguity regarding human poses. Experiments on publicly available datasets validate our contributions. Abundant ablation studies experimentally show that B2C-AFM achieves robust performance across seen and unseen human actions. The codes are available at https://github.com/gftww/B2C.git . Human Action Recognition plays a driving engine of many human-computer interaction applications. Most current researches focus on improving the model generalization by integrating multiple homogeneous modalities, including RGB images, human poses, and optical flows. Furthermore, contextual interactions and out-of-context sign languages have been validated to depend on scene category and human per se. Those attempts to integrate appearance features and human poses have shown positive results. However, with human poses' spatial errors and temporal ambiguities, existing methods are subject to poor scalability, limited robustness, and sub-optimal models. In this paper, inspired by the assumption that different modalities may maintain temporal consistency and spatial complementarity, we present a novel Bi-directional Co-temporal and Cross-spatial Attention Fusion Model (B2C-AFM). Our model is characterized by the asynchronous fusion strategy of multi-modal features along temporal and spatial dimensions. Besides, the novel explicit motion-oriented pose representations called Limb Flow Fields (Lff) are explored to alleviate the temporal ambiguity regarding human poses. Experiments on publicly available datasets validate our contributions. Abundant ablation studies experimentally show that B2C-AFM achieves robust performance across seen and unseen human actions. The codes are available here 1 . |
| Author | Meng, Qiwei Zhu, Jiakai Guo, Fangtai Zhu, Shiqiang Wang, Wen Jin, Tianlei Xi, Xiangming Song, Wei |
| Author_xml | – sequence: 1 givenname: Fangtai orcidid: 0000-0002-4749-9908 surname: Guo fullname: Guo, Fangtai organization: Research Center for Intelligent Robotics, Zhejiang Lab, China – sequence: 2 givenname: Tianlei surname: Jin fullname: Jin, Tianlei organization: Research Center for Intelligent Robotics, Zhejiang Lab, China – sequence: 3 givenname: Shiqiang orcidid: 0000-0002-5687-4001 surname: Zhu fullname: Zhu, Shiqiang organization: Research Center for Intelligent Robotics, Zhejiang Lab, China – sequence: 4 givenname: Xiangming orcidid: 0000-0003-2786-8144 surname: Xi fullname: Xi, Xiangming organization: Research Center for Intelligent Robotics, Zhejiang Lab, China – sequence: 5 givenname: Wen surname: Wang fullname: Wang, Wen organization: Research Center for Intelligent Robotics, Zhejiang Lab, China – sequence: 6 givenname: Qiwei surname: Meng fullname: Meng, Qiwei organization: Research Center for Intelligent Robotics, Zhejiang Lab, China – sequence: 7 givenname: Wei orcidid: 0000-0002-0828-7486 surname: Song fullname: Song, Wei organization: Research Center for Intelligent Robotics, Zhejiang Lab, China – sequence: 8 givenname: Jiakai surname: Zhu fullname: Zhu, Jiakai organization: Research Center for Intelligent Robotics, Zhejiang Lab, China |
| BookMark | eNp9kDFPwzAQRi0EEm1hZ2CIxMLicrZjO2ErEYVKIBCUOXIcG7lK42InA_-ehDIgBqb7ZL3vrHtTdNj61iB0RmBOCORX69XznAJlc8YgkxwO0ITkKcEAKT0cMnCJJUnzYzSNcQNAUk7EBLkbWuDF8vE6uXG4dsHozvlWNUnh8dpsdz4MWbV1UgQfI37dqc4NL4uuM-1IJss-juPR16ZJrA_Jfb9VbbL43pO8GO3fWzfmE3RkVRPN6c-cobfl7bq4xw9Pd6ti8YA1o7zDxkqrM5uK2oJQVQ1ESbBZWsuqVlxDZitSSQOcayIF1coKxahSVZozkmnCZuhyv3cX_EdvYlduXdSmaVRrfB9LmvFcABMZG9CLP-jG92G4fqQEFUzmjA8U7Ck9KgjGlrvgtip8lgTK0X05uC9H9-WP-6Ei_lS069RooQvKNf8Vz_dFZ4z59Q9lPJOUfQGc9ZKG |
| CODEN | IIPRE4 |
| CitedBy_id | crossref_primary_10_1016_j_eswa_2025_126965 crossref_primary_10_1109_TIP_2025_3533205 crossref_primary_10_1016_j_eswa_2023_123061 crossref_primary_10_1016_j_neucom_2024_127882 crossref_primary_10_1007_s11042_023_17626_6 crossref_primary_10_1016_j_knosys_2024_112523 crossref_primary_10_1007_s11042_024_20407_4 |
| Cites_doi | 10.1109/TIP.2020.3028207 10.1109/ICCV48922.2021.01112 10.1109/CVPR.2018.00734 10.1109/CVPR.2018.00539 10.1109/IJCNN.2019.8851734 10.1016/j.inffus.2022.03.001 10.1109/ICRA48506.2021.9562115 10.1016/j.patcog.2021.108044 10.1109/CVPR.2015.7298698 10.1007/978-3-030-58621-8_33 10.1109/ICCV.2019.00718 10.1109/CVPRW.2017.207 10.1109/CVPRW53098.2021.00372 10.1109/CVPR.2016.115 10.1109/TPAMI.2022.3183112 10.1109/ICCV.2019.00630 10.1109/ICPR48806.2021.9412009 10.1109/TNNLS.2023.3247103 10.1109/CVPR52688.2022.00298 10.1609/aaai.v33i01.33018303 10.1109/CVPR42600.2020.00119 10.1007/s11042-020-08806-9 10.1007/s11263-021-01446-y 10.1145/3372278.3390671 10.1109/CVPR46437.2021.01030 10.1109/TIP.2021.3056895 10.1109/WACV56688.2023.00333 10.1109/TIP.2020.2985219 10.1109/ICCV.2019.00289 10.1609/aaai.v32i1.12328 10.1109/CVPR.2017.143 10.1109/CVPR42600.2020.01047 10.1109/JSTSP.2020.2987728 10.1109/TITS.2021.3124981 10.1109/CVPR42600.2020.00046 10.1609/aaai.v32i1.11671 10.1109/CVPR.2016.90 10.1109/CVPRW.2019.00310 10.1109/ICCVW54120.2021.00234 10.1109/TIP.2021.3051495 10.1007/978-3-030-01234-2_1 10.1109/ICCV48922.2021.01124 10.1109/CVPR42600.2020.00028 10.1109/TIP.2015.2456412 10.1609/aaai.v36i1.19957 10.1109/CVPR.2016.213 10.1016/j.knosys.2022.108146 10.1155/2017/3090343 10.1109/CVPR.2019.01225 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
| DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D 7X8 |
| DOI | 10.1109/TIP.2023.3308750 |
| DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional MEDLINE - Academic |
| DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic Technology Research Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences Engineering |
| EISSN | 1941-0042 |
| EndPage | 1 |
| ExternalDocumentID | 10_1109_TIP_2023_3308750 10235872 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: U21A20488 funderid: 10.13039/501100001809 – fundername: Youth Foundation Project of Zhejiang Lab grantid: K2023NB0AA02 – fundername: Key Research Project of Zhejiang Lab grantid: G2021NB0AL03 |
| GroupedDBID | --- -~X .DC 0R~ 29I 4.4 5GY 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK AENEX AGQYO AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS F5P HZ~ IFIPE IPLJI JAVBF LAI M43 MS~ O9- OCL P2P RIA RIE RNS TAE TN5 53G 5VS AAYXX ABFSI AETIX AGSQL AI. AIBXA ALLEH CITATION E.L EJD H~9 ICLAB IFJZH VH1 7SC 7SP 8FD JQ2 L7M L~C L~D 7X8 |
| ID | FETCH-LOGICAL-c325t-ef7fc8f46df06abd01a70f84d7bda5c08fb1b7e055c1762caf6a32aab49318c13 |
| IEDL.DBID | RIE |
| ISSN | 1057-7149 1941-0042 |
| IngestDate | Thu Sep 25 08:54:44 EDT 2025 Mon Jun 30 08:39:14 EDT 2025 Wed Oct 01 02:58:53 EDT 2025 Thu Apr 24 23:09:04 EDT 2025 Wed Aug 27 02:21:31 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c325t-ef7fc8f46df06abd01a70f84d7bda5c08fb1b7e055c1762caf6a32aab49318c13 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0003-2786-8144 0000-0002-4749-9908 0000-0002-0828-7486 0000-0002-5687-4001 0000-0001-8682-7946 0009-0009-1644-2341 |
| PQID | 2862637935 |
| PQPubID | 85429 |
| PageCount | 1 |
| ParticipantIDs | ieee_primary_10235872 proquest_journals_2862637935 crossref_citationtrail_10_1109_TIP_2023_3308750 proquest_miscellaneous_2859603683 crossref_primary_10_1109_TIP_2023_3308750 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2023-01-01 |
| PublicationDateYYYYMMDD | 2023-01-01 |
| PublicationDate_xml | – month: 01 year: 2023 text: 2023-01-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE transactions on image processing |
| PublicationTitleAbbrev | TIP |
| PublicationYear | 2023 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref57 ref15 ref59 ref14 ref58 ref53 ref52 ref11 Doering (ref40) ref55 ref10 ref54 ref17 ref16 ref19 ref18 ref51 ref50 Ren (ref56); 28 Azagra (ref5) ref46 ref45 ref48 ref47 ref41 ref44 ref43 ref49 ref8 ref7 ref9 ref4 ref3 ref6 Simonyan (ref26); 27 ref36 ref31 Mazari (ref20) ref30 ref33 ref32 Kay (ref12) 2017 ref2 ref1 ref39 ref38 ref23 ref25 ref22 ref21 Li (ref34) 2019 ref28 ref27 ref29 Li (ref37) 2021 Hsieh (ref42); 32 Xiao (ref35) 2020 Xu (ref24) 2023 ref60 |
| References_xml | – ident: ref18 doi: 10.1109/TIP.2020.3028207 – ident: ref36 doi: 10.1109/ICCV48922.2021.01112 – ident: ref39 doi: 10.1109/CVPR.2018.00734 – ident: ref9 doi: 10.1109/CVPR.2018.00539 – ident: ref41 doi: 10.1109/IJCNN.2019.8851734 – ident: ref44 doi: 10.1016/j.inffus.2022.03.001 – ident: ref10 doi: 10.1109/ICRA48506.2021.9562115 – year: 2017 ident: ref12 article-title: The kinetics human action video dataset publication-title: arXiv:1705.06950 – year: 2020 ident: ref35 article-title: Audiovisual SlowFast networks for video recognition publication-title: arXiv:2001.08740 – ident: ref17 doi: 10.1016/j.patcog.2021.108044 – ident: ref11 doi: 10.1109/CVPR.2015.7298698 – ident: ref46 doi: 10.1007/978-3-030-58621-8_33 – year: 2023 ident: ref24 article-title: Pyramid self-attention polymerization learning for semi-supervised skeleton-based action recognition publication-title: arXiv:2302.02327 – ident: ref7 doi: 10.1109/ICCV.2019.00718 – ident: ref50 doi: 10.1109/CVPRW.2017.207 – ident: ref6 doi: 10.1109/CVPRW53098.2021.00372 – ident: ref13 doi: 10.1109/CVPR.2016.115 – ident: ref14 doi: 10.1109/TPAMI.2022.3183112 – ident: ref2 doi: 10.1109/ICCV.2019.00630 – ident: ref21 doi: 10.1109/ICPR48806.2021.9412009 – start-page: 1 volume-title: Proc. 29th Brit. Mach. Vis. Conf. (BMVC) ident: ref40 article-title: JointFlow: Temporal flow fields for multi person pose tracking – ident: ref23 doi: 10.1109/TNNLS.2023.3247103 – ident: ref25 doi: 10.1109/CVPR52688.2022.00298 – ident: ref58 doi: 10.1609/aaai.v33i01.33018303 – ident: ref15 doi: 10.1109/CVPR42600.2020.00119 – ident: ref3 doi: 10.1007/s11042-020-08806-9 – ident: ref48 doi: 10.1007/s11263-021-01446-y – ident: ref33 doi: 10.1145/3372278.3390671 – volume: 28 start-page: 1 volume-title: Proc. Adv. Neural Inf. Process. Syst. ident: ref56 article-title: Faster R-CNN: Towards real-time object detection with region proposal networks – year: 2019 ident: ref34 article-title: HAKE: Human activity knowledge engine publication-title: arXiv:1904.06539 – volume: 27 start-page: 1 volume-title: Proc. Adv. Neural Inf. Process. Syst. ident: ref26 article-title: Two-stream convolutional networks for action recognition in videos – ident: ref57 doi: 10.1109/CVPR46437.2021.01030 – start-page: 1 volume-title: Proc. Brit. Mach. Vis. Conf. (BMVC) ident: ref20 article-title: MLGCN: Multi-Laplacian graph convolutional networks for human action recognition – ident: ref30 doi: 10.1109/TIP.2021.3056895 – ident: ref54 doi: 10.1109/WACV56688.2023.00333 – ident: ref59 doi: 10.1109/TIP.2020.2985219 – ident: ref4 doi: 10.1109/ICCV.2019.00289 – ident: ref16 doi: 10.1609/aaai.v32i1.12328 – ident: ref28 doi: 10.1109/CVPR.2017.143 – ident: ref31 doi: 10.1109/CVPR42600.2020.01047 – ident: ref45 doi: 10.1109/JSTSP.2020.2987728 – ident: ref38 doi: 10.1109/TITS.2021.3124981 – ident: ref60 doi: 10.1109/CVPR42600.2020.00046 – ident: ref43 doi: 10.1609/aaai.v32i1.11671 – ident: ref1 doi: 10.1109/CVPR.2016.90 – start-page: 1 volume-title: Proc. NIPS, Workshop Future Interact. Learn. Mach. ident: ref5 article-title: A multimodal human-robot interaction dataset – volume: 32 start-page: 1 volume-title: Proc. Adv. Neural Inf. Process. Syst. ident: ref42 article-title: One-shot object detection with co-attention and co-excitation – ident: ref8 doi: 10.1109/CVPRW.2019.00310 – ident: ref19 doi: 10.1109/ICCVW54120.2021.00234 – ident: ref29 doi: 10.1109/TIP.2021.3051495 – year: 2021 ident: ref37 article-title: SimCC: A simple coordinate classification perspective for human pose estimation publication-title: arXiv:2107.03332 – ident: ref47 doi: 10.1007/978-3-030-01234-2_1 – ident: ref52 doi: 10.1109/ICCV48922.2021.01124 – ident: ref55 doi: 10.1109/CVPR42600.2020.00028 – ident: ref27 doi: 10.1109/TIP.2015.2456412 – ident: ref51 doi: 10.1609/aaai.v36i1.19957 – ident: ref32 doi: 10.1109/CVPR.2016.213 – ident: ref53 doi: 10.1016/j.knosys.2022.108146 – ident: ref22 doi: 10.1155/2017/3090343 – ident: ref49 doi: 10.1109/CVPR.2019.01225 |
| SSID | ssj0014516 |
| Score | 2.5127923 |
| Snippet | Human Action Recognition plays a driving engine of many human-computer interaction applications. Most current researches focus on improving the model... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1 |
| SubjectTerms | Ablation B2C-AFM Color imagery fusion model homogeneous modalities Human action recognition Human activity recognition limb flow fields Optical flow (image analysis) |
| Title | B2C-AFM: Bi-directional Co-Temporal and Cross-Spatial Attention Fusion Model for Human Action Recognition |
| URI | https://ieeexplore.ieee.org/document/10235872 https://www.proquest.com/docview/2862637935 https://www.proquest.com/docview/2859603683 |
| Volume | 32 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1941-0042 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014516 issn: 1057-7149 databaseCode: RIE dateStart: 19920101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELagJzhQKEUsFGQkLhycddbxI9y2K1YFqRVCW6m3yE9pxSqpaHLpr6_HTlYrEIhbpPU6jmY8Hs838w1CH7UJwRnjSHRvGamUK4lSXJAq6pM1wFlEoTj58kpcXFffbvjNWKyeamG89yn5zBfwmLB819kBQmVzoBngSkaL-1gqkYu19pABdJxN0CaXREa_f8IkaT3ffP1eQJvwggH_HZTYH5xBqanKH5Y4HS_rY3Q1LSxnlfwsht4U9v43zsb_Xvlz9Gx0NPEya8YL9Mi3J-h4dDrxuKXvTtDTA0bCl2h7vliR5fryMz7fknzcpVghXnVkk1msdli3Dq_gywg0NN7CW_o-p03i9QDhNwwt1nY4OsQ4oQR4mebBP6Z0pa49RdfrL5vVBRm7MRDLFrwnPshgVaiEC1Ro42ipJQ2qctI4zS1VwZRGesq5LaOFtToIzRZam6qOdsOW7BU6arvWv0ZYSwHoJvOBhsrVolaqFMarOEE0MFLM0HyST2NHqnLomLFr0pWF1k2UaAMSbUaJztCn_T9uM03HP8aegoAOxmXZzNDZpAPNuJHvmgXc-Fg0YnyGPux_jlsQcBXd-m6AMTzeA5lQ7M1fpn6LnsAKcujmDB31vwb_LjozvXmflPgBo_juzQ |
| linkProvider | IEEE |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9NAEF6hcgAOFEoR6QMWiQuHdex4X-aWRkQpNBFCqdSbtU8pamQjal_667uztqOICsTNUjbrtWZ2dna-mW8Q-qS091ZrS4J7mxMqbUakZJzQoE9GA2dRCsXJyxVfXNNvN-ymL1aPtTDOuZh85hJ4jFi-rU0LobIx0AwwKYLFfcoopawr19qBBtBzNoKbTBARPP8BlUyL8fryRwKNwpMcGPCgyH7vFIptVR7Z4njAzA_Ralhal1dym7SNTsz9H6yN_732V-hl72riaacbr9ETVx2hw97txP2mvjtCL_Y4Cd-gzcVkRqbz5Rd8sSHdgRejhXhWk3XHY7XFqrJ4Bl9GoKXxBt7SNF3iJJ63EIDD0GRti4NLjCNOgKdxHvxzSFiqq2N0Pf-6ni1I34-BmHzCGuK88EZ6yq1PudI2zZRIvaRWaKuYSaXXmRYuZcxkwcYa5bnKJ0ppWgTLYbL8LTqo6sq9Q1gJDvhm7nzqqS14IWXGtZNhgmBiBB-h8SCf0vRk5dAzY1vGS0talEGiJUi07CU6Qp93__jVEXX8Y-wxCGhvXCebETobdKDst_JdOYE7Xx7MGBuhj7ufwyYEZEVVrm5hDAs3wZzL_OQvU39Azxbr5VV5dbn6foqew2q6QM4ZOmh-t-48uDaNfh8V-gFKtfIa |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=B2C-AFM%3A+Bi-directional+Co-Temporal+and+Cross-Spatial+Attention+Fusion+Model+for+Human+Action+Recognition&rft.jtitle=IEEE+transactions+on+image+processing&rft.au=Guo%2C+Fangtai&rft.au=Jin%2C+Tianlei&rft.au=Zhu%2C+Shiqiang&rft.au=Xi%2C+Xiangming&rft.date=2023-01-01&rft.pub=IEEE&rft.issn=1057-7149&rft.spage=1&rft.epage=1&rft_id=info:doi/10.1109%2FTIP.2023.3308750&rft.externalDocID=10235872 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1057-7149&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1057-7149&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1057-7149&client=summon |