Highly sensitive nonlinear temperature sensor based on soliton self-frequency shift technique in a microstructured optical fiber

•A nonlinear temperature sensor was proposed drawing on soliton self-frequency shift (SSFS).•This work applied nonlinear technology to the field of sensing.•This work overcomes the complex structure and low mechanical strength of traditional optical fiber sensors. [Display omitted] A novel fiber-opt...

Full description

Saved in:
Bibliographic Details
Published inSensors and actuators. A. Physical. Vol. 334; p. 113333
Main Authors Chen, Xiaoyu, Yan, Xin, Zhang, Xuenan, Wang, Fang, Suzuki, Takenobu, Ohishi, Yasutake, Cheng, Tonglei
Format Journal Article
LanguageEnglish
Published Lausanne Elsevier B.V 01.02.2022
Elsevier BV
Subjects
Online AccessGet full text
ISSN0924-4247
1873-3069
DOI10.1016/j.sna.2021.113333

Cover

Abstract •A nonlinear temperature sensor was proposed drawing on soliton self-frequency shift (SSFS).•This work applied nonlinear technology to the field of sensing.•This work overcomes the complex structure and low mechanical strength of traditional optical fiber sensors. [Display omitted] A novel fiber-optic soliton self-frequency shift (SSFS) temperature sensor fabricated using an in-house-made microstructured optical fiber was proposed. Based on this sensor, SSFS-based sensing was systematically investigated with the variation of average pump power and pump wavelength. By detecting the central wavelength shift of the 3-dB bandwidth of the soliton with the change in temperature, the sensing performance of the proposed sensor was evaluated experimentally and theoretically, subject to the average pump power and pump wavelength. At the generation of the fundamental soliton, when the pump wavelength was fixed, the higher the average pump power, the higher the temperature sensitivity. When the average pump power was fixed, the longer the pump wavelength, the higher the temperature sensitivity. The maximum temperature sensitivity of the proposed sensor was 1.759 nm/℃ at an average pump power of 300 mW and pump wavelength of 1600 nm. This temperature sensor exhibited excellent properties, such as high sensitivity, a simple structure, an easy fabrication process, good mechanical strength, and low cost, rendering it highly applicable in fields such as food quality control, environmental monitoring, and biomedical testing.
AbstractList •A nonlinear temperature sensor was proposed drawing on soliton self-frequency shift (SSFS).•This work applied nonlinear technology to the field of sensing.•This work overcomes the complex structure and low mechanical strength of traditional optical fiber sensors. [Display omitted] A novel fiber-optic soliton self-frequency shift (SSFS) temperature sensor fabricated using an in-house-made microstructured optical fiber was proposed. Based on this sensor, SSFS-based sensing was systematically investigated with the variation of average pump power and pump wavelength. By detecting the central wavelength shift of the 3-dB bandwidth of the soliton with the change in temperature, the sensing performance of the proposed sensor was evaluated experimentally and theoretically, subject to the average pump power and pump wavelength. At the generation of the fundamental soliton, when the pump wavelength was fixed, the higher the average pump power, the higher the temperature sensitivity. When the average pump power was fixed, the longer the pump wavelength, the higher the temperature sensitivity. The maximum temperature sensitivity of the proposed sensor was 1.759 nm/℃ at an average pump power of 300 mW and pump wavelength of 1600 nm. This temperature sensor exhibited excellent properties, such as high sensitivity, a simple structure, an easy fabrication process, good mechanical strength, and low cost, rendering it highly applicable in fields such as food quality control, environmental monitoring, and biomedical testing.
A novel fiber-optic soliton self-frequency shift (SSFS) temperature sensor fabricated using an in-house-made microstructured optical fiber was proposed. Based on this sensor, SSFS-based sensing was systematically investigated with the variation of average pump power and pump wavelength. By detecting the central wavelength shift of the 3-dB bandwidth of the soliton with the change in temperature, the sensing performance of the proposed sensor was evaluated experimentally and theoretically, subject to the average pump power and pump wavelength. At the generation of the fundamental soliton, when the pump wavelength was fixed, the higher the average pump power, the higher the temperature sensitivity. When the average pump power was fixed, the longer the pump wavelength, the higher the temperature sensitivity. The maximum temperature sensitivity of the proposed sensor was 1.759 nm/℃ at an average pump power of 300 mW and pump wavelength of 1600 nm. This temperature sensor exhibited excellent properties, such as high sensitivity, a simple structure, an easy fabrication process, good mechanical strength, and low cost, rendering it highly applicable in fields such as food quality control, environmental monitoring, and biomedical testing.
ArticleNumber 113333
Author Ohishi, Yasutake
Zhang, Xuenan
Suzuki, Takenobu
Yan, Xin
Cheng, Tonglei
Wang, Fang
Chen, Xiaoyu
Author_xml – sequence: 1
  givenname: Xiaoyu
  surname: Chen
  fullname: Chen, Xiaoyu
  organization: State Key Laboratory of Synthetical Automation for Process Industries, College of Information Science and Engineering, Northeastern University, Shenyang 110819, China
– sequence: 2
  givenname: Xin
  surname: Yan
  fullname: Yan, Xin
  organization: State Key Laboratory of Synthetical Automation for Process Industries, College of Information Science and Engineering, Northeastern University, Shenyang 110819, China
– sequence: 3
  givenname: Xuenan
  surname: Zhang
  fullname: Zhang, Xuenan
  organization: State Key Laboratory of Synthetical Automation for Process Industries, College of Information Science and Engineering, Northeastern University, Shenyang 110819, China
– sequence: 4
  givenname: Fang
  surname: Wang
  fullname: Wang, Fang
  organization: State Key Laboratory of Synthetical Automation for Process Industries, College of Information Science and Engineering, Northeastern University, Shenyang 110819, China
– sequence: 5
  givenname: Takenobu
  surname: Suzuki
  fullname: Suzuki, Takenobu
  organization: Research Center for Advanced Photon Technology, Toyota Technological Institute, 2-12-1, Hisakata, Tempaku, Nagoya 468-8511, Japan
– sequence: 6
  givenname: Yasutake
  surname: Ohishi
  fullname: Ohishi, Yasutake
  organization: Research Center for Advanced Photon Technology, Toyota Technological Institute, 2-12-1, Hisakata, Tempaku, Nagoya 468-8511, Japan
– sequence: 7
  givenname: Tonglei
  surname: Cheng
  fullname: Cheng, Tonglei
  email: chengtonglei@ise.neu.edu.cn
  organization: State Key Laboratory of Synthetical Automation for Process Industries, College of Information Science and Engineering, Northeastern University, Shenyang 110819, China
BookMark eNp9kE9rGzEQxUVwIE6aD5CboOd19Ge9WtFTCW1dCOSSnoVWO4rHrCVXkg259aNXW-fUg3UZ0Lzfm5l3SxYhBiDkgbMVZ7x73K1ysCvBBF9xLuu7IkveK9lI1ukFWTIt2qYVrbohtznvGGNSKrUkfzb4tp3eaYaQseAJaDWeMIBNtMD-AMmWY4J__ZjoYDOMNAaa44RlrjD5xif4fYTgqs0Wfamg2wasXxQDtXSPLsVc0tHNVhU_FHR2oh4HSJ_ItbdThvuPekd-ff_2-rRpnl9-_Hz6-tw4KdalGQc-1nPAyrZnru9GrrTTYAfrJKh2FLplQ8etUNor32rer6XsQWu_Vl2VyDvy-ex7SLFulovZxWMKdaQRXcuZYoKtq0qdVfPGOYE3DostGENJFifDmZnjNjtT4zZz3OYcdyX5f-Qh4d6m94vMlzMD9fATQjLZYc0RRkzgihkjXqD_AogznOY
CitedBy_id crossref_primary_10_1007_s00340_024_08358_y
crossref_primary_10_1038_s41598_025_91397_y
crossref_primary_10_1364_AO_473596
crossref_primary_10_3390_opt4010013
crossref_primary_10_1007_s11082_023_05389_1
crossref_primary_10_1109_TIM_2023_3242000
crossref_primary_10_3390_photonics12020104
crossref_primary_10_1016_j_jallcom_2024_175221
crossref_primary_10_1364_OL_464239
Cites_doi 10.1109/JLT.2016.2605124
10.1364/JOSAB.389303
10.1109/JSEN.2017.2699186
10.1063/1.5128485
10.1109/TIM.2016.2575241
10.1109/JLT.2020.2973734
10.1142/S0217984919502208
10.1088/1674-1056/ab43be
10.1364/OL.44.004686
10.1016/j.optcom.2016.02.051
10.1364/OE.22.003740
10.1364/NLO.2015.NW4A.33
10.1364/OL.42.002354
10.1364/OL.419059
10.1364/OE.26.027907
10.1109/JSEN.2007.891941
10.1109/JSEN.2016.2530681
10.1364/OE.27.021435
10.1063/1.4869756
10.1364/OE.27.025420
10.1088/1612-202X/abd5b4
10.1364/OE.425863
10.3390/s20041007
10.1364/OE.23.020668
10.1364/OE.410922
10.1109/JPHOT.2020.2997248
10.1109/JSEN.2011.2146769
10.1364/OE.23.008576
10.1049/el:20081233
10.1109/JSEN.2015.2499242
10.1109/JSEN.2021.3061654
10.1109/JLT.2021.3057657
10.1109/TIM.2020.2992828
10.1063/1.4948429
10.1016/0022-3093(89)90327-X
ContentType Journal Article
Copyright 2021 Elsevier B.V.
Copyright Elsevier BV Feb 1, 2022
Copyright_xml – notice: 2021 Elsevier B.V.
– notice: Copyright Elsevier BV Feb 1, 2022
DBID AAYXX
CITATION
7TB
7U5
8FD
FR3
L7M
DOI 10.1016/j.sna.2021.113333
DatabaseName CrossRef
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Engineering Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Solid State and Superconductivity Abstracts
Engineering Research Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Advanced Technologies Database with Aerospace
DatabaseTitleList
Solid State and Superconductivity Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-3069
ExternalDocumentID 10_1016_j_sna_2021_113333
S0924424721007962
GroupedDBID --K
--M
-~X
.~1
0R~
123
1B1
1RT
1~.
1~5
4.4
457
4G.
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARLI
AATTM
AAXKI
AAXUO
ABMAC
ABNEU
ACDAQ
ACFVG
ACGFS
ACIWK
ACRLP
ADBBV
ADECG
ADEZE
ADTZH
AEBSH
AECPX
AEIPS
AEKER
AFTJW
AFZHZ
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AIVDX
AJSZI
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
AXJTR
BJAXD
BKOJK
BLXMC
BNPGV
CS3
EBS
EFJIC
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FLBIZ
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JJJVA
KOM
LY7
M36
M41
MO0
N9A
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SPCBC
SPD
SSH
SSK
SSQ
SST
SSZ
T5K
TN5
YK3
~G-
AAQXK
AAYWO
AAYXX
ABFNM
ABWVN
ABXDB
ACNNM
ACRPL
ADMUD
ADNMO
AFJKZ
AFXIZ
AGCQF
AGQPQ
AGRNS
AIIUN
AJQLL
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
FGOYB
G-2
HMU
HVGLF
HZ~
R2-
SCB
SCH
SET
SEW
SPC
WUQ
7TB
7U5
8FD
EFKBS
FR3
L7M
ID FETCH-LOGICAL-c325t-db1d873ea3480c86d179c9eabac3e74d2940b61a279f7f49185338e99f576c3e3
IEDL.DBID .~1
ISSN 0924-4247
IngestDate Fri Jul 25 05:33:56 EDT 2025
Thu Apr 24 23:10:22 EDT 2025
Tue Jul 01 01:05:35 EDT 2025
Sun Apr 06 06:54:57 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Temperature sensor
Microstructured optical fiber
Soliton self-frequency shift
3-dB bandwidth
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c325t-db1d873ea3480c86d179c9eabac3e74d2940b61a279f7f49185338e99f576c3e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2641070205
PQPubID 2045401
ParticipantIDs proquest_journals_2641070205
crossref_citationtrail_10_1016_j_sna_2021_113333
crossref_primary_10_1016_j_sna_2021_113333
elsevier_sciencedirect_doi_10_1016_j_sna_2021_113333
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-02-01
2022-02-00
20220201
PublicationDateYYYYMMDD 2022-02-01
PublicationDate_xml – month: 02
  year: 2022
  text: 2022-02-01
  day: 01
PublicationDecade 2020
PublicationPlace Lausanne
PublicationPlace_xml – name: Lausanne
PublicationTitle Sensors and actuators. A. Physical.
PublicationYear 2022
Publisher Elsevier B.V
Elsevier BV
Publisher_xml – name: Elsevier B.V
– name: Elsevier BV
References Tong, Gan, Zhuang, Liu, Wang (bib19) 2020; 38
Wang, Meng, Fan, Zhou, Tan (bib34) 2020; 91
Karpate, Stepniewski, Pysz, Rampur, Klimczak (bib28) 2020; 37
Zhang, Kahrizi (bib8) 2007; 7
Cheng, Wang, Song, Lei (bib1) 2020; 28
Cheng, Xiao, Li, Yan, Ohishi (bib15) 2019; 44
Zhou, Li, Li, Yan, Cheng (bib32) 2020; 69
Yu, Qian, Zhou, Wang, Li (bib4) 2021; 46
Luan, Ran, Lv, Yao (bib24) 2015; 23
Li, Feng, Yin (bib2) 2019; 28
Chen, Yan, Zhang, Wang, Li, Suzuki, Ohishi, Cheng (bib33) 2021; 29
Saxena (bib6) 2016; 16
Geng, Li, Tan, Deng, Yu (bib7) 2011; 11
Butt, Abdullah, Raza (bib21) 2019; 33
Lu, Jiang, Hu, Zhou, Chen (bib3) 2019; 27
Deng, Huang, Liu, Jin, Zhu (bib22) 2015; 23
Rajan, Semenova, Farrell (bib5) 2008; 44
Zhao, Chen, Lv, Wang, Feng (bib9) 2016; 65
Szewczyk, Pala, Tarnowski, Olszewski, Martynkien (bib27) 2021; 39
Cheng (bib18) 2014; 22
Tang, Wu, Xu, Lu (bib12) 2016; 16
Chen, Yan, Zhang, Wang, Cheng (bib14) 2021; 21
Zhang, Yu, Cao, Lu, Wang (bib36) 2020; 12
Wang (bib29) 2021; 18
Sun (bib10) 2020; 20
Liu, Tam, Htein, Tse, Lu (bib23) 2017; 35
Cheng, Tanaka, Tong, Suzuki, Ohishi (bib16) 2017; 42
T. Cheng et al., Soliton Self-frequency Shift and Supercontinuum Generation in a Tellurite Microstructured Optical Fiber, Nonlinear Optics, OSA Technical Digest (online), pp. NW4A.33, 2015.
Rajaram, Friebele (bib31) 1989; 108
Geng, Wang, Xu, Kumar, Tan, Li (bib11) 2018; 26
Putnam, Fairchild, Arends, Urbas (bib30) 2016; 119
Cheng, Tuan, Xue, Deng, Suzuki, Ohishi (bib26) 2016; 369
Cheng (bib25) 2014; 104
Zhang, Zhang, Wang, Liang, Zhang, Zhang, Li, Liu (bib17) 2019; 27
Zhao, Zhao, Bai, Zhang (bib35) 2020; 314
Nagarajan (bib13) 2017; 17
Cheng (10.1016/j.sna.2021.113333_bib1) 2020; 28
Butt (10.1016/j.sna.2021.113333_bib21) 2019; 33
Zhou (10.1016/j.sna.2021.113333_bib32) 2020; 69
Wang (10.1016/j.sna.2021.113333_bib34) 2020; 91
Zhao (10.1016/j.sna.2021.113333_bib9) 2016; 65
Yu (10.1016/j.sna.2021.113333_bib4) 2021; 46
Deng (10.1016/j.sna.2021.113333_bib22) 2015; 23
Cheng (10.1016/j.sna.2021.113333_bib15) 2019; 44
Geng (10.1016/j.sna.2021.113333_bib7) 2011; 11
Putnam (10.1016/j.sna.2021.113333_bib30) 2016; 119
Wang (10.1016/j.sna.2021.113333_bib29) 2021; 18
Zhang (10.1016/j.sna.2021.113333_bib36) 2020; 12
Sun (10.1016/j.sna.2021.113333_bib10) 2020; 20
Nagarajan (10.1016/j.sna.2021.113333_bib13) 2017; 17
Luan (10.1016/j.sna.2021.113333_bib24) 2015; 23
Cheng (10.1016/j.sna.2021.113333_bib16) 2017; 42
Zhang (10.1016/j.sna.2021.113333_bib8) 2007; 7
Zhang (10.1016/j.sna.2021.113333_bib17) 2019; 27
Cheng (10.1016/j.sna.2021.113333_bib26) 2016; 369
Lu (10.1016/j.sna.2021.113333_bib3) 2019; 27
Liu (10.1016/j.sna.2021.113333_bib23) 2017; 35
Tang (10.1016/j.sna.2021.113333_bib12) 2016; 16
Chen (10.1016/j.sna.2021.113333_bib33) 2021; 29
Zhao (10.1016/j.sna.2021.113333_bib35) 2020; 314
Chen (10.1016/j.sna.2021.113333_bib14) 2021; 21
Karpate (10.1016/j.sna.2021.113333_bib28) 2020; 37
Rajan (10.1016/j.sna.2021.113333_bib5) 2008; 44
Cheng (10.1016/j.sna.2021.113333_bib18) 2014; 22
Tong (10.1016/j.sna.2021.113333_bib19) 2020; 38
Cheng (10.1016/j.sna.2021.113333_bib25) 2014; 104
Rajaram (10.1016/j.sna.2021.113333_bib31) 1989; 108
Li (10.1016/j.sna.2021.113333_bib2) 2019; 28
Geng (10.1016/j.sna.2021.113333_bib11) 2018; 26
10.1016/j.sna.2021.113333_bib20
Szewczyk (10.1016/j.sna.2021.113333_bib27) 2021; 39
Saxena (10.1016/j.sna.2021.113333_bib6) 2016; 16
References_xml – volume: 65
  start-page: 2406
  year: 2016
  end-page: 2411
  ident: bib9
  article-title: Small and practical optical fiber fluorescence temperature sensor
  publication-title: IEEE Trans. Instrum. Meas.
– volume: 22
  start-page: 3740
  year: 2014
  end-page: 3746
  ident: bib18
  article-title: Soliton self-frequency shift and third-harmonic generation in a four-hole As2S5 microstructured optical fiber
  publication-title: Opt. Express
– volume: 39
  start-page: 3260
  year: 2021
  end-page: 3268
  ident: bib27
  article-title: Dual-wavelength pumped highly birefringent microstructured silica fiber for widely tunable soliton self-frequency shift
  publication-title: J. Light. Technol.
– volume: 26
  start-page: 27907
  year: 2018
  end-page: 27916
  ident: bib11
  article-title: Wavelength multiplexing of four-wave mixing based fiber temperature sensor with oil-filled photonic crystal fiber
  publication-title: Opt. Express
– volume: 28
  start-page: 175
  year: 2019
  end-page: 180
  ident: bib2
  article-title: Highly sensitive optical fiber temperature sensor based on the resonance in the sidewall of liquid-filled silica capillary tube
  publication-title: Chin. Phys. B
– volume: 12
  start-page: 1
  year: 2020
  end-page: 8
  ident: bib36
  article-title: A low loss quantum-dot-doped optical fiber temperature sensor based on flexible print technology
  publication-title: IEEE Photonics J.
– volume: 11
  start-page: 2891
  year: 2011
  end-page: 2894
  ident: bib7
  article-title: High-sensitivity Mach–Zehnder interferometric temperature fiber sensor based on a waist-enlarged fusion bitaper
  publication-title: IEEE Sens. J.
– volume: 44
  start-page: 4686
  year: 2019
  ident: bib15
  article-title: Highly efficient second-harmonic generation in a tellurite optical fiber
  publication-title: Opt. Lett.
– volume: 38
  start-page: 2450
  year: 2020
  end-page: 2455
  ident: bib19
  article-title: Manipulating soliton polarization in soliton self-frequency shift and its application to 3-photon microscopy in vivo
  publication-title: J. Light. Technol.
– volume: 33
  year: 2019
  ident: bib21
  article-title: Dynamics of optical solitons incorporating Kerr dispersion and self-frequency shift
  publication-title: Mod. Phys. Lett. B
– volume: 29
  start-page: 15653
  year: 2021
  end-page: 15663
  ident: bib33
  article-title: Microstructured optical fiber temperature sensor based on the self-phase modulation effect
  publication-title: Opt. Express
– volume: 23
  start-page: 8576
  year: 2015
  end-page: 8582
  ident: bib24
  article-title: Surface plasmon resonance sensor based on D-shaped microstructured optical fiber with hollow core
  publication-title: Opt. Express
– volume: 27
  start-page: 25420
  year: 2019
  ident: bib3
  article-title: A portable optical fiber SPR temperature sensor based on a smart-phone
  publication-title: Opt. Express
– volume: 108
  start-page: 1
  year: 1989
  end-page: 17
  ident: bib31
  article-title: Effects of radiation on the properties of low thermal expansion coefficient materials: a review
  publication-title: J. Non-Cryst. Solids
– volume: 16
  start-page: 3068
  year: 2016
  end-page: 3074
  ident: bib12
  article-title: Simulation of optical microfiber strain sensors based on four-wave mixing
  publication-title: IEEE Sens. J.
– volume: 18
  year: 2021
  ident: bib29
  article-title: Numerical investigation of a real-time temperature sensor based on high-order soliton compression
  publication-title: Laser Phys. Lett.
– volume: 28
  start-page: 35264
  year: 2020
  ident: bib1
  article-title: High-sensitivity optical fiber temperature sensor based on a dual-loop optoelectronic oscillator with the Vernier effect
  publication-title: Opt. Express
– reference: T. Cheng et al., Soliton Self-frequency Shift and Supercontinuum Generation in a Tellurite Microstructured Optical Fiber, Nonlinear Optics, OSA Technical Digest (online), pp. NW4A.33, 2015.
– volume: 369
  start-page: 159
  year: 2016
  end-page: 163
  ident: bib26
  article-title: Optical solitons and supercontinuum generation in a tellurite microstructured optical fiber
  publication-title: Opt. Commun.
– volume: 17
  start-page: 3720
  year: 2017
  end-page: 3727
  ident: bib13
  article-title: Highly sensitive nonlinear temperature sensor based on modulational instability technique in liquid infiltrated photonic crystal fiber
  publication-title: IEEE Sens. J.
– volume: 104
  start-page: 662
  year: 2014
  ident: bib25
  article-title: Soliton self-frequency shift and dispersive wave in a hybrid four-hole AsSe2-As2S5 microstructured optical fiber
  publication-title: Appl. Phys. Lett.
– volume: 21
  start-page: 10711
  year: 2021
  end-page: 10718
  ident: bib14
  article-title: Theoretical investigation of mid-infrared temperature sensing based on four-wave mixing in a CS
  publication-title: IEEE Sens. J.
– volume: 69
  start-page: 8494
  year: 2020
  end-page: 8499
  ident: bib32
  article-title: High-sensitivity SPR temperature sensor based on hollow-core fiber
  publication-title: IEEE Trans. Instrum. Meas.
– volume: 314
  year: 2020
  ident: bib35
  article-title: Sagnac interferometer temperature sensor based on microstructured optical fiber filled with glycerin
  publication-title: Sens. Actuators A Phys.
– volume: 42
  start-page: 2354
  year: 2017
  ident: bib16
  article-title: All-optical dynamic photonic bandgap control in an all-solid double-clad tellurite photonic bandgap fiber
  publication-title: Opt. Lett.
– volume: 27
  start-page: 21435
  year: 2019
  end-page: 21447
  ident: bib17
  article-title: Optical quantization based on soliton self-frequency shift and a flexible spectrum compression scheme utilizing time-dependent filtering
  publication-title: Opt. Express
– volume: 16
  start-page: 1243
  year: 2016
  end-page: 1252
  ident: bib6
  article-title: Empirical mode decomposition-based detection of bend-induced error and its correction in a Raman optical fiber distributed temperature sensor
  publication-title: IEEE Sens. J.
– volume: 20
  start-page: 1007
  year: 2020
  ident: bib10
  article-title: Theoretical investigation of an alcohol-filled tellurite photonic crystal fiber temperature sensor based on four-wave mixing
  publication-title: Sensors
– volume: 37
  start-page: 1502
  year: 2020
  end-page: 1509
  ident: bib28
  article-title: Soliton detuning of 685 THz in the near-infrared in a highly nonlinear suspended core tellurite fiber
  publication-title: J. Opt. Soc. Am. B
– volume: 91
  year: 2020
  ident: bib34
  article-title: Optical fiber temperature sensor based on a Mach-Zehnder interferometer with single-mode-thin-core-single-mode fiber structure
  publication-title: Rev. Sci. Instrum.
– volume: 7
  start-page: 586
  year: 2007
  end-page: 591
  ident: bib8
  article-title: High-temperature resistance fiber bragg grating temperature sensor fabrication
  publication-title: IEEE Sens. J.
– volume: 23
  start-page: 20668
  year: 2015
  end-page: 20674
  ident: bib22
  article-title: All fiber magnetic field sensor with Ferrofluid-filled tapered microstructured optical fiber interferometer
  publication-title: Opt. Express
– volume: 119
  start-page: 516
  year: 2016
  end-page: 521
  ident: bib30
  article-title: All-optical beam deflection method for simultaneous thermal conductivity and thermo-optic coefficient (dn/dT) measurements
  publication-title: J. Appl. Phys.
– volume: 46
  start-page: 1600
  year: 2021
  end-page: 1603
  ident: bib4
  article-title: A wide-range optical fiber temperature sensor based on up-conversion luminescent nanocrystals
  publication-title: Opt. Lett.
– volume: 44
  start-page: 1123
  year: 2008
  end-page: 1124
  ident: bib5
  article-title: All-fibre temperature sensor based on macro-bend singlemode fibre loop
  publication-title: Electron. Lett.
– volume: 35
  start-page: 3425
  year: 2017
  end-page: 3439
  ident: bib23
  article-title: Microstructured optical fiber sensors
  publication-title: J. Light. Technol.
– volume: 35
  start-page: 3425
  issue: 16
  year: 2017
  ident: 10.1016/j.sna.2021.113333_bib23
  article-title: Microstructured optical fiber sensors
  publication-title: J. Light. Technol.
  doi: 10.1109/JLT.2016.2605124
– volume: 37
  start-page: 1502
  issue: 5
  year: 2020
  ident: 10.1016/j.sna.2021.113333_bib28
  article-title: Soliton detuning of 685 THz in the near-infrared in a highly nonlinear suspended core tellurite fiber
  publication-title: J. Opt. Soc. Am. B
  doi: 10.1364/JOSAB.389303
– volume: 17
  start-page: 3720
  issue: 12
  year: 2017
  ident: 10.1016/j.sna.2021.113333_bib13
  article-title: Highly sensitive nonlinear temperature sensor based on modulational instability technique in liquid infiltrated photonic crystal fiber
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2017.2699186
– volume: 91
  issue: 1
  year: 2020
  ident: 10.1016/j.sna.2021.113333_bib34
  article-title: Optical fiber temperature sensor based on a Mach-Zehnder interferometer with single-mode-thin-core-single-mode fiber structure
  publication-title: Rev. Sci. Instrum.
  doi: 10.1063/1.5128485
– volume: 65
  start-page: 2406
  issue: 10
  year: 2016
  ident: 10.1016/j.sna.2021.113333_bib9
  article-title: Small and practical optical fiber fluorescence temperature sensor
  publication-title: IEEE Trans. Instrum. Meas.
  doi: 10.1109/TIM.2016.2575241
– volume: 38
  start-page: 2450
  issue: 8
  year: 2020
  ident: 10.1016/j.sna.2021.113333_bib19
  article-title: Manipulating soliton polarization in soliton self-frequency shift and its application to 3-photon microscopy in vivo
  publication-title: J. Light. Technol.
  doi: 10.1109/JLT.2020.2973734
– volume: 33
  issue: 19
  year: 2019
  ident: 10.1016/j.sna.2021.113333_bib21
  article-title: Dynamics of optical solitons incorporating Kerr dispersion and self-frequency shift
  publication-title: Mod. Phys. Lett. B
  doi: 10.1142/S0217984919502208
– volume: 28
  start-page: 175
  issue: 11
  year: 2019
  ident: 10.1016/j.sna.2021.113333_bib2
  article-title: Highly sensitive optical fiber temperature sensor based on the resonance in the sidewall of liquid-filled silica capillary tube
  publication-title: Chin. Phys. B
  doi: 10.1088/1674-1056/ab43be
– volume: 44
  start-page: 4686
  issue: 19
  year: 2019
  ident: 10.1016/j.sna.2021.113333_bib15
  article-title: Highly efficient second-harmonic generation in a tellurite optical fiber
  publication-title: Opt. Lett.
  doi: 10.1364/OL.44.004686
– volume: 369
  start-page: 159
  issue: 15
  year: 2016
  ident: 10.1016/j.sna.2021.113333_bib26
  article-title: Optical solitons and supercontinuum generation in a tellurite microstructured optical fiber
  publication-title: Opt. Commun.
  doi: 10.1016/j.optcom.2016.02.051
– volume: 22
  start-page: 3740
  issue: 4
  year: 2014
  ident: 10.1016/j.sna.2021.113333_bib18
  article-title: Soliton self-frequency shift and third-harmonic generation in a four-hole As2S5 microstructured optical fiber
  publication-title: Opt. Express
  doi: 10.1364/OE.22.003740
– ident: 10.1016/j.sna.2021.113333_bib20
  doi: 10.1364/NLO.2015.NW4A.33
– volume: 42
  start-page: 2354
  issue: 12
  year: 2017
  ident: 10.1016/j.sna.2021.113333_bib16
  article-title: All-optical dynamic photonic bandgap control in an all-solid double-clad tellurite photonic bandgap fiber
  publication-title: Opt. Lett.
  doi: 10.1364/OL.42.002354
– volume: 46
  start-page: 1600
  issue: 7
  year: 2021
  ident: 10.1016/j.sna.2021.113333_bib4
  article-title: A wide-range optical fiber temperature sensor based on up-conversion luminescent nanocrystals
  publication-title: Opt. Lett.
  doi: 10.1364/OL.419059
– volume: 26
  start-page: 27907
  issue: 21
  year: 2018
  ident: 10.1016/j.sna.2021.113333_bib11
  article-title: Wavelength multiplexing of four-wave mixing based fiber temperature sensor with oil-filled photonic crystal fiber
  publication-title: Opt. Express
  doi: 10.1364/OE.26.027907
– volume: 7
  start-page: 586
  issue: 4
  year: 2007
  ident: 10.1016/j.sna.2021.113333_bib8
  article-title: High-temperature resistance fiber bragg grating temperature sensor fabrication
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2007.891941
– volume: 314
  issue: 15
  year: 2020
  ident: 10.1016/j.sna.2021.113333_bib35
  article-title: Sagnac interferometer temperature sensor based on microstructured optical fiber filled with glycerin
  publication-title: Sens. Actuators A Phys.
– volume: 16
  start-page: 3068
  issue: 9
  year: 2016
  ident: 10.1016/j.sna.2021.113333_bib12
  article-title: Simulation of optical microfiber strain sensors based on four-wave mixing
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2016.2530681
– volume: 27
  start-page: 21435
  issue: 15
  year: 2019
  ident: 10.1016/j.sna.2021.113333_bib17
  article-title: Optical quantization based on soliton self-frequency shift and a flexible spectrum compression scheme utilizing time-dependent filtering
  publication-title: Opt. Express
  doi: 10.1364/OE.27.021435
– volume: 104
  start-page: 662
  issue: 12
  year: 2014
  ident: 10.1016/j.sna.2021.113333_bib25
  article-title: Soliton self-frequency shift and dispersive wave in a hybrid four-hole AsSe2-As2S5 microstructured optical fiber
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4869756
– volume: 27
  start-page: 25420
  issue: 18
  year: 2019
  ident: 10.1016/j.sna.2021.113333_bib3
  article-title: A portable optical fiber SPR temperature sensor based on a smart-phone
  publication-title: Opt. Express
  doi: 10.1364/OE.27.025420
– volume: 18
  issue: 2
  year: 2021
  ident: 10.1016/j.sna.2021.113333_bib29
  article-title: Numerical investigation of a real-time temperature sensor based on high-order soliton compression
  publication-title: Laser Phys. Lett.
  doi: 10.1088/1612-202X/abd5b4
– volume: 29
  start-page: 15653
  issue: 10
  year: 2021
  ident: 10.1016/j.sna.2021.113333_bib33
  article-title: Microstructured optical fiber temperature sensor based on the self-phase modulation effect
  publication-title: Opt. Express
  doi: 10.1364/OE.425863
– volume: 20
  start-page: 1007
  issue: 4
  year: 2020
  ident: 10.1016/j.sna.2021.113333_bib10
  article-title: Theoretical investigation of an alcohol-filled tellurite photonic crystal fiber temperature sensor based on four-wave mixing
  publication-title: Sensors
  doi: 10.3390/s20041007
– volume: 23
  start-page: 20668
  issue: 16
  year: 2015
  ident: 10.1016/j.sna.2021.113333_bib22
  article-title: All fiber magnetic field sensor with Ferrofluid-filled tapered microstructured optical fiber interferometer
  publication-title: Opt. Express
  doi: 10.1364/OE.23.020668
– volume: 28
  start-page: 35264
  issue: 23
  year: 2020
  ident: 10.1016/j.sna.2021.113333_bib1
  article-title: High-sensitivity optical fiber temperature sensor based on a dual-loop optoelectronic oscillator with the Vernier effect
  publication-title: Opt. Express
  doi: 10.1364/OE.410922
– volume: 12
  start-page: 1
  issue: 3
  year: 2020
  ident: 10.1016/j.sna.2021.113333_bib36
  article-title: A low loss quantum-dot-doped optical fiber temperature sensor based on flexible print technology
  publication-title: IEEE Photonics J.
  doi: 10.1109/JPHOT.2020.2997248
– volume: 11
  start-page: 2891
  issue: 11
  year: 2011
  ident: 10.1016/j.sna.2021.113333_bib7
  article-title: High-sensitivity Mach–Zehnder interferometric temperature fiber sensor based on a waist-enlarged fusion bitaper
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2011.2146769
– volume: 23
  start-page: 8576
  issue: 7
  year: 2015
  ident: 10.1016/j.sna.2021.113333_bib24
  article-title: Surface plasmon resonance sensor based on D-shaped microstructured optical fiber with hollow core
  publication-title: Opt. Express
  doi: 10.1364/OE.23.008576
– volume: 44
  start-page: 1123
  issue: 19
  year: 2008
  ident: 10.1016/j.sna.2021.113333_bib5
  article-title: All-fibre temperature sensor based on macro-bend singlemode fibre loop
  publication-title: Electron. Lett.
  doi: 10.1049/el:20081233
– volume: 16
  start-page: 1243
  issue: 5
  year: 2016
  ident: 10.1016/j.sna.2021.113333_bib6
  article-title: Empirical mode decomposition-based detection of bend-induced error and its correction in a Raman optical fiber distributed temperature sensor
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2015.2499242
– volume: 21
  start-page: 10711
  issue: 9
  year: 2021
  ident: 10.1016/j.sna.2021.113333_bib14
  article-title: Theoretical investigation of mid-infrared temperature sensing based on four-wave mixing in a CS2-filled GeAsSeTe microstructured optical fiber
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2021.3061654
– volume: 39
  start-page: 3260
  issue: 10
  year: 2021
  ident: 10.1016/j.sna.2021.113333_bib27
  article-title: Dual-wavelength pumped highly birefringent microstructured silica fiber for widely tunable soliton self-frequency shift
  publication-title: J. Light. Technol.
  doi: 10.1109/JLT.2021.3057657
– volume: 69
  start-page: 8494
  issue: 10
  year: 2020
  ident: 10.1016/j.sna.2021.113333_bib32
  article-title: High-sensitivity SPR temperature sensor based on hollow-core fiber
  publication-title: IEEE Trans. Instrum. Meas.
  doi: 10.1109/TIM.2020.2992828
– volume: 119
  start-page: 516
  issue: 17
  year: 2016
  ident: 10.1016/j.sna.2021.113333_bib30
  article-title: All-optical beam deflection method for simultaneous thermal conductivity and thermo-optic coefficient (dn/dT) measurements
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.4948429
– volume: 108
  start-page: 1
  issue: 1
  year: 1989
  ident: 10.1016/j.sna.2021.113333_bib31
  article-title: Effects of radiation on the properties of low thermal expansion coefficient materials: a review
  publication-title: J. Non-Cryst. Solids
  doi: 10.1016/0022-3093(89)90327-X
SSID ssj0003377
Score 2.4390721
Snippet •A nonlinear temperature sensor was proposed drawing on soliton self-frequency shift (SSFS).•This work applied nonlinear technology to the field of...
A novel fiber-optic soliton self-frequency shift (SSFS) temperature sensor fabricated using an in-house-made microstructured optical fiber was proposed. Based...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 113333
SubjectTerms 3-dB bandwidth
Environmental monitoring
Environmental testing
Fiber optics
Frequency shift
Microstructured optical fiber
Optical fibers
Pumps
Quality control
Sensitivity
Sensitivity analysis
Sensors
Solitary waves
Soliton self-frequency shift
Temperature
Temperature sensor
Temperature sensors
Title Highly sensitive nonlinear temperature sensor based on soliton self-frequency shift technique in a microstructured optical fiber
URI https://dx.doi.org/10.1016/j.sna.2021.113333
https://www.proquest.com/docview/2641070205
Volume 334
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1873-3069
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0003377
  issn: 0924-4247
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect
  customDbUrl:
  eissn: 1873-3069
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0003377
  issn: 0924-4247
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1873-3069
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0003377
  issn: 0924-4247
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect Freedom Collection 2013
  customDbUrl:
  eissn: 1873-3069
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0003377
  issn: 0924-4247
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELYqWGBAPEV5yQMTUmgSu0k8ogpUQOoClbpZjh8iqKRV04UF8dO5c5LykGBgSpScrcRn3yP5_B0h56FNNAtNEsQ5DwOeQp6SZTmcCW5z188SqzzaYpQMx_xu0p90yKDdC4Owysb21zbdW-vmSq8Zzd68KHoPIaQOPOaQwoCfE94OI_sXzOnLt0-YB2O--iIKByjd_tn0GK-qROqhOMLKJoyx33zTDyvtXc_NNtlqYkZ6VT_WDunYcpdsfmES3CPviNeYvtIK8ehowWhZc2CoBUX2qYY62d-fLSj6LkNnJa0Q_oZHO3WBW9S4aujmqXBLuuJ3pUVJFX1B7F7NNwtdQfO5_w5OHYJO9sn45vpxMAya4gqBZnF_GZg8MlnKrGI8C3WWGFiZWliVK81syk0seJgnkYpT4VLHBfp1llkhHGQoIMIOyBq8iT0k1KnMaAvKYBaimUjkxkXWOs2jNFQm0V0StsMqdcM8jgUwprKFmD1L0IRETchaE11ysWoyr2k3_hLmra7kt7kjwS381eyk1atsFm4lIT6EhBhi6P7R_3o9Jhsx7pDwwO4TsgZasacQtyzzMz8xz8j61e39cPQBPN3urw
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV05T8MwFLaqMgAD4hRHAQ9MSFGT2Dk8ooqq5egCSN0sx4coKqFqu7Dx03kvcSpAgoEpUeJnJX72O5LP3yPkIrSpZqFJg7jgYcAzyFPyvIAzwW3hkjy1qkJbjNLBE78ZJ-MW6TV7YRBW6W1_bdMra-2vdP1odmeTSfchhNSBxxxSGPBzAu3wGk_AJrfJ2tXwdjBaGWTGqgKM2D5AgebnZgXzWpTIPhRHWNyEMfabe_phqCvv098mWz5spFf1k-2Qli13yeYXMsE98oGQjek7XSAkHY0YLWsaDDWnSEDl2ZOr-29ziu7L0LeSLhABh0c7dYGb19Bq6OZ54pZ0RfFKJyVV9BXhezXlLHQF4rPqUzh1iDvZJ0_968feIPD1FQLN4mQZmCIyecasYjwPdZ4aWJxaWFUozWzGTSx4WKSRijPhMscFunaWWyEcJCnQhB2QNryJPSTUqdxoC_pgFgKaSBTGRdY6zaMsVCbVRyRshlVqTz6ONTCmskGZvUjQhERNyFoTR-RyJTKrmTf-aswbXclv00eCZ_hLrNPoVfq1u5AQIkJODGF0cvy_Xs_J-uDx_k7eDUe3J2Qjxg0TFc67Q9qgIXsKYcyyOPPT9BNYTfFa
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Highly+sensitive+nonlinear+temperature+sensor+based+on+soliton+self-frequency+shift+technique+in+a+microstructured+optical+fiber&rft.jtitle=Sensors+and+actuators.+A.+Physical.&rft.au=Chen%2C+Xiaoyu&rft.au=Yan%2C+Xin&rft.au=Zhang%2C+Xuenan&rft.au=Wang%2C+Fang&rft.date=2022-02-01&rft.issn=0924-4247&rft.volume=334&rft.spage=113333&rft_id=info:doi/10.1016%2Fj.sna.2021.113333&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_sna_2021_113333
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0924-4247&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0924-4247&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0924-4247&client=summon