A precise mathematical model for geometric modeling of wire rope strands structure
•A general mathematical spiral model is deduced for forming the skeleton of rope.•Costello's conclusion is extended to suit universal cases with rigorous proofs.•A novel cross section method (SCM) is put forward and proofed strictly for solving adjacent wires overlapping problem.•A precise geom...
Saved in:
| Published in | Applied Mathematical Modelling Vol. 76; pp. 151 - 171 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
New York
Elsevier Inc
01.12.2019
Elsevier BV |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0307-904X 1088-8691 0307-904X |
| DOI | 10.1016/j.apm.2019.06.005 |
Cover
| Abstract | •A general mathematical spiral model is deduced for forming the skeleton of rope.•Costello's conclusion is extended to suit universal cases with rigorous proofs.•A novel cross section method (SCM) is put forward and proofed strictly for solving adjacent wires overlapping problem.•A precise geometric modeling of wire rope strands procedure is proposed.•The critical graph of wire radius determination is obtained for simple straight strand.
Based on the Frenet frame, this paper proposes a general mathematical spiral model with an arbitrary smooth space curve as the center path, which can accurately build complex skeleton lines of wire rope strands. From the aspect of geometry, all the wires are spatial cylinders and must meet the actual geometric requirements: 1. The center cylinder is tangent or separated from the spiral cylinder; 2. The adjacent spiral cylinders do not overlap each other. For requirement 1, Costello’ conclusion is referenced and extended universally to suit an arbitrary smooth space central curve case with rigorous proofs. For requirement 2, the overlapping problem is described as obtaining the minimum distance between the two adjacent spatial path curves, which is deduced by a novel cross section method (SCM) with rigorous proofs and solved by the General Particle Swarm Optimization (PSO) algorithm. Based on the above models, the geometric modeling of wire rope strands procedure is proposed and implemented on the platforms of MATLAB and SolidWorks. Validations are conducted through geometric graphical representations, compared with those from some previous researches. For the simple straight strand case, when the number of spiral cylinders and spiral radius are given, the critical relationship between the ratio of spiral wire radius to spiral radius and the spiral angle is firstly obtained, which can be a precise dimension design reference of simple straight strand for eliminating initial geometric overlap. Further, to show the advance, some precise graphical examples of complex wire rope strands like independent wire rope core (IWRC) and multilayered rope are presented. The wire rope strands geometric modeling method proposed in this paper is precise enough averting initial geometric overlap between the wires for the benefit of subsequent mechanical computation accuracy and efficiency. |
|---|---|
| AbstractList | Based on the Frenet frame, this paper proposes a general mathematical spiral model with an arbitrary smooth space curve as the center path, which can accurately build complex skeleton lines of wire rope strands. From the aspect of geometry, all the wires are spatial cylinders and must meet the actual geometric requirements: 1. The center cylinder is tangent or separated from the spiral cylinder; 2. The adjacent spiral cylinders do not overlap each other. For requirement 1, Costello' conclusion is referenced and extended universally to suit an arbitrary smooth space central curve case with rigorous proofs. For requirement 2, the overlapping problem is described as obtaining the minimum distance between the two adjacent spatial path curves, which is deduced by a novel cross section method (SCM) with rigorous proofs and solved by the General Particle Swarm Optimization (PSO) algorithm. Based on the above models, the geometric modeling of wire rope strands procedure is proposed and implemented on the platforms of MATLAB and SolidWorks. Validations are conducted through geometric graphical representations, compared with those from some previous researches. For the simple straight strand case, when the number of spiral cylinders and spiral radius are given, the critical relationship between the ratio of spiral wire radius to spiral radius and the spiral angle is firstly obtained, which can be a precise dimension design reference of simple straight strand for eliminating initial geometric overlap. Further, to show the advance, some precise graphical examples of complex wire rope strands like independent wire rope core (IWRC) and multilayered rope are presented. The wire rope strands geometric modeling method proposed in this paper is precise enough averting initial geometric overlap between the wires for the benefit of subsequent mechanical computation accuracy and efficiency. •A general mathematical spiral model is deduced for forming the skeleton of rope.•Costello's conclusion is extended to suit universal cases with rigorous proofs.•A novel cross section method (SCM) is put forward and proofed strictly for solving adjacent wires overlapping problem.•A precise geometric modeling of wire rope strands procedure is proposed.•The critical graph of wire radius determination is obtained for simple straight strand. Based on the Frenet frame, this paper proposes a general mathematical spiral model with an arbitrary smooth space curve as the center path, which can accurately build complex skeleton lines of wire rope strands. From the aspect of geometry, all the wires are spatial cylinders and must meet the actual geometric requirements: 1. The center cylinder is tangent or separated from the spiral cylinder; 2. The adjacent spiral cylinders do not overlap each other. For requirement 1, Costello’ conclusion is referenced and extended universally to suit an arbitrary smooth space central curve case with rigorous proofs. For requirement 2, the overlapping problem is described as obtaining the minimum distance between the two adjacent spatial path curves, which is deduced by a novel cross section method (SCM) with rigorous proofs and solved by the General Particle Swarm Optimization (PSO) algorithm. Based on the above models, the geometric modeling of wire rope strands procedure is proposed and implemented on the platforms of MATLAB and SolidWorks. Validations are conducted through geometric graphical representations, compared with those from some previous researches. For the simple straight strand case, when the number of spiral cylinders and spiral radius are given, the critical relationship between the ratio of spiral wire radius to spiral radius and the spiral angle is firstly obtained, which can be a precise dimension design reference of simple straight strand for eliminating initial geometric overlap. Further, to show the advance, some precise graphical examples of complex wire rope strands like independent wire rope core (IWRC) and multilayered rope are presented. The wire rope strands geometric modeling method proposed in this paper is precise enough averting initial geometric overlap between the wires for the benefit of subsequent mechanical computation accuracy and efficiency. |
| Author | Zhang, Peng Duan, Menglan Ma, Jianmin zhang, Yu |
| Author_xml | – sequence: 1 givenname: Peng orcidid: 0000-0002-2584-0095 surname: Zhang fullname: Zhang, Peng email: 16110290004@fudan.edu.cn organization: Department of aeronautics and astronautics, Fudan University, Shanghai, China – sequence: 2 givenname: Menglan orcidid: 0000-0001-5656-7725 surname: Duan fullname: Duan, Menglan organization: Department of aeronautics and astronautics, Fudan University, Shanghai, China – sequence: 3 givenname: Jianmin surname: Ma fullname: Ma, Jianmin organization: Department of aeronautics and astronautics, Fudan University, Shanghai, China – sequence: 4 givenname: Yu surname: zhang fullname: zhang, Yu organization: Institute for Ocean Engineering, China University of Petroleum, Beijing, China |
| BookMark | eNp9kE1LxDAQhoOs4O7qD_AW8Nw6adqsxdOy-AWCIAreQppO1pS2qUmr-O_Nsh7Ew14ySXifSeZZkFnveiTknEHKgInLJlVDl2bAyhREClAckTlwWCUl5G-zP_sTsgihgZiIpzl5XtPBo7YBaafGd4yL1aqlnauxpcZ5ukXX4eit3t_ZfkudoV_WI_VuQBpGr_o67Oqkx8njKTk2qg149luX5PX25mVznzw-3T1s1o-J5lkxJlVVq8wUWoHJi1wYcSVMzjNmGC8qwUpWZqiFyHOl2MroAnhVga45A2EQVsiX5GLfd_DuY8IwysZNvo9PyiwrSyaY4DymVvuU9i4Ej0ZqO8YhXR__bVvJQO4EykZGgXInUIKQUU8k2T9y8LZT_vsgc71nMA7-adHLoC32GuvoS4-ydvYA_QN9QYuD |
| CitedBy_id | crossref_primary_10_3390_pr9050816 crossref_primary_10_1002_srin_202400527 crossref_primary_10_1016_j_apm_2021_04_004 crossref_primary_10_1016_j_ijmecsci_2024_109514 crossref_primary_10_1016_j_apm_2024_06_026 crossref_primary_10_3390_app11030905 crossref_primary_10_1016_j_apm_2021_09_027 crossref_primary_10_3390_ma16103756 crossref_primary_10_1016_j_apm_2020_02_020 crossref_primary_10_1007_s11802_022_4923_4 crossref_primary_10_1016_j_amc_2021_125986 crossref_primary_10_1016_j_ijsolstr_2024_113126 crossref_primary_10_1177_10812865231187855 crossref_primary_10_1016_j_engfailanal_2022_106538 crossref_primary_10_1016_j_apm_2022_05_028 crossref_primary_10_1080_17445302_2022_2067416 crossref_primary_10_1016_j_ijmecsci_2022_107886 crossref_primary_10_1080_15376494_2025_2471031 crossref_primary_10_1016_j_commatsci_2021_110463 crossref_primary_10_1007_s12206_022_0312_6 crossref_primary_10_1177_13506501211009418 crossref_primary_10_1016_j_carbon_2024_119441 crossref_primary_10_1016_j_wear_2021_204211 |
| Cites_doi | 10.1115/1.3169092 10.1016/j.ijsolstr.2017.09.008 10.1016/j.ijmecsci.2018.04.051 10.1115/1.3173136 10.1016/S0045-7949(00)00026-2 10.1016/0020-7683(91)90060-S 10.1016/j.advengsoft.2014.02.004 10.1007/s12046-011-0053-1 10.1016/j.ijsolstr.2016.10.021 10.1016/j.ijmecsci.2007.03.014 10.1016/j.advengsoft.2011.02.008 10.1016/j.ijsolstr.2015.01.007 10.1016/j.ijmecsci.2016.06.016 10.1016/j.ijsolstr.2008.04.009 10.1061/JMCEA3.0002294 10.1016/S0020-7403(98)00039-3 10.1016/j.engstruct.2013.09.019 10.1115/1.2905907 10.1243/JMES_JOUR_1973_015_045_02 10.1115/1.3230924 10.1016/0020-7403(87)90033-6 10.1016/j.engstruct.2014.10.032 10.1061/JMCEA3.0002092 10.1016/j.ijmecsci.2016.12.014 10.1016/S0020-7403(98)00111-8 10.1016/j.advengsoft.2015.06.006 10.1061/JMCEA3.0002508 10.1007/BF02326388 10.1016/j.advengsoft.2011.02.010 10.1016/j.apm.2014.07.015 10.1002/nme.1620140405 10.1016/j.ijsolstr.2003.11.021 10.1243/0309324991513605 10.5545/sv-jme.2009.006 |
| ContentType | Journal Article |
| Copyright | 2019 Elsevier Inc. Copyright Elsevier BV Dec 2019 |
| Copyright_xml | – notice: 2019 Elsevier Inc. – notice: Copyright Elsevier BV Dec 2019 |
| DBID | AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
| DOI | 10.1016/j.apm.2019.06.005 |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Computer and Information Systems Abstracts |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Mathematics Psychology |
| EISSN | 0307-904X |
| EndPage | 171 |
| ExternalDocumentID | 10_1016_j_apm_2019_06_005 S0307904X1930366X |
| GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1RT 1~. 1~5 23M 4.4 457 4G. 5GY 5VS 6I. 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAFTH AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABAOU ABEFU ABFNM ABMAC ABVKL ABXDB ABYKQ ACAZW ACDAQ ACGFS ACNNM ACRLP ADBBV ADEZE ADMUD ADTZH AEBSH AECPX AEKER AENEX AEXQZ AFFNX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIGVJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ARUGR ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HZ~ IHE IXB J1W JJJVA KOM LG9 LY7 M26 M41 MHUIS MO0 MVM N9A NCXOZ O-L O9- OAUVE OK1 OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SES SEW SPC SPCBC SST SSW SSZ T5K TN5 WH7 WUQ XJT XPP ZMT ~02 ~G- AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO ADVLN AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD -W8 .7I .GO .QK 0BK 2DF 53G 6J9 7SC 8FD 8VB AAGDL AAGZJ AAHIA AAHSB AAMFJ AAMIU AAPUL AATTQ AAZMC ABCCY ABDBF ABFIM ABIVO ABLIJ ABPEM ABRYG ABTAI ABXUL ABXYU ABZLS ACGOD ACHQT ACTIO ACTOA ACUHS ADAHI ADCVX ADKVQ ADYSH AECIN AEFOU AEGXH AEISY AEKEX AEMOZ AEMXT AEOZL AEPSL AEYOC AEZRU AFHDM AFRVT AGDLA AGMYJ AGRBW AHDZW AHQJS AIJEM AIYEW AJWEG AKBVH AKVCP ALQZU AVBZW AWYRJ BEJHT BLEHA BMOTO BOHLJ CCCUG CQ1 DGFLZ DKSSO EAP EBR EBU EDJ EMK EPL EPS EST ESX E~B E~C FEDTE G-F GTTXZ H13 HF~ HVGLF J.O JQ2 K1G KYCEM L7M LJTGL L~C L~D M4Z NA5 PQQKQ QWB RNANH ROSJB RSYQP S-F STATR TASJS TBQAZ TDBHL TEH TFH TFL TFW TH9 TNTFI TRJHH TUROJ TUS TWZ UPT UT5 UT9 VAE ZL0 ~01 ~S~ |
| ID | FETCH-LOGICAL-c325t-bbda2f5ca0f4546f686f4321f135b619192ec6644aa17fc503bb0cd3106fe07e3 |
| IEDL.DBID | .~1 |
| ISSN | 0307-904X 1088-8691 |
| IngestDate | Fri Jul 25 05:09:59 EDT 2025 Thu Oct 09 00:26:56 EDT 2025 Thu Apr 24 22:57:19 EDT 2025 Fri Feb 23 02:28:53 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Cross section method Geometric modeling Spiral mathematical model PSO Wire rope strands |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c325t-bbda2f5ca0f4546f686f4321f135b619192ec6644aa17fc503bb0cd3106fe07e3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-5656-7725 0000-0002-2584-0095 |
| PQID | 2299161633 |
| PQPubID | 2045280 |
| PageCount | 21 |
| ParticipantIDs | proquest_journals_2299161633 crossref_citationtrail_10_1016_j_apm_2019_06_005 crossref_primary_10_1016_j_apm_2019_06_005 elsevier_sciencedirect_doi_10_1016_j_apm_2019_06_005 |
| PublicationCentury | 2000 |
| PublicationDate | December 2019 2019-12-00 20191201 |
| PublicationDateYYYYMMDD | 2019-12-01 |
| PublicationDate_xml | – month: 12 year: 2019 text: December 2019 |
| PublicationDecade | 2010 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | Applied Mathematical Modelling |
| PublicationYear | 2019 |
| Publisher | Elsevier Inc Elsevier BV |
| Publisher_xml | – name: Elsevier Inc – name: Elsevier BV |
| References | Wang, Meng, Wang (bib0041) 2015; 39 Costello, Miller (bib0008) 1979; 105 Costello (bib0009) 1983; 105 Utting, Jones (bib0022) 1987; 29 Jiang, Yao, Walton (bib0023) 1999; 41 Foti, di Roseto (bib0032) 2016; 115-116 Stanova, Fedorko, Fabian (bib0037) 2011; 42 Eberhart, Shi (bib0043) 2001; 1 Ghoreishia, Messagera, Cartrauda (bib0027) 2007; 49 Fedorko, Stanova, Molnar (bib0038) 2014; 73 Hruska (bib0005) 1953; 28 Machida, Durelli (bib0017) 1973; 15 Jiang, Henshall (bib0024) 1999; 34 Jiang, Henshall, Walton (bib0025) 2000; 42 Raoof, Hobbs (bib0002) 1988; 114 Xiang, Wang, Chen (bib0033) 2017; 129 Hruska (bib0003) 1951; 26 Usabiaga, Pagalday (bib0020) 2008; 45 Feyrer (bib0040) 2007 Costello (bib0011) 1990 Lee (bib0034) 1991; 28 Stanova, Fedorko, Fabian (bib0036) 2011; 42 Elata, Eshkenazy, Weiss (bib0019) 2004; 41 Phillips, Costello (bib0018) 1985; 52 Kennedy, Eberhart (bib0042) 1995; 4 Erdonmez, Imrak (bib0044) 2011; 36 Hruska (bib0004) 1952; 25 Kumar, Cochran (bib0013) 1987; 54 Fontanari, Benedetti, Monelli (bib0030) 2015; 82 Lalondea, Guilbaultb, Légeron (bib0028) 2017; 126 Costello, Philips (bib0006) 1976; 102 Knapp (bib0012) 1979; 14 Wu, Cao (bib0001) 2016; 102–103 Nawrocki, Labrosse (bib0026) 2000; 77 Erdönmez, Imrak (bib0035) 2011; 57 Xiang, Wang, Chen (bib0021) 2015; 58 McConnell, Zemke (bib0016) 1982; 22 Jolicoeur, Cardou (bib0015) 1991; 113 Kmet, Stanova, Fedorko (bib0029) 2013; 57 Ma, Zhu, Peng (bib0039) 2015; 90 Cao, Wu (bib0031) 2018; 142–143 Love (bib0010) 1944 Ramsey (bib0014) 1988; 30 Costello, Sinha (bib0007) 1977; 103 Love (10.1016/j.apm.2019.06.005_bib0010) 1944 Foti (10.1016/j.apm.2019.06.005_bib0032) 2016; 115-116 Feyrer (10.1016/j.apm.2019.06.005_bib0040) 2007 Elata (10.1016/j.apm.2019.06.005_bib0019) 2004; 41 Kmet (10.1016/j.apm.2019.06.005_bib0029) 2013; 57 Wu (10.1016/j.apm.2019.06.005_bib0001) 2016; 102–103 Lee (10.1016/j.apm.2019.06.005_bib0034) 1991; 28 Eberhart (10.1016/j.apm.2019.06.005_bib0043) 2001; 1 Nawrocki (10.1016/j.apm.2019.06.005_bib0026) 2000; 77 Wang (10.1016/j.apm.2019.06.005_bib0041) 2015; 39 Ghoreishia (10.1016/j.apm.2019.06.005_bib0027) 2007; 49 Erdönmez (10.1016/j.apm.2019.06.005_bib0035) 2011; 57 Raoof (10.1016/j.apm.2019.06.005_bib0002) 1988; 114 Usabiaga (10.1016/j.apm.2019.06.005_bib0020) 2008; 45 Hruska (10.1016/j.apm.2019.06.005_bib0005) 1953; 28 Costello (10.1016/j.apm.2019.06.005_bib0011) 1990 Cao (10.1016/j.apm.2019.06.005_bib0031) 2018; 142–143 Fedorko (10.1016/j.apm.2019.06.005_bib0038) 2014; 73 Fontanari (10.1016/j.apm.2019.06.005_bib0030) 2015; 82 Costello (10.1016/j.apm.2019.06.005_bib0009) 1983; 105 Machida (10.1016/j.apm.2019.06.005_bib0017) 1973; 15 Costello (10.1016/j.apm.2019.06.005_bib0008) 1979; 105 Knapp (10.1016/j.apm.2019.06.005_bib0012) 1979; 14 Jiang (10.1016/j.apm.2019.06.005_bib0025) 2000; 42 McConnell (10.1016/j.apm.2019.06.005_bib0016) 1982; 22 Jiang (10.1016/j.apm.2019.06.005_bib0023) 1999; 41 Utting (10.1016/j.apm.2019.06.005_bib0022) 1987; 29 Kumar (10.1016/j.apm.2019.06.005_bib0013) 1987; 54 Xiang (10.1016/j.apm.2019.06.005_bib0033) 2017; 129 Costello (10.1016/j.apm.2019.06.005_bib0007) 1977; 103 Phillips (10.1016/j.apm.2019.06.005_bib0018) 1985; 52 Stanova (10.1016/j.apm.2019.06.005_bib0037) 2011; 42 Hruska (10.1016/j.apm.2019.06.005_bib0004) 1952; 25 Jiang (10.1016/j.apm.2019.06.005_bib0024) 1999; 34 Ma (10.1016/j.apm.2019.06.005_bib0039) 2015; 90 Erdonmez (10.1016/j.apm.2019.06.005_bib0044) 2011; 36 Costello (10.1016/j.apm.2019.06.005_bib0006) 1976; 102 Kennedy (10.1016/j.apm.2019.06.005_bib0042) 1995; 4 Hruska (10.1016/j.apm.2019.06.005_bib0003) 1951; 26 Ramsey (10.1016/j.apm.2019.06.005_bib0014) 1988; 30 Stanova (10.1016/j.apm.2019.06.005_bib0036) 2011; 42 Xiang (10.1016/j.apm.2019.06.005_bib0021) 2015; 58 Lalondea (10.1016/j.apm.2019.06.005_bib0028) 2017; 126 Jolicoeur (10.1016/j.apm.2019.06.005_bib0015) 1991; 113 |
| References_xml | – volume: 34 start-page: 31 year: 1999 end-page: 38 ident: bib0024 article-title: The analysis of termination effects in wire strand using the finite element method publication-title: J. Strain Anal. Eng. Des. – volume: 26 start-page: 766 year: 1951 end-page: 767 ident: bib0003 article-title: Calculation of stresses in wire ropes publication-title: Wire Wire Prod. – volume: 25 start-page: 459 year: 1952 end-page: 463 ident: bib0004 article-title: Radial forces in wire ropes publication-title: Wire Wire Prod. – year: 1990 ident: bib0011 article-title: Theory of Wire Rope – volume: 41 start-page: 143 year: 1999 end-page: 161 ident: bib0023 article-title: A concise finite element model for simple straight wire rope strand publication-title: Int. J. Mech. Sci. – volume: 14 start-page: 515 year: 1979 end-page: 529 ident: bib0012 article-title: Derivation of a new stiffness matrix for helically armoured cables considering tension and torsion publication-title: Int. J. Numer. Methods Eng. – volume: 105 start-page: 337 year: 1983 end-page: 340 ident: bib0009 article-title: Stresses in multilayered cables publication-title: J. Energy Resour. Technol. – volume: 36 start-page: 995 year: 2011 end-page: 1008 ident: bib0044 article-title: A finite element model for independent wire rope core with double helical geometry subjected to axial loads publication-title: Sadhana – volume: 73 start-page: 11 year: 2014 end-page: 21 ident: bib0038 article-title: Computer modelling and finite element analysis of spiral triangular strands publication-title: Adv. Eng. Softw. – volume: 22 start-page: 237 year: 1982 end-page: 244 ident: bib0016 article-title: A model to predict the coupled axial torsion properties of ACSR electrical conductors publication-title: Exp. Mech. – volume: 4 start-page: 1942 year: 1995 end-page: 1948 ident: bib0042 article-title: Particle swarm optimization publication-title: Proceedings of the IEEE International Conference on Neural Networks – volume: 28 start-page: 455 year: 1953 end-page: 460 ident: bib0005 article-title: Tangential forces in wire ropes publication-title: Wire Wire Prod. – volume: 129 start-page: 103 year: 2017 end-page: 118 ident: bib0033 article-title: Elastic-plastic modeling of metallic strands and wire ropes under axial tension and torsion loads publication-title: Int. J. Solids Struct. – volume: 114 start-page: 1166 year: 1988 end-page: 1182 ident: bib0002 article-title: Analysis of multilayered structural strands publication-title: J. Eng. Mech. – volume: 102 start-page: 171 year: 1976 end-page: 181 ident: bib0006 article-title: Effective modulus of twisted wire cables publication-title: J. Eng. Mech. Div. – volume: 126 start-page: 281 year: 2017 end-page: 296 ident: bib0028 article-title: Modeling multilayered wire strands, a strategy based on 3D finite element beam-to-beam contacts - Part I: model formulation and validation publication-title: Int. J. Mech. Sci. – volume: 42 start-page: 63 year: 2000 end-page: 86 ident: bib0025 article-title: A concise finite element model for three-layered straight wire rope strand publication-title: Int. J. Mech. Sci. – volume: 57 start-page: 475 year: 2013 end-page: 483 ident: bib0029 article-title: Experimental investigation and finite element analysis of a four-layered spiral strand bent over a curved support publication-title: Eng. Struct. – volume: 90 start-page: 11 year: 2015 end-page: 21 ident: bib0039 article-title: Computer-aided modeling of wire ropes bent over a sheave publication-title: Adv. Eng. Softw. – year: 1944 ident: bib0010 article-title: A Treatise on the Mathematical Theory of Elasticity – volume: 49 start-page: 1251 year: 2007 end-page: 1261 ident: bib0027 article-title: Validity and limitations of linear analytical models for steel wire strands under axial loading, using a 3D FE model publication-title: Int. J. Mech. Sci. – volume: 45 start-page: 5503 year: 2008 end-page: 5520 ident: bib0020 article-title: Analytical procedure for modelling recursively and wire by wire stranded ropes subjected to traction and torsion loads publication-title: Int. J. Solids Struct. – volume: 57 start-page: 283 year: 2011 end-page: 292 ident: bib0035 article-title: Modeling techniques of nested helical structure based geometry for numerical analysis publication-title: J. Mech. Eng. – volume: 102–103 start-page: 21 year: 2016 end-page: 29 ident: bib0001 article-title: Mechanics model and its equation of wire rope based on elastic thin rod theory publication-title: Int. J. Solids Struct. – volume: 54 start-page: 898 year: 1987 end-page: 903 ident: bib0013 article-title: Closed-form analysis for elastic deformations of multilayered strands publication-title: J. Appl. Mech. – volume: 29 start-page: 605 year: 1987 end-page: 619 ident: bib0022 article-title: The response of wire rope strands to axial tensile loads part I. Experimental results and theoretical predictions publication-title: Int. J. Mech. Sci. – volume: 39 start-page: 1019 year: 2015 end-page: 1032 ident: bib0041 article-title: Mathematical modeling and geometric analysis for wire rope strands publication-title: Appl. Math. Model. – volume: 82 start-page: 113 year: 2015 end-page: 120 ident: bib0030 article-title: Elasto-plastic behavior of a Warrington-Seale rope: experimental analysis and finite element modeling publication-title: Eng. Struct. – volume: 77 start-page: 345 year: 2000 end-page: 359 ident: bib0026 article-title: A finite element model for simple straight wire rope strands publication-title: Comput. Struct. – volume: 15 start-page: 241 year: 1973 end-page: 251 ident: bib0017 article-title: Response of a strand to axial and torsional displacements publication-title: J. Eng. Mech. Eng. Sci. – volume: 41 start-page: 1157 year: 2004 end-page: 1172 ident: bib0019 article-title: The mechanical behavior of a wire rope with an independent wire rope core publication-title: Int. J. Solids Struct. – volume: 105 start-page: 597 year: 1979 end-page: 608 ident: bib0008 article-title: Lay effect of wire rope publication-title: J. Eng. Mech. Div. – volume: 30 start-page: 559 year: 1988 end-page: 570 ident: bib0014 article-title: A theory of thin rods with application to helical constituent wires in cables publication-title: Int. J. Primatol. – volume: 1 start-page: 81 year: 2001 end-page: 86 ident: bib0043 article-title: Particle swarm optimization: developments, applications and resources publication-title: Proceedings of the 2001 Congress on Evolutionary Computation – volume: 42 start-page: 322 year: 2011 end-page: 331 ident: bib0037 article-title: Computer modelling of wire strands and ropes part II: theory and computer implementation publication-title: Adv. Eng. Softw. – year: 2007 ident: bib0040 article-title: Wire Ropes, Tension, Endurance, Reliability – volume: 113 start-page: 241 year: 1991 end-page: 249 ident: bib0015 article-title: A numerical comparison of current mathematical models of twisted wire cables under axisymmetric loads publication-title: J. Energy Resour. Technol. – volume: 103 start-page: 1011 year: 1977 end-page: 1022 ident: bib0007 article-title: Static behaviour of wire rope publication-title: Proc. ASCE J. Eng. Mech. Div. – volume: 42 start-page: 305 year: 2011 end-page: 315 ident: bib0036 article-title: Computer modelling of wire strands and ropes part I: theory and computer implementation publication-title: Adv. Eng. Softw. – volume: 115-116 start-page: 202 year: 2016 end-page: 214 ident: bib0032 article-title: Analytical and finite element modelling of the elastic–plastic behaviour of metallic strands under axial–torsional loads publication-title: Int. J. Mech. Sci. – volume: 28 start-page: 471 year: 1991 end-page: 490 ident: bib0034 article-title: An insight into wire rope geometry publication-title: Int. J. Solids Struct. – volume: 58 start-page: 233 year: 2015 end-page: 246 ident: bib0021 article-title: Modeling of multi-strand wire ropes subjected to axial tension and torsion loads publication-title: Int. J. Solids Struct. – volume: 52 start-page: 510 year: 1985 end-page: 516 ident: bib0018 article-title: Analysis of wire ropes with internal-wire-rope cores publication-title: J. Appl. Mech. – volume: 142–143 start-page: 289 year: 2018 end-page: 303 ident: bib0031 article-title: The establishment of a mechanics model of multi-strand wire rope subjected to bending load with finite element simulation and experimental verification publication-title: Int. J. Mech. Sci. – volume: 52 start-page: 510 year: 1985 ident: 10.1016/j.apm.2019.06.005_bib0018 article-title: Analysis of wire ropes with internal-wire-rope cores publication-title: J. Appl. Mech. doi: 10.1115/1.3169092 – volume: 129 start-page: 103 year: 2017 ident: 10.1016/j.apm.2019.06.005_bib0033 article-title: Elastic-plastic modeling of metallic strands and wire ropes under axial tension and torsion loads publication-title: Int. J. Solids Struct. doi: 10.1016/j.ijsolstr.2017.09.008 – volume: 142–143 start-page: 289 year: 2018 ident: 10.1016/j.apm.2019.06.005_bib0031 article-title: The establishment of a mechanics model of multi-strand wire rope subjected to bending load with finite element simulation and experimental verification publication-title: Int. J. Mech. Sci. doi: 10.1016/j.ijmecsci.2018.04.051 – volume: 54 start-page: 898 year: 1987 ident: 10.1016/j.apm.2019.06.005_bib0013 article-title: Closed-form analysis for elastic deformations of multilayered strands publication-title: J. Appl. Mech. doi: 10.1115/1.3173136 – volume: 77 start-page: 345 year: 2000 ident: 10.1016/j.apm.2019.06.005_bib0026 article-title: A finite element model for simple straight wire rope strands publication-title: Comput. Struct. doi: 10.1016/S0045-7949(00)00026-2 – volume: 28 start-page: 471 issue: 4 year: 1991 ident: 10.1016/j.apm.2019.06.005_bib0034 article-title: An insight into wire rope geometry publication-title: Int. J. Solids Struct. doi: 10.1016/0020-7683(91)90060-S – year: 1990 ident: 10.1016/j.apm.2019.06.005_bib0011 – volume: 73 start-page: 11 year: 2014 ident: 10.1016/j.apm.2019.06.005_bib0038 article-title: Computer modelling and finite element analysis of spiral triangular strands publication-title: Adv. Eng. Softw. doi: 10.1016/j.advengsoft.2014.02.004 – volume: 25 start-page: 459 issue: 5 year: 1952 ident: 10.1016/j.apm.2019.06.005_bib0004 article-title: Radial forces in wire ropes publication-title: Wire Wire Prod. – volume: 36 start-page: 995 year: 2011 ident: 10.1016/j.apm.2019.06.005_bib0044 article-title: A finite element model for independent wire rope core with double helical geometry subjected to axial loads publication-title: Sadhana doi: 10.1007/s12046-011-0053-1 – volume: 102–103 start-page: 21 year: 2016 ident: 10.1016/j.apm.2019.06.005_bib0001 article-title: Mechanics model and its equation of wire rope based on elastic thin rod theory publication-title: Int. J. Solids Struct. doi: 10.1016/j.ijsolstr.2016.10.021 – volume: 49 start-page: 1251 year: 2007 ident: 10.1016/j.apm.2019.06.005_bib0027 article-title: Validity and limitations of linear analytical models for steel wire strands under axial loading, using a 3D FE model publication-title: Int. J. Mech. Sci. doi: 10.1016/j.ijmecsci.2007.03.014 – volume: 114 start-page: 1166 issue: 7 year: 1988 ident: 10.1016/j.apm.2019.06.005_bib0002 article-title: Analysis of multilayered structural strands publication-title: J. Eng. Mech. – volume: 42 start-page: 305 year: 2011 ident: 10.1016/j.apm.2019.06.005_bib0036 article-title: Computer modelling of wire strands and ropes part I: theory and computer implementation publication-title: Adv. Eng. Softw. doi: 10.1016/j.advengsoft.2011.02.008 – volume: 58 start-page: 233 year: 2015 ident: 10.1016/j.apm.2019.06.005_bib0021 article-title: Modeling of multi-strand wire ropes subjected to axial tension and torsion loads publication-title: Int. J. Solids Struct. doi: 10.1016/j.ijsolstr.2015.01.007 – volume: 115-116 start-page: 202 year: 2016 ident: 10.1016/j.apm.2019.06.005_bib0032 article-title: Analytical and finite element modelling of the elastic–plastic behaviour of metallic strands under axial–torsional loads publication-title: Int. J. Mech. Sci. doi: 10.1016/j.ijmecsci.2016.06.016 – volume: 45 start-page: 5503 year: 2008 ident: 10.1016/j.apm.2019.06.005_bib0020 article-title: Analytical procedure for modelling recursively and wire by wire stranded ropes subjected to traction and torsion loads publication-title: Int. J. Solids Struct. doi: 10.1016/j.ijsolstr.2008.04.009 – volume: 103 start-page: 1011 issue: 6 year: 1977 ident: 10.1016/j.apm.2019.06.005_bib0007 article-title: Static behaviour of wire rope publication-title: Proc. ASCE J. Eng. Mech. Div. doi: 10.1061/JMCEA3.0002294 – volume: 41 start-page: 143 issue: 2 year: 1999 ident: 10.1016/j.apm.2019.06.005_bib0023 article-title: A concise finite element model for simple straight wire rope strand publication-title: Int. J. Mech. Sci. doi: 10.1016/S0020-7403(98)00039-3 – volume: 30 start-page: 559 issue: 8 year: 1988 ident: 10.1016/j.apm.2019.06.005_bib0014 article-title: A theory of thin rods with application to helical constituent wires in cables publication-title: Int. J. Primatol. – volume: 57 start-page: 475 year: 2013 ident: 10.1016/j.apm.2019.06.005_bib0029 article-title: Experimental investigation and finite element analysis of a four-layered spiral strand bent over a curved support publication-title: Eng. Struct. doi: 10.1016/j.engstruct.2013.09.019 – volume: 113 start-page: 241 year: 1991 ident: 10.1016/j.apm.2019.06.005_bib0015 article-title: A numerical comparison of current mathematical models of twisted wire cables under axisymmetric loads publication-title: J. Energy Resour. Technol. doi: 10.1115/1.2905907 – volume: 15 start-page: 241 issue: 4 year: 1973 ident: 10.1016/j.apm.2019.06.005_bib0017 article-title: Response of a strand to axial and torsional displacements publication-title: J. Eng. Mech. Eng. Sci. doi: 10.1243/JMES_JOUR_1973_015_045_02 – year: 2007 ident: 10.1016/j.apm.2019.06.005_bib0040 – volume: 105 start-page: 337 year: 1983 ident: 10.1016/j.apm.2019.06.005_bib0009 article-title: Stresses in multilayered cables publication-title: J. Energy Resour. Technol. doi: 10.1115/1.3230924 – volume: 29 start-page: 605 issue: 9 year: 1987 ident: 10.1016/j.apm.2019.06.005_bib0022 article-title: The response of wire rope strands to axial tensile loads part I. Experimental results and theoretical predictions publication-title: Int. J. Mech. Sci. doi: 10.1016/0020-7403(87)90033-6 – volume: 82 start-page: 113 year: 2015 ident: 10.1016/j.apm.2019.06.005_bib0030 article-title: Elasto-plastic behavior of a Warrington-Seale rope: experimental analysis and finite element modeling publication-title: Eng. Struct. doi: 10.1016/j.engstruct.2014.10.032 – volume: 102 start-page: 171 year: 1976 ident: 10.1016/j.apm.2019.06.005_bib0006 article-title: Effective modulus of twisted wire cables publication-title: J. Eng. Mech. Div. doi: 10.1061/JMCEA3.0002092 – volume: 126 start-page: 281 year: 2017 ident: 10.1016/j.apm.2019.06.005_bib0028 article-title: Modeling multilayered wire strands, a strategy based on 3D finite element beam-to-beam contacts - Part I: model formulation and validation publication-title: Int. J. Mech. Sci. doi: 10.1016/j.ijmecsci.2016.12.014 – volume: 42 start-page: 63 year: 2000 ident: 10.1016/j.apm.2019.06.005_bib0025 article-title: A concise finite element model for three-layered straight wire rope strand publication-title: Int. J. Mech. Sci. doi: 10.1016/S0020-7403(98)00111-8 – volume: 28 start-page: 455 issue: 5 year: 1953 ident: 10.1016/j.apm.2019.06.005_bib0005 article-title: Tangential forces in wire ropes publication-title: Wire Wire Prod. – volume: 90 start-page: 11 year: 2015 ident: 10.1016/j.apm.2019.06.005_bib0039 article-title: Computer-aided modeling of wire ropes bent over a sheave publication-title: Adv. Eng. Softw. doi: 10.1016/j.advengsoft.2015.06.006 – volume: 105 start-page: 597 issue: 4 year: 1979 ident: 10.1016/j.apm.2019.06.005_bib0008 article-title: Lay effect of wire rope publication-title: J. Eng. Mech. Div. doi: 10.1061/JMCEA3.0002508 – volume: 22 start-page: 237 year: 1982 ident: 10.1016/j.apm.2019.06.005_bib0016 article-title: A model to predict the coupled axial torsion properties of ACSR electrical conductors publication-title: Exp. Mech. doi: 10.1007/BF02326388 – volume: 42 start-page: 322 year: 2011 ident: 10.1016/j.apm.2019.06.005_bib0037 article-title: Computer modelling of wire strands and ropes part II: theory and computer implementation publication-title: Adv. Eng. Softw. doi: 10.1016/j.advengsoft.2011.02.010 – volume: 39 start-page: 1019 year: 2015 ident: 10.1016/j.apm.2019.06.005_bib0041 article-title: Mathematical modeling and geometric analysis for wire rope strands publication-title: Appl. Math. Model. doi: 10.1016/j.apm.2014.07.015 – year: 1944 ident: 10.1016/j.apm.2019.06.005_bib0010 – volume: 14 start-page: 515 year: 1979 ident: 10.1016/j.apm.2019.06.005_bib0012 article-title: Derivation of a new stiffness matrix for helically armoured cables considering tension and torsion publication-title: Int. J. Numer. Methods Eng. doi: 10.1002/nme.1620140405 – volume: 26 start-page: 766 issue: 9 year: 1951 ident: 10.1016/j.apm.2019.06.005_bib0003 article-title: Calculation of stresses in wire ropes publication-title: Wire Wire Prod. – volume: 4 start-page: 1942 year: 1995 ident: 10.1016/j.apm.2019.06.005_bib0042 article-title: Particle swarm optimization – volume: 1 start-page: 81 year: 2001 ident: 10.1016/j.apm.2019.06.005_bib0043 article-title: Particle swarm optimization: developments, applications and resources – volume: 41 start-page: 1157 issue: 5 year: 2004 ident: 10.1016/j.apm.2019.06.005_bib0019 article-title: The mechanical behavior of a wire rope with an independent wire rope core publication-title: Int. J. Solids Struct. doi: 10.1016/j.ijsolstr.2003.11.021 – volume: 34 start-page: 31 issue: 1 year: 1999 ident: 10.1016/j.apm.2019.06.005_bib0024 article-title: The analysis of termination effects in wire strand using the finite element method publication-title: J. Strain Anal. Eng. Des. doi: 10.1243/0309324991513605 – volume: 57 start-page: 283 issue: 4 year: 2011 ident: 10.1016/j.apm.2019.06.005_bib0035 article-title: Modeling techniques of nested helical structure based geometry for numerical analysis publication-title: J. Mech. Eng. doi: 10.5545/sv-jme.2009.006 |
| SSID | ssj0005904 ssj0012860 |
| Score | 2.3920276 |
| Snippet | •A general mathematical spiral model is deduced for forming the skeleton of rope.•Costello's conclusion is extended to suit universal cases with rigorous... Based on the Frenet frame, this paper proposes a general mathematical spiral model with an arbitrary smooth space curve as the center path, which can... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 151 |
| SubjectTerms | Algorithms Core wire Cross section method Cylinders Geometric modeling Graphical representations Mathematical analysis Mathematical models Particle swarm optimization PSO Spiral mathematical model Strands Wire Wire rope Wire rope strands |
| Title | A precise mathematical model for geometric modeling of wire rope strands structure |
| URI | https://dx.doi.org/10.1016/j.apm.2019.06.005 https://www.proquest.com/docview/2299161633 |
| Volume | 76 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 0307-904X dateEnd: 20241102 omitProxy: true ssIdentifier: ssj0012860 issn: 0307-904X databaseCode: ABDBF dateStart: 19970301 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 0307-904X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0005904 issn: 0307-904X databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier Free Content customDbUrl: eissn: 0307-904X dateEnd: 20211102 omitProxy: true ssIdentifier: ssj0005904 issn: 0307-904X databaseCode: IXB dateStart: 19760601 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect Complete Freedom Collection customDbUrl: eissn: 0307-904X dateEnd: 20211102 omitProxy: true ssIdentifier: ssj0005904 issn: 0307-904X databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] - NZ customDbUrl: eissn: 0307-904X dateEnd: 20211031 omitProxy: true ssIdentifier: ssj0005904 issn: 0307-904X databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect (Elsevier) customDbUrl: eissn: 0307-904X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0005904 issn: 0307-904X databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: aylor and Francis Online customDbUrl: mediaType: online eissn: 0307-904X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0012860 issn: 0307-904X databaseCode: AHDZW dateStart: 19970301 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 0307-904X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0005904 issn: 0307-904X databaseCode: AKRWK dateStart: 19760601 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVAWR databaseName: Taylor & Francis Social Science and Humanities Library - DRAA customDbUrl: eissn: 0307-904X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0012860 issn: 0307-904X databaseCode: TRJHH dateStart: 19970101 isFulltext: true titleUrlDefault: http://www.tandfonline.com/ providerName: Taylor & Francis |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELaqssCAeIpHqTwwIYXmYTvJ2BaqFkQHoFI2K3ZsVETbiJaV385dHhUg1IElUU6-KDpf7r445-8IueQa_CDwtMNSnztM28xRUaSdVEe-xyBjxqZg-xyL4YTdJTxpkH69FwbLKqvYX8b0IlpXkk5lzU4-nXae0D1jlyUAQSAMiwR3sLMQuxhcf34r84hdVpMh4uj6z2ZR45XmuBndiwsKT-xg93du-hWli9Qz2CO7FWak3fKx9knDzA_IzsOacHV5SB67NEeeiqWhs7UcdIpGNxSAKX0xixl2z9KlDDIWXViKTMUU1-MpLnnMsyUtCWU_3s0RmQxun_tDp2qX4OjA5ytHqSz1LdepaxlnwopIWBb4nvUCruA7CbCc0QLwT5p6odXcDZRydQb4TljjhiY4Js35Ym5OCAXYYjgkbyOUxzQejQ2Uj93oYi3C8JS4taGkrrjEsaXFm6yLxl4l2FaibWVROMdPydVaJS-JNDYNZrX15Q9vkBDoN6m16pmS1au4lL6PEBhgZ3D2v7uek228KmtYWqQJ02AuAImsVLtwtTbZ6vZuegM8j-6HY5COkt4X6tLfRQ |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELZKGYAB8RSFAh6YkEITx3aasaqoCrQdoJW6WbFroyL6ECkrv527PCpAiIElw8UXRefL3Wfn_B0hV8KAH4SB8XjChMeNm3i62TReYpos4JAxY5uxfQ5kd8Tvx2JcIe3yLAyWVRaxP4_pWbQuJI3Cmo3ldNp4QveMfT4GCAJhWI43yCYXLMIV2M3HlzqP2OclGyIOL39tZkVeyRJPowdxxuGJLex-T04_wnSWezp7ZLcAjbSVv9c-qdj5AdnprxlX00Py2KJLJKpILZ2t5aCTdbqhgEzps13MsH2WyWWQsujCUaQqprghT3HPYz5Jac4o-_5mj8iocztsd72iX4JnQiZWntaThDlhEt9xwaWTTel4yAIXhELDQgnAnDUSAFCSBJEzwg-19s0EAJ501o9seEyq88XcnhAKuMUKyN5W6oAbvFoXaobt6GIjo6hG_NJQyhRk4tjT4lWVVWMvCmyr0LYqq5wTNXK9VlnmTBp_Deal9dU3d1AQ6f9Sq5czpYpvMVWMIQYG3Bme_u-pl2SrO-z3VO9u8HBGtvFOXtBSJ1WYEnsOsGSlLzK3-wQCht5k |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+precise+mathematical+model+for+geometric+modeling+of+wire+rope+strands+structure&rft.jtitle=Applied+mathematical+modelling&rft.au=Zhang%2C+Peng&rft.au=Duan%2C+Menglan&rft.au=Ma%2C+Jianmin&rft.au=zhang%2C+Yu&rft.date=2019-12-01&rft.issn=0307-904X&rft.volume=76&rft.spage=151&rft.epage=171&rft_id=info:doi/10.1016%2Fj.apm.2019.06.005&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_apm_2019_06_005 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0307-904X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0307-904X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0307-904X&client=summon |