Implicit time discretization schemes for mixed least-squares finite element formulations

This work is an extension of the ideas in Averweg et al. (2019) with the focus on a detailed investigation of implicit time discretization schemes to model instationary fluid flow, based on the incompressible Navier–Stokes equations, and linear elastodynamic structural behavior. The variational appr...

Full description

Saved in:
Bibliographic Details
Published inComputer methods in applied mechanics and engineering Vol. 368; p. 113111
Main Authors Averweg, Solveigh, Schwarz, Alexander, Nisters, Carina, Schröder, Jörg
Format Journal Article
LanguageEnglish
Published Amsterdam Elsevier B.V 15.08.2020
Elsevier BV
Subjects
Online AccessGet full text
ISSN0045-7825
1879-2138
DOI10.1016/j.cma.2020.113111

Cover

Abstract This work is an extension of the ideas in Averweg et al. (2019) with the focus on a detailed investigation of implicit time discretization schemes to model instationary fluid flow, based on the incompressible Navier–Stokes equations, and linear elastodynamic structural behavior. The variational approaches for fluid and solid mechanics are based on a mixed least-squares finite element method. The L2-norm minimization of the residuals of the constructed first-order systems of the governing differential equations is based on two-field stress–velocity (SV) functionals. For the time discretization of the SV-fluid formulation, four different types of implicit integration schemes are investigated, namely the Houbolt method, the Crank–Nicolson method and two explicit, singly diagonally implicit Runge–Kutta methods (ESDIRK). The SV-formulation for the solid is discretized applying the Houbolt method. The presented time integration schemes are validated investigating an unsteady fluid flow and an elastodynamic structural benchmark. Since both (fluid and solid) SV formulations are discretized using conforming finite element spaces in H(div) and H1, respectively, the inherent fulfillment of coupling conditions, when modeling fluid–structure interaction problems, is given a priori. Therefore, the applicability is also examined by two simplified FSI problems for small deformations, in order to represent the main characteristics of the presented approach. •Investigation of different implicit time discretizations for mixed least-squares FEM.•Validation and verification for fluid and structure problems.•Accuracy assessment with respect to displacements and lift/drag coefficients.•Application to benchmark problems for FSI problems under small deformations.
AbstractList This work is an extension of the ideas in Averweg et al. (2019) with the focus on a detailed investigation of implicit time discretization schemes to model instationary fluid flow, based on the incompressible Navier–Stokes equations, and linear elastodynamic structural behavior. The variational approaches for fluid and solid mechanics are based on a mixed least-squares finite element method. The L2-norm minimization of the residuals of the constructed first-order systems of the governing differential equations is based on two-field stress–velocity (SV) functionals. For the time discretization of the SV-fluid formulation, four different types of implicit integration schemes are investigated, namely the Houbolt method, the Crank–Nicolson method and two explicit, singly diagonally implicit Runge–Kutta methods (ESDIRK). The SV-formulation for the solid is discretized applying the Houbolt method. The presented time integration schemes are validated investigating an unsteady fluid flow and an elastodynamic structural benchmark. Since both (fluid and solid) SV formulations are discretized using conforming finite element spaces in H(div) and H1, respectively, the inherent fulfillment of coupling conditions, when modeling fluid–structure interaction problems, is given a priori. Therefore, the applicability is also examined by two simplified FSI problems for small deformations, in order to represent the main characteristics of the presented approach. •Investigation of different implicit time discretizations for mixed least-squares FEM.•Validation and verification for fluid and structure problems.•Accuracy assessment with respect to displacements and lift/drag coefficients.•Application to benchmark problems for FSI problems under small deformations.
This work is an extension of the ideas in Averweg et al. (2019) with the focus on a detailed investigation of implicit time discretization schemes to model instationary fluid flow, based on the incompressible Navier–Stokes equations, and linear elastodynamic structural behavior. The variational approaches for fluid and solid mechanics are based on a mixed least-squares finite element method. The L2-norm minimization of the residuals of the constructed first-order systems of the governing differential equations is based on two-field stress–velocity (SV) functionals. For the time discretization of the SV-fluid formulation, four different types of implicit integration schemes are investigated, namely the Houbolt method, the Crank–Nicolson method and two explicit, singly diagonally implicit Runge–Kutta methods (ESDIRK). The SV-formulation for the solid is discretized applying the Houbolt method. The presented time integration schemes are validated investigating an unsteady fluid flow and an elastodynamic structural benchmark. Since both (fluid and solid) SV formulations are discretized using conforming finite element spaces in H(div) and H1, respectively, the inherent fulfillment of coupling conditions, when modeling fluid–structure interaction problems, is given a priori. Therefore, the applicability is also examined by two simplified FSI problems for small deformations, in order to represent the main characteristics of the presented approach.
ArticleNumber 113111
Author Schwarz, Alexander
Nisters, Carina
Schröder, Jörg
Averweg, Solveigh
Author_xml – sequence: 1
  givenname: Solveigh
  orcidid: 0000-0002-1396-2343
  surname: Averweg
  fullname: Averweg, Solveigh
  email: solveigh.averweg@uni-due.de
– sequence: 2
  givenname: Alexander
  surname: Schwarz
  fullname: Schwarz, Alexander
  email: alexander.schwarz@uni-due.de
– sequence: 3
  givenname: Carina
  surname: Nisters
  fullname: Nisters, Carina
  email: carina.nisters@uni-due.de
– sequence: 4
  givenname: Jörg
  surname: Schröder
  fullname: Schröder, Jörg
  email: j.schroeder@uni-due.de
BookMark eNp9kE1LAzEURYNUsK3-AHcDrqcmmUmT4kqKH4WCGwV3IfPmDabMR5tkRP31ZjquXPRtwgv3JNwzI5O2a5GQa0YXjLLl7W4BjVlwyuPOMsbYGZkyJVcpZ5makCmluUil4uKCzLzf0TiK8Sl53zT72oINSbANJqX14DDYHxNs1yYePrBBn1SdSxr7hWVSo_Eh9YfeuOHetjZggnVMtWGINX19RP0lOa9M7fHq75yTt8eH1_Vzun152qzvtylkXIQUMxTAuMjpEleioFxBAYIXCkupZAXLnEIJ3FSFYRVXBc8yykGWBeQrKViezcnN-O7edYcefdC7rndt_FLzPOcZZ1SqmGJjClznvcNK751tjPvWjOpBoN7pKFAPAvUoMDLyHxM1HcsFZ2x9krwbSYzFPy067cFiC1hahxB02dkT9C_CVY2S
CitedBy_id crossref_primary_10_1016_j_cma_2024_116783
crossref_primary_10_1016_j_joes_2021_09_017
crossref_primary_10_1002_nme_7610
Cites_doi 10.1007/s11831-007-9006-6
10.1137/0714068
10.1137/S0036142996313592
10.1137/S003614299527299X
10.2514/8.1722
10.1007/BF02127704
10.1115/1.2900803
10.1002/nme.1620260106
10.1016/j.cma.2003.09.006
10.1016/j.jcp.2007.05.005
10.1137/S0036142903422673
10.1002/pamm.201510099
10.1016/0045-7949(89)90315-5
10.1137/S0036142997324976
10.1007/s00466-014-1009-1
10.1002/nme.1620060109
10.1002/fld.3831
10.1016/j.jcp.2005.08.015
10.1007/s00419-012-0638-0
10.1006/jcph.2000.6592
10.1080/1061856031000123580
10.1016/j.compstruc.2006.11.019
10.1007/s00466-017-1395-2
10.1002/fld.2703
10.1016/S0304-3975(97)00067-4
10.1006/jcph.2002.7059
10.1007/s00466-006-0084-3
10.1073/pnas.38.3.235
10.1002/nme.1620080212
10.2140/jomms.2017.12.57
10.1002/pamm.201900204
10.1016/j.cma.2018.01.043
10.1002/nme.1620100505
10.1016/j.medengphy.2005.10.002
10.1016/0045-7825(95)00826-M
10.1016/j.cma.2005.10.007
10.1007/s003660200028
10.1007/s00791-010-0150-4
10.1002/fld.1650180202
10.1016/j.jcp.2003.09.034
10.1016/j.na.2005.01.054
10.1002/fld.1815
10.1016/j.jfluidstructs.2004.06.008
10.1007/3-540-34596-5_7
10.2514/1.22847
10.1002/fld.1650140706
10.1007/s00466-017-1394-3
10.1002/nme.179
ContentType Journal Article
Copyright 2020 Elsevier B.V.
Copyright Elsevier BV Aug 15, 2020
Copyright_xml – notice: 2020 Elsevier B.V.
– notice: Copyright Elsevier BV Aug 15, 2020
DBID AAYXX
CITATION
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
DOI 10.1016/j.cma.2020.113111
DatabaseName CrossRef
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Civil Engineering Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
EISSN 1879-2138
ExternalDocumentID 10_1016_j_cma_2020_113111
S0045782520302966
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
AAYFN
ABAOU
ABBOA
ABFNM
ABJNI
ABMAC
ABYKQ
ACAZW
ACDAQ
ACGFS
ACIWK
ACRLP
ACZNC
ADBBV
ADEZE
ADGUI
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIGVJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ARUGR
AXJTR
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
IHE
J1W
JJJVA
KOM
LG9
LY7
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SST
SSV
SSW
SSZ
T5K
TN5
WH7
XPP
ZMT
~02
~G-
29F
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABEFU
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADIYS
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FEDTE
FGOYB
G-2
HLZ
HVGLF
HZ~
R2-
SBC
SET
SEW
VH1
VOH
WUQ
ZY4
~HD
7SC
7TB
8FD
AFXIZ
AGCQF
AGRNS
BNPGV
FR3
JQ2
KR7
L7M
L~C
L~D
SSH
ID FETCH-LOGICAL-c325t-e3e5c125406e95b028cbc52b8ed787fc640cdc2afba1f28b23302c7dbc4975143
IEDL.DBID .~1
ISSN 0045-7825
IngestDate Fri Jul 25 02:21:35 EDT 2025
Thu Apr 24 23:00:17 EDT 2025
Wed Oct 01 05:16:27 EDT 2025
Fri Feb 23 02:46:39 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Fluid–structure interaction
Incompressible Navier–Stokes equations
Implicit time discretization schemes
Elastodynamics
Mixed least-squares finite elements
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c325t-e3e5c125406e95b028cbc52b8ed787fc640cdc2afba1f28b23302c7dbc4975143
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-1396-2343
PQID 2442321078
PQPubID 2045269
ParticipantIDs proquest_journals_2442321078
crossref_primary_10_1016_j_cma_2020_113111
crossref_citationtrail_10_1016_j_cma_2020_113111
elsevier_sciencedirect_doi_10_1016_j_cma_2020_113111
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-08-15
PublicationDateYYYYMMDD 2020-08-15
PublicationDate_xml – month: 08
  year: 2020
  text: 2020-08-15
  day: 15
PublicationDecade 2020
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Computer methods in applied mechanics and engineering
PublicationYear 2020
Publisher Elsevier B.V
Elsevier BV
Publisher_xml – name: Elsevier B.V
– name: Elsevier BV
References Hussain, Schieweck, Turek (b21) 2013; 73
Bazilevs, Moutsanidis, Bueno, Kamran, Kamensky, Hillman, Gomez, Chen (b28) 2017; 60
Hairer, Wanner (b64) 1996
Ellsiepen, Hartmann (b60) 2001; 51
Alexander (b62) 1977; 14
Montlaur, Fernandez-Mendez, Huerta (b61) 2012; 70
Schwarz, Steeger, Schröder (b42) 2014; 54
Bazilevs, Kamran, Moutsanidis, Benson, Oñate (b57) 2017; 60
Hu, Patankar, Zhu (b10) 2001; 169
Heys, DeGroff, Manteuffel, McCormick (b52) 2006; 28
Souli, Benson (b49) 2013
Ghaboussi, Wu (b8) 2016
Bochev, Gunzburger (b1) 2009
Birken, Quint, Hartmann, Meister (b24) 2010; 13
Dettmer, Perić (b15) 2007; 14
Jiang (b30) 1992; 14
Houbolt (b58) 1950; 17
Carstens, Kuhl (b20) 2012; 82
S. Turek, C. Becker, S. Kilian, M. Möller, S. Buijssen, D. Göddecke, M. Köster, R. Münster, H. Wobker, M. Geveler, D. Ribbrock, P. Zajac, High performance finite elements
John, Matthies, Rang (b6) 2006; 195
Yang, Mavriplis (b23) 2007; 45
Turek, Hron (b27) 2010
Heys, DeGroff, Manteuffel, McCormick, Tufo (b51) 2004; 40
Bochev, Cai, Manteuffel, McCormick (b32) 1998; 35
Wood, Gil, Hassan, Bonet (b13) 2008; 57
Brezzi, Fortin (b45) 1991
.
Grafenhorst, Rang, Hartmann (b25) 2017; 12
Heil (b53) 2004; 193
Bungartz, Mehl, Schäfer (b46) 2010
Namkoong, Choi, Yoo (b17) 2005; 20
Ding, Tsang (b35) 2003; 17
Heys, Lee, Manteuffel, McCormick (b39) 2007; 226
ABAQUS (b70) 2011
Bazilevs, Takizawa (b48) 2016
Bazilevs, Takizawa, Tezduyar (b47) 2013
Korelc (b66) 2002; 18
Wolfram Research Inc. (b67) 2015
Wriggers (b7) 2008
Schäfer, Turek, Durst, Krause, Rannacher (b68) 1996
Butcher (b18) 1987
Korelc (b65) 1997; 187
Crank, Nicolson (b16) 1996; 6
Nisters, Schwarz, Steeger, Schröder (b43) 2015; 15
Kayser-Herold, Matthies (b29) 2007; 85
Heys, Manteuffel, McCormick, Ruge (b50) 2004; 195
Raviart, Thomas (b44) 1977
Turek, Hron, Razzaq, Wobker, Schäfer (b71) 2010
S. Averweg, A. Schwarz, C. Nisters, J. Schröder, A least-squares finite element approach to model fluid-structure interaction problems, in: Proceedings in Applied Mathematics and Mechanics, Vol. 19, 2019, pp. 2, e201900204.
Bell, Surana (b33) 1994; 18
Cai, Lee, Wang (b40) 2004; 42
Subbaraj, Dokainish (b12) 1989; 32
Curtiss, Hirschfelder (b9) 1952; 38
Turek, Hron, Madlik, Razzaq, Wobker, Acker (b56) 2010; 73
Carey, Jiang (b59) 1988; 26
Nisters, Schwarz (b41) 2018; 341
Newmark (b11) 1959
Jiang (b31) 1998
Zienkiewicz, Owen, Lee (b3) 1974; 8
Lynn, Arya (b2) 1973; 6
Bolton, Thatcher (b38) 2006; 213
Pontaza (b5) 2003
Chung, Hulbert (b14) 1993; 60
Bazilevs, Calo, Zhang, Hughes (b54) 2006; 38
Bochev, Manteuffel, McCormick (b37) 1999; 36
Bijl, Carpenter, Vatsa, Kennedy (b19) 2002; 179
J. Hron, S. Turek, A monolithic FEM solver for an ALE formulation of fluid-structure interaction with configuration for numerical benchmarking, in: European Conference on Computational Fluid Dynamics ECCOMAS CFD, 2006.
Bochev, Gunzburger (b34) 1995; 126
Cai, Manteuffel, McCormick (b36) 1997; 34
Cash (b63) 1979; 24
van Zuijlen, Bijl (b22) 2005; 63
Eason (b4) 1976; 10
Bolton (10.1016/j.cma.2020.113111_b38) 2006; 213
Bell (10.1016/j.cma.2020.113111_b33) 1994; 18
Korelc (10.1016/j.cma.2020.113111_b65) 1997; 187
ABAQUS (10.1016/j.cma.2020.113111_b70) 2011
Bazilevs (10.1016/j.cma.2020.113111_b57) 2017; 60
Birken (10.1016/j.cma.2020.113111_b24) 2010; 13
Montlaur (10.1016/j.cma.2020.113111_b61) 2012; 70
Souli (10.1016/j.cma.2020.113111_b49) 2013
Houbolt (10.1016/j.cma.2020.113111_b58) 1950; 17
Hairer (10.1016/j.cma.2020.113111_b64) 1996
Bazilevs (10.1016/j.cma.2020.113111_b48) 2016
Turek (10.1016/j.cma.2020.113111_b56) 2010; 73
Bochev (10.1016/j.cma.2020.113111_b32) 1998; 35
Heys (10.1016/j.cma.2020.113111_b39) 2007; 226
Heys (10.1016/j.cma.2020.113111_b52) 2006; 28
Bungartz (10.1016/j.cma.2020.113111_b46) 2010
Nisters (10.1016/j.cma.2020.113111_b43) 2015; 15
Alexander (10.1016/j.cma.2020.113111_b62) 1977; 14
Cai (10.1016/j.cma.2020.113111_b36) 1997; 34
Schäfer (10.1016/j.cma.2020.113111_b68) 1996
Subbaraj (10.1016/j.cma.2020.113111_b12) 1989; 32
Turek (10.1016/j.cma.2020.113111_b27) 2010
Wriggers (10.1016/j.cma.2020.113111_b7) 2008
Bazilevs (10.1016/j.cma.2020.113111_b28) 2017; 60
Schwarz (10.1016/j.cma.2020.113111_b42) 2014; 54
Heil (10.1016/j.cma.2020.113111_b53) 2004; 193
Kayser-Herold (10.1016/j.cma.2020.113111_b29) 2007; 85
Dettmer (10.1016/j.cma.2020.113111_b15) 2007; 14
Jiang (10.1016/j.cma.2020.113111_b30) 1992; 14
10.1016/j.cma.2020.113111_b55
Newmark (10.1016/j.cma.2020.113111_b11) 1959
Bochev (10.1016/j.cma.2020.113111_b34) 1995; 126
Cash (10.1016/j.cma.2020.113111_b63) 1979; 24
Crank (10.1016/j.cma.2020.113111_b16) 1996; 6
Bazilevs (10.1016/j.cma.2020.113111_b54) 2006; 38
Hu (10.1016/j.cma.2020.113111_b10) 2001; 169
Carey (10.1016/j.cma.2020.113111_b59) 1988; 26
Grafenhorst (10.1016/j.cma.2020.113111_b25) 2017; 12
Ding (10.1016/j.cma.2020.113111_b35) 2003; 17
Bijl (10.1016/j.cma.2020.113111_b19) 2002; 179
Korelc (10.1016/j.cma.2020.113111_b66) 2002; 18
Yang (10.1016/j.cma.2020.113111_b23) 2007; 45
John (10.1016/j.cma.2020.113111_b6) 2006; 195
Hussain (10.1016/j.cma.2020.113111_b21) 2013; 73
Brezzi (10.1016/j.cma.2020.113111_b45) 1991
Heys (10.1016/j.cma.2020.113111_b50) 2004; 195
Bochev (10.1016/j.cma.2020.113111_b1) 2009
Carstens (10.1016/j.cma.2020.113111_b20) 2012; 82
Bochev (10.1016/j.cma.2020.113111_b37) 1999; 36
Ellsiepen (10.1016/j.cma.2020.113111_b60) 2001; 51
10.1016/j.cma.2020.113111_b69
Zienkiewicz (10.1016/j.cma.2020.113111_b3) 1974; 8
Curtiss (10.1016/j.cma.2020.113111_b9) 1952; 38
Namkoong (10.1016/j.cma.2020.113111_b17) 2005; 20
Raviart (10.1016/j.cma.2020.113111_b44) 1977
Turek (10.1016/j.cma.2020.113111_b71) 2010
10.1016/j.cma.2020.113111_b26
Heys (10.1016/j.cma.2020.113111_b51) 2004; 40
Cai (10.1016/j.cma.2020.113111_b40) 2004; 42
Butcher (10.1016/j.cma.2020.113111_b18) 1987
Eason (10.1016/j.cma.2020.113111_b4) 1976; 10
Pontaza (10.1016/j.cma.2020.113111_b5) 2003
Jiang (10.1016/j.cma.2020.113111_b31) 1998
Wood (10.1016/j.cma.2020.113111_b13) 2008; 57
Lynn (10.1016/j.cma.2020.113111_b2) 1973; 6
Ghaboussi (10.1016/j.cma.2020.113111_b8) 2016
van Zuijlen (10.1016/j.cma.2020.113111_b22) 2005; 63
Wolfram Research Inc. (10.1016/j.cma.2020.113111_b67) 2015
Bazilevs (10.1016/j.cma.2020.113111_b47) 2013
Chung (10.1016/j.cma.2020.113111_b14) 1993; 60
Nisters (10.1016/j.cma.2020.113111_b41) 2018; 341
References_xml – volume: 341
  start-page: 333
  year: 2018
  end-page: 359
  ident: b41
  article-title: Efficient stress-velocity least-squares finite element formulations for the incompressible Navier–Stokes equations
  publication-title: Comput. Methods Appl. Mech. Engrg.
– year: 2011
  ident: b70
  article-title: User’s manual version 6.11.
– year: 1987
  ident: b18
  article-title: The Numerical Analysis of Ordinary Differential Equations: Runge–Kutta and General Linear Methods
– volume: 169
  start-page: 427
  year: 2001
  end-page: 462
  ident: b10
  article-title: Direct numerical simulations of Fluid–Solid systems using the arbitrary Lagrangian–Eulerian technique
  publication-title: J. Comput. Phys.
– volume: 28
  start-page: 495
  year: 2006
  end-page: 503
  ident: b52
  article-title: First-order system least-squares (FOSLS) for modeling blood flow
  publication-title: Med. Eng. Phys.
– volume: 45
  start-page: 138
  year: 2007
  end-page: 150
  ident: b23
  article-title: Higher-order time integration schemes for aeroelastic applications on unstructured meshes
  publication-title: AIAA J.
– year: 2013
  ident: b49
  article-title: Arbitrary Lagrangian Eulerian and Fluid-Structure Interaction: Numerical Simulation
– year: 1996
  ident: b68
  article-title: Benchmark Computations of Laminar Flow Around a Cylinder
– volume: 15
  start-page: 217
  year: 2015
  end-page: 218
  ident: b43
  article-title: A stress-velocity least-squares mixed finite element formulation for incompressible elastodynamics
  publication-title: Proc. Appl. Math. Mech.
– year: 2016
  ident: b48
  article-title: Advances in Computational Fluid-Structure Interaction and Flow Simulation: New Methods and Challenging Computations
– volume: 20
  start-page: 51
  year: 2005
  end-page: 69
  ident: b17
  article-title: Computation of dynamic fluid–structure interaction in two-dimensional laminar flows using combined formulation
  publication-title: J. Fluids Struct.
– start-page: 292
  year: 1977
  end-page: 315
  ident: b44
  article-title: A mixed finite element method for 2-nd order elliptic problems. Mathematical aspects of finite element methods
  publication-title: Mathematical Aspects of Finite Element Methods
– volume: 18
  start-page: 127
  year: 1994
  end-page: 162
  ident: b33
  article-title: P-version Least Squares Finite Element Formulation for two-dimensional, incompressible, non-Newtonian isothermal and non-isothermal fluid flow
  publication-title: Internat. J. Numer. Methods Fluids
– volume: 40
  start-page: 193
  year: 2004
  end-page: 199
  ident: b51
  article-title: Modeling 3-D compliant blood flow with FOSLS
  publication-title: Biomed. Sci. Instrum.
– volume: 36
  start-page: 1125
  year: 1999
  end-page: 1144
  ident: b37
  article-title: Analysis of velocity-flux least-squares principles for the Navier–Stokes equations: Part II
  publication-title: SIAM J. Numer. Anal.
– year: 2013
  ident: b47
  article-title: Computational fluid-structure interaction: Methods and applications
  publication-title: Computational Fluid-Structure Interaction: Methods and Applications
– volume: 17
  start-page: 540
  year: 1950
  end-page: 550
  ident: b58
  article-title: A recurrence matrix solution for the dynamic response of elastic aircraft
  publication-title: Journal of the Aeronautical Sciences
– volume: 32
  start-page: 1387
  year: 1989
  end-page: 1401
  ident: b12
  article-title: A survey of direct time-integration methods in computational structural dynamics II. Implicit methods
  publication-title: Comput. Struct.
– volume: 213
  start-page: 174
  year: 2006
  end-page: 183
  ident: b38
  article-title: A least-squares finite element method for the Navier–Stokes equations
  publication-title: J. Comput. Phys.
– volume: 54
  start-page: 603
  year: 2014
  end-page: 612
  ident: b42
  article-title: Weighted overconstrained least-squares mixed finite elements for static and dynamic problems in quasi-incompressible elasticity
  publication-title: Comput. Mech.
– volume: 187
  start-page: 231
  year: 1997
  end-page: 248
  ident: b65
  article-title: Automatic generation of finite-element code by simultaneous optimization of expressions
  publication-title: Theoret. Comput. Sci.
– year: 2008
  ident: b7
  article-title: Nonlinear Finite Element Methods
– volume: 126
  start-page: 267
  year: 1995
  end-page: 287
  ident: b34
  article-title: Least-squares methods for the velocity-pressure-stress formulation of the Stokes equations
  publication-title: Comput. Methods Appl. Mech. Engrg.
– volume: 195
  start-page: 560
  year: 2004
  end-page: 575
  ident: b50
  article-title: First-order system least-squares (FOSLS) for coupled fluid-elastic problems
  publication-title: J. Comput. Phys.
– volume: 82
  start-page: 1007
  year: 2012
  end-page: 1039
  ident: b20
  article-title: Higher-order accurate implicit time integration schemes for transport problems
  publication-title: Arch. Appl. Mech.
– volume: 60
  start-page: 101
  year: 2017
  end-page: 116
  ident: b28
  article-title: A new formulation for air-blast fluid–structure interaction using an immersed approach: part II—coupling of IGA and meshfree discretizations
  publication-title: Comput. Mech.
– volume: 26
  start-page: 81
  year: 1988
  end-page: 93
  ident: b59
  article-title: Least-squares finite elements for first-order hyperbolic systems
  publication-title: Internat. J. Numer. Methods Engrg.
– volume: 13
  start-page: 331
  year: 2010
  end-page: 340
  ident: b24
  article-title: A time-adaptive fluid-structure interaction method for thermal coupling
  publication-title: Comput. Vis. Sci.
– year: 2016
  ident: b8
  article-title: Numerical Methods in Computational Mechanics
– volume: 60
  start-page: 83
  year: 2017
  end-page: 100
  ident: b57
  article-title: A new formulation for air-blast fluid–structure interaction using an immersed approach. Part I: basic methodology and FEM-based simulations
  publication-title: Comput. Mech.
– volume: 38
  start-page: 235
  year: 1952
  end-page: 243
  ident: b9
  article-title: Integration of stiff equations
  publication-title: Proc. Natl. Acad. Sci.
– reference: S. Averweg, A. Schwarz, C. Nisters, J. Schröder, A least-squares finite element approach to model fluid-structure interaction problems, in: Proceedings in Applied Mathematics and Mechanics, Vol. 19, 2019, pp. 2, e201900204.
– year: 1998
  ident: b31
  article-title: The Least-Squares Finite Element Method, Scientific Computation
– volume: 42
  start-page: 843
  year: 2004
  end-page: 859
  ident: b40
  article-title: Least-squares methods for incompressible Newtonian fluid flow: Linear stationary problems
  publication-title: SIAM J. Numer. Anal.
– volume: 57
  start-page: 555
  year: 2008
  end-page: 581
  ident: b13
  article-title: A partitioned coupling approach for dynamic fluid–structure interaction with applications to biological membranes
  publication-title: Internat. J. Numer. Methods Fluids
– volume: 73
  start-page: 927
  year: 2013
  end-page: 952
  ident: b21
  article-title: An efficient and stable finite element solver of higher order in space and time for nonstationary incompressible flow
  publication-title: Internat. J. Numer. Methods Fluids
– volume: 6
  start-page: 207
  year: 1996
  end-page: 226
  ident: b16
  article-title: A practical method for numerical evaluation of solutions of partial differential equations of the heat-conduction type
  publication-title: Adv. Comput. Math.
– volume: 60
  start-page: 371
  year: 1993
  end-page: 375
  ident: b14
  article-title: A time integration algorithm for structural dynamics with improved numerical dissipation: The generalized-
  publication-title: J. Appl. Mech.
– volume: 10
  start-page: 1021
  year: 1976
  end-page: 1046
  ident: b4
  article-title: A review of least-squares methods for solving partial differential equations
  publication-title: Int. J. Numer. Methods Eng.
– volume: 63
  start-page: e1597
  year: 2005
  end-page: e1605
  ident: b22
  article-title: A higher-order time integration algorithm for the simulation of nonlinear fluid-structure interaction
  publication-title: Nonlinear Anal. TMA
– start-page: 371
  year: 2010
  end-page: 385
  ident: b27
  article-title: Proposal for numerical benchmarking of fluid-structure interaction between an elastic object and laminar incompressible flow
  publication-title: Fluid Structure Interaction II : Modelling, Simulation, Optimization
– volume: 18
  start-page: 312
  year: 2002
  end-page: 327
  ident: b66
  article-title: Multi-language and multi-environment generation of nonlinear finite element codes
  publication-title: Eng. Comput.
– year: 2009
  ident: b1
  article-title: Least-Squares Finite Element Methods
– year: 2010
  ident: b46
  article-title: Fluid Structure Interaction II : Modelling, Simulation, Optimization
– start-page: 413
  year: 2010
  end-page: 424
  ident: b71
  article-title: Numerical benchmarking of fluid-structure interaction: A comparison of different discretization and solution approaches
  publication-title: Fluid Structure Interaction, Vol. II
– volume: 70
  start-page: 603
  year: 2012
  end-page: 626
  ident: b61
  article-title: High-order implicit time integration for unsteady incompressible flows
  publication-title: Internat. J. Numer. Methods Fluids
– volume: 35
  start-page: 990
  year: 1998
  end-page: 1009
  ident: b32
  article-title: Analysis of velocity-flux first-order system least-squares principles for the Navier–Stokes equations: Part i
  publication-title: SIAM J. Numer. Anal.
– volume: 51
  start-page: 679
  year: 2001
  end-page: 707
  ident: b60
  article-title: Remarks on the interpretation of current non-linear finite element analyses as differential-algebraic equations
  publication-title: Internat. J. Numer. Methods Engrg.
– volume: 14
  start-page: 843
  year: 1992
  end-page: 859
  ident: b30
  article-title: A least-squares finite element method for incompressible Navier–Stokes problems
  publication-title: Internat. J. Numer. Methods Fluids
– volume: 14
  start-page: 1006
  year: 1977
  end-page: 1021
  ident: b62
  article-title: Diagonally implicitRungep–Kutta methods for stiff O.D.E.’s
  publication-title: SIAM J. Numer. Anal.
– year: 2015
  ident: b67
  article-title: Mathematica
– volume: 226
  start-page: 994
  year: 2007
  end-page: 1006
  ident: b39
  article-title: An alternative least-squares formulation of the Navier–Stokes equations with improved mass conservation
  publication-title: J. Comput. Phys.
– year: 1996
  ident: b64
  article-title: Solving Ordinary Differential Equations, Vol. II
– volume: 14
  start-page: 205
  year: 2007
  end-page: 247
  ident: b15
  article-title: A fully implicit computational strategy for strongly coupled Fluid–Solid interaction
  publication-title: Arch. Comput. Methods Eng.
– reference: J. Hron, S. Turek, A monolithic FEM solver for an ALE formulation of fluid-structure interaction with configuration for numerical benchmarking, in: European Conference on Computational Fluid Dynamics ECCOMAS CFD, 2006.
– volume: 24
  year: 1979
  ident: b63
  article-title: Diagonally implicit Runge–Kutta formulae with error estimates
  publication-title: IMA J. Appl. Math. (Inst. Math. Appl.)
– year: 2003
  ident: b5
  article-title: Least-Squares Variational Principles and the Finite Element Method: Theory, Form, and Model for Solid and Fluid Mechanics
– reference: .
– volume: 6
  start-page: 75
  year: 1973
  end-page: 88
  ident: b2
  article-title: Use of the least squares criterion in the finite element formulation
  publication-title: Int. J. Numer. Methods Eng.
– volume: 179
  start-page: 313
  year: 2002
  end-page: 329
  ident: b19
  article-title: Implicit time integration schemes for the unsteady compressible Navier-Stokes equations: Laminar flow
  publication-title: J. Comput. Phys.
– volume: 12
  start-page: 57
  year: 2017
  end-page: 91
  ident: b25
  article-title: Time-adaptive finite element simulations of dynamical problems for temperature-dependent materials
  publication-title: J. Mech. Mater. Struct.
– volume: 17
  start-page: 183
  year: 2003
  end-page: 197
  ident: b35
  article-title: On first-order formulations of the least-squares finite element method for incompressible flows
  publication-title: Int. J. Comput. Fluid Dyn.
– year: 1959
  ident: b11
  article-title: A Method of Computation for Structural Dynamics
– volume: 85
  start-page: 998
  year: 2007
  end-page: 1011
  ident: b29
  article-title: A unified least-squares formulation for fluid-structure interaction problems
  publication-title: Comput. Struct.
– volume: 8
  start-page: 341
  year: 1974
  end-page: 358
  ident: b3
  article-title: Least square-finite element for elasto-static problems. Use of ’reduced’ integration
  publication-title: Int. J. Numer. Methods Eng.
– volume: 195
  start-page: 5995
  year: 2006
  end-page: 6010
  ident: b6
  article-title: A comparison of time-discretization/linearization approaches for the incompressible Navier–Stokes equations
  publication-title: Comput. Methods Appl. Mech. Engrg.
– volume: 38
  start-page: 310
  year: 2006
  end-page: 322
  ident: b54
  article-title: Isogeometric fluid-structure interaction analysis with applications to arterial blood flow
  publication-title: Comput. Mech.
– volume: 193
  start-page: 1
  year: 2004
  end-page: 23
  ident: b53
  article-title: An efficient solver for the fully coupled solution of large-displacement fluid–structure interaction problems
  publication-title: Comput. Methods Appl. Mech. Engrg.
– reference: S. Turek, C. Becker, S. Kilian, M. Möller, S. Buijssen, D. Göddecke, M. Köster, R. Münster, H. Wobker, M. Geveler, D. Ribbrock, P. Zajac, High performance finite elements,
– volume: 34
  start-page: 1727
  year: 1997
  end-page: 1741
  ident: b36
  article-title: First-order system least squares for the Stokes equation, with application to linear elasticity
  publication-title: SIAM J. Numer. Anal.
– year: 1991
  ident: b45
  article-title: Mixed and Hybrid Finite Element Methods
– volume: 73
  start-page: 193
  year: 2010
  end-page: 220
  ident: b56
  article-title: Numerical simulation and benchmarking of a monolithic multigrid solver for fluid-structure interaction problems with application to hemodynamics
  publication-title: Comput. Sci. Eng.
– volume: 14
  start-page: 205
  issue: 3
  year: 2007
  ident: 10.1016/j.cma.2020.113111_b15
  article-title: A fully implicit computational strategy for strongly coupled Fluid–Solid interaction
  publication-title: Arch. Comput. Methods Eng.
  doi: 10.1007/s11831-007-9006-6
– year: 2008
  ident: 10.1016/j.cma.2020.113111_b7
– volume: 14
  start-page: 1006
  issue: 6
  year: 1977
  ident: 10.1016/j.cma.2020.113111_b62
  article-title: Diagonally implicitRungep–Kutta methods for stiff O.D.E.’s
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/0714068
– volume: 35
  start-page: 990
  issue: 3
  year: 1998
  ident: 10.1016/j.cma.2020.113111_b32
  article-title: Analysis of velocity-flux first-order system least-squares principles for the Navier–Stokes equations: Part i
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/S0036142996313592
– volume: 34
  start-page: 1727
  year: 1997
  ident: 10.1016/j.cma.2020.113111_b36
  article-title: First-order system least squares for the Stokes equation, with application to linear elasticity
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/S003614299527299X
– year: 1996
  ident: 10.1016/j.cma.2020.113111_b68
– year: 2013
  ident: 10.1016/j.cma.2020.113111_b47
  article-title: Computational fluid-structure interaction: Methods and applications
– volume: 40
  start-page: 193
  year: 2004
  ident: 10.1016/j.cma.2020.113111_b51
  article-title: Modeling 3-D compliant blood flow with FOSLS
  publication-title: Biomed. Sci. Instrum.
– volume: 17
  start-page: 540
  issue: 9
  year: 1950
  ident: 10.1016/j.cma.2020.113111_b58
  article-title: A recurrence matrix solution for the dynamic response of elastic aircraft
  publication-title: Journal of the Aeronautical Sciences
  doi: 10.2514/8.1722
– volume: 6
  start-page: 207
  issue: 1
  year: 1996
  ident: 10.1016/j.cma.2020.113111_b16
  article-title: A practical method for numerical evaluation of solutions of partial differential equations of the heat-conduction type
  publication-title: Adv. Comput. Math.
  doi: 10.1007/BF02127704
– volume: 60
  start-page: 371
  issue: 2
  year: 1993
  ident: 10.1016/j.cma.2020.113111_b14
  article-title: A time integration algorithm for structural dynamics with improved numerical dissipation: The generalized-α method
  publication-title: J. Appl. Mech.
  doi: 10.1115/1.2900803
– volume: 26
  start-page: 81
  year: 1988
  ident: 10.1016/j.cma.2020.113111_b59
  article-title: Least-squares finite elements for first-order hyperbolic systems
  publication-title: Internat. J. Numer. Methods Engrg.
  doi: 10.1002/nme.1620260106
– volume: 193
  start-page: 1
  issue: 1
  year: 2004
  ident: 10.1016/j.cma.2020.113111_b53
  article-title: An efficient solver for the fully coupled solution of large-displacement fluid–structure interaction problems
  publication-title: Comput. Methods Appl. Mech. Engrg.
  doi: 10.1016/j.cma.2003.09.006
– year: 1998
  ident: 10.1016/j.cma.2020.113111_b31
– volume: 226
  start-page: 994
  year: 2007
  ident: 10.1016/j.cma.2020.113111_b39
  article-title: An alternative least-squares formulation of the Navier–Stokes equations with improved mass conservation
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2007.05.005
– volume: 42
  start-page: 843
  issue: 2
  year: 2004
  ident: 10.1016/j.cma.2020.113111_b40
  article-title: Least-squares methods for incompressible Newtonian fluid flow: Linear stationary problems
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/S0036142903422673
– year: 2011
  ident: 10.1016/j.cma.2020.113111_b70
– volume: 15
  start-page: 217
  year: 2015
  ident: 10.1016/j.cma.2020.113111_b43
  article-title: A stress-velocity least-squares mixed finite element formulation for incompressible elastodynamics
  publication-title: Proc. Appl. Math. Mech.
  doi: 10.1002/pamm.201510099
– volume: 32
  start-page: 1387
  issue: 6
  year: 1989
  ident: 10.1016/j.cma.2020.113111_b12
  article-title: A survey of direct time-integration methods in computational structural dynamics II. Implicit methods
  publication-title: Comput. Struct.
  doi: 10.1016/0045-7949(89)90315-5
– volume: 36
  start-page: 1125
  issue: 4
  year: 1999
  ident: 10.1016/j.cma.2020.113111_b37
  article-title: Analysis of velocity-flux least-squares principles for the Navier–Stokes equations: Part II
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/S0036142997324976
– volume: 54
  start-page: 603
  issue: 3
  year: 2014
  ident: 10.1016/j.cma.2020.113111_b42
  article-title: Weighted overconstrained least-squares mixed finite elements for static and dynamic problems in quasi-incompressible elasticity
  publication-title: Comput. Mech.
  doi: 10.1007/s00466-014-1009-1
– year: 1996
  ident: 10.1016/j.cma.2020.113111_b64
– volume: 6
  start-page: 75
  year: 1973
  ident: 10.1016/j.cma.2020.113111_b2
  article-title: Use of the least squares criterion in the finite element formulation
  publication-title: Int. J. Numer. Methods Eng.
  doi: 10.1002/nme.1620060109
– volume: 73
  start-page: 927
  issue: 11
  year: 2013
  ident: 10.1016/j.cma.2020.113111_b21
  article-title: An efficient and stable finite element solver of higher order in space and time for nonstationary incompressible flow
  publication-title: Internat. J. Numer. Methods Fluids
  doi: 10.1002/fld.3831
– start-page: 371
  year: 2010
  ident: 10.1016/j.cma.2020.113111_b27
  article-title: Proposal for numerical benchmarking of fluid-structure interaction between an elastic object and laminar incompressible flow
– year: 2010
  ident: 10.1016/j.cma.2020.113111_b46
– volume: 24
  year: 1979
  ident: 10.1016/j.cma.2020.113111_b63
  article-title: Diagonally implicit Runge–Kutta formulae with error estimates
  publication-title: IMA J. Appl. Math. (Inst. Math. Appl.)
– year: 2015
  ident: 10.1016/j.cma.2020.113111_b67
– volume: 213
  start-page: 174
  issue: 1
  year: 2006
  ident: 10.1016/j.cma.2020.113111_b38
  article-title: A least-squares finite element method for the Navier–Stokes equations
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2005.08.015
– volume: 82
  start-page: 1007
  issue: 8
  year: 2012
  ident: 10.1016/j.cma.2020.113111_b20
  article-title: Higher-order accurate implicit time integration schemes for transport problems
  publication-title: Arch. Appl. Mech.
  doi: 10.1007/s00419-012-0638-0
– volume: 169
  start-page: 427
  issue: 2
  year: 2001
  ident: 10.1016/j.cma.2020.113111_b10
  article-title: Direct numerical simulations of Fluid–Solid systems using the arbitrary Lagrangian–Eulerian technique
  publication-title: J. Comput. Phys.
  doi: 10.1006/jcph.2000.6592
– year: 2009
  ident: 10.1016/j.cma.2020.113111_b1
– volume: 17
  start-page: 183
  year: 2003
  ident: 10.1016/j.cma.2020.113111_b35
  article-title: On first-order formulations of the least-squares finite element method for incompressible flows
  publication-title: Int. J. Comput. Fluid Dyn.
  doi: 10.1080/1061856031000123580
– volume: 85
  start-page: 998
  year: 2007
  ident: 10.1016/j.cma.2020.113111_b29
  article-title: A unified least-squares formulation for fluid-structure interaction problems
  publication-title: Comput. Struct.
  doi: 10.1016/j.compstruc.2006.11.019
– volume: 60
  start-page: 101
  issue: 1
  year: 2017
  ident: 10.1016/j.cma.2020.113111_b28
  article-title: A new formulation for air-blast fluid–structure interaction using an immersed approach: part II—coupling of IGA and meshfree discretizations
  publication-title: Comput. Mech.
  doi: 10.1007/s00466-017-1395-2
– volume: 70
  start-page: 603
  issue: 5
  year: 2012
  ident: 10.1016/j.cma.2020.113111_b61
  article-title: High-order implicit time integration for unsteady incompressible flows
  publication-title: Internat. J. Numer. Methods Fluids
  doi: 10.1002/fld.2703
– volume: 187
  start-page: 231
  issue: 1
  year: 1997
  ident: 10.1016/j.cma.2020.113111_b65
  article-title: Automatic generation of finite-element code by simultaneous optimization of expressions
  publication-title: Theoret. Comput. Sci.
  doi: 10.1016/S0304-3975(97)00067-4
– volume: 179
  start-page: 313
  issue: 1
  year: 2002
  ident: 10.1016/j.cma.2020.113111_b19
  article-title: Implicit time integration schemes for the unsteady compressible Navier-Stokes equations: Laminar flow
  publication-title: J. Comput. Phys.
  doi: 10.1006/jcph.2002.7059
– volume: 38
  start-page: 310
  issue: 4
  year: 2006
  ident: 10.1016/j.cma.2020.113111_b54
  article-title: Isogeometric fluid-structure interaction analysis with applications to arterial blood flow
  publication-title: Comput. Mech.
  doi: 10.1007/s00466-006-0084-3
– year: 1959
  ident: 10.1016/j.cma.2020.113111_b11
– year: 2013
  ident: 10.1016/j.cma.2020.113111_b49
– volume: 38
  start-page: 235
  issue: 3
  year: 1952
  ident: 10.1016/j.cma.2020.113111_b9
  article-title: Integration of stiff equations
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.38.3.235
– volume: 8
  start-page: 341
  year: 1974
  ident: 10.1016/j.cma.2020.113111_b3
  article-title: Least square-finite element for elasto-static problems. Use of ’reduced’ integration
  publication-title: Int. J. Numer. Methods Eng.
  doi: 10.1002/nme.1620080212
– volume: 12
  start-page: 57
  year: 2017
  ident: 10.1016/j.cma.2020.113111_b25
  article-title: Time-adaptive finite element simulations of dynamical problems for temperature-dependent materials
  publication-title: J. Mech. Mater. Struct.
  doi: 10.2140/jomms.2017.12.57
– ident: 10.1016/j.cma.2020.113111_b26
  doi: 10.1002/pamm.201900204
– volume: 341
  start-page: 333
  year: 2018
  ident: 10.1016/j.cma.2020.113111_b41
  article-title: Efficient stress-velocity least-squares finite element formulations for the incompressible Navier–Stokes equations
  publication-title: Comput. Methods Appl. Mech. Engrg.
  doi: 10.1016/j.cma.2018.01.043
– volume: 10
  start-page: 1021
  year: 1976
  ident: 10.1016/j.cma.2020.113111_b4
  article-title: A review of least-squares methods for solving partial differential equations
  publication-title: Int. J. Numer. Methods Eng.
  doi: 10.1002/nme.1620100505
– year: 2003
  ident: 10.1016/j.cma.2020.113111_b5
– volume: 28
  start-page: 495
  issue: 6
  year: 2006
  ident: 10.1016/j.cma.2020.113111_b52
  article-title: First-order system least-squares (FOSLS) for modeling blood flow
  publication-title: Med. Eng. Phys.
  doi: 10.1016/j.medengphy.2005.10.002
– volume: 126
  start-page: 267
  year: 1995
  ident: 10.1016/j.cma.2020.113111_b34
  article-title: Least-squares methods for the velocity-pressure-stress formulation of the Stokes equations
  publication-title: Comput. Methods Appl. Mech. Engrg.
  doi: 10.1016/0045-7825(95)00826-M
– volume: 195
  start-page: 5995
  year: 2006
  ident: 10.1016/j.cma.2020.113111_b6
  article-title: A comparison of time-discretization/linearization approaches for the incompressible Navier–Stokes equations
  publication-title: Comput. Methods Appl. Mech. Engrg.
  doi: 10.1016/j.cma.2005.10.007
– volume: 18
  start-page: 312
  issue: 4
  year: 2002
  ident: 10.1016/j.cma.2020.113111_b66
  article-title: Multi-language and multi-environment generation of nonlinear finite element codes
  publication-title: Eng. Comput.
  doi: 10.1007/s003660200028
– volume: 13
  start-page: 331
  issue: 7
  year: 2010
  ident: 10.1016/j.cma.2020.113111_b24
  article-title: A time-adaptive fluid-structure interaction method for thermal coupling
  publication-title: Comput. Vis. Sci.
  doi: 10.1007/s00791-010-0150-4
– volume: 18
  start-page: 127
  year: 1994
  ident: 10.1016/j.cma.2020.113111_b33
  article-title: P-version Least Squares Finite Element Formulation for two-dimensional, incompressible, non-Newtonian isothermal and non-isothermal fluid flow
  publication-title: Internat. J. Numer. Methods Fluids
  doi: 10.1002/fld.1650180202
– volume: 195
  start-page: 560
  year: 2004
  ident: 10.1016/j.cma.2020.113111_b50
  article-title: First-order system least-squares (FOSLS) for coupled fluid-elastic problems
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2003.09.034
– volume: 73
  start-page: 193
  year: 2010
  ident: 10.1016/j.cma.2020.113111_b56
  article-title: Numerical simulation and benchmarking of a monolithic multigrid solver for fluid-structure interaction problems with application to hemodynamics
  publication-title: Comput. Sci. Eng.
– volume: 63
  start-page: e1597
  issue: 5–7
  year: 2005
  ident: 10.1016/j.cma.2020.113111_b22
  article-title: A higher-order time integration algorithm for the simulation of nonlinear fluid-structure interaction
  publication-title: Nonlinear Anal. TMA
  doi: 10.1016/j.na.2005.01.054
– year: 2016
  ident: 10.1016/j.cma.2020.113111_b48
– volume: 57
  start-page: 555
  issue: 5
  year: 2008
  ident: 10.1016/j.cma.2020.113111_b13
  article-title: A partitioned coupling approach for dynamic fluid–structure interaction with applications to biological membranes
  publication-title: Internat. J. Numer. Methods Fluids
  doi: 10.1002/fld.1815
– volume: 20
  start-page: 51
  year: 2005
  ident: 10.1016/j.cma.2020.113111_b17
  article-title: Computation of dynamic fluid–structure interaction in two-dimensional laminar flows using combined formulation
  publication-title: J. Fluids Struct.
  doi: 10.1016/j.jfluidstructs.2004.06.008
– year: 1987
  ident: 10.1016/j.cma.2020.113111_b18
– ident: 10.1016/j.cma.2020.113111_b55
  doi: 10.1007/3-540-34596-5_7
– ident: 10.1016/j.cma.2020.113111_b69
– volume: 45
  start-page: 138
  issue: 1
  year: 2007
  ident: 10.1016/j.cma.2020.113111_b23
  article-title: Higher-order time integration schemes for aeroelastic applications on unstructured meshes
  publication-title: AIAA J.
  doi: 10.2514/1.22847
– start-page: 292
  year: 1977
  ident: 10.1016/j.cma.2020.113111_b44
  article-title: A mixed finite element method for 2-nd order elliptic problems. Mathematical aspects of finite element methods
– year: 2016
  ident: 10.1016/j.cma.2020.113111_b8
– year: 1991
  ident: 10.1016/j.cma.2020.113111_b45
– volume: 14
  start-page: 843
  year: 1992
  ident: 10.1016/j.cma.2020.113111_b30
  article-title: A least-squares finite element method for incompressible Navier–Stokes problems
  publication-title: Internat. J. Numer. Methods Fluids
  doi: 10.1002/fld.1650140706
– volume: 60
  start-page: 83
  issue: 1
  year: 2017
  ident: 10.1016/j.cma.2020.113111_b57
  article-title: A new formulation for air-blast fluid–structure interaction using an immersed approach. Part I: basic methodology and FEM-based simulations
  publication-title: Comput. Mech.
  doi: 10.1007/s00466-017-1394-3
– volume: 51
  start-page: 679
  issue: 6
  year: 2001
  ident: 10.1016/j.cma.2020.113111_b60
  article-title: Remarks on the interpretation of current non-linear finite element analyses as differential-algebraic equations
  publication-title: Internat. J. Numer. Methods Engrg.
  doi: 10.1002/nme.179
– start-page: 413
  year: 2010
  ident: 10.1016/j.cma.2020.113111_b71
  article-title: Numerical benchmarking of fluid-structure interaction: A comparison of different discretization and solution approaches
SSID ssj0000812
Score 2.35014
Snippet This work is an extension of the ideas in Averweg et al. (2019) with the focus on a detailed investigation of implicit time discretization schemes to model...
This work is an extension of the ideas in Averweg et al. (2019) with the focus on a detailed investigation of implicit time discretization schemes to model...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 113111
SubjectTerms Computational fluid dynamics
Differential equations
Discretization
Elastodynamics
Finite element method
Fluid flow
Fluid–structure interaction
Implicit time discretization schemes
Incompressible flow
Incompressible Navier–Stokes equations
Investigations
Least squares
Mathematical models
Mixed least-squares finite elements
Runge-Kutta method
Solid mechanics
Time integration
Title Implicit time discretization schemes for mixed least-squares finite element formulations
URI https://dx.doi.org/10.1016/j.cma.2020.113111
https://www.proquest.com/docview/2442321078
Volume 368
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1879-2138
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000812
  issn: 0045-7825
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect
  customDbUrl:
  eissn: 1879-2138
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000812
  issn: 0045-7825
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1879-2138
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000812
  issn: 0045-7825
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1879-2138
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000812
  issn: 0045-7825
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1879-2138
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000812
  issn: 0045-7825
  databaseCode: AKRWK
  dateStart: 19720601
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PT8IwFG4IXvTgD9SIIunBk0mFde02joRIQCMnSbg1a9clM4DoIPHk3-57W-evRA4et7TN8tq-96193_sIueI6CEzXRkzEMmbCBpLpntYs9n1Er9IkGs87HibBaCruZnJWI4OKC4Nplc73lz698NbuTcdZs7PKMuT4CqzFLjmsUw6oHRnsIkQVg5v3rzQPCHllxXAhGbaubjaLHC9TlB7ihbKJ53l_xaZfXroIPcNDsu8wI-2Xn3VEanbZIAcOP1K3O_MG2ftWXPCYzMZFsni2pqgfT5F-i4zFknZJ4afWLmxOAbPSRfYG48xRxYflLxtkJNE0QzBKbZldjs0WTugrPyHT4e3jYMScjgIzPpdrZn0rDQAZiN22JzUgCqON5DqyCWzX1ASiaxLD41THXsojzX0wqAkTbUQvREB1SurL56U9I5SbFAzph9zYGKWqtdDQTSS6m_owraJJupUFlXFFxlHrYq6qbLInBUZXaHRVGr1Jrj-7rMoKG9sai2pa1I9loiACbOvWqqZQuT2aKwA2HBlMYXT-v1EvyC4-4QmzJ1ukvn7d2EuAKGvdLtZgm-z0x_ejyQcnxuXr
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED6VMgADb0ShgAcmJEPj2Ek7IgRqoTCB1M2KHUcKassjRWLit3OXOLwkGFgT24o-23efnbv7AA6FiSLbcV0uE5Vw6SLFTc8YnoQhsVdlU0P3Hdc3Uf9OXo7UqAFndS4MhVV621_Z9NJa-ycnHs2TxzynHF9JtdiVwHUqkLXPwbxUIqYT2PHbZ5wH-ryqZLhUnJrXvzbLIC9b1h4SpbRJEAS_OacfZrr0PRersOxJIzutvmsNGm66DiueQDK_PYt1WPpSXXADRoMyWjyfMRKQZ5R_SymLVd4lw1Otm7iCIWllk_wVxxmTjA8vnl4oJYllObFR5qrwcmo28UpfxSbcXZzfnvW5F1LgNhRqxl3olEUmg87b9ZRBSmGNVcJ0XYr7NbOR7NjUiiQzSZCJrhEhImrj1FjZi4lRbUFz-jB128CEzRDIMBbWJaRVbaTBbjI1nSzEeZUt6NQIauurjJPYxVjX4WT3GkHXBLquQG_B0UeXx6rExl-NZT0t-ts60egC_urWrqdQ-01aaGQ2glKY4u7O_0Y9gIX-7fVQDwc3V7uwSG_oujlQbWjOnl_cHvKVmdkv1-M7jMHngA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Implicit+time+discretization+schemes+for+mixed+least-squares+finite+element+formulations&rft.jtitle=Computer+methods+in+applied+mechanics+and+engineering&rft.au=Averweg%2C+Solveigh&rft.au=Schwarz%2C+Alexander&rft.au=Nisters%2C+Carina&rft.au=Schr%C3%B6der%2C+J%C3%B6rg&rft.date=2020-08-15&rft.pub=Elsevier+BV&rft.issn=0045-7825&rft.volume=368&rft.spage=1&rft_id=info:doi/10.1016%2Fj.cma.2020.113111&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0045-7825&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0045-7825&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0045-7825&client=summon