Highly sensitive nonlinear temperature sensor based on soliton self-frequency shift technique in a microstructured optical fiber
•A nonlinear temperature sensor was proposed drawing on soliton self-frequency shift (SSFS).•This work applied nonlinear technology to the field of sensing.•This work overcomes the complex structure and low mechanical strength of traditional optical fiber sensors. [Display omitted] A novel fiber-opt...
Saved in:
Published in | Sensors and actuators. A. Physical. Vol. 334; p. 113333 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Lausanne
Elsevier B.V
01.02.2022
Elsevier BV |
Subjects | |
Online Access | Get full text |
ISSN | 0924-4247 1873-3069 |
DOI | 10.1016/j.sna.2021.113333 |
Cover
Abstract | •A nonlinear temperature sensor was proposed drawing on soliton self-frequency shift (SSFS).•This work applied nonlinear technology to the field of sensing.•This work overcomes the complex structure and low mechanical strength of traditional optical fiber sensors.
[Display omitted]
A novel fiber-optic soliton self-frequency shift (SSFS) temperature sensor fabricated using an in-house-made microstructured optical fiber was proposed. Based on this sensor, SSFS-based sensing was systematically investigated with the variation of average pump power and pump wavelength. By detecting the central wavelength shift of the 3-dB bandwidth of the soliton with the change in temperature, the sensing performance of the proposed sensor was evaluated experimentally and theoretically, subject to the average pump power and pump wavelength. At the generation of the fundamental soliton, when the pump wavelength was fixed, the higher the average pump power, the higher the temperature sensitivity. When the average pump power was fixed, the longer the pump wavelength, the higher the temperature sensitivity. The maximum temperature sensitivity of the proposed sensor was 1.759 nm/℃ at an average pump power of 300 mW and pump wavelength of 1600 nm. This temperature sensor exhibited excellent properties, such as high sensitivity, a simple structure, an easy fabrication process, good mechanical strength, and low cost, rendering it highly applicable in fields such as food quality control, environmental monitoring, and biomedical testing. |
---|---|
AbstractList | •A nonlinear temperature sensor was proposed drawing on soliton self-frequency shift (SSFS).•This work applied nonlinear technology to the field of sensing.•This work overcomes the complex structure and low mechanical strength of traditional optical fiber sensors.
[Display omitted]
A novel fiber-optic soliton self-frequency shift (SSFS) temperature sensor fabricated using an in-house-made microstructured optical fiber was proposed. Based on this sensor, SSFS-based sensing was systematically investigated with the variation of average pump power and pump wavelength. By detecting the central wavelength shift of the 3-dB bandwidth of the soliton with the change in temperature, the sensing performance of the proposed sensor was evaluated experimentally and theoretically, subject to the average pump power and pump wavelength. At the generation of the fundamental soliton, when the pump wavelength was fixed, the higher the average pump power, the higher the temperature sensitivity. When the average pump power was fixed, the longer the pump wavelength, the higher the temperature sensitivity. The maximum temperature sensitivity of the proposed sensor was 1.759 nm/℃ at an average pump power of 300 mW and pump wavelength of 1600 nm. This temperature sensor exhibited excellent properties, such as high sensitivity, a simple structure, an easy fabrication process, good mechanical strength, and low cost, rendering it highly applicable in fields such as food quality control, environmental monitoring, and biomedical testing. A novel fiber-optic soliton self-frequency shift (SSFS) temperature sensor fabricated using an in-house-made microstructured optical fiber was proposed. Based on this sensor, SSFS-based sensing was systematically investigated with the variation of average pump power and pump wavelength. By detecting the central wavelength shift of the 3-dB bandwidth of the soliton with the change in temperature, the sensing performance of the proposed sensor was evaluated experimentally and theoretically, subject to the average pump power and pump wavelength. At the generation of the fundamental soliton, when the pump wavelength was fixed, the higher the average pump power, the higher the temperature sensitivity. When the average pump power was fixed, the longer the pump wavelength, the higher the temperature sensitivity. The maximum temperature sensitivity of the proposed sensor was 1.759 nm/℃ at an average pump power of 300 mW and pump wavelength of 1600 nm. This temperature sensor exhibited excellent properties, such as high sensitivity, a simple structure, an easy fabrication process, good mechanical strength, and low cost, rendering it highly applicable in fields such as food quality control, environmental monitoring, and biomedical testing. |
ArticleNumber | 113333 |
Author | Ohishi, Yasutake Zhang, Xuenan Suzuki, Takenobu Yan, Xin Cheng, Tonglei Wang, Fang Chen, Xiaoyu |
Author_xml | – sequence: 1 givenname: Xiaoyu surname: Chen fullname: Chen, Xiaoyu organization: State Key Laboratory of Synthetical Automation for Process Industries, College of Information Science and Engineering, Northeastern University, Shenyang 110819, China – sequence: 2 givenname: Xin surname: Yan fullname: Yan, Xin organization: State Key Laboratory of Synthetical Automation for Process Industries, College of Information Science and Engineering, Northeastern University, Shenyang 110819, China – sequence: 3 givenname: Xuenan surname: Zhang fullname: Zhang, Xuenan organization: State Key Laboratory of Synthetical Automation for Process Industries, College of Information Science and Engineering, Northeastern University, Shenyang 110819, China – sequence: 4 givenname: Fang surname: Wang fullname: Wang, Fang organization: State Key Laboratory of Synthetical Automation for Process Industries, College of Information Science and Engineering, Northeastern University, Shenyang 110819, China – sequence: 5 givenname: Takenobu surname: Suzuki fullname: Suzuki, Takenobu organization: Research Center for Advanced Photon Technology, Toyota Technological Institute, 2-12-1, Hisakata, Tempaku, Nagoya 468-8511, Japan – sequence: 6 givenname: Yasutake surname: Ohishi fullname: Ohishi, Yasutake organization: Research Center for Advanced Photon Technology, Toyota Technological Institute, 2-12-1, Hisakata, Tempaku, Nagoya 468-8511, Japan – sequence: 7 givenname: Tonglei surname: Cheng fullname: Cheng, Tonglei email: chengtonglei@ise.neu.edu.cn organization: State Key Laboratory of Synthetical Automation for Process Industries, College of Information Science and Engineering, Northeastern University, Shenyang 110819, China |
BookMark | eNp9kE9rGzEQxUVwIE6aD5CboOd19Ge9WtFTCW1dCOSSnoVWO4rHrCVXkg259aNXW-fUg3UZ0Lzfm5l3SxYhBiDkgbMVZ7x73K1ysCvBBF9xLuu7IkveK9lI1ukFWTIt2qYVrbohtznvGGNSKrUkfzb4tp3eaYaQseAJaDWeMIBNtMD-AMmWY4J__ZjoYDOMNAaa44RlrjD5xif4fYTgqs0Wfamg2wasXxQDtXSPLsVc0tHNVhU_FHR2oh4HSJ_ItbdThvuPekd-ff_2-rRpnl9-_Hz6-tw4KdalGQc-1nPAyrZnru9GrrTTYAfrJKh2FLplQ8etUNor32rer6XsQWu_Vl2VyDvy-ex7SLFulovZxWMKdaQRXcuZYoKtq0qdVfPGOYE3DostGENJFifDmZnjNjtT4zZz3OYcdyX5f-Qh4d6m94vMlzMD9fATQjLZYc0RRkzgihkjXqD_AogznOY |
CitedBy_id | crossref_primary_10_1007_s00340_024_08358_y crossref_primary_10_1038_s41598_025_91397_y crossref_primary_10_1364_AO_473596 crossref_primary_10_3390_opt4010013 crossref_primary_10_1007_s11082_023_05389_1 crossref_primary_10_1109_TIM_2023_3242000 crossref_primary_10_3390_photonics12020104 crossref_primary_10_1016_j_jallcom_2024_175221 crossref_primary_10_1364_OL_464239 |
Cites_doi | 10.1109/JLT.2016.2605124 10.1364/JOSAB.389303 10.1109/JSEN.2017.2699186 10.1063/1.5128485 10.1109/TIM.2016.2575241 10.1109/JLT.2020.2973734 10.1142/S0217984919502208 10.1088/1674-1056/ab43be 10.1364/OL.44.004686 10.1016/j.optcom.2016.02.051 10.1364/OE.22.003740 10.1364/NLO.2015.NW4A.33 10.1364/OL.42.002354 10.1364/OL.419059 10.1364/OE.26.027907 10.1109/JSEN.2007.891941 10.1109/JSEN.2016.2530681 10.1364/OE.27.021435 10.1063/1.4869756 10.1364/OE.27.025420 10.1088/1612-202X/abd5b4 10.1364/OE.425863 10.3390/s20041007 10.1364/OE.23.020668 10.1364/OE.410922 10.1109/JPHOT.2020.2997248 10.1109/JSEN.2011.2146769 10.1364/OE.23.008576 10.1049/el:20081233 10.1109/JSEN.2015.2499242 10.1109/JSEN.2021.3061654 10.1109/JLT.2021.3057657 10.1109/TIM.2020.2992828 10.1063/1.4948429 10.1016/0022-3093(89)90327-X |
ContentType | Journal Article |
Copyright | 2021 Elsevier B.V. Copyright Elsevier BV Feb 1, 2022 |
Copyright_xml | – notice: 2021 Elsevier B.V. – notice: Copyright Elsevier BV Feb 1, 2022 |
DBID | AAYXX CITATION 7TB 7U5 8FD FR3 L7M |
DOI | 10.1016/j.sna.2021.113333 |
DatabaseName | CrossRef Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts Technology Research Database Engineering Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Solid State and Superconductivity Abstracts Engineering Research Database Technology Research Database Mechanical & Transportation Engineering Abstracts Advanced Technologies Database with Aerospace |
DatabaseTitleList | Solid State and Superconductivity Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1873-3069 |
ExternalDocumentID | 10_1016_j_sna_2021_113333 S0924424721007962 |
GroupedDBID | --K --M -~X .~1 0R~ 123 1B1 1RT 1~. 1~5 4.4 457 4G. 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AARLI AATTM AAXKI AAXUO ABMAC ABNEU ACDAQ ACFVG ACGFS ACIWK ACRLP ADBBV ADECG ADEZE ADTZH AEBSH AECPX AEIPS AEKER AFTJW AFZHZ AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIKHN AITUG AIVDX AJSZI ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU AXJTR BJAXD BKOJK BLXMC BNPGV CS3 EBS EFJIC EO8 EO9 EP2 EP3 F5P FDB FIRID FLBIZ FNPLU FYGXN G-Q GBLVA IHE J1W JJJVA KOM LY7 M36 M41 MO0 N9A O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SDF SDG SDP SES SPCBC SPD SSH SSK SSQ SST SSZ T5K TN5 YK3 ~G- AAQXK AAYWO AAYXX ABFNM ABWVN ABXDB ACNNM ACRPL ADMUD ADNMO AFJKZ AFXIZ AGCQF AGQPQ AGRNS AIIUN AJQLL APXCP ASPBG AVWKF AZFZN CITATION EJD FEDTE FGOYB G-2 HMU HVGLF HZ~ R2- SCB SCH SET SEW SPC WUQ 7TB 7U5 8FD EFKBS FR3 L7M |
ID | FETCH-LOGICAL-c325t-db1d873ea3480c86d179c9eabac3e74d2940b61a279f7f49185338e99f576c3e3 |
IEDL.DBID | .~1 |
ISSN | 0924-4247 |
IngestDate | Fri Jul 25 05:33:56 EDT 2025 Thu Apr 24 23:10:22 EDT 2025 Tue Jul 01 01:05:35 EDT 2025 Sun Apr 06 06:54:57 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Temperature sensor Microstructured optical fiber Soliton self-frequency shift 3-dB bandwidth |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c325t-db1d873ea3480c86d179c9eabac3e74d2940b61a279f7f49185338e99f576c3e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2641070205 |
PQPubID | 2045401 |
ParticipantIDs | proquest_journals_2641070205 crossref_citationtrail_10_1016_j_sna_2021_113333 crossref_primary_10_1016_j_sna_2021_113333 elsevier_sciencedirect_doi_10_1016_j_sna_2021_113333 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-02-01 2022-02-00 20220201 |
PublicationDateYYYYMMDD | 2022-02-01 |
PublicationDate_xml | – month: 02 year: 2022 text: 2022-02-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Lausanne |
PublicationPlace_xml | – name: Lausanne |
PublicationTitle | Sensors and actuators. A. Physical. |
PublicationYear | 2022 |
Publisher | Elsevier B.V Elsevier BV |
Publisher_xml | – name: Elsevier B.V – name: Elsevier BV |
References | Tong, Gan, Zhuang, Liu, Wang (bib19) 2020; 38 Wang, Meng, Fan, Zhou, Tan (bib34) 2020; 91 Karpate, Stepniewski, Pysz, Rampur, Klimczak (bib28) 2020; 37 Zhang, Kahrizi (bib8) 2007; 7 Cheng, Wang, Song, Lei (bib1) 2020; 28 Cheng, Xiao, Li, Yan, Ohishi (bib15) 2019; 44 Zhou, Li, Li, Yan, Cheng (bib32) 2020; 69 Yu, Qian, Zhou, Wang, Li (bib4) 2021; 46 Luan, Ran, Lv, Yao (bib24) 2015; 23 Li, Feng, Yin (bib2) 2019; 28 Chen, Yan, Zhang, Wang, Li, Suzuki, Ohishi, Cheng (bib33) 2021; 29 Saxena (bib6) 2016; 16 Geng, Li, Tan, Deng, Yu (bib7) 2011; 11 Butt, Abdullah, Raza (bib21) 2019; 33 Lu, Jiang, Hu, Zhou, Chen (bib3) 2019; 27 Deng, Huang, Liu, Jin, Zhu (bib22) 2015; 23 Rajan, Semenova, Farrell (bib5) 2008; 44 Zhao, Chen, Lv, Wang, Feng (bib9) 2016; 65 Szewczyk, Pala, Tarnowski, Olszewski, Martynkien (bib27) 2021; 39 Cheng (bib18) 2014; 22 Tang, Wu, Xu, Lu (bib12) 2016; 16 Chen, Yan, Zhang, Wang, Cheng (bib14) 2021; 21 Zhang, Yu, Cao, Lu, Wang (bib36) 2020; 12 Wang (bib29) 2021; 18 Sun (bib10) 2020; 20 Liu, Tam, Htein, Tse, Lu (bib23) 2017; 35 Cheng, Tanaka, Tong, Suzuki, Ohishi (bib16) 2017; 42 T. Cheng et al., Soliton Self-frequency Shift and Supercontinuum Generation in a Tellurite Microstructured Optical Fiber, Nonlinear Optics, OSA Technical Digest (online), pp. NW4A.33, 2015. Rajaram, Friebele (bib31) 1989; 108 Geng, Wang, Xu, Kumar, Tan, Li (bib11) 2018; 26 Putnam, Fairchild, Arends, Urbas (bib30) 2016; 119 Cheng, Tuan, Xue, Deng, Suzuki, Ohishi (bib26) 2016; 369 Cheng (bib25) 2014; 104 Zhang, Zhang, Wang, Liang, Zhang, Zhang, Li, Liu (bib17) 2019; 27 Zhao, Zhao, Bai, Zhang (bib35) 2020; 314 Nagarajan (bib13) 2017; 17 Cheng (10.1016/j.sna.2021.113333_bib1) 2020; 28 Butt (10.1016/j.sna.2021.113333_bib21) 2019; 33 Zhou (10.1016/j.sna.2021.113333_bib32) 2020; 69 Wang (10.1016/j.sna.2021.113333_bib34) 2020; 91 Zhao (10.1016/j.sna.2021.113333_bib9) 2016; 65 Yu (10.1016/j.sna.2021.113333_bib4) 2021; 46 Deng (10.1016/j.sna.2021.113333_bib22) 2015; 23 Cheng (10.1016/j.sna.2021.113333_bib15) 2019; 44 Geng (10.1016/j.sna.2021.113333_bib7) 2011; 11 Putnam (10.1016/j.sna.2021.113333_bib30) 2016; 119 Wang (10.1016/j.sna.2021.113333_bib29) 2021; 18 Zhang (10.1016/j.sna.2021.113333_bib36) 2020; 12 Sun (10.1016/j.sna.2021.113333_bib10) 2020; 20 Nagarajan (10.1016/j.sna.2021.113333_bib13) 2017; 17 Luan (10.1016/j.sna.2021.113333_bib24) 2015; 23 Cheng (10.1016/j.sna.2021.113333_bib16) 2017; 42 Zhang (10.1016/j.sna.2021.113333_bib8) 2007; 7 Zhang (10.1016/j.sna.2021.113333_bib17) 2019; 27 Cheng (10.1016/j.sna.2021.113333_bib26) 2016; 369 Lu (10.1016/j.sna.2021.113333_bib3) 2019; 27 Liu (10.1016/j.sna.2021.113333_bib23) 2017; 35 Tang (10.1016/j.sna.2021.113333_bib12) 2016; 16 Chen (10.1016/j.sna.2021.113333_bib33) 2021; 29 Zhao (10.1016/j.sna.2021.113333_bib35) 2020; 314 Chen (10.1016/j.sna.2021.113333_bib14) 2021; 21 Karpate (10.1016/j.sna.2021.113333_bib28) 2020; 37 Rajan (10.1016/j.sna.2021.113333_bib5) 2008; 44 Cheng (10.1016/j.sna.2021.113333_bib18) 2014; 22 Tong (10.1016/j.sna.2021.113333_bib19) 2020; 38 Cheng (10.1016/j.sna.2021.113333_bib25) 2014; 104 Rajaram (10.1016/j.sna.2021.113333_bib31) 1989; 108 Li (10.1016/j.sna.2021.113333_bib2) 2019; 28 Geng (10.1016/j.sna.2021.113333_bib11) 2018; 26 10.1016/j.sna.2021.113333_bib20 Szewczyk (10.1016/j.sna.2021.113333_bib27) 2021; 39 Saxena (10.1016/j.sna.2021.113333_bib6) 2016; 16 |
References_xml | – volume: 65 start-page: 2406 year: 2016 end-page: 2411 ident: bib9 article-title: Small and practical optical fiber fluorescence temperature sensor publication-title: IEEE Trans. Instrum. Meas. – volume: 22 start-page: 3740 year: 2014 end-page: 3746 ident: bib18 article-title: Soliton self-frequency shift and third-harmonic generation in a four-hole As2S5 microstructured optical fiber publication-title: Opt. Express – volume: 39 start-page: 3260 year: 2021 end-page: 3268 ident: bib27 article-title: Dual-wavelength pumped highly birefringent microstructured silica fiber for widely tunable soliton self-frequency shift publication-title: J. Light. Technol. – volume: 26 start-page: 27907 year: 2018 end-page: 27916 ident: bib11 article-title: Wavelength multiplexing of four-wave mixing based fiber temperature sensor with oil-filled photonic crystal fiber publication-title: Opt. Express – volume: 28 start-page: 175 year: 2019 end-page: 180 ident: bib2 article-title: Highly sensitive optical fiber temperature sensor based on the resonance in the sidewall of liquid-filled silica capillary tube publication-title: Chin. Phys. B – volume: 12 start-page: 1 year: 2020 end-page: 8 ident: bib36 article-title: A low loss quantum-dot-doped optical fiber temperature sensor based on flexible print technology publication-title: IEEE Photonics J. – volume: 11 start-page: 2891 year: 2011 end-page: 2894 ident: bib7 article-title: High-sensitivity Mach–Zehnder interferometric temperature fiber sensor based on a waist-enlarged fusion bitaper publication-title: IEEE Sens. J. – volume: 44 start-page: 4686 year: 2019 ident: bib15 article-title: Highly efficient second-harmonic generation in a tellurite optical fiber publication-title: Opt. Lett. – volume: 38 start-page: 2450 year: 2020 end-page: 2455 ident: bib19 article-title: Manipulating soliton polarization in soliton self-frequency shift and its application to 3-photon microscopy in vivo publication-title: J. Light. Technol. – volume: 33 year: 2019 ident: bib21 article-title: Dynamics of optical solitons incorporating Kerr dispersion and self-frequency shift publication-title: Mod. Phys. Lett. B – volume: 29 start-page: 15653 year: 2021 end-page: 15663 ident: bib33 article-title: Microstructured optical fiber temperature sensor based on the self-phase modulation effect publication-title: Opt. Express – volume: 23 start-page: 8576 year: 2015 end-page: 8582 ident: bib24 article-title: Surface plasmon resonance sensor based on D-shaped microstructured optical fiber with hollow core publication-title: Opt. Express – volume: 27 start-page: 25420 year: 2019 ident: bib3 article-title: A portable optical fiber SPR temperature sensor based on a smart-phone publication-title: Opt. Express – volume: 108 start-page: 1 year: 1989 end-page: 17 ident: bib31 article-title: Effects of radiation on the properties of low thermal expansion coefficient materials: a review publication-title: J. Non-Cryst. Solids – volume: 16 start-page: 3068 year: 2016 end-page: 3074 ident: bib12 article-title: Simulation of optical microfiber strain sensors based on four-wave mixing publication-title: IEEE Sens. J. – volume: 18 year: 2021 ident: bib29 article-title: Numerical investigation of a real-time temperature sensor based on high-order soliton compression publication-title: Laser Phys. Lett. – volume: 28 start-page: 35264 year: 2020 ident: bib1 article-title: High-sensitivity optical fiber temperature sensor based on a dual-loop optoelectronic oscillator with the Vernier effect publication-title: Opt. Express – reference: T. Cheng et al., Soliton Self-frequency Shift and Supercontinuum Generation in a Tellurite Microstructured Optical Fiber, Nonlinear Optics, OSA Technical Digest (online), pp. NW4A.33, 2015. – volume: 369 start-page: 159 year: 2016 end-page: 163 ident: bib26 article-title: Optical solitons and supercontinuum generation in a tellurite microstructured optical fiber publication-title: Opt. Commun. – volume: 17 start-page: 3720 year: 2017 end-page: 3727 ident: bib13 article-title: Highly sensitive nonlinear temperature sensor based on modulational instability technique in liquid infiltrated photonic crystal fiber publication-title: IEEE Sens. J. – volume: 104 start-page: 662 year: 2014 ident: bib25 article-title: Soliton self-frequency shift and dispersive wave in a hybrid four-hole AsSe2-As2S5 microstructured optical fiber publication-title: Appl. Phys. Lett. – volume: 21 start-page: 10711 year: 2021 end-page: 10718 ident: bib14 article-title: Theoretical investigation of mid-infrared temperature sensing based on four-wave mixing in a CS publication-title: IEEE Sens. J. – volume: 69 start-page: 8494 year: 2020 end-page: 8499 ident: bib32 article-title: High-sensitivity SPR temperature sensor based on hollow-core fiber publication-title: IEEE Trans. Instrum. Meas. – volume: 314 year: 2020 ident: bib35 article-title: Sagnac interferometer temperature sensor based on microstructured optical fiber filled with glycerin publication-title: Sens. Actuators A Phys. – volume: 42 start-page: 2354 year: 2017 ident: bib16 article-title: All-optical dynamic photonic bandgap control in an all-solid double-clad tellurite photonic bandgap fiber publication-title: Opt. Lett. – volume: 27 start-page: 21435 year: 2019 end-page: 21447 ident: bib17 article-title: Optical quantization based on soliton self-frequency shift and a flexible spectrum compression scheme utilizing time-dependent filtering publication-title: Opt. Express – volume: 16 start-page: 1243 year: 2016 end-page: 1252 ident: bib6 article-title: Empirical mode decomposition-based detection of bend-induced error and its correction in a Raman optical fiber distributed temperature sensor publication-title: IEEE Sens. J. – volume: 20 start-page: 1007 year: 2020 ident: bib10 article-title: Theoretical investigation of an alcohol-filled tellurite photonic crystal fiber temperature sensor based on four-wave mixing publication-title: Sensors – volume: 37 start-page: 1502 year: 2020 end-page: 1509 ident: bib28 article-title: Soliton detuning of 685 THz in the near-infrared in a highly nonlinear suspended core tellurite fiber publication-title: J. Opt. Soc. Am. B – volume: 91 year: 2020 ident: bib34 article-title: Optical fiber temperature sensor based on a Mach-Zehnder interferometer with single-mode-thin-core-single-mode fiber structure publication-title: Rev. Sci. Instrum. – volume: 7 start-page: 586 year: 2007 end-page: 591 ident: bib8 article-title: High-temperature resistance fiber bragg grating temperature sensor fabrication publication-title: IEEE Sens. J. – volume: 23 start-page: 20668 year: 2015 end-page: 20674 ident: bib22 article-title: All fiber magnetic field sensor with Ferrofluid-filled tapered microstructured optical fiber interferometer publication-title: Opt. Express – volume: 119 start-page: 516 year: 2016 end-page: 521 ident: bib30 article-title: All-optical beam deflection method for simultaneous thermal conductivity and thermo-optic coefficient (dn/dT) measurements publication-title: J. Appl. Phys. – volume: 46 start-page: 1600 year: 2021 end-page: 1603 ident: bib4 article-title: A wide-range optical fiber temperature sensor based on up-conversion luminescent nanocrystals publication-title: Opt. Lett. – volume: 44 start-page: 1123 year: 2008 end-page: 1124 ident: bib5 article-title: All-fibre temperature sensor based on macro-bend singlemode fibre loop publication-title: Electron. Lett. – volume: 35 start-page: 3425 year: 2017 end-page: 3439 ident: bib23 article-title: Microstructured optical fiber sensors publication-title: J. Light. Technol. – volume: 35 start-page: 3425 issue: 16 year: 2017 ident: 10.1016/j.sna.2021.113333_bib23 article-title: Microstructured optical fiber sensors publication-title: J. Light. Technol. doi: 10.1109/JLT.2016.2605124 – volume: 37 start-page: 1502 issue: 5 year: 2020 ident: 10.1016/j.sna.2021.113333_bib28 article-title: Soliton detuning of 685 THz in the near-infrared in a highly nonlinear suspended core tellurite fiber publication-title: J. Opt. Soc. Am. B doi: 10.1364/JOSAB.389303 – volume: 17 start-page: 3720 issue: 12 year: 2017 ident: 10.1016/j.sna.2021.113333_bib13 article-title: Highly sensitive nonlinear temperature sensor based on modulational instability technique in liquid infiltrated photonic crystal fiber publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2017.2699186 – volume: 91 issue: 1 year: 2020 ident: 10.1016/j.sna.2021.113333_bib34 article-title: Optical fiber temperature sensor based on a Mach-Zehnder interferometer with single-mode-thin-core-single-mode fiber structure publication-title: Rev. Sci. Instrum. doi: 10.1063/1.5128485 – volume: 65 start-page: 2406 issue: 10 year: 2016 ident: 10.1016/j.sna.2021.113333_bib9 article-title: Small and practical optical fiber fluorescence temperature sensor publication-title: IEEE Trans. Instrum. Meas. doi: 10.1109/TIM.2016.2575241 – volume: 38 start-page: 2450 issue: 8 year: 2020 ident: 10.1016/j.sna.2021.113333_bib19 article-title: Manipulating soliton polarization in soliton self-frequency shift and its application to 3-photon microscopy in vivo publication-title: J. Light. Technol. doi: 10.1109/JLT.2020.2973734 – volume: 33 issue: 19 year: 2019 ident: 10.1016/j.sna.2021.113333_bib21 article-title: Dynamics of optical solitons incorporating Kerr dispersion and self-frequency shift publication-title: Mod. Phys. Lett. B doi: 10.1142/S0217984919502208 – volume: 28 start-page: 175 issue: 11 year: 2019 ident: 10.1016/j.sna.2021.113333_bib2 article-title: Highly sensitive optical fiber temperature sensor based on the resonance in the sidewall of liquid-filled silica capillary tube publication-title: Chin. Phys. B doi: 10.1088/1674-1056/ab43be – volume: 44 start-page: 4686 issue: 19 year: 2019 ident: 10.1016/j.sna.2021.113333_bib15 article-title: Highly efficient second-harmonic generation in a tellurite optical fiber publication-title: Opt. Lett. doi: 10.1364/OL.44.004686 – volume: 369 start-page: 159 issue: 15 year: 2016 ident: 10.1016/j.sna.2021.113333_bib26 article-title: Optical solitons and supercontinuum generation in a tellurite microstructured optical fiber publication-title: Opt. Commun. doi: 10.1016/j.optcom.2016.02.051 – volume: 22 start-page: 3740 issue: 4 year: 2014 ident: 10.1016/j.sna.2021.113333_bib18 article-title: Soliton self-frequency shift and third-harmonic generation in a four-hole As2S5 microstructured optical fiber publication-title: Opt. Express doi: 10.1364/OE.22.003740 – ident: 10.1016/j.sna.2021.113333_bib20 doi: 10.1364/NLO.2015.NW4A.33 – volume: 42 start-page: 2354 issue: 12 year: 2017 ident: 10.1016/j.sna.2021.113333_bib16 article-title: All-optical dynamic photonic bandgap control in an all-solid double-clad tellurite photonic bandgap fiber publication-title: Opt. Lett. doi: 10.1364/OL.42.002354 – volume: 46 start-page: 1600 issue: 7 year: 2021 ident: 10.1016/j.sna.2021.113333_bib4 article-title: A wide-range optical fiber temperature sensor based on up-conversion luminescent nanocrystals publication-title: Opt. Lett. doi: 10.1364/OL.419059 – volume: 26 start-page: 27907 issue: 21 year: 2018 ident: 10.1016/j.sna.2021.113333_bib11 article-title: Wavelength multiplexing of four-wave mixing based fiber temperature sensor with oil-filled photonic crystal fiber publication-title: Opt. Express doi: 10.1364/OE.26.027907 – volume: 7 start-page: 586 issue: 4 year: 2007 ident: 10.1016/j.sna.2021.113333_bib8 article-title: High-temperature resistance fiber bragg grating temperature sensor fabrication publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2007.891941 – volume: 314 issue: 15 year: 2020 ident: 10.1016/j.sna.2021.113333_bib35 article-title: Sagnac interferometer temperature sensor based on microstructured optical fiber filled with glycerin publication-title: Sens. Actuators A Phys. – volume: 16 start-page: 3068 issue: 9 year: 2016 ident: 10.1016/j.sna.2021.113333_bib12 article-title: Simulation of optical microfiber strain sensors based on four-wave mixing publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2016.2530681 – volume: 27 start-page: 21435 issue: 15 year: 2019 ident: 10.1016/j.sna.2021.113333_bib17 article-title: Optical quantization based on soliton self-frequency shift and a flexible spectrum compression scheme utilizing time-dependent filtering publication-title: Opt. Express doi: 10.1364/OE.27.021435 – volume: 104 start-page: 662 issue: 12 year: 2014 ident: 10.1016/j.sna.2021.113333_bib25 article-title: Soliton self-frequency shift and dispersive wave in a hybrid four-hole AsSe2-As2S5 microstructured optical fiber publication-title: Appl. Phys. Lett. doi: 10.1063/1.4869756 – volume: 27 start-page: 25420 issue: 18 year: 2019 ident: 10.1016/j.sna.2021.113333_bib3 article-title: A portable optical fiber SPR temperature sensor based on a smart-phone publication-title: Opt. Express doi: 10.1364/OE.27.025420 – volume: 18 issue: 2 year: 2021 ident: 10.1016/j.sna.2021.113333_bib29 article-title: Numerical investigation of a real-time temperature sensor based on high-order soliton compression publication-title: Laser Phys. Lett. doi: 10.1088/1612-202X/abd5b4 – volume: 29 start-page: 15653 issue: 10 year: 2021 ident: 10.1016/j.sna.2021.113333_bib33 article-title: Microstructured optical fiber temperature sensor based on the self-phase modulation effect publication-title: Opt. Express doi: 10.1364/OE.425863 – volume: 20 start-page: 1007 issue: 4 year: 2020 ident: 10.1016/j.sna.2021.113333_bib10 article-title: Theoretical investigation of an alcohol-filled tellurite photonic crystal fiber temperature sensor based on four-wave mixing publication-title: Sensors doi: 10.3390/s20041007 – volume: 23 start-page: 20668 issue: 16 year: 2015 ident: 10.1016/j.sna.2021.113333_bib22 article-title: All fiber magnetic field sensor with Ferrofluid-filled tapered microstructured optical fiber interferometer publication-title: Opt. Express doi: 10.1364/OE.23.020668 – volume: 28 start-page: 35264 issue: 23 year: 2020 ident: 10.1016/j.sna.2021.113333_bib1 article-title: High-sensitivity optical fiber temperature sensor based on a dual-loop optoelectronic oscillator with the Vernier effect publication-title: Opt. Express doi: 10.1364/OE.410922 – volume: 12 start-page: 1 issue: 3 year: 2020 ident: 10.1016/j.sna.2021.113333_bib36 article-title: A low loss quantum-dot-doped optical fiber temperature sensor based on flexible print technology publication-title: IEEE Photonics J. doi: 10.1109/JPHOT.2020.2997248 – volume: 11 start-page: 2891 issue: 11 year: 2011 ident: 10.1016/j.sna.2021.113333_bib7 article-title: High-sensitivity Mach–Zehnder interferometric temperature fiber sensor based on a waist-enlarged fusion bitaper publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2011.2146769 – volume: 23 start-page: 8576 issue: 7 year: 2015 ident: 10.1016/j.sna.2021.113333_bib24 article-title: Surface plasmon resonance sensor based on D-shaped microstructured optical fiber with hollow core publication-title: Opt. Express doi: 10.1364/OE.23.008576 – volume: 44 start-page: 1123 issue: 19 year: 2008 ident: 10.1016/j.sna.2021.113333_bib5 article-title: All-fibre temperature sensor based on macro-bend singlemode fibre loop publication-title: Electron. Lett. doi: 10.1049/el:20081233 – volume: 16 start-page: 1243 issue: 5 year: 2016 ident: 10.1016/j.sna.2021.113333_bib6 article-title: Empirical mode decomposition-based detection of bend-induced error and its correction in a Raman optical fiber distributed temperature sensor publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2015.2499242 – volume: 21 start-page: 10711 issue: 9 year: 2021 ident: 10.1016/j.sna.2021.113333_bib14 article-title: Theoretical investigation of mid-infrared temperature sensing based on four-wave mixing in a CS2-filled GeAsSeTe microstructured optical fiber publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2021.3061654 – volume: 39 start-page: 3260 issue: 10 year: 2021 ident: 10.1016/j.sna.2021.113333_bib27 article-title: Dual-wavelength pumped highly birefringent microstructured silica fiber for widely tunable soliton self-frequency shift publication-title: J. Light. Technol. doi: 10.1109/JLT.2021.3057657 – volume: 69 start-page: 8494 issue: 10 year: 2020 ident: 10.1016/j.sna.2021.113333_bib32 article-title: High-sensitivity SPR temperature sensor based on hollow-core fiber publication-title: IEEE Trans. Instrum. Meas. doi: 10.1109/TIM.2020.2992828 – volume: 119 start-page: 516 issue: 17 year: 2016 ident: 10.1016/j.sna.2021.113333_bib30 article-title: All-optical beam deflection method for simultaneous thermal conductivity and thermo-optic coefficient (dn/dT) measurements publication-title: J. Appl. Phys. doi: 10.1063/1.4948429 – volume: 108 start-page: 1 issue: 1 year: 1989 ident: 10.1016/j.sna.2021.113333_bib31 article-title: Effects of radiation on the properties of low thermal expansion coefficient materials: a review publication-title: J. Non-Cryst. Solids doi: 10.1016/0022-3093(89)90327-X |
SSID | ssj0003377 |
Score | 2.4390721 |
Snippet | •A nonlinear temperature sensor was proposed drawing on soliton self-frequency shift (SSFS).•This work applied nonlinear technology to the field of... A novel fiber-optic soliton self-frequency shift (SSFS) temperature sensor fabricated using an in-house-made microstructured optical fiber was proposed. Based... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 113333 |
SubjectTerms | 3-dB bandwidth Environmental monitoring Environmental testing Fiber optics Frequency shift Microstructured optical fiber Optical fibers Pumps Quality control Sensitivity Sensitivity analysis Sensors Solitary waves Soliton self-frequency shift Temperature Temperature sensor Temperature sensors |
Title | Highly sensitive nonlinear temperature sensor based on soliton self-frequency shift technique in a microstructured optical fiber |
URI | https://dx.doi.org/10.1016/j.sna.2021.113333 https://www.proquest.com/docview/2641070205 |
Volume | 334 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1873-3069 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0003377 issn: 0924-4247 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect customDbUrl: eissn: 1873-3069 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0003377 issn: 0924-4247 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1873-3069 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0003377 issn: 0924-4247 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect Freedom Collection 2013 customDbUrl: eissn: 1873-3069 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0003377 issn: 0924-4247 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELYqWGBAPEV5yQMTUmgSu0k8ogpUQOoClbpZjh8iqKRV04UF8dO5c5LykGBgSpScrcRn3yP5_B0h56FNNAtNEsQ5DwOeQp6SZTmcCW5z188SqzzaYpQMx_xu0p90yKDdC4Owysb21zbdW-vmSq8Zzd68KHoPIaQOPOaQwoCfE94OI_sXzOnLt0-YB2O--iIKByjd_tn0GK-qROqhOMLKJoyx33zTDyvtXc_NNtlqYkZ6VT_WDunYcpdsfmES3CPviNeYvtIK8ehowWhZc2CoBUX2qYY62d-fLSj6LkNnJa0Q_oZHO3WBW9S4aujmqXBLuuJ3pUVJFX1B7F7NNwtdQfO5_w5OHYJO9sn45vpxMAya4gqBZnF_GZg8MlnKrGI8C3WWGFiZWliVK81syk0seJgnkYpT4VLHBfp1llkhHGQoIMIOyBq8iT0k1KnMaAvKYBaimUjkxkXWOs2jNFQm0V0StsMqdcM8jgUwprKFmD1L0IRETchaE11ysWoyr2k3_hLmra7kt7kjwS381eyk1atsFm4lIT6EhBhi6P7R_3o9Jhsx7pDwwO4TsgZasacQtyzzMz8xz8j61e39cPQBPN3urw |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV05T8MwFLaqMgAD4hRHAQ9MSFGT2Dk8ooqq5egCSN0sx4coKqFqu7Dx03kvcSpAgoEpUeJnJX72O5LP3yPkIrSpZqFJg7jgYcAzyFPyvIAzwW3hkjy1qkJbjNLBE78ZJ-MW6TV7YRBW6W1_bdMra-2vdP1odmeTSfchhNSBxxxSGPBzAu3wGk_AJrfJ2tXwdjBaGWTGqgKM2D5AgebnZgXzWpTIPhRHWNyEMfabe_phqCvv098mWz5spFf1k-2Qli13yeYXMsE98oGQjek7XSAkHY0YLWsaDDWnSEDl2ZOr-29ziu7L0LeSLhABh0c7dYGb19Bq6OZ54pZ0RfFKJyVV9BXhezXlLHQF4rPqUzh1iDvZJ0_968feIPD1FQLN4mQZmCIyecasYjwPdZ4aWJxaWFUozWzGTSx4WKSRijPhMscFunaWWyEcJCnQhB2QNryJPSTUqdxoC_pgFgKaSBTGRdY6zaMsVCbVRyRshlVqTz6ONTCmskGZvUjQhERNyFoTR-RyJTKrmTf-aswbXclv00eCZ_hLrNPoVfq1u5AQIkJODGF0cvy_Xs_J-uDx_k7eDUe3J2Qjxg0TFc67Q9qgIXsKYcyyOPPT9BNYTfFa |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Highly+sensitive+nonlinear+temperature+sensor+based+on+soliton+self-frequency+shift+technique+in+a+microstructured+optical+fiber&rft.jtitle=Sensors+and+actuators.+A.+Physical.&rft.au=Chen%2C+Xiaoyu&rft.au=Yan%2C+Xin&rft.au=Zhang%2C+Xuenan&rft.au=Wang%2C+Fang&rft.date=2022-02-01&rft.issn=0924-4247&rft.volume=334&rft.spage=113333&rft_id=info:doi/10.1016%2Fj.sna.2021.113333&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_sna_2021_113333 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0924-4247&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0924-4247&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0924-4247&client=summon |