A precise mathematical model for geometric modeling of wire rope strands structure

•A general mathematical spiral model is deduced for forming the skeleton of rope.•Costello's conclusion is extended to suit universal cases with rigorous proofs.•A novel cross section method (SCM) is put forward and proofed strictly for solving adjacent wires overlapping problem.•A precise geom...

Full description

Saved in:
Bibliographic Details
Published inApplied Mathematical Modelling Vol. 76; pp. 151 - 171
Main Authors Zhang, Peng, Duan, Menglan, Ma, Jianmin, zhang, Yu
Format Journal Article
LanguageEnglish
Published New York Elsevier Inc 01.12.2019
Elsevier BV
Subjects
Online AccessGet full text
ISSN0307-904X
1088-8691
0307-904X
DOI10.1016/j.apm.2019.06.005

Cover

Abstract •A general mathematical spiral model is deduced for forming the skeleton of rope.•Costello's conclusion is extended to suit universal cases with rigorous proofs.•A novel cross section method (SCM) is put forward and proofed strictly for solving adjacent wires overlapping problem.•A precise geometric modeling of wire rope strands procedure is proposed.•The critical graph of wire radius determination is obtained for simple straight strand. Based on the Frenet frame, this paper proposes a general mathematical spiral model with an arbitrary smooth space curve as the center path, which can accurately build complex skeleton lines of wire rope strands. From the aspect of geometry, all the wires are spatial cylinders and must meet the actual geometric requirements: 1. The center cylinder is tangent or separated from the spiral cylinder; 2. The adjacent spiral cylinders do not overlap each other. For requirement 1, Costello’ conclusion is referenced and extended universally to suit an arbitrary smooth space central curve case with rigorous proofs. For requirement 2, the overlapping problem is described as obtaining the minimum distance between the two adjacent spatial path curves, which is deduced by a novel cross section method (SCM) with rigorous proofs and solved by the General Particle Swarm Optimization (PSO) algorithm. Based on the above models, the geometric modeling of wire rope strands procedure is proposed and implemented on the platforms of MATLAB and SolidWorks. Validations are conducted through geometric graphical representations, compared with those from some previous researches. For the simple straight strand case, when the number of spiral cylinders and spiral radius are given, the critical relationship between the ratio of spiral wire radius to spiral radius and the spiral angle is firstly obtained, which can be a precise dimension design reference of simple straight strand for eliminating initial geometric overlap. Further, to show the advance, some precise graphical examples of complex wire rope strands like independent wire rope core (IWRC) and multilayered rope are presented. The wire rope strands geometric modeling method proposed in this paper is precise enough averting initial geometric overlap between the wires for the benefit of subsequent mechanical computation accuracy and efficiency.
AbstractList Based on the Frenet frame, this paper proposes a general mathematical spiral model with an arbitrary smooth space curve as the center path, which can accurately build complex skeleton lines of wire rope strands. From the aspect of geometry, all the wires are spatial cylinders and must meet the actual geometric requirements: 1. The center cylinder is tangent or separated from the spiral cylinder; 2. The adjacent spiral cylinders do not overlap each other. For requirement 1, Costello' conclusion is referenced and extended universally to suit an arbitrary smooth space central curve case with rigorous proofs. For requirement 2, the overlapping problem is described as obtaining the minimum distance between the two adjacent spatial path curves, which is deduced by a novel cross section method (SCM) with rigorous proofs and solved by the General Particle Swarm Optimization (PSO) algorithm. Based on the above models, the geometric modeling of wire rope strands procedure is proposed and implemented on the platforms of MATLAB and SolidWorks. Validations are conducted through geometric graphical representations, compared with those from some previous researches. For the simple straight strand case, when the number of spiral cylinders and spiral radius are given, the critical relationship between the ratio of spiral wire radius to spiral radius and the spiral angle is firstly obtained, which can be a precise dimension design reference of simple straight strand for eliminating initial geometric overlap. Further, to show the advance, some precise graphical examples of complex wire rope strands like independent wire rope core (IWRC) and multilayered rope are presented. The wire rope strands geometric modeling method proposed in this paper is precise enough averting initial geometric overlap between the wires for the benefit of subsequent mechanical computation accuracy and efficiency.
•A general mathematical spiral model is deduced for forming the skeleton of rope.•Costello's conclusion is extended to suit universal cases with rigorous proofs.•A novel cross section method (SCM) is put forward and proofed strictly for solving adjacent wires overlapping problem.•A precise geometric modeling of wire rope strands procedure is proposed.•The critical graph of wire radius determination is obtained for simple straight strand. Based on the Frenet frame, this paper proposes a general mathematical spiral model with an arbitrary smooth space curve as the center path, which can accurately build complex skeleton lines of wire rope strands. From the aspect of geometry, all the wires are spatial cylinders and must meet the actual geometric requirements: 1. The center cylinder is tangent or separated from the spiral cylinder; 2. The adjacent spiral cylinders do not overlap each other. For requirement 1, Costello’ conclusion is referenced and extended universally to suit an arbitrary smooth space central curve case with rigorous proofs. For requirement 2, the overlapping problem is described as obtaining the minimum distance between the two adjacent spatial path curves, which is deduced by a novel cross section method (SCM) with rigorous proofs and solved by the General Particle Swarm Optimization (PSO) algorithm. Based on the above models, the geometric modeling of wire rope strands procedure is proposed and implemented on the platforms of MATLAB and SolidWorks. Validations are conducted through geometric graphical representations, compared with those from some previous researches. For the simple straight strand case, when the number of spiral cylinders and spiral radius are given, the critical relationship between the ratio of spiral wire radius to spiral radius and the spiral angle is firstly obtained, which can be a precise dimension design reference of simple straight strand for eliminating initial geometric overlap. Further, to show the advance, some precise graphical examples of complex wire rope strands like independent wire rope core (IWRC) and multilayered rope are presented. The wire rope strands geometric modeling method proposed in this paper is precise enough averting initial geometric overlap between the wires for the benefit of subsequent mechanical computation accuracy and efficiency.
Author Zhang, Peng
Duan, Menglan
Ma, Jianmin
zhang, Yu
Author_xml – sequence: 1
  givenname: Peng
  orcidid: 0000-0002-2584-0095
  surname: Zhang
  fullname: Zhang, Peng
  email: 16110290004@fudan.edu.cn
  organization: Department of aeronautics and astronautics, Fudan University, Shanghai, China
– sequence: 2
  givenname: Menglan
  orcidid: 0000-0001-5656-7725
  surname: Duan
  fullname: Duan, Menglan
  organization: Department of aeronautics and astronautics, Fudan University, Shanghai, China
– sequence: 3
  givenname: Jianmin
  surname: Ma
  fullname: Ma, Jianmin
  organization: Department of aeronautics and astronautics, Fudan University, Shanghai, China
– sequence: 4
  givenname: Yu
  surname: zhang
  fullname: zhang, Yu
  organization: Institute for Ocean Engineering, China University of Petroleum, Beijing, China
BookMark eNp9kE1LxDAQhoOs4O7qD_AW8Nw6adqsxdOy-AWCIAreQppO1pS2qUmr-O_Nsh7Ew14ySXifSeZZkFnveiTknEHKgInLJlVDl2bAyhREClAckTlwWCUl5G-zP_sTsgihgZiIpzl5XtPBo7YBaafGd4yL1aqlnauxpcZ5ukXX4eit3t_ZfkudoV_WI_VuQBpGr_o67Oqkx8njKTk2qg149luX5PX25mVznzw-3T1s1o-J5lkxJlVVq8wUWoHJi1wYcSVMzjNmGC8qwUpWZqiFyHOl2MroAnhVga45A2EQVsiX5GLfd_DuY8IwysZNvo9PyiwrSyaY4DymVvuU9i4Ej0ZqO8YhXR__bVvJQO4EykZGgXInUIKQUU8k2T9y8LZT_vsgc71nMA7-adHLoC32GuvoS4-ydvYA_QN9QYuD
CitedBy_id crossref_primary_10_3390_pr9050816
crossref_primary_10_1002_srin_202400527
crossref_primary_10_1016_j_apm_2021_04_004
crossref_primary_10_1016_j_ijmecsci_2024_109514
crossref_primary_10_1016_j_apm_2024_06_026
crossref_primary_10_3390_app11030905
crossref_primary_10_1016_j_apm_2021_09_027
crossref_primary_10_3390_ma16103756
crossref_primary_10_1016_j_apm_2020_02_020
crossref_primary_10_1007_s11802_022_4923_4
crossref_primary_10_1016_j_amc_2021_125986
crossref_primary_10_1016_j_ijsolstr_2024_113126
crossref_primary_10_1177_10812865231187855
crossref_primary_10_1016_j_engfailanal_2022_106538
crossref_primary_10_1016_j_apm_2022_05_028
crossref_primary_10_1080_17445302_2022_2067416
crossref_primary_10_1016_j_ijmecsci_2022_107886
crossref_primary_10_1080_15376494_2025_2471031
crossref_primary_10_1016_j_commatsci_2021_110463
crossref_primary_10_1007_s12206_022_0312_6
crossref_primary_10_1177_13506501211009418
crossref_primary_10_1016_j_carbon_2024_119441
crossref_primary_10_1016_j_wear_2021_204211
Cites_doi 10.1115/1.3169092
10.1016/j.ijsolstr.2017.09.008
10.1016/j.ijmecsci.2018.04.051
10.1115/1.3173136
10.1016/S0045-7949(00)00026-2
10.1016/0020-7683(91)90060-S
10.1016/j.advengsoft.2014.02.004
10.1007/s12046-011-0053-1
10.1016/j.ijsolstr.2016.10.021
10.1016/j.ijmecsci.2007.03.014
10.1016/j.advengsoft.2011.02.008
10.1016/j.ijsolstr.2015.01.007
10.1016/j.ijmecsci.2016.06.016
10.1016/j.ijsolstr.2008.04.009
10.1061/JMCEA3.0002294
10.1016/S0020-7403(98)00039-3
10.1016/j.engstruct.2013.09.019
10.1115/1.2905907
10.1243/JMES_JOUR_1973_015_045_02
10.1115/1.3230924
10.1016/0020-7403(87)90033-6
10.1016/j.engstruct.2014.10.032
10.1061/JMCEA3.0002092
10.1016/j.ijmecsci.2016.12.014
10.1016/S0020-7403(98)00111-8
10.1016/j.advengsoft.2015.06.006
10.1061/JMCEA3.0002508
10.1007/BF02326388
10.1016/j.advengsoft.2011.02.010
10.1016/j.apm.2014.07.015
10.1002/nme.1620140405
10.1016/j.ijsolstr.2003.11.021
10.1243/0309324991513605
10.5545/sv-jme.2009.006
ContentType Journal Article
Copyright 2019 Elsevier Inc.
Copyright Elsevier BV Dec 2019
Copyright_xml – notice: 2019 Elsevier Inc.
– notice: Copyright Elsevier BV Dec 2019
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1016/j.apm.2019.06.005
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
Psychology
EISSN 0307-904X
EndPage 171
ExternalDocumentID 10_1016_j_apm_2019_06_005
S0307904X1930366X
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1RT
1~.
1~5
23M
4.4
457
4G.
5GY
5VS
6I.
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABAOU
ABEFU
ABFNM
ABMAC
ABVKL
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFS
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AEXQZ
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HZ~
IHE
IXB
J1W
JJJVA
KOM
LG9
LY7
M26
M41
MHUIS
MO0
MVM
N9A
NCXOZ
O-L
O9-
OAUVE
OK1
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SES
SEW
SPC
SPCBC
SST
SSW
SSZ
T5K
TN5
WH7
WUQ
XJT
XPP
ZMT
~02
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
-W8
.7I
.GO
.QK
0BK
2DF
53G
6J9
7SC
8FD
8VB
AAGDL
AAGZJ
AAHIA
AAHSB
AAMFJ
AAMIU
AAPUL
AATTQ
AAZMC
ABCCY
ABDBF
ABFIM
ABIVO
ABLIJ
ABPEM
ABRYG
ABTAI
ABXUL
ABXYU
ABZLS
ACGOD
ACHQT
ACTIO
ACTOA
ACUHS
ADAHI
ADCVX
ADKVQ
ADYSH
AECIN
AEFOU
AEGXH
AEISY
AEKEX
AEMOZ
AEMXT
AEOZL
AEPSL
AEYOC
AEZRU
AFHDM
AFRVT
AGDLA
AGMYJ
AGRBW
AHDZW
AHQJS
AIJEM
AIYEW
AJWEG
AKBVH
AKVCP
ALQZU
AVBZW
AWYRJ
BEJHT
BLEHA
BMOTO
BOHLJ
CCCUG
CQ1
DGFLZ
DKSSO
EAP
EBR
EBU
EDJ
EMK
EPL
EPS
EST
ESX
E~B
E~C
FEDTE
G-F
GTTXZ
H13
HF~
HVGLF
J.O
JQ2
K1G
KYCEM
L7M
LJTGL
L~C
L~D
M4Z
NA5
PQQKQ
QWB
RNANH
ROSJB
RSYQP
S-F
STATR
TASJS
TBQAZ
TDBHL
TEH
TFH
TFL
TFW
TH9
TNTFI
TRJHH
TUROJ
TUS
TWZ
UPT
UT5
UT9
VAE
ZL0
~01
~S~
ID FETCH-LOGICAL-c325t-bbda2f5ca0f4546f686f4321f135b619192ec6644aa17fc503bb0cd3106fe07e3
IEDL.DBID .~1
ISSN 0307-904X
1088-8691
IngestDate Fri Jul 25 05:09:59 EDT 2025
Thu Oct 09 00:26:56 EDT 2025
Thu Apr 24 22:57:19 EDT 2025
Fri Feb 23 02:28:53 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Cross section method
Geometric modeling
Spiral mathematical model
PSO
Wire rope strands
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c325t-bbda2f5ca0f4546f686f4321f135b619192ec6644aa17fc503bb0cd3106fe07e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-5656-7725
0000-0002-2584-0095
PQID 2299161633
PQPubID 2045280
PageCount 21
ParticipantIDs proquest_journals_2299161633
crossref_citationtrail_10_1016_j_apm_2019_06_005
crossref_primary_10_1016_j_apm_2019_06_005
elsevier_sciencedirect_doi_10_1016_j_apm_2019_06_005
PublicationCentury 2000
PublicationDate December 2019
2019-12-00
20191201
PublicationDateYYYYMMDD 2019-12-01
PublicationDate_xml – month: 12
  year: 2019
  text: December 2019
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Applied Mathematical Modelling
PublicationYear 2019
Publisher Elsevier Inc
Elsevier BV
Publisher_xml – name: Elsevier Inc
– name: Elsevier BV
References Wang, Meng, Wang (bib0041) 2015; 39
Costello, Miller (bib0008) 1979; 105
Costello (bib0009) 1983; 105
Utting, Jones (bib0022) 1987; 29
Jiang, Yao, Walton (bib0023) 1999; 41
Foti, di Roseto (bib0032) 2016; 115-116
Stanova, Fedorko, Fabian (bib0037) 2011; 42
Eberhart, Shi (bib0043) 2001; 1
Ghoreishia, Messagera, Cartrauda (bib0027) 2007; 49
Fedorko, Stanova, Molnar (bib0038) 2014; 73
Hruska (bib0005) 1953; 28
Machida, Durelli (bib0017) 1973; 15
Jiang, Henshall (bib0024) 1999; 34
Jiang, Henshall, Walton (bib0025) 2000; 42
Raoof, Hobbs (bib0002) 1988; 114
Xiang, Wang, Chen (bib0033) 2017; 129
Hruska (bib0003) 1951; 26
Usabiaga, Pagalday (bib0020) 2008; 45
Feyrer (bib0040) 2007
Costello (bib0011) 1990
Lee (bib0034) 1991; 28
Stanova, Fedorko, Fabian (bib0036) 2011; 42
Elata, Eshkenazy, Weiss (bib0019) 2004; 41
Phillips, Costello (bib0018) 1985; 52
Kennedy, Eberhart (bib0042) 1995; 4
Erdonmez, Imrak (bib0044) 2011; 36
Hruska (bib0004) 1952; 25
Kumar, Cochran (bib0013) 1987; 54
Fontanari, Benedetti, Monelli (bib0030) 2015; 82
Lalondea, Guilbaultb, Légeron (bib0028) 2017; 126
Costello, Philips (bib0006) 1976; 102
Knapp (bib0012) 1979; 14
Wu, Cao (bib0001) 2016; 102–103
Nawrocki, Labrosse (bib0026) 2000; 77
Erdönmez, Imrak (bib0035) 2011; 57
Xiang, Wang, Chen (bib0021) 2015; 58
McConnell, Zemke (bib0016) 1982; 22
Jolicoeur, Cardou (bib0015) 1991; 113
Kmet, Stanova, Fedorko (bib0029) 2013; 57
Ma, Zhu, Peng (bib0039) 2015; 90
Cao, Wu (bib0031) 2018; 142–143
Love (bib0010) 1944
Ramsey (bib0014) 1988; 30
Costello, Sinha (bib0007) 1977; 103
Love (10.1016/j.apm.2019.06.005_bib0010) 1944
Foti (10.1016/j.apm.2019.06.005_bib0032) 2016; 115-116
Feyrer (10.1016/j.apm.2019.06.005_bib0040) 2007
Elata (10.1016/j.apm.2019.06.005_bib0019) 2004; 41
Kmet (10.1016/j.apm.2019.06.005_bib0029) 2013; 57
Wu (10.1016/j.apm.2019.06.005_bib0001) 2016; 102–103
Lee (10.1016/j.apm.2019.06.005_bib0034) 1991; 28
Eberhart (10.1016/j.apm.2019.06.005_bib0043) 2001; 1
Nawrocki (10.1016/j.apm.2019.06.005_bib0026) 2000; 77
Wang (10.1016/j.apm.2019.06.005_bib0041) 2015; 39
Ghoreishia (10.1016/j.apm.2019.06.005_bib0027) 2007; 49
Erdönmez (10.1016/j.apm.2019.06.005_bib0035) 2011; 57
Raoof (10.1016/j.apm.2019.06.005_bib0002) 1988; 114
Usabiaga (10.1016/j.apm.2019.06.005_bib0020) 2008; 45
Hruska (10.1016/j.apm.2019.06.005_bib0005) 1953; 28
Costello (10.1016/j.apm.2019.06.005_bib0011) 1990
Cao (10.1016/j.apm.2019.06.005_bib0031) 2018; 142–143
Fedorko (10.1016/j.apm.2019.06.005_bib0038) 2014; 73
Fontanari (10.1016/j.apm.2019.06.005_bib0030) 2015; 82
Costello (10.1016/j.apm.2019.06.005_bib0009) 1983; 105
Machida (10.1016/j.apm.2019.06.005_bib0017) 1973; 15
Costello (10.1016/j.apm.2019.06.005_bib0008) 1979; 105
Knapp (10.1016/j.apm.2019.06.005_bib0012) 1979; 14
Jiang (10.1016/j.apm.2019.06.005_bib0025) 2000; 42
McConnell (10.1016/j.apm.2019.06.005_bib0016) 1982; 22
Jiang (10.1016/j.apm.2019.06.005_bib0023) 1999; 41
Utting (10.1016/j.apm.2019.06.005_bib0022) 1987; 29
Kumar (10.1016/j.apm.2019.06.005_bib0013) 1987; 54
Xiang (10.1016/j.apm.2019.06.005_bib0033) 2017; 129
Costello (10.1016/j.apm.2019.06.005_bib0007) 1977; 103
Phillips (10.1016/j.apm.2019.06.005_bib0018) 1985; 52
Stanova (10.1016/j.apm.2019.06.005_bib0037) 2011; 42
Hruska (10.1016/j.apm.2019.06.005_bib0004) 1952; 25
Jiang (10.1016/j.apm.2019.06.005_bib0024) 1999; 34
Ma (10.1016/j.apm.2019.06.005_bib0039) 2015; 90
Erdonmez (10.1016/j.apm.2019.06.005_bib0044) 2011; 36
Costello (10.1016/j.apm.2019.06.005_bib0006) 1976; 102
Kennedy (10.1016/j.apm.2019.06.005_bib0042) 1995; 4
Hruska (10.1016/j.apm.2019.06.005_bib0003) 1951; 26
Ramsey (10.1016/j.apm.2019.06.005_bib0014) 1988; 30
Stanova (10.1016/j.apm.2019.06.005_bib0036) 2011; 42
Xiang (10.1016/j.apm.2019.06.005_bib0021) 2015; 58
Lalondea (10.1016/j.apm.2019.06.005_bib0028) 2017; 126
Jolicoeur (10.1016/j.apm.2019.06.005_bib0015) 1991; 113
References_xml – volume: 34
  start-page: 31
  year: 1999
  end-page: 38
  ident: bib0024
  article-title: The analysis of termination effects in wire strand using the finite element method
  publication-title: J. Strain Anal. Eng. Des.
– volume: 26
  start-page: 766
  year: 1951
  end-page: 767
  ident: bib0003
  article-title: Calculation of stresses in wire ropes
  publication-title: Wire Wire Prod.
– volume: 25
  start-page: 459
  year: 1952
  end-page: 463
  ident: bib0004
  article-title: Radial forces in wire ropes
  publication-title: Wire Wire Prod.
– year: 1990
  ident: bib0011
  article-title: Theory of Wire Rope
– volume: 41
  start-page: 143
  year: 1999
  end-page: 161
  ident: bib0023
  article-title: A concise finite element model for simple straight wire rope strand
  publication-title: Int. J. Mech. Sci.
– volume: 14
  start-page: 515
  year: 1979
  end-page: 529
  ident: bib0012
  article-title: Derivation of a new stiffness matrix for helically armoured cables considering tension and torsion
  publication-title: Int. J. Numer. Methods Eng.
– volume: 105
  start-page: 337
  year: 1983
  end-page: 340
  ident: bib0009
  article-title: Stresses in multilayered cables
  publication-title: J. Energy Resour. Technol.
– volume: 36
  start-page: 995
  year: 2011
  end-page: 1008
  ident: bib0044
  article-title: A finite element model for independent wire rope core with double helical geometry subjected to axial loads
  publication-title: Sadhana
– volume: 73
  start-page: 11
  year: 2014
  end-page: 21
  ident: bib0038
  article-title: Computer modelling and finite element analysis of spiral triangular strands
  publication-title: Adv. Eng. Softw.
– volume: 22
  start-page: 237
  year: 1982
  end-page: 244
  ident: bib0016
  article-title: A model to predict the coupled axial torsion properties of ACSR electrical conductors
  publication-title: Exp. Mech.
– volume: 4
  start-page: 1942
  year: 1995
  end-page: 1948
  ident: bib0042
  article-title: Particle swarm optimization
  publication-title: Proceedings of the IEEE International Conference on Neural Networks
– volume: 28
  start-page: 455
  year: 1953
  end-page: 460
  ident: bib0005
  article-title: Tangential forces in wire ropes
  publication-title: Wire Wire Prod.
– volume: 129
  start-page: 103
  year: 2017
  end-page: 118
  ident: bib0033
  article-title: Elastic-plastic modeling of metallic strands and wire ropes under axial tension and torsion loads
  publication-title: Int. J. Solids Struct.
– volume: 114
  start-page: 1166
  year: 1988
  end-page: 1182
  ident: bib0002
  article-title: Analysis of multilayered structural strands
  publication-title: J. Eng. Mech.
– volume: 102
  start-page: 171
  year: 1976
  end-page: 181
  ident: bib0006
  article-title: Effective modulus of twisted wire cables
  publication-title: J. Eng. Mech. Div.
– volume: 126
  start-page: 281
  year: 2017
  end-page: 296
  ident: bib0028
  article-title: Modeling multilayered wire strands, a strategy based on 3D finite element beam-to-beam contacts - Part I: model formulation and validation
  publication-title: Int. J. Mech. Sci.
– volume: 42
  start-page: 63
  year: 2000
  end-page: 86
  ident: bib0025
  article-title: A concise finite element model for three-layered straight wire rope strand
  publication-title: Int. J. Mech. Sci.
– volume: 57
  start-page: 475
  year: 2013
  end-page: 483
  ident: bib0029
  article-title: Experimental investigation and finite element analysis of a four-layered spiral strand bent over a curved support
  publication-title: Eng. Struct.
– volume: 90
  start-page: 11
  year: 2015
  end-page: 21
  ident: bib0039
  article-title: Computer-aided modeling of wire ropes bent over a sheave
  publication-title: Adv. Eng. Softw.
– year: 1944
  ident: bib0010
  article-title: A Treatise on the Mathematical Theory of Elasticity
– volume: 49
  start-page: 1251
  year: 2007
  end-page: 1261
  ident: bib0027
  article-title: Validity and limitations of linear analytical models for steel wire strands under axial loading, using a 3D FE model
  publication-title: Int. J. Mech. Sci.
– volume: 45
  start-page: 5503
  year: 2008
  end-page: 5520
  ident: bib0020
  article-title: Analytical procedure for modelling recursively and wire by wire stranded ropes subjected to traction and torsion loads
  publication-title: Int. J. Solids Struct.
– volume: 57
  start-page: 283
  year: 2011
  end-page: 292
  ident: bib0035
  article-title: Modeling techniques of nested helical structure based geometry for numerical analysis
  publication-title: J. Mech. Eng.
– volume: 102–103
  start-page: 21
  year: 2016
  end-page: 29
  ident: bib0001
  article-title: Mechanics model and its equation of wire rope based on elastic thin rod theory
  publication-title: Int. J. Solids Struct.
– volume: 54
  start-page: 898
  year: 1987
  end-page: 903
  ident: bib0013
  article-title: Closed-form analysis for elastic deformations of multilayered strands
  publication-title: J. Appl. Mech.
– volume: 29
  start-page: 605
  year: 1987
  end-page: 619
  ident: bib0022
  article-title: The response of wire rope strands to axial tensile loads part I. Experimental results and theoretical predictions
  publication-title: Int. J. Mech. Sci.
– volume: 39
  start-page: 1019
  year: 2015
  end-page: 1032
  ident: bib0041
  article-title: Mathematical modeling and geometric analysis for wire rope strands
  publication-title: Appl. Math. Model.
– volume: 82
  start-page: 113
  year: 2015
  end-page: 120
  ident: bib0030
  article-title: Elasto-plastic behavior of a Warrington-Seale rope: experimental analysis and finite element modeling
  publication-title: Eng. Struct.
– volume: 77
  start-page: 345
  year: 2000
  end-page: 359
  ident: bib0026
  article-title: A finite element model for simple straight wire rope strands
  publication-title: Comput. Struct.
– volume: 15
  start-page: 241
  year: 1973
  end-page: 251
  ident: bib0017
  article-title: Response of a strand to axial and torsional displacements
  publication-title: J. Eng. Mech. Eng. Sci.
– volume: 41
  start-page: 1157
  year: 2004
  end-page: 1172
  ident: bib0019
  article-title: The mechanical behavior of a wire rope with an independent wire rope core
  publication-title: Int. J. Solids Struct.
– volume: 105
  start-page: 597
  year: 1979
  end-page: 608
  ident: bib0008
  article-title: Lay effect of wire rope
  publication-title: J. Eng. Mech. Div.
– volume: 30
  start-page: 559
  year: 1988
  end-page: 570
  ident: bib0014
  article-title: A theory of thin rods with application to helical constituent wires in cables
  publication-title: Int. J. Primatol.
– volume: 1
  start-page: 81
  year: 2001
  end-page: 86
  ident: bib0043
  article-title: Particle swarm optimization: developments, applications and resources
  publication-title: Proceedings of the 2001 Congress on Evolutionary Computation
– volume: 42
  start-page: 322
  year: 2011
  end-page: 331
  ident: bib0037
  article-title: Computer modelling of wire strands and ropes part II: theory and computer implementation
  publication-title: Adv. Eng. Softw.
– year: 2007
  ident: bib0040
  article-title: Wire Ropes, Tension, Endurance, Reliability
– volume: 113
  start-page: 241
  year: 1991
  end-page: 249
  ident: bib0015
  article-title: A numerical comparison of current mathematical models of twisted wire cables under axisymmetric loads
  publication-title: J. Energy Resour. Technol.
– volume: 103
  start-page: 1011
  year: 1977
  end-page: 1022
  ident: bib0007
  article-title: Static behaviour of wire rope
  publication-title: Proc. ASCE J. Eng. Mech. Div.
– volume: 42
  start-page: 305
  year: 2011
  end-page: 315
  ident: bib0036
  article-title: Computer modelling of wire strands and ropes part I: theory and computer implementation
  publication-title: Adv. Eng. Softw.
– volume: 115-116
  start-page: 202
  year: 2016
  end-page: 214
  ident: bib0032
  article-title: Analytical and finite element modelling of the elastic–plastic behaviour of metallic strands under axial–torsional loads
  publication-title: Int. J. Mech. Sci.
– volume: 28
  start-page: 471
  year: 1991
  end-page: 490
  ident: bib0034
  article-title: An insight into wire rope geometry
  publication-title: Int. J. Solids Struct.
– volume: 58
  start-page: 233
  year: 2015
  end-page: 246
  ident: bib0021
  article-title: Modeling of multi-strand wire ropes subjected to axial tension and torsion loads
  publication-title: Int. J. Solids Struct.
– volume: 52
  start-page: 510
  year: 1985
  end-page: 516
  ident: bib0018
  article-title: Analysis of wire ropes with internal-wire-rope cores
  publication-title: J. Appl. Mech.
– volume: 142–143
  start-page: 289
  year: 2018
  end-page: 303
  ident: bib0031
  article-title: The establishment of a mechanics model of multi-strand wire rope subjected to bending load with finite element simulation and experimental verification
  publication-title: Int. J. Mech. Sci.
– volume: 52
  start-page: 510
  year: 1985
  ident: 10.1016/j.apm.2019.06.005_bib0018
  article-title: Analysis of wire ropes with internal-wire-rope cores
  publication-title: J. Appl. Mech.
  doi: 10.1115/1.3169092
– volume: 129
  start-page: 103
  year: 2017
  ident: 10.1016/j.apm.2019.06.005_bib0033
  article-title: Elastic-plastic modeling of metallic strands and wire ropes under axial tension and torsion loads
  publication-title: Int. J. Solids Struct.
  doi: 10.1016/j.ijsolstr.2017.09.008
– volume: 142–143
  start-page: 289
  year: 2018
  ident: 10.1016/j.apm.2019.06.005_bib0031
  article-title: The establishment of a mechanics model of multi-strand wire rope subjected to bending load with finite element simulation and experimental verification
  publication-title: Int. J. Mech. Sci.
  doi: 10.1016/j.ijmecsci.2018.04.051
– volume: 54
  start-page: 898
  year: 1987
  ident: 10.1016/j.apm.2019.06.005_bib0013
  article-title: Closed-form analysis for elastic deformations of multilayered strands
  publication-title: J. Appl. Mech.
  doi: 10.1115/1.3173136
– volume: 77
  start-page: 345
  year: 2000
  ident: 10.1016/j.apm.2019.06.005_bib0026
  article-title: A finite element model for simple straight wire rope strands
  publication-title: Comput. Struct.
  doi: 10.1016/S0045-7949(00)00026-2
– volume: 28
  start-page: 471
  issue: 4
  year: 1991
  ident: 10.1016/j.apm.2019.06.005_bib0034
  article-title: An insight into wire rope geometry
  publication-title: Int. J. Solids Struct.
  doi: 10.1016/0020-7683(91)90060-S
– year: 1990
  ident: 10.1016/j.apm.2019.06.005_bib0011
– volume: 73
  start-page: 11
  year: 2014
  ident: 10.1016/j.apm.2019.06.005_bib0038
  article-title: Computer modelling and finite element analysis of spiral triangular strands
  publication-title: Adv. Eng. Softw.
  doi: 10.1016/j.advengsoft.2014.02.004
– volume: 25
  start-page: 459
  issue: 5
  year: 1952
  ident: 10.1016/j.apm.2019.06.005_bib0004
  article-title: Radial forces in wire ropes
  publication-title: Wire Wire Prod.
– volume: 36
  start-page: 995
  year: 2011
  ident: 10.1016/j.apm.2019.06.005_bib0044
  article-title: A finite element model for independent wire rope core with double helical geometry subjected to axial loads
  publication-title: Sadhana
  doi: 10.1007/s12046-011-0053-1
– volume: 102–103
  start-page: 21
  year: 2016
  ident: 10.1016/j.apm.2019.06.005_bib0001
  article-title: Mechanics model and its equation of wire rope based on elastic thin rod theory
  publication-title: Int. J. Solids Struct.
  doi: 10.1016/j.ijsolstr.2016.10.021
– volume: 49
  start-page: 1251
  year: 2007
  ident: 10.1016/j.apm.2019.06.005_bib0027
  article-title: Validity and limitations of linear analytical models for steel wire strands under axial loading, using a 3D FE model
  publication-title: Int. J. Mech. Sci.
  doi: 10.1016/j.ijmecsci.2007.03.014
– volume: 114
  start-page: 1166
  issue: 7
  year: 1988
  ident: 10.1016/j.apm.2019.06.005_bib0002
  article-title: Analysis of multilayered structural strands
  publication-title: J. Eng. Mech.
– volume: 42
  start-page: 305
  year: 2011
  ident: 10.1016/j.apm.2019.06.005_bib0036
  article-title: Computer modelling of wire strands and ropes part I: theory and computer implementation
  publication-title: Adv. Eng. Softw.
  doi: 10.1016/j.advengsoft.2011.02.008
– volume: 58
  start-page: 233
  year: 2015
  ident: 10.1016/j.apm.2019.06.005_bib0021
  article-title: Modeling of multi-strand wire ropes subjected to axial tension and torsion loads
  publication-title: Int. J. Solids Struct.
  doi: 10.1016/j.ijsolstr.2015.01.007
– volume: 115-116
  start-page: 202
  year: 2016
  ident: 10.1016/j.apm.2019.06.005_bib0032
  article-title: Analytical and finite element modelling of the elastic–plastic behaviour of metallic strands under axial–torsional loads
  publication-title: Int. J. Mech. Sci.
  doi: 10.1016/j.ijmecsci.2016.06.016
– volume: 45
  start-page: 5503
  year: 2008
  ident: 10.1016/j.apm.2019.06.005_bib0020
  article-title: Analytical procedure for modelling recursively and wire by wire stranded ropes subjected to traction and torsion loads
  publication-title: Int. J. Solids Struct.
  doi: 10.1016/j.ijsolstr.2008.04.009
– volume: 103
  start-page: 1011
  issue: 6
  year: 1977
  ident: 10.1016/j.apm.2019.06.005_bib0007
  article-title: Static behaviour of wire rope
  publication-title: Proc. ASCE J. Eng. Mech. Div.
  doi: 10.1061/JMCEA3.0002294
– volume: 41
  start-page: 143
  issue: 2
  year: 1999
  ident: 10.1016/j.apm.2019.06.005_bib0023
  article-title: A concise finite element model for simple straight wire rope strand
  publication-title: Int. J. Mech. Sci.
  doi: 10.1016/S0020-7403(98)00039-3
– volume: 30
  start-page: 559
  issue: 8
  year: 1988
  ident: 10.1016/j.apm.2019.06.005_bib0014
  article-title: A theory of thin rods with application to helical constituent wires in cables
  publication-title: Int. J. Primatol.
– volume: 57
  start-page: 475
  year: 2013
  ident: 10.1016/j.apm.2019.06.005_bib0029
  article-title: Experimental investigation and finite element analysis of a four-layered spiral strand bent over a curved support
  publication-title: Eng. Struct.
  doi: 10.1016/j.engstruct.2013.09.019
– volume: 113
  start-page: 241
  year: 1991
  ident: 10.1016/j.apm.2019.06.005_bib0015
  article-title: A numerical comparison of current mathematical models of twisted wire cables under axisymmetric loads
  publication-title: J. Energy Resour. Technol.
  doi: 10.1115/1.2905907
– volume: 15
  start-page: 241
  issue: 4
  year: 1973
  ident: 10.1016/j.apm.2019.06.005_bib0017
  article-title: Response of a strand to axial and torsional displacements
  publication-title: J. Eng. Mech. Eng. Sci.
  doi: 10.1243/JMES_JOUR_1973_015_045_02
– year: 2007
  ident: 10.1016/j.apm.2019.06.005_bib0040
– volume: 105
  start-page: 337
  year: 1983
  ident: 10.1016/j.apm.2019.06.005_bib0009
  article-title: Stresses in multilayered cables
  publication-title: J. Energy Resour. Technol.
  doi: 10.1115/1.3230924
– volume: 29
  start-page: 605
  issue: 9
  year: 1987
  ident: 10.1016/j.apm.2019.06.005_bib0022
  article-title: The response of wire rope strands to axial tensile loads part I. Experimental results and theoretical predictions
  publication-title: Int. J. Mech. Sci.
  doi: 10.1016/0020-7403(87)90033-6
– volume: 82
  start-page: 113
  year: 2015
  ident: 10.1016/j.apm.2019.06.005_bib0030
  article-title: Elasto-plastic behavior of a Warrington-Seale rope: experimental analysis and finite element modeling
  publication-title: Eng. Struct.
  doi: 10.1016/j.engstruct.2014.10.032
– volume: 102
  start-page: 171
  year: 1976
  ident: 10.1016/j.apm.2019.06.005_bib0006
  article-title: Effective modulus of twisted wire cables
  publication-title: J. Eng. Mech. Div.
  doi: 10.1061/JMCEA3.0002092
– volume: 126
  start-page: 281
  year: 2017
  ident: 10.1016/j.apm.2019.06.005_bib0028
  article-title: Modeling multilayered wire strands, a strategy based on 3D finite element beam-to-beam contacts - Part I: model formulation and validation
  publication-title: Int. J. Mech. Sci.
  doi: 10.1016/j.ijmecsci.2016.12.014
– volume: 42
  start-page: 63
  year: 2000
  ident: 10.1016/j.apm.2019.06.005_bib0025
  article-title: A concise finite element model for three-layered straight wire rope strand
  publication-title: Int. J. Mech. Sci.
  doi: 10.1016/S0020-7403(98)00111-8
– volume: 28
  start-page: 455
  issue: 5
  year: 1953
  ident: 10.1016/j.apm.2019.06.005_bib0005
  article-title: Tangential forces in wire ropes
  publication-title: Wire Wire Prod.
– volume: 90
  start-page: 11
  year: 2015
  ident: 10.1016/j.apm.2019.06.005_bib0039
  article-title: Computer-aided modeling of wire ropes bent over a sheave
  publication-title: Adv. Eng. Softw.
  doi: 10.1016/j.advengsoft.2015.06.006
– volume: 105
  start-page: 597
  issue: 4
  year: 1979
  ident: 10.1016/j.apm.2019.06.005_bib0008
  article-title: Lay effect of wire rope
  publication-title: J. Eng. Mech. Div.
  doi: 10.1061/JMCEA3.0002508
– volume: 22
  start-page: 237
  year: 1982
  ident: 10.1016/j.apm.2019.06.005_bib0016
  article-title: A model to predict the coupled axial torsion properties of ACSR electrical conductors
  publication-title: Exp. Mech.
  doi: 10.1007/BF02326388
– volume: 42
  start-page: 322
  year: 2011
  ident: 10.1016/j.apm.2019.06.005_bib0037
  article-title: Computer modelling of wire strands and ropes part II: theory and computer implementation
  publication-title: Adv. Eng. Softw.
  doi: 10.1016/j.advengsoft.2011.02.010
– volume: 39
  start-page: 1019
  year: 2015
  ident: 10.1016/j.apm.2019.06.005_bib0041
  article-title: Mathematical modeling and geometric analysis for wire rope strands
  publication-title: Appl. Math. Model.
  doi: 10.1016/j.apm.2014.07.015
– year: 1944
  ident: 10.1016/j.apm.2019.06.005_bib0010
– volume: 14
  start-page: 515
  year: 1979
  ident: 10.1016/j.apm.2019.06.005_bib0012
  article-title: Derivation of a new stiffness matrix for helically armoured cables considering tension and torsion
  publication-title: Int. J. Numer. Methods Eng.
  doi: 10.1002/nme.1620140405
– volume: 26
  start-page: 766
  issue: 9
  year: 1951
  ident: 10.1016/j.apm.2019.06.005_bib0003
  article-title: Calculation of stresses in wire ropes
  publication-title: Wire Wire Prod.
– volume: 4
  start-page: 1942
  year: 1995
  ident: 10.1016/j.apm.2019.06.005_bib0042
  article-title: Particle swarm optimization
– volume: 1
  start-page: 81
  year: 2001
  ident: 10.1016/j.apm.2019.06.005_bib0043
  article-title: Particle swarm optimization: developments, applications and resources
– volume: 41
  start-page: 1157
  issue: 5
  year: 2004
  ident: 10.1016/j.apm.2019.06.005_bib0019
  article-title: The mechanical behavior of a wire rope with an independent wire rope core
  publication-title: Int. J. Solids Struct.
  doi: 10.1016/j.ijsolstr.2003.11.021
– volume: 34
  start-page: 31
  issue: 1
  year: 1999
  ident: 10.1016/j.apm.2019.06.005_bib0024
  article-title: The analysis of termination effects in wire strand using the finite element method
  publication-title: J. Strain Anal. Eng. Des.
  doi: 10.1243/0309324991513605
– volume: 57
  start-page: 283
  issue: 4
  year: 2011
  ident: 10.1016/j.apm.2019.06.005_bib0035
  article-title: Modeling techniques of nested helical structure based geometry for numerical analysis
  publication-title: J. Mech. Eng.
  doi: 10.5545/sv-jme.2009.006
SSID ssj0005904
ssj0012860
Score 2.3920276
Snippet •A general mathematical spiral model is deduced for forming the skeleton of rope.•Costello's conclusion is extended to suit universal cases with rigorous...
Based on the Frenet frame, this paper proposes a general mathematical spiral model with an arbitrary smooth space curve as the center path, which can...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 151
SubjectTerms Algorithms
Core wire
Cross section method
Cylinders
Geometric modeling
Graphical representations
Mathematical analysis
Mathematical models
Particle swarm optimization
PSO
Spiral mathematical model
Strands
Wire
Wire rope
Wire rope strands
Title A precise mathematical model for geometric modeling of wire rope strands structure
URI https://dx.doi.org/10.1016/j.apm.2019.06.005
https://www.proquest.com/docview/2299161633
Volume 76
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 0307-904X
  dateEnd: 20241102
  omitProxy: true
  ssIdentifier: ssj0012860
  issn: 0307-904X
  databaseCode: ABDBF
  dateStart: 19970301
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 0307-904X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0005904
  issn: 0307-904X
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier Free Content
  customDbUrl:
  eissn: 0307-904X
  dateEnd: 20211102
  omitProxy: true
  ssIdentifier: ssj0005904
  issn: 0307-904X
  databaseCode: IXB
  dateStart: 19760601
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect Complete Freedom Collection
  customDbUrl:
  eissn: 0307-904X
  dateEnd: 20211102
  omitProxy: true
  ssIdentifier: ssj0005904
  issn: 0307-904X
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] - NZ
  customDbUrl:
  eissn: 0307-904X
  dateEnd: 20211031
  omitProxy: true
  ssIdentifier: ssj0005904
  issn: 0307-904X
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect (Elsevier)
  customDbUrl:
  eissn: 0307-904X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0005904
  issn: 0307-904X
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: aylor and Francis Online
  customDbUrl:
  mediaType: online
  eissn: 0307-904X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0012860
  issn: 0307-904X
  databaseCode: AHDZW
  dateStart: 19970301
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 0307-904X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0005904
  issn: 0307-904X
  databaseCode: AKRWK
  dateStart: 19760601
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVAWR
  databaseName: Taylor & Francis Social Science and Humanities Library - DRAA
  customDbUrl:
  eissn: 0307-904X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0012860
  issn: 0307-904X
  databaseCode: TRJHH
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.tandfonline.com/
  providerName: Taylor & Francis
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELaqssCAeIpHqTwwIYXmYTvJ2BaqFkQHoFI2K3ZsVETbiJaV385dHhUg1IElUU6-KDpf7r445-8IueQa_CDwtMNSnztM28xRUaSdVEe-xyBjxqZg-xyL4YTdJTxpkH69FwbLKqvYX8b0IlpXkk5lzU4-nXae0D1jlyUAQSAMiwR3sLMQuxhcf34r84hdVpMh4uj6z2ZR45XmuBndiwsKT-xg93du-hWli9Qz2CO7FWak3fKx9knDzA_IzsOacHV5SB67NEeeiqWhs7UcdIpGNxSAKX0xixl2z9KlDDIWXViKTMUU1-MpLnnMsyUtCWU_3s0RmQxun_tDp2qX4OjA5ytHqSz1LdepaxlnwopIWBb4nvUCruA7CbCc0QLwT5p6odXcDZRydQb4TljjhiY4Js35Ym5OCAXYYjgkbyOUxzQejQ2Uj93oYi3C8JS4taGkrrjEsaXFm6yLxl4l2FaibWVROMdPydVaJS-JNDYNZrX15Q9vkBDoN6m16pmS1au4lL6PEBhgZ3D2v7uek228KmtYWqQJ02AuAImsVLtwtTbZ6vZuegM8j-6HY5COkt4X6tLfRQ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELZKGYAB8RSFAh6YkEITx3aasaqoCrQdoJW6WbFroyL6ECkrv527PCpAiIElw8UXRefL3Wfn_B0hV8KAH4SB8XjChMeNm3i62TReYpos4JAxY5uxfQ5kd8Tvx2JcIe3yLAyWVRaxP4_pWbQuJI3Cmo3ldNp4QveMfT4GCAJhWI43yCYXLMIV2M3HlzqP2OclGyIOL39tZkVeyRJPowdxxuGJLex-T04_wnSWezp7ZLcAjbSVv9c-qdj5AdnprxlX00Py2KJLJKpILZ2t5aCTdbqhgEzps13MsH2WyWWQsujCUaQqprghT3HPYz5Jac4o-_5mj8iocztsd72iX4JnQiZWntaThDlhEt9xwaWTTel4yAIXhELDQgnAnDUSAFCSBJEzwg-19s0EAJ501o9seEyq88XcnhAKuMUKyN5W6oAbvFoXaobt6GIjo6hG_NJQyhRk4tjT4lWVVWMvCmyr0LYqq5wTNXK9VlnmTBp_Deal9dU3d1AQ6f9Sq5czpYpvMVWMIQYG3Bme_u-pl2SrO-z3VO9u8HBGtvFOXtBSJ1WYEnsOsGSlLzK3-wQCht5k
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+precise+mathematical+model+for+geometric+modeling+of+wire+rope+strands+structure&rft.jtitle=Applied+mathematical+modelling&rft.au=Zhang%2C+Peng&rft.au=Duan%2C+Menglan&rft.au=Ma%2C+Jianmin&rft.au=zhang%2C+Yu&rft.date=2019-12-01&rft.issn=0307-904X&rft.volume=76&rft.spage=151&rft.epage=171&rft_id=info:doi/10.1016%2Fj.apm.2019.06.005&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_apm_2019_06_005
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0307-904X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0307-904X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0307-904X&client=summon