A quantum-behaved simulated annealing algorithm-based moth-flame optimization method
This study develops an improved moth-flame optimization algorithm, which is a recently proposed optimizer based on moth behavior in nature. It has achieved favorable results in medical science, educational evaluation, and other fields. However, the convergence rate of the original moth-flame optimiz...
Saved in:
| Published in | Applied Mathematical Modelling Vol. 87; pp. 1 - 19 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
New York
Elsevier Inc
01.11.2020
Elsevier BV |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0307-904X 1088-8691 0307-904X |
| DOI | 10.1016/j.apm.2020.04.019 |
Cover
| Abstract | This study develops an improved moth-flame optimization algorithm, which is a recently proposed optimizer based on moth behavior in nature. It has achieved favorable results in medical science, educational evaluation, and other fields. However, the convergence rate of the original moth-flame optimization algorithm is too fast in the running process, and it is prone to fall into local optimum, which leads to the failure to produce the high-quality optimal result. Accordingly, this paper proposes a reinforced technique for the moth-flame optimization algorithm. Firstly, the simulated annealing strategy is introduced into the moth-flame optimization algorithm to boost the advantage of the algorithm in the local exploitation process. Then, the idea of the quantum rotation gate is integrated to enhance the global exploration ability of the algorithm and ameliorate the diversity of the moth. These two steps maintain the relationship between exploitation and exploration as well as strengthen the performance of the algorithm in both phases. After that, the method is compared with ten well-regarded and ten alternative algorithms on benchmark functions to verify the effectiveness of the approach. Also, the Wilcoxon signed rank and Friedman assessment were performed to verify the significance of the proposed method against other counterparts. The simulation results reveal that the two introduced strategies significantly improve the exploration and exploitation capacity of moth-flame optimization algorithm. Finally, the algorithm is utilized to feature selection and two engineering problems, including pressure vessel design and multiple disk clutch brake problems. In these practical applications, the novel algorithm also achieves particularly notable results, which also illustrates that the algorithm is qualified is an effective auxiliary appliance in solving complex optimization problems. |
|---|---|
| AbstractList | This study develops an improved moth-flame optimization algorithm, which is a recently proposed optimizer based on moth behavior in nature. It has achieved favorable results in medical science, educational evaluation, and other fields. However, the convergence rate of the original moth-flame optimization algorithm is too fast in the running process, and it is prone to fall into local optimum, which leads to the failure to produce the high-quality optimal result. Accordingly, this paper proposes a reinforced technique for the moth-flame optimization algorithm. Firstly, the simulated annealing strategy is introduced into the moth-flame optimization algorithm to boost the advantage of the algorithm in the local exploitation process. Then, the idea of the quantum rotation gate is integrated to enhance the global exploration ability of the algorithm and ameliorate the diversity of the moth. These two steps maintain the relationship between exploitation and exploration as well as strengthen the performance of the algorithm in both phases. After that, the method is compared with ten well-regarded and ten alternative algorithms on benchmark functions to verify the effectiveness of the approach. Also, the Wilcoxon signed rank and Friedman assessment were performed to verify the significance of the proposed method against other counterparts. The simulation results reveal that the two introduced strategies significantly improve the exploration and exploitation capacity of moth-flame optimization algorithm. Finally, the algorithm is utilized to feature selection and two engineering problems, including pressure vessel design and multiple disk clutch brake problems. In these practical applications, the novel algorithm also achieves particularly notable results, which also illustrates that the algorithm is qualified is an effective auxiliary appliance in solving complex optimization problems. |
| Author | Heidari, Ali Asghar Chen, Huiling Yu, Caiyang |
| Author_xml | – sequence: 1 givenname: Caiyang surname: Yu fullname: Yu, Caiyang email: Jerome0324@163.com organization: Department of Computer Science and Artificial Intelligence, Wenzhou University, Wenzhou 325035, China – sequence: 2 givenname: Ali Asghar surname: Heidari fullname: Heidari, Ali Asghar email: as_heidari@ut.ac.ir, aliasghar68@gmaill.com, aliasgha@comp.nus.edu.sg, t0917038@u.nus.edu organization: School of Surveying and Geospatial Engineering, College of Engineering, University of Tehran, Tehran, Iran – sequence: 3 givenname: Huiling surname: Chen fullname: Chen, Huiling email: chenhuiling.jlu@gmail.com organization: Department of Computer Science and Artificial Intelligence, Wenzhou University, Wenzhou 325035, China |
| BookMark | eNp9kE1LAzEQhoNUsK3-AG8LnndNNtkvPJXiFxS8VPAWpruzbcpu0ibZgv56U-tBPPQ07zDvM8O8EzLSRiMht4wmjLL8fpvArk9SmtKEioSy6oKMKadFXFHxMfqjr8jEuS2lNAvdmCxn0X4A7Yc-XuEGDthETvVDBz4o0BqhU3odQbc2VvlNcIELk974Tdx20GNkdl716gu8Mjrq0W9Mc00uW-gc3vzWKXl_elzOX-LF2_PrfLaIa55mPl6xMq9Yw9tUlEXGW2CQpbTmHMombSpEBnWZoWBttqq4wIxBnre8oVXLywJTPiV3p707a_YDOi-3ZrA6nJSpEAUPMYg8uNjJVVvjnMVW7qzqwX5KRuUxPLmVITx5DE9SIQMVmOIfUyv_86K3oLqz5MOJxPD4QaGVrlaoa2yUxdrLxqgz9DfJTYxA |
| CitedBy_id | crossref_primary_10_1016_j_matcom_2020_09_027 crossref_primary_10_3390_math11133030 crossref_primary_10_3390_app12199922 crossref_primary_10_1016_j_matcom_2020_06_012 crossref_primary_10_1093_bib_bbac069 crossref_primary_10_1016_j_compbiomed_2023_107408 crossref_primary_10_1016_j_matcom_2021_04_006 crossref_primary_10_1093_jcde_qwad006 crossref_primary_10_1007_s11128_021_03003_5 crossref_primary_10_1016_j_bspc_2024_107431 crossref_primary_10_3389_fbioe_2022_908356 crossref_primary_10_1155_2021_6653659 crossref_primary_10_3390_app122312179 crossref_primary_10_1007_s00500_021_06401_0 crossref_primary_10_1016_j_knosys_2020_106425 crossref_primary_10_1016_j_eswa_2021_115655 crossref_primary_10_1016_j_eswa_2022_118372 crossref_primary_10_3390_electronics10172115 crossref_primary_10_2478_jaiscr_2024_0018 crossref_primary_10_1093_jcde_qwaf016 crossref_primary_10_1016_j_apm_2024_01_005 crossref_primary_10_1007_s00366_020_01252_z crossref_primary_10_1016_j_knosys_2022_108511 crossref_primary_10_1109_TCSII_2021_3100853 crossref_primary_10_1093_jcde_qwae074 crossref_primary_10_1155_2021_5092480 crossref_primary_10_1007_s13369_020_05228_5 crossref_primary_10_3390_app14167297 crossref_primary_10_3390_electronics9081206 crossref_primary_10_1007_s10489_021_02865_7 crossref_primary_10_1016_j_eswa_2022_117358 crossref_primary_10_3934_mbe_2023443 crossref_primary_10_3390_en15093410 crossref_primary_10_1016_j_compbiomed_2022_105563 crossref_primary_10_1007_s10462_024_10923_y crossref_primary_10_1007_s11831_023_10037_8 crossref_primary_10_1016_j_jobe_2023_106922 crossref_primary_10_1016_j_matcom_2023_12_022 crossref_primary_10_1016_j_compbiomed_2024_108294 crossref_primary_10_1016_j_asoc_2020_106900 crossref_primary_10_1016_j_compbiomed_2024_108134 crossref_primary_10_1016_j_eswa_2021_114864 crossref_primary_10_1016_j_knosys_2020_106642 crossref_primary_10_3390_math11040862 crossref_primary_10_1016_j_eswa_2021_115352 crossref_primary_10_1007_s42235_023_00357_7 crossref_primary_10_1016_j_asoc_2023_110664 crossref_primary_10_1002_er_8011 crossref_primary_10_1109_ACCESS_2022_3174854 crossref_primary_10_1109_ACCESS_2021_3054755 crossref_primary_10_3390_e23121637 crossref_primary_10_1016_j_jhydrol_2020_125769 |
| Cites_doi | 10.1109/ACCESS.2019.2939835 10.1115/1.2919393 10.1016/S0045-7825(01)00323-1 10.1007/s00500-017-2894-y 10.1109/ICEC.1996.542334 10.1109/TIT.1968.1054155 10.1007/s00521-013-1525-5 10.1080/03081070701303470 10.1016/j.ins.2019.04.022 10.1063/1.1699114 10.1115/1.2912596 10.1016/j.jclepro.2020.120082 10.1002/9783527622979.ch5 10.1109/ACCESS.2018.2884130 10.1016/j.swevo.2011.02.002 10.1007/s10489-016-0810-2 10.1007/s12293-016-0212-3 10.1016/j.swevo.2012.09.002 10.1016/j.future.2019.02.028 10.1109/ACCESS.2019.2942169 10.1109/TEVC.2011.2173577 10.1016/j.neucom.2016.03.101 10.1016/j.cmpb.2017.10.022 10.1016/j.neucom.2015.06.083 10.1016/j.engappai.2006.03.003 10.1016/j.enconman.2016.06.052 10.1007/s11269-018-1992-7 10.1016/j.amc.2006.11.033 10.1016/j.eswa.2019.03.043 10.1126/science.1253512 10.1177/0142331217712091 10.1007/s10489-017-0897-0 10.1007/s00158-002-0218-y 10.1126/science.220.4598.671 10.1007/978-3-662-03423-1_27 10.1073/pnas.87.23.9193 10.1007/s00366-020-00981-5 10.1016/j.neucom.2017.04.060 10.1016/j.knosys.2015.07.006 10.1016/j.advengsoft.2013.12.007 10.1016/j.energy.2018.06.088 10.1016/j.ijmedinf.2005.05.002 |
| ContentType | Journal Article |
| Copyright | 2020 Elsevier Inc. Copyright Elsevier BV Nov 2020 |
| Copyright_xml | – notice: 2020 Elsevier Inc. – notice: Copyright Elsevier BV Nov 2020 |
| DBID | AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
| DOI | 10.1016/j.apm.2020.04.019 |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Computer and Information Systems Abstracts |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Mathematics Psychology |
| EISSN | 0307-904X |
| EndPage | 19 |
| ExternalDocumentID | 10_1016_j_apm_2020_04_019 S0307904X20302122 |
| GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1RT 1~. 1~5 23M 4.4 457 4G. 5GY 5VS 6I. 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAFTH AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABAOU ABEFU ABFNM ABMAC ABVKL ABXDB ABYKQ ACAZW ACDAQ ACGFS ACNNM ACRLP ADBBV ADEZE ADMUD ADTZH AEBSH AECPX AEKER AENEX AEXQZ AFFNX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIGVJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ARUGR ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HZ~ IHE IXB J1W JJJVA KOM LG9 LY7 M26 M41 MHUIS MO0 MVM N9A NCXOZ O-L O9- OAUVE OK1 OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SES SEW SPC SPCBC SST SSW SSZ T5K TN5 WH7 WUQ XJT XPP ZMT ~02 ~G- AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO ADVLN AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD -W8 .7I .GO .QK 0BK 2DF 53G 6J9 7SC 8FD 8VB AAGDL AAGZJ AAHIA AAHSB AAMFJ AAMIU AAPUL AATTQ AAZMC ABCCY ABDBF ABFIM ABIVO ABLIJ ABPEM ABRYG ABTAI ABXUL ABXYU ABZLS ACGOD ACHQT ACTIO ACTOA ACUHS ADAHI ADCVX ADKVQ AECIN AEFOU AEGXH AEISY AEKEX AEMOZ AEMXT AEOZL AEPSL AEYOC AEZRU AFHDM AFRVT AGDLA AGMYJ AGRBW AHDZW AHQJS AIJEM AIYEW AJWEG AKBVH AKVCP ALQZU AVBZW AWYRJ BEJHT BLEHA BMOTO BOHLJ CCCUG CQ1 DGFLZ DKSSO EAP EBR EBU EDJ EMK EPL EPS EST ESX E~B E~C FEDTE G-F GTTXZ H13 HF~ HVGLF IPNFZ J.O JQ2 K1G KYCEM L7M LJTGL L~C L~D M4Z NA5 PQQKQ QWB RNANH ROSJB RSYQP S-F STATR TASJS TBQAZ TDBHL TEH TFH TFL TFW TH9 TNTFI TRJHH TUROJ TUS TWZ UPT UT5 UT9 VAE ZL0 ~01 ~S~ |
| ID | FETCH-LOGICAL-c325t-b18691d3f248753fa1a520c33a8d2d9ee1ac85e41f5b934e51a66f3d09f387e23 |
| IEDL.DBID | .~1 |
| ISSN | 0307-904X 1088-8691 |
| IngestDate | Sun Jul 27 14:57:23 EDT 2025 Thu Oct 09 00:35:00 EDT 2025 Thu Apr 24 22:50:07 EDT 2025 Fri Feb 23 02:47:08 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Quantum rotation gate Global optimization Simulation annealing Moth-flame optimizer |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c325t-b18691d3f248753fa1a520c33a8d2d9ee1ac85e41f5b934e51a66f3d09f387e23 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 2447301946 |
| PQPubID | 2045280 |
| PageCount | 19 |
| ParticipantIDs | proquest_journals_2447301946 crossref_primary_10_1016_j_apm_2020_04_019 crossref_citationtrail_10_1016_j_apm_2020_04_019 elsevier_sciencedirect_doi_10_1016_j_apm_2020_04_019 |
| PublicationCentury | 2000 |
| PublicationDate | November 2020 2020-11-00 20201101 |
| PublicationDateYYYYMMDD | 2020-11-01 |
| PublicationDate_xml | – month: 11 year: 2020 text: November 2020 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | Applied Mathematical Modelling |
| PublicationYear | 2020 |
| Publisher | Elsevier Inc Elsevier BV |
| Publisher_xml | – name: Elsevier Inc – name: Elsevier BV |
| References | Mirjalili, Mirjalili, Lewis (bib0031) 2014; 69 Xu, Yu, Wang, Chen, Zhao, Zhu (bib0022) 2019; 7 Mirjalili, Mirjalili, Yang (bib0041) 2014; 25 G. Zhou;, H. Moayedi;, L.K. Foong, Teaching-Learning-based Metaheuristic Scheme for Modifying Neural Computing in Appraising Energy Performance of Building, Engineering with Computers,36(2020). Dua;, D.a. Graff;, Casey., {UCI} Machine Learning Repository, (2017). Kirkpatrick, Gelatt Jr, Vecchi (bib0023) 1983; 220 Li, Niu, Song, Li, Fan, Liu (bib0015) 2018; 6 Emary, Zawbaa, Hassanien (bib0038) 2016; 172 Statnikov, Tsamardinos, Dosbayev, Aliferis (bib0036) 2005; 74 Emary, Zawbaa, Hassanien (bib0040) 2016; 213 Kannan, Kramer (bib0043) 1994; 116 K. Deb, GeneAS: A Robust Optimal Design Technique for Mechanical Component Design, 1997. Derrac, García, Molina, Herrera (bib0030) 2011; 1 Kennedy, Eberhart (bib0032) 1995 Mirjalili, Lewis (bib0039) 2013; 9 Chechkin, Metzler, Klafter, Gonchar (bib0026) 2008 Garcia, Molina, Lozano, Herrera (bib0029) 2009; 15 Ishtiaq, Ahmed, Khan, Aadil, Maqsood, Khan (bib0009) 2019 Mahdavi, Fesanghary, Damangir (bib0047) 2007; 188 Elsakaan, El-Sehiemy, Kaddah, Elsaid (bib0012) 2018; 157 Steven (bib0049) 2002; 24 Li, Li, Liu (bib0010) 2016; 45 Metropolis, Rosenbluth, Rosenbluth, Teller, Teller (bib0025) 1953; 21 Heidari, Mirjalili, Faris, Aljarah, Mafarja, Chen (bib0001) 2019; 97 Xu, Chen, Luo, Zhang, Jiao, Zhang (bib0019) 2019; 492 He, Wang (bib0044) 2007; 20 Mezura-Montes, Coello (bib0046) 2008; 37 Mirjalili (bib0006) 2015; 89 Li, Hou, Sharma, Li, Chen, Li, Zhao, Huang, Cai, Chen (bib0021) 2018; 153 Wolberg, Mangasarian (bib0034) 1990; 87 Li, Wang, Li (bib0016) 2018; 32 Qiao, Yang (bib0003) 2019; 7 Kaur, Singh, Salgotra (bib0013) 2018 Sandgren (bib0048) 1990; 112 Wang, Chen, Yang, Zhao, Hu, Cai, Huang, Tong (bib0020) 2017; 267 Narayanan, Moore (bib0024) 1996 Khalilpourazari, Khalilpourazary (bib0014) 2019; 23 Allam, Yousri, Eteiba (bib0007) 2016; 123 Zhou, Moayedi, Bahiraei, Lyu (bib0004) 2020; 254 Sapre, Mini (bib0017) 2018 LaTorre, Pena (bib0028) 2017 Coello Coello (bib0042) 2002; 191 Chen, Zhang, Lin, Chen, Zhan, Chung, Li, Shi (bib0033) 2013; 17 Huang, Yang, Zhang, Yin, Yu, Fang (bib0008) 2019; 41 Xu, Chen, Heidari, Luo, Zhang, Zhao, Li (bib0018) 2019; 129 Hart (bib0037) 1968; 14 Wang (bib0005) 2018; 10 Deb, Srinivasan (bib0050) 2006 Pfaff, Hensen, Bernien, Van Dam, Blok, Taminiau, Tiggelman, Schouten, Markham, Twitchen, Hanson (bib0027) 2014; 345 Sayed, Hassanien (bib0011) 2017; 47 Khalilpourazari (10.1016/j.apm.2020.04.019_bib0014) 2019; 23 Sapre (10.1016/j.apm.2020.04.019_bib0017) 2018 Kannan (10.1016/j.apm.2020.04.019_bib0043) 1994; 116 Heidari (10.1016/j.apm.2020.04.019_bib0001) 2019; 97 Sandgren (10.1016/j.apm.2020.04.019_bib0048) 1990; 112 Derrac (10.1016/j.apm.2020.04.019_bib0030) 2011; 1 Xu (10.1016/j.apm.2020.04.019_bib0019) 2019; 492 Qiao (10.1016/j.apm.2020.04.019_bib0003) 2019; 7 LaTorre (10.1016/j.apm.2020.04.019_bib0028) 2017 Pfaff (10.1016/j.apm.2020.04.019_bib0027) 2014; 345 Mirjalili (10.1016/j.apm.2020.04.019_bib0041) 2014; 25 Zhou (10.1016/j.apm.2020.04.019_bib0004) 2020; 254 Mirjalili (10.1016/j.apm.2020.04.019_bib0006) 2015; 89 Garcia (10.1016/j.apm.2020.04.019_bib0029) 2009; 15 Chechkin (10.1016/j.apm.2020.04.019_bib0026) 2008 Emary (10.1016/j.apm.2020.04.019_bib0040) 2016; 213 Steven (10.1016/j.apm.2020.04.019_bib0049) 2002; 24 Huang (10.1016/j.apm.2020.04.019_bib0008) 2019; 41 Ishtiaq (10.1016/j.apm.2020.04.019_bib0009) 2019 He (10.1016/j.apm.2020.04.019_bib0044) 2007; 20 Wang (10.1016/j.apm.2020.04.019_bib0005) 2018; 10 Chen (10.1016/j.apm.2020.04.019_bib0033) 2013; 17 Emary (10.1016/j.apm.2020.04.019_bib0038) 2016; 172 Li (10.1016/j.apm.2020.04.019_bib0010) 2016; 45 Deb (10.1016/j.apm.2020.04.019_bib0050) 2006 Mahdavi (10.1016/j.apm.2020.04.019_bib0047) 2007; 188 Kirkpatrick (10.1016/j.apm.2020.04.019_bib0023) 1983; 220 Narayanan (10.1016/j.apm.2020.04.019_bib0024) 1996 Statnikov (10.1016/j.apm.2020.04.019_bib0036) 2005; 74 Mezura-Montes (10.1016/j.apm.2020.04.019_bib0046) 2008; 37 Li (10.1016/j.apm.2020.04.019_bib0016) 2018; 32 10.1016/j.apm.2020.04.019_bib0002 10.1016/j.apm.2020.04.019_bib0045 Elsakaan (10.1016/j.apm.2020.04.019_bib0012) 2018; 157 Kaur (10.1016/j.apm.2020.04.019_bib0013) 2018 Li (10.1016/j.apm.2020.04.019_bib0021) 2018; 153 Li (10.1016/j.apm.2020.04.019_bib0015) 2018; 6 Wang (10.1016/j.apm.2020.04.019_bib0020) 2017; 267 Mirjalili (10.1016/j.apm.2020.04.019_bib0039) 2013; 9 Wolberg (10.1016/j.apm.2020.04.019_bib0034) 1990; 87 Sayed (10.1016/j.apm.2020.04.019_bib0011) 2017; 47 Kennedy (10.1016/j.apm.2020.04.019_bib0032) 1995 Metropolis (10.1016/j.apm.2020.04.019_bib0025) 1953; 21 Allam (10.1016/j.apm.2020.04.019_bib0007) 2016; 123 Xu (10.1016/j.apm.2020.04.019_bib0018) 2019; 129 Xu (10.1016/j.apm.2020.04.019_bib0022) 2019; 7 Hart (10.1016/j.apm.2020.04.019_bib0037) 1968; 14 10.1016/j.apm.2020.04.019_bib0035 Coello Coello (10.1016/j.apm.2020.04.019_bib0042) 2002; 191 Mirjalili (10.1016/j.apm.2020.04.019_bib0031) 2014; 69 |
| References_xml | – volume: 172 start-page: 371 year: 2016 end-page: 381 ident: bib0038 article-title: Binary grey wolf optimization approaches for feature selection publication-title: Neurocomputing – volume: 116 start-page: 405 year: 1994 end-page: 411 ident: bib0043 article-title: An augmented lagrange multiplier based method for mixed integer discrete continuous optimization and its applications to mechanical design, Journal of Mechanical Design publication-title: Transactions of the ASME – volume: 32 start-page: 3303 year: 2018 end-page: 3316 ident: bib0016 article-title: Optimization of Water Resources Utilization by Multi-Objective Moth-Flame Algorithm publication-title: Water Resources Management – volume: 10 start-page: 151 year: 2018 end-page: 164 ident: bib0005 article-title: Moth search algorithm: a bio-inspired metaheuristic algorithm for global optimization problems publication-title: Memetic Computing – year: 2018 ident: bib0013 article-title: An enhanced moth flame optimization publication-title: Neural Computing and Applications – volume: 14 start-page: 515 year: 1968 end-page: 516 ident: bib0037 article-title: The Condensed Nearest Neighbor Rule publication-title: IEEE Transactions on Information Theory – start-page: 1629 year: 2006 end-page: 1636 ident: bib0050 article-title: Innovization: Innovating design principles through optimization publication-title: GECCO 2006 - Genetic and Evolutionary Computation Conference – volume: 9 start-page: 1 year: 2013 end-page: 14 ident: bib0039 article-title: S-shaped versus V-shaped transfer functions for binary Particle Swarm Optimization publication-title: Swarm and Evolutionary Computation – volume: 89 start-page: 228 year: 2015 end-page: 249 ident: bib0006 article-title: Moth-flame optimization algorithm: A novel nature-inspired heuristic paradigm publication-title: Knowledge-Based Systems – volume: 7 start-page: 138972 year: 2019 end-page: 138989 ident: bib0003 article-title: Solving Large-Scale Function Optimization Problem by Using a New Metaheuristic Algorithm Based on Quantum Dolphin Swarm Algorithm publication-title: Ieee Access – volume: 129 start-page: 135 year: 2019 end-page: 155 ident: bib0018 article-title: An efficient chaotic mutative moth-flame-inspired optimizer for global optimization tasks publication-title: Expert Systems with Applications – volume: 74 start-page: 491 year: 2005 end-page: 503 ident: bib0036 article-title: GEMS: A system for automated cancer diagnosis and biomarker discovery from microarray gene expression data publication-title: International Journal of Medical Informatics – volume: 254 year: 2020 ident: bib0004 article-title: Employing artificial bee colony and particle swarm techniques for optimizing a neural network in prediction of heating and cooling loads of residential buildings publication-title: Journal of Cleaner Production – volume: 345 start-page: 532 year: 2014 end-page: 535 ident: bib0027 article-title: Unconditional quantum teleportation between distant solid-state quantum bits publication-title: Science – volume: 41 start-page: 1491 year: 2019 end-page: 1503 ident: bib0008 article-title: Optimal power tracking of doubly fed induction generator-based wind turbine using swarm moth–flame optimizer publication-title: Transactions of the Institute of Measurement and Control – start-page: 61 year: 1996 end-page: 66 ident: bib0024 article-title: Quantum-inspired genetic algorithms publication-title: Proceedings of the IEEE Conference on Evolutionary Computation – volume: 220 start-page: 671 year: 1983 end-page: 680 ident: bib0023 article-title: Optimization by simulated annealing publication-title: Science – volume: 492 start-page: 181 year: 2019 end-page: 203 ident: bib0019 article-title: Enhanced Moth-flame optimizer with mutation strategy for global optimization publication-title: Information Sciences – volume: 25 start-page: 663 year: 2014 end-page: 681 ident: bib0041 article-title: Binary bat algorithm publication-title: Neural Computing and Applications – volume: 191 start-page: 1245 year: 2002 end-page: 1287 ident: bib0042 article-title: Theoretical and numerical constraint-handling techniques used with evolutionary algorithms: A survey of the state of the art publication-title: Computer Methods in Applied Mechanics and Engineering – volume: 47 start-page: 397 year: 2017 end-page: 408 ident: bib0011 article-title: Moth-flame swarm optimization with neutrosophic sets for automatic mitosis detection in breast cancer histology images publication-title: Applied Intelligence – volume: 69 start-page: 46 year: 2014 end-page: 61 ident: bib0031 article-title: Grey Wolf Optimizer publication-title: Advances in Engineering Software – start-page: 1942 year: 1995 end-page: 1948 ident: bib0032 article-title: Particle swarm optimization publication-title: IEEE International Conference on Neural Networks - Conference Proceedings – volume: 213 start-page: 54 year: 2016 end-page: 65 ident: bib0040 article-title: Binary ant lion approaches for feature selection publication-title: Neurocomputing – start-page: 15 year: 2019 ident: bib0009 article-title: Intelligent clustering using moth flame optimizer for vehicular ad hoc networks publication-title: International Journal of Distributed Sensor Networks – volume: 17 start-page: 241 year: 2013 end-page: 258 ident: bib0033 article-title: Particle swarm optimization with an aging leader and challengers publication-title: IEEE Transactions on Evolutionary Computation – start-page: 1063 year: 2017 end-page: 1070 ident: bib0028 article-title: A comparison of three large-scale global optimizers on the CEC 2017 single objective real parameter numerical optimization benchmark publication-title: 2017 IEEE Congress on Evolutionary Computation, CEC 2017 - Proceedings – volume: 1 start-page: 3 year: 2011 end-page: 18 ident: bib0030 article-title: A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms publication-title: Swarm and Evolutionary Computation – volume: 15 start-page: 617 year: 2009 end-page: 644 ident: bib0029 article-title: A study on the use of non-parametric tests for analyzing the evolutionary algorithms' behaviour: a case study on the CEC'2005 Special Session on Real Parameter Optimization publication-title: Journal of Heuristics – volume: 157 start-page: 1063 year: 2018 end-page: 1078 ident: bib0012 article-title: An enhanced moth-flame optimizer for solving non-smooth economic dispatch problems with emissions publication-title: Energy – volume: 21 start-page: 1087 year: 1953 end-page: 1092 ident: bib0025 article-title: Equation of state calculations by fast computing machines publication-title: The Journal of Chemical Physics – volume: 112 start-page: 223 year: 1990 end-page: 229 ident: bib0048 article-title: Nonlinear integer and discrete programming in mechanical design optimization, Journal of Mechanical Design publication-title: Transactions of the ASME – reference: G. Zhou;, H. Moayedi;, L.K. Foong, Teaching-Learning-based Metaheuristic Scheme for Modifying Neural Computing in Appraising Energy Performance of Building, Engineering with Computers,36(2020). – volume: 97 start-page: 849 year: 2019 end-page: 872 ident: bib0001 article-title: Harris hawks optimization: Algorithm and applications publication-title: Future Generation Computer Systems – volume: 188 start-page: 1567 year: 2007 end-page: 1579 ident: bib0047 article-title: An improved harmony search algorithm for solving optimization problems publication-title: Applied Mathematics and Computation – volume: 23 start-page: 1699 year: 2019 end-page: 1722 ident: bib0014 article-title: An efficient hybrid algorithm based on Water Cycle and Moth-Flame Optimization algorithms for solving numerical and constrained engineering optimization problems publication-title: Soft Computing – volume: 87 start-page: 9193 year: 1990 end-page: 9196 ident: bib0034 article-title: Multisurface method of pattern separation for medical diagnosis applied to breast cytology publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 123 start-page: 535 year: 2016 end-page: 548 ident: bib0007 article-title: Parameters extraction of the three diode model for the multi-crystalline solar cell/module using Moth-Flame Optimization Algorithm publication-title: Energy Conversion and Management – volume: 45 start-page: 1166 year: 2016 end-page: 1178 ident: bib0010 article-title: A least squares support vector machine model optimized by moth-flame optimization algorithm for annual power load forecasting publication-title: Applied Intelligence – start-page: 129 year: 2008 end-page: 162 ident: bib0026 article-title: Introduction to the Theory of Lévy Flights publication-title: Anomalous Transport: Foundations and Applications – volume: 20 start-page: 89 year: 2007 end-page: 99 ident: bib0044 article-title: An effective co-evolutionary particle swarm optimization for constrained engineering design problems publication-title: Engineering Applications of Artificial Intelligence – volume: 37 start-page: 443 year: 2008 end-page: 473 ident: bib0046 article-title: An empirical study about the usefulness of evolution strategies to solve constrained optimization problems publication-title: International Journal of General Systems – volume: 267 start-page: 69 year: 2017 end-page: 84 ident: bib0020 article-title: Toward an optimal kernel extreme learning machine using a chaotic moth-flame optimization strategy with applications in medical diagnoses publication-title: Neurocomputing – volume: 153 start-page: 211 year: 2018 end-page: 225 ident: bib0021 article-title: Developing a new intelligent system for the diagnosis of tuberculous pleural effusion publication-title: Computer Methods and Programs in Biomedicine – volume: 7 start-page: 138461 year: 2019 end-page: 138472 ident: bib0022 article-title: A New Hybrid Machine Learning Approach for Prediction of Phenanthrene Toxicity on Mice publication-title: Ieee Access – volume: 24 start-page: 88 year: 2002 end-page: 89 ident: bib0049 article-title: Evolutionary algorithms for single and multicriteria design optimization. A. Osyczka. Springer Verlag, Berlin, 2002 publication-title: Structural and Multidisciplinary Optimization – reference: K. Deb, GeneAS: A Robust Optimal Design Technique for Mechanical Component Design, 1997. – volume: 6 start-page: 76700 year: 2018 end-page: 76727 ident: bib0015 article-title: A double evolutionary learning moth-flame optimization for real-parameter global optimization problems publication-title: IEEE Access – year: 2018 ident: bib0017 article-title: Opposition-based moth flame optimization with Cauchy mutation and evolutionary boundary constraint handling for global optimization publication-title: Soft Computing, – reference: Dua;, D.a. Graff;, Casey., {UCI} Machine Learning Repository, (2017). – start-page: 15 year: 2019 ident: 10.1016/j.apm.2020.04.019_bib0009 article-title: Intelligent clustering using moth flame optimizer for vehicular ad hoc networks publication-title: International Journal of Distributed Sensor Networks – volume: 7 start-page: 138461 year: 2019 ident: 10.1016/j.apm.2020.04.019_bib0022 article-title: A New Hybrid Machine Learning Approach for Prediction of Phenanthrene Toxicity on Mice publication-title: Ieee Access doi: 10.1109/ACCESS.2019.2939835 – volume: 116 start-page: 405 year: 1994 ident: 10.1016/j.apm.2020.04.019_bib0043 article-title: An augmented lagrange multiplier based method for mixed integer discrete continuous optimization and its applications to mechanical design, Journal of Mechanical Design publication-title: Transactions of the ASME doi: 10.1115/1.2919393 – volume: 191 start-page: 1245 year: 2002 ident: 10.1016/j.apm.2020.04.019_bib0042 article-title: Theoretical and numerical constraint-handling techniques used with evolutionary algorithms: A survey of the state of the art publication-title: Computer Methods in Applied Mechanics and Engineering doi: 10.1016/S0045-7825(01)00323-1 – volume: 23 start-page: 1699 year: 2019 ident: 10.1016/j.apm.2020.04.019_bib0014 article-title: An efficient hybrid algorithm based on Water Cycle and Moth-Flame Optimization algorithms for solving numerical and constrained engineering optimization problems publication-title: Soft Computing doi: 10.1007/s00500-017-2894-y – start-page: 61 year: 1996 ident: 10.1016/j.apm.2020.04.019_bib0024 article-title: Quantum-inspired genetic algorithms publication-title: Proceedings of the IEEE Conference on Evolutionary Computation doi: 10.1109/ICEC.1996.542334 – volume: 14 start-page: 515 year: 1968 ident: 10.1016/j.apm.2020.04.019_bib0037 article-title: The Condensed Nearest Neighbor Rule publication-title: IEEE Transactions on Information Theory doi: 10.1109/TIT.1968.1054155 – volume: 25 start-page: 663 year: 2014 ident: 10.1016/j.apm.2020.04.019_bib0041 article-title: Binary bat algorithm publication-title: Neural Computing and Applications doi: 10.1007/s00521-013-1525-5 – volume: 37 start-page: 443 year: 2008 ident: 10.1016/j.apm.2020.04.019_bib0046 article-title: An empirical study about the usefulness of evolution strategies to solve constrained optimization problems publication-title: International Journal of General Systems doi: 10.1080/03081070701303470 – start-page: 1063 year: 2017 ident: 10.1016/j.apm.2020.04.019_bib0028 article-title: A comparison of three large-scale global optimizers on the CEC 2017 single objective real parameter numerical optimization benchmark – volume: 492 start-page: 181 year: 2019 ident: 10.1016/j.apm.2020.04.019_bib0019 article-title: Enhanced Moth-flame optimizer with mutation strategy for global optimization publication-title: Information Sciences doi: 10.1016/j.ins.2019.04.022 – volume: 21 start-page: 1087 year: 1953 ident: 10.1016/j.apm.2020.04.019_bib0025 article-title: Equation of state calculations by fast computing machines publication-title: The Journal of Chemical Physics doi: 10.1063/1.1699114 – volume: 112 start-page: 223 year: 1990 ident: 10.1016/j.apm.2020.04.019_bib0048 article-title: Nonlinear integer and discrete programming in mechanical design optimization, Journal of Mechanical Design publication-title: Transactions of the ASME doi: 10.1115/1.2912596 – volume: 254 year: 2020 ident: 10.1016/j.apm.2020.04.019_bib0004 article-title: Employing artificial bee colony and particle swarm techniques for optimizing a neural network in prediction of heating and cooling loads of residential buildings publication-title: Journal of Cleaner Production doi: 10.1016/j.jclepro.2020.120082 – start-page: 129 year: 2008 ident: 10.1016/j.apm.2020.04.019_bib0026 article-title: Introduction to the Theory of Lévy Flights publication-title: Anomalous Transport: Foundations and Applications doi: 10.1002/9783527622979.ch5 – volume: 6 start-page: 76700 year: 2018 ident: 10.1016/j.apm.2020.04.019_bib0015 article-title: A double evolutionary learning moth-flame optimization for real-parameter global optimization problems publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2884130 – start-page: 1942 year: 1995 ident: 10.1016/j.apm.2020.04.019_bib0032 article-title: Particle swarm optimization – volume: 1 start-page: 3 year: 2011 ident: 10.1016/j.apm.2020.04.019_bib0030 article-title: A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms publication-title: Swarm and Evolutionary Computation doi: 10.1016/j.swevo.2011.02.002 – volume: 45 start-page: 1166 year: 2016 ident: 10.1016/j.apm.2020.04.019_bib0010 article-title: A least squares support vector machine model optimized by moth-flame optimization algorithm for annual power load forecasting publication-title: Applied Intelligence doi: 10.1007/s10489-016-0810-2 – volume: 10 start-page: 151 year: 2018 ident: 10.1016/j.apm.2020.04.019_bib0005 article-title: Moth search algorithm: a bio-inspired metaheuristic algorithm for global optimization problems publication-title: Memetic Computing doi: 10.1007/s12293-016-0212-3 – volume: 9 start-page: 1 year: 2013 ident: 10.1016/j.apm.2020.04.019_bib0039 article-title: S-shaped versus V-shaped transfer functions for binary Particle Swarm Optimization publication-title: Swarm and Evolutionary Computation doi: 10.1016/j.swevo.2012.09.002 – volume: 97 start-page: 849 year: 2019 ident: 10.1016/j.apm.2020.04.019_bib0001 article-title: Harris hawks optimization: Algorithm and applications publication-title: Future Generation Computer Systems doi: 10.1016/j.future.2019.02.028 – volume: 7 start-page: 138972 year: 2019 ident: 10.1016/j.apm.2020.04.019_bib0003 article-title: Solving Large-Scale Function Optimization Problem by Using a New Metaheuristic Algorithm Based on Quantum Dolphin Swarm Algorithm publication-title: Ieee Access doi: 10.1109/ACCESS.2019.2942169 – year: 2018 ident: 10.1016/j.apm.2020.04.019_bib0013 article-title: An enhanced moth flame optimization publication-title: Neural Computing and Applications – volume: 15 start-page: 617 year: 2009 ident: 10.1016/j.apm.2020.04.019_bib0029 article-title: A study on the use of non-parametric tests for analyzing the evolutionary algorithms' behaviour: a case study on the CEC'2005 Special Session on Real Parameter Optimization publication-title: Journal of Heuristics – ident: 10.1016/j.apm.2020.04.019_bib0035 – volume: 17 start-page: 241 year: 2013 ident: 10.1016/j.apm.2020.04.019_bib0033 article-title: Particle swarm optimization with an aging leader and challengers publication-title: IEEE Transactions on Evolutionary Computation doi: 10.1109/TEVC.2011.2173577 – volume: 213 start-page: 54 year: 2016 ident: 10.1016/j.apm.2020.04.019_bib0040 article-title: Binary ant lion approaches for feature selection publication-title: Neurocomputing doi: 10.1016/j.neucom.2016.03.101 – volume: 153 start-page: 211 year: 2018 ident: 10.1016/j.apm.2020.04.019_bib0021 article-title: Developing a new intelligent system for the diagnosis of tuberculous pleural effusion publication-title: Computer Methods and Programs in Biomedicine doi: 10.1016/j.cmpb.2017.10.022 – volume: 172 start-page: 371 year: 2016 ident: 10.1016/j.apm.2020.04.019_bib0038 article-title: Binary grey wolf optimization approaches for feature selection publication-title: Neurocomputing doi: 10.1016/j.neucom.2015.06.083 – volume: 20 start-page: 89 year: 2007 ident: 10.1016/j.apm.2020.04.019_bib0044 article-title: An effective co-evolutionary particle swarm optimization for constrained engineering design problems publication-title: Engineering Applications of Artificial Intelligence doi: 10.1016/j.engappai.2006.03.003 – volume: 123 start-page: 535 year: 2016 ident: 10.1016/j.apm.2020.04.019_bib0007 article-title: Parameters extraction of the three diode model for the multi-crystalline solar cell/module using Moth-Flame Optimization Algorithm publication-title: Energy Conversion and Management doi: 10.1016/j.enconman.2016.06.052 – volume: 32 start-page: 3303 year: 2018 ident: 10.1016/j.apm.2020.04.019_bib0016 article-title: Optimization of Water Resources Utilization by Multi-Objective Moth-Flame Algorithm publication-title: Water Resources Management doi: 10.1007/s11269-018-1992-7 – volume: 188 start-page: 1567 year: 2007 ident: 10.1016/j.apm.2020.04.019_bib0047 article-title: An improved harmony search algorithm for solving optimization problems publication-title: Applied Mathematics and Computation doi: 10.1016/j.amc.2006.11.033 – volume: 129 start-page: 135 year: 2019 ident: 10.1016/j.apm.2020.04.019_bib0018 article-title: An efficient chaotic mutative moth-flame-inspired optimizer for global optimization tasks publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2019.03.043 – volume: 345 start-page: 532 year: 2014 ident: 10.1016/j.apm.2020.04.019_bib0027 article-title: Unconditional quantum teleportation between distant solid-state quantum bits publication-title: Science doi: 10.1126/science.1253512 – start-page: 1629 year: 2006 ident: 10.1016/j.apm.2020.04.019_bib0050 article-title: Innovization: Innovating design principles through optimization – volume: 41 start-page: 1491 year: 2019 ident: 10.1016/j.apm.2020.04.019_bib0008 article-title: Optimal power tracking of doubly fed induction generator-based wind turbine using swarm moth–flame optimizer publication-title: Transactions of the Institute of Measurement and Control doi: 10.1177/0142331217712091 – volume: 47 start-page: 397 year: 2017 ident: 10.1016/j.apm.2020.04.019_bib0011 article-title: Moth-flame swarm optimization with neutrosophic sets for automatic mitosis detection in breast cancer histology images publication-title: Applied Intelligence doi: 10.1007/s10489-017-0897-0 – volume: 24 start-page: 88 year: 2002 ident: 10.1016/j.apm.2020.04.019_bib0049 article-title: Evolutionary algorithms for single and multicriteria design optimization. A. Osyczka. Springer Verlag, Berlin, 2002 publication-title: Structural and Multidisciplinary Optimization doi: 10.1007/s00158-002-0218-y – volume: 220 start-page: 671 year: 1983 ident: 10.1016/j.apm.2020.04.019_bib0023 article-title: Optimization by simulated annealing publication-title: Science doi: 10.1126/science.220.4598.671 – ident: 10.1016/j.apm.2020.04.019_bib0045 doi: 10.1007/978-3-662-03423-1_27 – volume: 87 start-page: 9193 year: 1990 ident: 10.1016/j.apm.2020.04.019_bib0034 article-title: Multisurface method of pattern separation for medical diagnosis applied to breast cytology publication-title: Proceedings of the National Academy of Sciences of the United States of America doi: 10.1073/pnas.87.23.9193 – ident: 10.1016/j.apm.2020.04.019_bib0002 doi: 10.1007/s00366-020-00981-5 – volume: 267 start-page: 69 year: 2017 ident: 10.1016/j.apm.2020.04.019_bib0020 article-title: Toward an optimal kernel extreme learning machine using a chaotic moth-flame optimization strategy with applications in medical diagnoses publication-title: Neurocomputing doi: 10.1016/j.neucom.2017.04.060 – volume: 89 start-page: 228 year: 2015 ident: 10.1016/j.apm.2020.04.019_bib0006 article-title: Moth-flame optimization algorithm: A novel nature-inspired heuristic paradigm publication-title: Knowledge-Based Systems doi: 10.1016/j.knosys.2015.07.006 – year: 2018 ident: 10.1016/j.apm.2020.04.019_bib0017 article-title: Opposition-based moth flame optimization with Cauchy mutation and evolutionary boundary constraint handling for global optimization publication-title: Soft Computing, – volume: 69 start-page: 46 year: 2014 ident: 10.1016/j.apm.2020.04.019_bib0031 article-title: Grey Wolf Optimizer publication-title: Advances in Engineering Software doi: 10.1016/j.advengsoft.2013.12.007 – volume: 157 start-page: 1063 year: 2018 ident: 10.1016/j.apm.2020.04.019_bib0012 article-title: An enhanced moth-flame optimizer for solving non-smooth economic dispatch problems with emissions publication-title: Energy doi: 10.1016/j.energy.2018.06.088 – volume: 74 start-page: 491 year: 2005 ident: 10.1016/j.apm.2020.04.019_bib0036 article-title: GEMS: A system for automated cancer diagnosis and biomarker discovery from microarray gene expression data publication-title: International Journal of Medical Informatics doi: 10.1016/j.ijmedinf.2005.05.002 |
| SSID | ssj0005904 ssj0012860 |
| Score | 2.526831 |
| Snippet | This study develops an improved moth-flame optimization algorithm, which is a recently proposed optimizer based on moth behavior in nature. It has achieved... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1 |
| SubjectTerms | Algorithms Blood vessels Computer simulation Exploitation Exploration Global optimization Medical science Moth-flame optimizer Optimization Optimization algorithms Pressure vessel design Pressure vessels Quantum rotation gate Simulated annealing Simulation annealing |
| Title | A quantum-behaved simulated annealing algorithm-based moth-flame optimization method |
| URI | https://dx.doi.org/10.1016/j.apm.2020.04.019 https://www.proquest.com/docview/2447301946 |
| Volume | 87 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 0307-904X dateEnd: 20241103 omitProxy: true ssIdentifier: ssj0012860 issn: 0307-904X databaseCode: ABDBF dateStart: 19970301 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 0307-904X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0005904 issn: 0307-904X databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier Free Content customDbUrl: eissn: 0307-904X dateEnd: 20211103 omitProxy: true ssIdentifier: ssj0005904 issn: 0307-904X databaseCode: IXB dateStart: 19760601 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect customDbUrl: eissn: 0307-904X dateEnd: 20211103 omitProxy: true ssIdentifier: ssj0005904 issn: 0307-904X databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 0307-904X dateEnd: 20211031 omitProxy: true ssIdentifier: ssj0005904 issn: 0307-904X databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Science Direct customDbUrl: eissn: 0307-904X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0005904 issn: 0307-904X databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: aylor and Francis Online customDbUrl: mediaType: online eissn: 0307-904X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0012860 issn: 0307-904X databaseCode: AHDZW dateStart: 19970301 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 0307-904X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0005904 issn: 0307-904X databaseCode: AKRWK dateStart: 19760601 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVAWR databaseName: Taylor & Francis Social Science and Humanities Library - DRAA customDbUrl: eissn: 0307-904X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0012860 issn: 0307-904X databaseCode: TRJHH dateStart: 19970101 isFulltext: true titleUrlDefault: http://www.tandfonline.com/ providerName: Taylor & Francis |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELaqssCAeIpCqTIwIYU6sdMkY1uoCqhdaKVulp3YENQXbbry27nLowKEOjDFsewoOp-_Oyd33xFyE4bGqAD2dxwYZYOFcmzpKWlrqbzAkYrH2XfIwbDVH_OniTepkG6ZC4NhlQX255ieoXXR0yyk2VwmSfMF1TOkfOJCAwAYcZhzH6sY3H1-C_MIKS_JEHF0-Wczi_GSS0xGd2nGdopkO3_bpl8onZme3hE5LHxGq52_1jGp6PkJORhsCVfXp2TUtj42IKTNzM4S73VsrZMZluaClgQslZh2bsnp62KVpG8wCqxXbOE62QaUQlsLwI5ZkZRp5XWlz8i49zDq9u2iYIIdMddLbYX1pZyYGTc7hhjpSM-lEWMyiN041NqRUeBp7hhPhYxrz5GtlmExDQ0LfO2yc1KdL-b6glhcMsP8SHMKHpfiNEAeM2kicB-17xtVI7QUlYgKNnEsajEVZdjYuwDpCpSuoFyAdGvkdjtlmVNp7BrMS_mLH_ogAOp3TauXayWKzbgW4MEgjoW8dfm_p16RfbzLUxDrpJquNvoafJFUNTJla5C9due-08Pr43N_CL2Pk84XpUrggg |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELaqMgAD4ikKBTIwIZk6sZ3HWFVUBdoutFI3y05sKOqLNl357ZzzqAChDmxWco6i8_m7c3L3HUK3UWSMCmF_J6FRGDyUiyVXEmupeOhKxZLsO2Sv73eG7GnERxXUKmthbFplgf05pmdoXVxpFNpsLMbjxos1z4iwkQcDAGDA4R3GvcCewO4_v-V5RISVbIhWvPy1mSV5yYWtRvdIRndq2Xb-dk6_YDrzPe1DdFAEjU4zf68jVNGzY7Tf2zCurk7QoOl8rEFL6ynOKu914qzGU9ubC0YSwFTaunNHTl7ny3H6BlLgvhLHLhQ2YBXamQN4TIuqTCdvLH2Khu2HQauDi44JOKYeT7GyDabchBovO4cY6UrukZhSGSZeEmntyjjkmrmGq4gyzV3p-4YmJDI0DLRHz1B1Np_pc-QwSQ0NYs0IhFyKkdASmUkTQ_yog8CoGiKlqkRc0InbrhYTUeaNvQvQrrDaFYQJ0G4N3W2mLHIujW3CrNS_-GEQArB-27R6uVai2I0rASGMBbKI-Rf_e-oN2u0Mel3Rfew_X6I9eyevR6yjarpc6ysITFJ1nRneF7Hn36E |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+quantum-behaved+simulated+annealing+algorithm-based+moth-flame+optimization+method&rft.jtitle=Applied+mathematical+modelling&rft.au=Yu%2C+Caiyang&rft.au=Heidari%2C+Ali+Asghar&rft.au=Chen%2C+Huiling&rft.date=2020-11-01&rft.issn=0307-904X&rft.volume=87&rft.spage=1&rft.epage=19&rft_id=info:doi/10.1016%2Fj.apm.2020.04.019&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_apm_2020_04_019 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0307-904X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0307-904X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0307-904X&client=summon |