A quantum-behaved simulated annealing algorithm-based moth-flame optimization method

This study develops an improved moth-flame optimization algorithm, which is a recently proposed optimizer based on moth behavior in nature. It has achieved favorable results in medical science, educational evaluation, and other fields. However, the convergence rate of the original moth-flame optimiz...

Full description

Saved in:
Bibliographic Details
Published inApplied Mathematical Modelling Vol. 87; pp. 1 - 19
Main Authors Yu, Caiyang, Heidari, Ali Asghar, Chen, Huiling
Format Journal Article
LanguageEnglish
Published New York Elsevier Inc 01.11.2020
Elsevier BV
Subjects
Online AccessGet full text
ISSN0307-904X
1088-8691
0307-904X
DOI10.1016/j.apm.2020.04.019

Cover

Abstract This study develops an improved moth-flame optimization algorithm, which is a recently proposed optimizer based on moth behavior in nature. It has achieved favorable results in medical science, educational evaluation, and other fields. However, the convergence rate of the original moth-flame optimization algorithm is too fast in the running process, and it is prone to fall into local optimum, which leads to the failure to produce the high-quality optimal result. Accordingly, this paper proposes a reinforced technique for the moth-flame optimization algorithm. Firstly, the simulated annealing strategy is introduced into the moth-flame optimization algorithm to boost the advantage of the algorithm in the local exploitation process. Then, the idea of the quantum rotation gate is integrated to enhance the global exploration ability of the algorithm and ameliorate the diversity of the moth. These two steps maintain the relationship between exploitation and exploration as well as strengthen the performance of the algorithm in both phases. After that, the method is compared with ten well-regarded and ten alternative algorithms on benchmark functions to verify the effectiveness of the approach. Also, the Wilcoxon signed rank and Friedman assessment were performed to verify the significance of the proposed method against other counterparts. The simulation results reveal that the two introduced strategies significantly improve the exploration and exploitation capacity of moth-flame optimization algorithm. Finally, the algorithm is utilized to feature selection and two engineering problems, including pressure vessel design and multiple disk clutch brake problems. In these practical applications, the novel algorithm also achieves particularly notable results, which also illustrates that the algorithm is qualified is an effective auxiliary appliance in solving complex optimization problems.
AbstractList This study develops an improved moth-flame optimization algorithm, which is a recently proposed optimizer based on moth behavior in nature. It has achieved favorable results in medical science, educational evaluation, and other fields. However, the convergence rate of the original moth-flame optimization algorithm is too fast in the running process, and it is prone to fall into local optimum, which leads to the failure to produce the high-quality optimal result. Accordingly, this paper proposes a reinforced technique for the moth-flame optimization algorithm. Firstly, the simulated annealing strategy is introduced into the moth-flame optimization algorithm to boost the advantage of the algorithm in the local exploitation process. Then, the idea of the quantum rotation gate is integrated to enhance the global exploration ability of the algorithm and ameliorate the diversity of the moth. These two steps maintain the relationship between exploitation and exploration as well as strengthen the performance of the algorithm in both phases. After that, the method is compared with ten well-regarded and ten alternative algorithms on benchmark functions to verify the effectiveness of the approach. Also, the Wilcoxon signed rank and Friedman assessment were performed to verify the significance of the proposed method against other counterparts. The simulation results reveal that the two introduced strategies significantly improve the exploration and exploitation capacity of moth-flame optimization algorithm. Finally, the algorithm is utilized to feature selection and two engineering problems, including pressure vessel design and multiple disk clutch brake problems. In these practical applications, the novel algorithm also achieves particularly notable results, which also illustrates that the algorithm is qualified is an effective auxiliary appliance in solving complex optimization problems.
Author Heidari, Ali Asghar
Chen, Huiling
Yu, Caiyang
Author_xml – sequence: 1
  givenname: Caiyang
  surname: Yu
  fullname: Yu, Caiyang
  email: Jerome0324@163.com
  organization: Department of Computer Science and Artificial Intelligence, Wenzhou University, Wenzhou 325035, China
– sequence: 2
  givenname: Ali Asghar
  surname: Heidari
  fullname: Heidari, Ali Asghar
  email: as_heidari@ut.ac.ir, aliasghar68@gmaill.com, aliasgha@comp.nus.edu.sg, t0917038@u.nus.edu
  organization: School of Surveying and Geospatial Engineering, College of Engineering, University of Tehran, Tehran, Iran
– sequence: 3
  givenname: Huiling
  surname: Chen
  fullname: Chen, Huiling
  email: chenhuiling.jlu@gmail.com
  organization: Department of Computer Science and Artificial Intelligence, Wenzhou University, Wenzhou 325035, China
BookMark eNp9kE1LAzEQhoNUsK3-AG8LnndNNtkvPJXiFxS8VPAWpruzbcpu0ibZgv56U-tBPPQ07zDvM8O8EzLSRiMht4wmjLL8fpvArk9SmtKEioSy6oKMKadFXFHxMfqjr8jEuS2lNAvdmCxn0X4A7Yc-XuEGDthETvVDBz4o0BqhU3odQbc2VvlNcIELk974Tdx20GNkdl716gu8Mjrq0W9Mc00uW-gc3vzWKXl_elzOX-LF2_PrfLaIa55mPl6xMq9Yw9tUlEXGW2CQpbTmHMombSpEBnWZoWBttqq4wIxBnre8oVXLywJTPiV3p707a_YDOi-3ZrA6nJSpEAUPMYg8uNjJVVvjnMVW7qzqwX5KRuUxPLmVITx5DE9SIQMVmOIfUyv_86K3oLqz5MOJxPD4QaGVrlaoa2yUxdrLxqgz9DfJTYxA
CitedBy_id crossref_primary_10_1016_j_matcom_2020_09_027
crossref_primary_10_3390_math11133030
crossref_primary_10_3390_app12199922
crossref_primary_10_1016_j_matcom_2020_06_012
crossref_primary_10_1093_bib_bbac069
crossref_primary_10_1016_j_compbiomed_2023_107408
crossref_primary_10_1016_j_matcom_2021_04_006
crossref_primary_10_1093_jcde_qwad006
crossref_primary_10_1007_s11128_021_03003_5
crossref_primary_10_1016_j_bspc_2024_107431
crossref_primary_10_3389_fbioe_2022_908356
crossref_primary_10_1155_2021_6653659
crossref_primary_10_3390_app122312179
crossref_primary_10_1007_s00500_021_06401_0
crossref_primary_10_1016_j_knosys_2020_106425
crossref_primary_10_1016_j_eswa_2021_115655
crossref_primary_10_1016_j_eswa_2022_118372
crossref_primary_10_3390_electronics10172115
crossref_primary_10_2478_jaiscr_2024_0018
crossref_primary_10_1093_jcde_qwaf016
crossref_primary_10_1016_j_apm_2024_01_005
crossref_primary_10_1007_s00366_020_01252_z
crossref_primary_10_1016_j_knosys_2022_108511
crossref_primary_10_1109_TCSII_2021_3100853
crossref_primary_10_1093_jcde_qwae074
crossref_primary_10_1155_2021_5092480
crossref_primary_10_1007_s13369_020_05228_5
crossref_primary_10_3390_app14167297
crossref_primary_10_3390_electronics9081206
crossref_primary_10_1007_s10489_021_02865_7
crossref_primary_10_1016_j_eswa_2022_117358
crossref_primary_10_3934_mbe_2023443
crossref_primary_10_3390_en15093410
crossref_primary_10_1016_j_compbiomed_2022_105563
crossref_primary_10_1007_s10462_024_10923_y
crossref_primary_10_1007_s11831_023_10037_8
crossref_primary_10_1016_j_jobe_2023_106922
crossref_primary_10_1016_j_matcom_2023_12_022
crossref_primary_10_1016_j_compbiomed_2024_108294
crossref_primary_10_1016_j_asoc_2020_106900
crossref_primary_10_1016_j_compbiomed_2024_108134
crossref_primary_10_1016_j_eswa_2021_114864
crossref_primary_10_1016_j_knosys_2020_106642
crossref_primary_10_3390_math11040862
crossref_primary_10_1016_j_eswa_2021_115352
crossref_primary_10_1007_s42235_023_00357_7
crossref_primary_10_1016_j_asoc_2023_110664
crossref_primary_10_1002_er_8011
crossref_primary_10_1109_ACCESS_2022_3174854
crossref_primary_10_1109_ACCESS_2021_3054755
crossref_primary_10_3390_e23121637
crossref_primary_10_1016_j_jhydrol_2020_125769
Cites_doi 10.1109/ACCESS.2019.2939835
10.1115/1.2919393
10.1016/S0045-7825(01)00323-1
10.1007/s00500-017-2894-y
10.1109/ICEC.1996.542334
10.1109/TIT.1968.1054155
10.1007/s00521-013-1525-5
10.1080/03081070701303470
10.1016/j.ins.2019.04.022
10.1063/1.1699114
10.1115/1.2912596
10.1016/j.jclepro.2020.120082
10.1002/9783527622979.ch5
10.1109/ACCESS.2018.2884130
10.1016/j.swevo.2011.02.002
10.1007/s10489-016-0810-2
10.1007/s12293-016-0212-3
10.1016/j.swevo.2012.09.002
10.1016/j.future.2019.02.028
10.1109/ACCESS.2019.2942169
10.1109/TEVC.2011.2173577
10.1016/j.neucom.2016.03.101
10.1016/j.cmpb.2017.10.022
10.1016/j.neucom.2015.06.083
10.1016/j.engappai.2006.03.003
10.1016/j.enconman.2016.06.052
10.1007/s11269-018-1992-7
10.1016/j.amc.2006.11.033
10.1016/j.eswa.2019.03.043
10.1126/science.1253512
10.1177/0142331217712091
10.1007/s10489-017-0897-0
10.1007/s00158-002-0218-y
10.1126/science.220.4598.671
10.1007/978-3-662-03423-1_27
10.1073/pnas.87.23.9193
10.1007/s00366-020-00981-5
10.1016/j.neucom.2017.04.060
10.1016/j.knosys.2015.07.006
10.1016/j.advengsoft.2013.12.007
10.1016/j.energy.2018.06.088
10.1016/j.ijmedinf.2005.05.002
ContentType Journal Article
Copyright 2020 Elsevier Inc.
Copyright Elsevier BV Nov 2020
Copyright_xml – notice: 2020 Elsevier Inc.
– notice: Copyright Elsevier BV Nov 2020
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1016/j.apm.2020.04.019
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
Psychology
EISSN 0307-904X
EndPage 19
ExternalDocumentID 10_1016_j_apm_2020_04_019
S0307904X20302122
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1RT
1~.
1~5
23M
4.4
457
4G.
5GY
5VS
6I.
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABAOU
ABEFU
ABFNM
ABMAC
ABVKL
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFS
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AEXQZ
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HZ~
IHE
IXB
J1W
JJJVA
KOM
LG9
LY7
M26
M41
MHUIS
MO0
MVM
N9A
NCXOZ
O-L
O9-
OAUVE
OK1
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SES
SEW
SPC
SPCBC
SST
SSW
SSZ
T5K
TN5
WH7
WUQ
XJT
XPP
ZMT
~02
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
-W8
.7I
.GO
.QK
0BK
2DF
53G
6J9
7SC
8FD
8VB
AAGDL
AAGZJ
AAHIA
AAHSB
AAMFJ
AAMIU
AAPUL
AATTQ
AAZMC
ABCCY
ABDBF
ABFIM
ABIVO
ABLIJ
ABPEM
ABRYG
ABTAI
ABXUL
ABXYU
ABZLS
ACGOD
ACHQT
ACTIO
ACTOA
ACUHS
ADAHI
ADCVX
ADKVQ
AECIN
AEFOU
AEGXH
AEISY
AEKEX
AEMOZ
AEMXT
AEOZL
AEPSL
AEYOC
AEZRU
AFHDM
AFRVT
AGDLA
AGMYJ
AGRBW
AHDZW
AHQJS
AIJEM
AIYEW
AJWEG
AKBVH
AKVCP
ALQZU
AVBZW
AWYRJ
BEJHT
BLEHA
BMOTO
BOHLJ
CCCUG
CQ1
DGFLZ
DKSSO
EAP
EBR
EBU
EDJ
EMK
EPL
EPS
EST
ESX
E~B
E~C
FEDTE
G-F
GTTXZ
H13
HF~
HVGLF
IPNFZ
J.O
JQ2
K1G
KYCEM
L7M
LJTGL
L~C
L~D
M4Z
NA5
PQQKQ
QWB
RNANH
ROSJB
RSYQP
S-F
STATR
TASJS
TBQAZ
TDBHL
TEH
TFH
TFL
TFW
TH9
TNTFI
TRJHH
TUROJ
TUS
TWZ
UPT
UT5
UT9
VAE
ZL0
~01
~S~
ID FETCH-LOGICAL-c325t-b18691d3f248753fa1a520c33a8d2d9ee1ac85e41f5b934e51a66f3d09f387e23
IEDL.DBID .~1
ISSN 0307-904X
1088-8691
IngestDate Sun Jul 27 14:57:23 EDT 2025
Thu Oct 09 00:35:00 EDT 2025
Thu Apr 24 22:50:07 EDT 2025
Fri Feb 23 02:47:08 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Quantum rotation gate
Global optimization
Simulation annealing
Moth-flame optimizer
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c325t-b18691d3f248753fa1a520c33a8d2d9ee1ac85e41f5b934e51a66f3d09f387e23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2447301946
PQPubID 2045280
PageCount 19
ParticipantIDs proquest_journals_2447301946
crossref_primary_10_1016_j_apm_2020_04_019
crossref_citationtrail_10_1016_j_apm_2020_04_019
elsevier_sciencedirect_doi_10_1016_j_apm_2020_04_019
PublicationCentury 2000
PublicationDate November 2020
2020-11-00
20201101
PublicationDateYYYYMMDD 2020-11-01
PublicationDate_xml – month: 11
  year: 2020
  text: November 2020
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Applied Mathematical Modelling
PublicationYear 2020
Publisher Elsevier Inc
Elsevier BV
Publisher_xml – name: Elsevier Inc
– name: Elsevier BV
References Mirjalili, Mirjalili, Lewis (bib0031) 2014; 69
Xu, Yu, Wang, Chen, Zhao, Zhu (bib0022) 2019; 7
Mirjalili, Mirjalili, Yang (bib0041) 2014; 25
G. Zhou;, H. Moayedi;, L.K. Foong, Teaching-Learning-based Metaheuristic Scheme for Modifying Neural Computing in Appraising Energy Performance of Building, Engineering with Computers,36(2020).
Dua;, D.a. Graff;, Casey., {UCI} Machine Learning Repository, (2017).
Kirkpatrick, Gelatt Jr, Vecchi (bib0023) 1983; 220
Li, Niu, Song, Li, Fan, Liu (bib0015) 2018; 6
Emary, Zawbaa, Hassanien (bib0038) 2016; 172
Statnikov, Tsamardinos, Dosbayev, Aliferis (bib0036) 2005; 74
Emary, Zawbaa, Hassanien (bib0040) 2016; 213
Kannan, Kramer (bib0043) 1994; 116
K. Deb, GeneAS: A Robust Optimal Design Technique for Mechanical Component Design, 1997.
Derrac, García, Molina, Herrera (bib0030) 2011; 1
Kennedy, Eberhart (bib0032) 1995
Mirjalili, Lewis (bib0039) 2013; 9
Chechkin, Metzler, Klafter, Gonchar (bib0026) 2008
Garcia, Molina, Lozano, Herrera (bib0029) 2009; 15
Ishtiaq, Ahmed, Khan, Aadil, Maqsood, Khan (bib0009) 2019
Mahdavi, Fesanghary, Damangir (bib0047) 2007; 188
Elsakaan, El-Sehiemy, Kaddah, Elsaid (bib0012) 2018; 157
Steven (bib0049) 2002; 24
Li, Li, Liu (bib0010) 2016; 45
Metropolis, Rosenbluth, Rosenbluth, Teller, Teller (bib0025) 1953; 21
Heidari, Mirjalili, Faris, Aljarah, Mafarja, Chen (bib0001) 2019; 97
Xu, Chen, Luo, Zhang, Jiao, Zhang (bib0019) 2019; 492
He, Wang (bib0044) 2007; 20
Mezura-Montes, Coello (bib0046) 2008; 37
Mirjalili (bib0006) 2015; 89
Li, Hou, Sharma, Li, Chen, Li, Zhao, Huang, Cai, Chen (bib0021) 2018; 153
Wolberg, Mangasarian (bib0034) 1990; 87
Li, Wang, Li (bib0016) 2018; 32
Qiao, Yang (bib0003) 2019; 7
Kaur, Singh, Salgotra (bib0013) 2018
Sandgren (bib0048) 1990; 112
Wang, Chen, Yang, Zhao, Hu, Cai, Huang, Tong (bib0020) 2017; 267
Narayanan, Moore (bib0024) 1996
Khalilpourazari, Khalilpourazary (bib0014) 2019; 23
Allam, Yousri, Eteiba (bib0007) 2016; 123
Zhou, Moayedi, Bahiraei, Lyu (bib0004) 2020; 254
Sapre, Mini (bib0017) 2018
LaTorre, Pena (bib0028) 2017
Coello Coello (bib0042) 2002; 191
Chen, Zhang, Lin, Chen, Zhan, Chung, Li, Shi (bib0033) 2013; 17
Huang, Yang, Zhang, Yin, Yu, Fang (bib0008) 2019; 41
Xu, Chen, Heidari, Luo, Zhang, Zhao, Li (bib0018) 2019; 129
Hart (bib0037) 1968; 14
Wang (bib0005) 2018; 10
Deb, Srinivasan (bib0050) 2006
Pfaff, Hensen, Bernien, Van Dam, Blok, Taminiau, Tiggelman, Schouten, Markham, Twitchen, Hanson (bib0027) 2014; 345
Sayed, Hassanien (bib0011) 2017; 47
Khalilpourazari (10.1016/j.apm.2020.04.019_bib0014) 2019; 23
Sapre (10.1016/j.apm.2020.04.019_bib0017) 2018
Kannan (10.1016/j.apm.2020.04.019_bib0043) 1994; 116
Heidari (10.1016/j.apm.2020.04.019_bib0001) 2019; 97
Sandgren (10.1016/j.apm.2020.04.019_bib0048) 1990; 112
Derrac (10.1016/j.apm.2020.04.019_bib0030) 2011; 1
Xu (10.1016/j.apm.2020.04.019_bib0019) 2019; 492
Qiao (10.1016/j.apm.2020.04.019_bib0003) 2019; 7
LaTorre (10.1016/j.apm.2020.04.019_bib0028) 2017
Pfaff (10.1016/j.apm.2020.04.019_bib0027) 2014; 345
Mirjalili (10.1016/j.apm.2020.04.019_bib0041) 2014; 25
Zhou (10.1016/j.apm.2020.04.019_bib0004) 2020; 254
Mirjalili (10.1016/j.apm.2020.04.019_bib0006) 2015; 89
Garcia (10.1016/j.apm.2020.04.019_bib0029) 2009; 15
Chechkin (10.1016/j.apm.2020.04.019_bib0026) 2008
Emary (10.1016/j.apm.2020.04.019_bib0040) 2016; 213
Steven (10.1016/j.apm.2020.04.019_bib0049) 2002; 24
Huang (10.1016/j.apm.2020.04.019_bib0008) 2019; 41
Ishtiaq (10.1016/j.apm.2020.04.019_bib0009) 2019
He (10.1016/j.apm.2020.04.019_bib0044) 2007; 20
Wang (10.1016/j.apm.2020.04.019_bib0005) 2018; 10
Chen (10.1016/j.apm.2020.04.019_bib0033) 2013; 17
Emary (10.1016/j.apm.2020.04.019_bib0038) 2016; 172
Li (10.1016/j.apm.2020.04.019_bib0010) 2016; 45
Deb (10.1016/j.apm.2020.04.019_bib0050) 2006
Mahdavi (10.1016/j.apm.2020.04.019_bib0047) 2007; 188
Kirkpatrick (10.1016/j.apm.2020.04.019_bib0023) 1983; 220
Narayanan (10.1016/j.apm.2020.04.019_bib0024) 1996
Statnikov (10.1016/j.apm.2020.04.019_bib0036) 2005; 74
Mezura-Montes (10.1016/j.apm.2020.04.019_bib0046) 2008; 37
Li (10.1016/j.apm.2020.04.019_bib0016) 2018; 32
10.1016/j.apm.2020.04.019_bib0002
10.1016/j.apm.2020.04.019_bib0045
Elsakaan (10.1016/j.apm.2020.04.019_bib0012) 2018; 157
Kaur (10.1016/j.apm.2020.04.019_bib0013) 2018
Li (10.1016/j.apm.2020.04.019_bib0021) 2018; 153
Li (10.1016/j.apm.2020.04.019_bib0015) 2018; 6
Wang (10.1016/j.apm.2020.04.019_bib0020) 2017; 267
Mirjalili (10.1016/j.apm.2020.04.019_bib0039) 2013; 9
Wolberg (10.1016/j.apm.2020.04.019_bib0034) 1990; 87
Sayed (10.1016/j.apm.2020.04.019_bib0011) 2017; 47
Kennedy (10.1016/j.apm.2020.04.019_bib0032) 1995
Metropolis (10.1016/j.apm.2020.04.019_bib0025) 1953; 21
Allam (10.1016/j.apm.2020.04.019_bib0007) 2016; 123
Xu (10.1016/j.apm.2020.04.019_bib0018) 2019; 129
Xu (10.1016/j.apm.2020.04.019_bib0022) 2019; 7
Hart (10.1016/j.apm.2020.04.019_bib0037) 1968; 14
10.1016/j.apm.2020.04.019_bib0035
Coello Coello (10.1016/j.apm.2020.04.019_bib0042) 2002; 191
Mirjalili (10.1016/j.apm.2020.04.019_bib0031) 2014; 69
References_xml – volume: 172
  start-page: 371
  year: 2016
  end-page: 381
  ident: bib0038
  article-title: Binary grey wolf optimization approaches for feature selection
  publication-title: Neurocomputing
– volume: 116
  start-page: 405
  year: 1994
  end-page: 411
  ident: bib0043
  article-title: An augmented lagrange multiplier based method for mixed integer discrete continuous optimization and its applications to mechanical design, Journal of Mechanical Design
  publication-title: Transactions of the ASME
– volume: 32
  start-page: 3303
  year: 2018
  end-page: 3316
  ident: bib0016
  article-title: Optimization of Water Resources Utilization by Multi-Objective Moth-Flame Algorithm
  publication-title: Water Resources Management
– volume: 10
  start-page: 151
  year: 2018
  end-page: 164
  ident: bib0005
  article-title: Moth search algorithm: a bio-inspired metaheuristic algorithm for global optimization problems
  publication-title: Memetic Computing
– year: 2018
  ident: bib0013
  article-title: An enhanced moth flame optimization
  publication-title: Neural Computing and Applications
– volume: 14
  start-page: 515
  year: 1968
  end-page: 516
  ident: bib0037
  article-title: The Condensed Nearest Neighbor Rule
  publication-title: IEEE Transactions on Information Theory
– start-page: 1629
  year: 2006
  end-page: 1636
  ident: bib0050
  article-title: Innovization: Innovating design principles through optimization
  publication-title: GECCO 2006 - Genetic and Evolutionary Computation Conference
– volume: 9
  start-page: 1
  year: 2013
  end-page: 14
  ident: bib0039
  article-title: S-shaped versus V-shaped transfer functions for binary Particle Swarm Optimization
  publication-title: Swarm and Evolutionary Computation
– volume: 89
  start-page: 228
  year: 2015
  end-page: 249
  ident: bib0006
  article-title: Moth-flame optimization algorithm: A novel nature-inspired heuristic paradigm
  publication-title: Knowledge-Based Systems
– volume: 7
  start-page: 138972
  year: 2019
  end-page: 138989
  ident: bib0003
  article-title: Solving Large-Scale Function Optimization Problem by Using a New Metaheuristic Algorithm Based on Quantum Dolphin Swarm Algorithm
  publication-title: Ieee Access
– volume: 129
  start-page: 135
  year: 2019
  end-page: 155
  ident: bib0018
  article-title: An efficient chaotic mutative moth-flame-inspired optimizer for global optimization tasks
  publication-title: Expert Systems with Applications
– volume: 74
  start-page: 491
  year: 2005
  end-page: 503
  ident: bib0036
  article-title: GEMS: A system for automated cancer diagnosis and biomarker discovery from microarray gene expression data
  publication-title: International Journal of Medical Informatics
– volume: 254
  year: 2020
  ident: bib0004
  article-title: Employing artificial bee colony and particle swarm techniques for optimizing a neural network in prediction of heating and cooling loads of residential buildings
  publication-title: Journal of Cleaner Production
– volume: 345
  start-page: 532
  year: 2014
  end-page: 535
  ident: bib0027
  article-title: Unconditional quantum teleportation between distant solid-state quantum bits
  publication-title: Science
– volume: 41
  start-page: 1491
  year: 2019
  end-page: 1503
  ident: bib0008
  article-title: Optimal power tracking of doubly fed induction generator-based wind turbine using swarm moth–flame optimizer
  publication-title: Transactions of the Institute of Measurement and Control
– start-page: 61
  year: 1996
  end-page: 66
  ident: bib0024
  article-title: Quantum-inspired genetic algorithms
  publication-title: Proceedings of the IEEE Conference on Evolutionary Computation
– volume: 220
  start-page: 671
  year: 1983
  end-page: 680
  ident: bib0023
  article-title: Optimization by simulated annealing
  publication-title: Science
– volume: 492
  start-page: 181
  year: 2019
  end-page: 203
  ident: bib0019
  article-title: Enhanced Moth-flame optimizer with mutation strategy for global optimization
  publication-title: Information Sciences
– volume: 25
  start-page: 663
  year: 2014
  end-page: 681
  ident: bib0041
  article-title: Binary bat algorithm
  publication-title: Neural Computing and Applications
– volume: 191
  start-page: 1245
  year: 2002
  end-page: 1287
  ident: bib0042
  article-title: Theoretical and numerical constraint-handling techniques used with evolutionary algorithms: A survey of the state of the art
  publication-title: Computer Methods in Applied Mechanics and Engineering
– volume: 47
  start-page: 397
  year: 2017
  end-page: 408
  ident: bib0011
  article-title: Moth-flame swarm optimization with neutrosophic sets for automatic mitosis detection in breast cancer histology images
  publication-title: Applied Intelligence
– volume: 69
  start-page: 46
  year: 2014
  end-page: 61
  ident: bib0031
  article-title: Grey Wolf Optimizer
  publication-title: Advances in Engineering Software
– start-page: 1942
  year: 1995
  end-page: 1948
  ident: bib0032
  article-title: Particle swarm optimization
  publication-title: IEEE International Conference on Neural Networks - Conference Proceedings
– volume: 213
  start-page: 54
  year: 2016
  end-page: 65
  ident: bib0040
  article-title: Binary ant lion approaches for feature selection
  publication-title: Neurocomputing
– start-page: 15
  year: 2019
  ident: bib0009
  article-title: Intelligent clustering using moth flame optimizer for vehicular ad hoc networks
  publication-title: International Journal of Distributed Sensor Networks
– volume: 17
  start-page: 241
  year: 2013
  end-page: 258
  ident: bib0033
  article-title: Particle swarm optimization with an aging leader and challengers
  publication-title: IEEE Transactions on Evolutionary Computation
– start-page: 1063
  year: 2017
  end-page: 1070
  ident: bib0028
  article-title: A comparison of three large-scale global optimizers on the CEC 2017 single objective real parameter numerical optimization benchmark
  publication-title: 2017 IEEE Congress on Evolutionary Computation, CEC 2017 - Proceedings
– volume: 1
  start-page: 3
  year: 2011
  end-page: 18
  ident: bib0030
  article-title: A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms
  publication-title: Swarm and Evolutionary Computation
– volume: 15
  start-page: 617
  year: 2009
  end-page: 644
  ident: bib0029
  article-title: A study on the use of non-parametric tests for analyzing the evolutionary algorithms' behaviour: a case study on the CEC'2005 Special Session on Real Parameter Optimization
  publication-title: Journal of Heuristics
– volume: 157
  start-page: 1063
  year: 2018
  end-page: 1078
  ident: bib0012
  article-title: An enhanced moth-flame optimizer for solving non-smooth economic dispatch problems with emissions
  publication-title: Energy
– volume: 21
  start-page: 1087
  year: 1953
  end-page: 1092
  ident: bib0025
  article-title: Equation of state calculations by fast computing machines
  publication-title: The Journal of Chemical Physics
– volume: 112
  start-page: 223
  year: 1990
  end-page: 229
  ident: bib0048
  article-title: Nonlinear integer and discrete programming in mechanical design optimization, Journal of Mechanical Design
  publication-title: Transactions of the ASME
– reference: G. Zhou;, H. Moayedi;, L.K. Foong, Teaching-Learning-based Metaheuristic Scheme for Modifying Neural Computing in Appraising Energy Performance of Building, Engineering with Computers,36(2020).
– volume: 97
  start-page: 849
  year: 2019
  end-page: 872
  ident: bib0001
  article-title: Harris hawks optimization: Algorithm and applications
  publication-title: Future Generation Computer Systems
– volume: 188
  start-page: 1567
  year: 2007
  end-page: 1579
  ident: bib0047
  article-title: An improved harmony search algorithm for solving optimization problems
  publication-title: Applied Mathematics and Computation
– volume: 23
  start-page: 1699
  year: 2019
  end-page: 1722
  ident: bib0014
  article-title: An efficient hybrid algorithm based on Water Cycle and Moth-Flame Optimization algorithms for solving numerical and constrained engineering optimization problems
  publication-title: Soft Computing
– volume: 87
  start-page: 9193
  year: 1990
  end-page: 9196
  ident: bib0034
  article-title: Multisurface method of pattern separation for medical diagnosis applied to breast cytology
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 123
  start-page: 535
  year: 2016
  end-page: 548
  ident: bib0007
  article-title: Parameters extraction of the three diode model for the multi-crystalline solar cell/module using Moth-Flame Optimization Algorithm
  publication-title: Energy Conversion and Management
– volume: 45
  start-page: 1166
  year: 2016
  end-page: 1178
  ident: bib0010
  article-title: A least squares support vector machine model optimized by moth-flame optimization algorithm for annual power load forecasting
  publication-title: Applied Intelligence
– start-page: 129
  year: 2008
  end-page: 162
  ident: bib0026
  article-title: Introduction to the Theory of Lévy Flights
  publication-title: Anomalous Transport: Foundations and Applications
– volume: 20
  start-page: 89
  year: 2007
  end-page: 99
  ident: bib0044
  article-title: An effective co-evolutionary particle swarm optimization for constrained engineering design problems
  publication-title: Engineering Applications of Artificial Intelligence
– volume: 37
  start-page: 443
  year: 2008
  end-page: 473
  ident: bib0046
  article-title: An empirical study about the usefulness of evolution strategies to solve constrained optimization problems
  publication-title: International Journal of General Systems
– volume: 267
  start-page: 69
  year: 2017
  end-page: 84
  ident: bib0020
  article-title: Toward an optimal kernel extreme learning machine using a chaotic moth-flame optimization strategy with applications in medical diagnoses
  publication-title: Neurocomputing
– volume: 153
  start-page: 211
  year: 2018
  end-page: 225
  ident: bib0021
  article-title: Developing a new intelligent system for the diagnosis of tuberculous pleural effusion
  publication-title: Computer Methods and Programs in Biomedicine
– volume: 7
  start-page: 138461
  year: 2019
  end-page: 138472
  ident: bib0022
  article-title: A New Hybrid Machine Learning Approach for Prediction of Phenanthrene Toxicity on Mice
  publication-title: Ieee Access
– volume: 24
  start-page: 88
  year: 2002
  end-page: 89
  ident: bib0049
  article-title: Evolutionary algorithms for single and multicriteria design optimization. A. Osyczka. Springer Verlag, Berlin, 2002
  publication-title: Structural and Multidisciplinary Optimization
– reference: K. Deb, GeneAS: A Robust Optimal Design Technique for Mechanical Component Design, 1997.
– volume: 6
  start-page: 76700
  year: 2018
  end-page: 76727
  ident: bib0015
  article-title: A double evolutionary learning moth-flame optimization for real-parameter global optimization problems
  publication-title: IEEE Access
– year: 2018
  ident: bib0017
  article-title: Opposition-based moth flame optimization with Cauchy mutation and evolutionary boundary constraint handling for global optimization
  publication-title: Soft Computing,
– reference: Dua;, D.a. Graff;, Casey., {UCI} Machine Learning Repository, (2017).
– start-page: 15
  year: 2019
  ident: 10.1016/j.apm.2020.04.019_bib0009
  article-title: Intelligent clustering using moth flame optimizer for vehicular ad hoc networks
  publication-title: International Journal of Distributed Sensor Networks
– volume: 7
  start-page: 138461
  year: 2019
  ident: 10.1016/j.apm.2020.04.019_bib0022
  article-title: A New Hybrid Machine Learning Approach for Prediction of Phenanthrene Toxicity on Mice
  publication-title: Ieee Access
  doi: 10.1109/ACCESS.2019.2939835
– volume: 116
  start-page: 405
  year: 1994
  ident: 10.1016/j.apm.2020.04.019_bib0043
  article-title: An augmented lagrange multiplier based method for mixed integer discrete continuous optimization and its applications to mechanical design, Journal of Mechanical Design
  publication-title: Transactions of the ASME
  doi: 10.1115/1.2919393
– volume: 191
  start-page: 1245
  year: 2002
  ident: 10.1016/j.apm.2020.04.019_bib0042
  article-title: Theoretical and numerical constraint-handling techniques used with evolutionary algorithms: A survey of the state of the art
  publication-title: Computer Methods in Applied Mechanics and Engineering
  doi: 10.1016/S0045-7825(01)00323-1
– volume: 23
  start-page: 1699
  year: 2019
  ident: 10.1016/j.apm.2020.04.019_bib0014
  article-title: An efficient hybrid algorithm based on Water Cycle and Moth-Flame Optimization algorithms for solving numerical and constrained engineering optimization problems
  publication-title: Soft Computing
  doi: 10.1007/s00500-017-2894-y
– start-page: 61
  year: 1996
  ident: 10.1016/j.apm.2020.04.019_bib0024
  article-title: Quantum-inspired genetic algorithms
  publication-title: Proceedings of the IEEE Conference on Evolutionary Computation
  doi: 10.1109/ICEC.1996.542334
– volume: 14
  start-page: 515
  year: 1968
  ident: 10.1016/j.apm.2020.04.019_bib0037
  article-title: The Condensed Nearest Neighbor Rule
  publication-title: IEEE Transactions on Information Theory
  doi: 10.1109/TIT.1968.1054155
– volume: 25
  start-page: 663
  year: 2014
  ident: 10.1016/j.apm.2020.04.019_bib0041
  article-title: Binary bat algorithm
  publication-title: Neural Computing and Applications
  doi: 10.1007/s00521-013-1525-5
– volume: 37
  start-page: 443
  year: 2008
  ident: 10.1016/j.apm.2020.04.019_bib0046
  article-title: An empirical study about the usefulness of evolution strategies to solve constrained optimization problems
  publication-title: International Journal of General Systems
  doi: 10.1080/03081070701303470
– start-page: 1063
  year: 2017
  ident: 10.1016/j.apm.2020.04.019_bib0028
  article-title: A comparison of three large-scale global optimizers on the CEC 2017 single objective real parameter numerical optimization benchmark
– volume: 492
  start-page: 181
  year: 2019
  ident: 10.1016/j.apm.2020.04.019_bib0019
  article-title: Enhanced Moth-flame optimizer with mutation strategy for global optimization
  publication-title: Information Sciences
  doi: 10.1016/j.ins.2019.04.022
– volume: 21
  start-page: 1087
  year: 1953
  ident: 10.1016/j.apm.2020.04.019_bib0025
  article-title: Equation of state calculations by fast computing machines
  publication-title: The Journal of Chemical Physics
  doi: 10.1063/1.1699114
– volume: 112
  start-page: 223
  year: 1990
  ident: 10.1016/j.apm.2020.04.019_bib0048
  article-title: Nonlinear integer and discrete programming in mechanical design optimization, Journal of Mechanical Design
  publication-title: Transactions of the ASME
  doi: 10.1115/1.2912596
– volume: 254
  year: 2020
  ident: 10.1016/j.apm.2020.04.019_bib0004
  article-title: Employing artificial bee colony and particle swarm techniques for optimizing a neural network in prediction of heating and cooling loads of residential buildings
  publication-title: Journal of Cleaner Production
  doi: 10.1016/j.jclepro.2020.120082
– start-page: 129
  year: 2008
  ident: 10.1016/j.apm.2020.04.019_bib0026
  article-title: Introduction to the Theory of Lévy Flights
  publication-title: Anomalous Transport: Foundations and Applications
  doi: 10.1002/9783527622979.ch5
– volume: 6
  start-page: 76700
  year: 2018
  ident: 10.1016/j.apm.2020.04.019_bib0015
  article-title: A double evolutionary learning moth-flame optimization for real-parameter global optimization problems
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2884130
– start-page: 1942
  year: 1995
  ident: 10.1016/j.apm.2020.04.019_bib0032
  article-title: Particle swarm optimization
– volume: 1
  start-page: 3
  year: 2011
  ident: 10.1016/j.apm.2020.04.019_bib0030
  article-title: A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms
  publication-title: Swarm and Evolutionary Computation
  doi: 10.1016/j.swevo.2011.02.002
– volume: 45
  start-page: 1166
  year: 2016
  ident: 10.1016/j.apm.2020.04.019_bib0010
  article-title: A least squares support vector machine model optimized by moth-flame optimization algorithm for annual power load forecasting
  publication-title: Applied Intelligence
  doi: 10.1007/s10489-016-0810-2
– volume: 10
  start-page: 151
  year: 2018
  ident: 10.1016/j.apm.2020.04.019_bib0005
  article-title: Moth search algorithm: a bio-inspired metaheuristic algorithm for global optimization problems
  publication-title: Memetic Computing
  doi: 10.1007/s12293-016-0212-3
– volume: 9
  start-page: 1
  year: 2013
  ident: 10.1016/j.apm.2020.04.019_bib0039
  article-title: S-shaped versus V-shaped transfer functions for binary Particle Swarm Optimization
  publication-title: Swarm and Evolutionary Computation
  doi: 10.1016/j.swevo.2012.09.002
– volume: 97
  start-page: 849
  year: 2019
  ident: 10.1016/j.apm.2020.04.019_bib0001
  article-title: Harris hawks optimization: Algorithm and applications
  publication-title: Future Generation Computer Systems
  doi: 10.1016/j.future.2019.02.028
– volume: 7
  start-page: 138972
  year: 2019
  ident: 10.1016/j.apm.2020.04.019_bib0003
  article-title: Solving Large-Scale Function Optimization Problem by Using a New Metaheuristic Algorithm Based on Quantum Dolphin Swarm Algorithm
  publication-title: Ieee Access
  doi: 10.1109/ACCESS.2019.2942169
– year: 2018
  ident: 10.1016/j.apm.2020.04.019_bib0013
  article-title: An enhanced moth flame optimization
  publication-title: Neural Computing and Applications
– volume: 15
  start-page: 617
  year: 2009
  ident: 10.1016/j.apm.2020.04.019_bib0029
  article-title: A study on the use of non-parametric tests for analyzing the evolutionary algorithms' behaviour: a case study on the CEC'2005 Special Session on Real Parameter Optimization
  publication-title: Journal of Heuristics
– ident: 10.1016/j.apm.2020.04.019_bib0035
– volume: 17
  start-page: 241
  year: 2013
  ident: 10.1016/j.apm.2020.04.019_bib0033
  article-title: Particle swarm optimization with an aging leader and challengers
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/TEVC.2011.2173577
– volume: 213
  start-page: 54
  year: 2016
  ident: 10.1016/j.apm.2020.04.019_bib0040
  article-title: Binary ant lion approaches for feature selection
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2016.03.101
– volume: 153
  start-page: 211
  year: 2018
  ident: 10.1016/j.apm.2020.04.019_bib0021
  article-title: Developing a new intelligent system for the diagnosis of tuberculous pleural effusion
  publication-title: Computer Methods and Programs in Biomedicine
  doi: 10.1016/j.cmpb.2017.10.022
– volume: 172
  start-page: 371
  year: 2016
  ident: 10.1016/j.apm.2020.04.019_bib0038
  article-title: Binary grey wolf optimization approaches for feature selection
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2015.06.083
– volume: 20
  start-page: 89
  year: 2007
  ident: 10.1016/j.apm.2020.04.019_bib0044
  article-title: An effective co-evolutionary particle swarm optimization for constrained engineering design problems
  publication-title: Engineering Applications of Artificial Intelligence
  doi: 10.1016/j.engappai.2006.03.003
– volume: 123
  start-page: 535
  year: 2016
  ident: 10.1016/j.apm.2020.04.019_bib0007
  article-title: Parameters extraction of the three diode model for the multi-crystalline solar cell/module using Moth-Flame Optimization Algorithm
  publication-title: Energy Conversion and Management
  doi: 10.1016/j.enconman.2016.06.052
– volume: 32
  start-page: 3303
  year: 2018
  ident: 10.1016/j.apm.2020.04.019_bib0016
  article-title: Optimization of Water Resources Utilization by Multi-Objective Moth-Flame Algorithm
  publication-title: Water Resources Management
  doi: 10.1007/s11269-018-1992-7
– volume: 188
  start-page: 1567
  year: 2007
  ident: 10.1016/j.apm.2020.04.019_bib0047
  article-title: An improved harmony search algorithm for solving optimization problems
  publication-title: Applied Mathematics and Computation
  doi: 10.1016/j.amc.2006.11.033
– volume: 129
  start-page: 135
  year: 2019
  ident: 10.1016/j.apm.2020.04.019_bib0018
  article-title: An efficient chaotic mutative moth-flame-inspired optimizer for global optimization tasks
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2019.03.043
– volume: 345
  start-page: 532
  year: 2014
  ident: 10.1016/j.apm.2020.04.019_bib0027
  article-title: Unconditional quantum teleportation between distant solid-state quantum bits
  publication-title: Science
  doi: 10.1126/science.1253512
– start-page: 1629
  year: 2006
  ident: 10.1016/j.apm.2020.04.019_bib0050
  article-title: Innovization: Innovating design principles through optimization
– volume: 41
  start-page: 1491
  year: 2019
  ident: 10.1016/j.apm.2020.04.019_bib0008
  article-title: Optimal power tracking of doubly fed induction generator-based wind turbine using swarm moth–flame optimizer
  publication-title: Transactions of the Institute of Measurement and Control
  doi: 10.1177/0142331217712091
– volume: 47
  start-page: 397
  year: 2017
  ident: 10.1016/j.apm.2020.04.019_bib0011
  article-title: Moth-flame swarm optimization with neutrosophic sets for automatic mitosis detection in breast cancer histology images
  publication-title: Applied Intelligence
  doi: 10.1007/s10489-017-0897-0
– volume: 24
  start-page: 88
  year: 2002
  ident: 10.1016/j.apm.2020.04.019_bib0049
  article-title: Evolutionary algorithms for single and multicriteria design optimization. A. Osyczka. Springer Verlag, Berlin, 2002
  publication-title: Structural and Multidisciplinary Optimization
  doi: 10.1007/s00158-002-0218-y
– volume: 220
  start-page: 671
  year: 1983
  ident: 10.1016/j.apm.2020.04.019_bib0023
  article-title: Optimization by simulated annealing
  publication-title: Science
  doi: 10.1126/science.220.4598.671
– ident: 10.1016/j.apm.2020.04.019_bib0045
  doi: 10.1007/978-3-662-03423-1_27
– volume: 87
  start-page: 9193
  year: 1990
  ident: 10.1016/j.apm.2020.04.019_bib0034
  article-title: Multisurface method of pattern separation for medical diagnosis applied to breast cytology
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
  doi: 10.1073/pnas.87.23.9193
– ident: 10.1016/j.apm.2020.04.019_bib0002
  doi: 10.1007/s00366-020-00981-5
– volume: 267
  start-page: 69
  year: 2017
  ident: 10.1016/j.apm.2020.04.019_bib0020
  article-title: Toward an optimal kernel extreme learning machine using a chaotic moth-flame optimization strategy with applications in medical diagnoses
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2017.04.060
– volume: 89
  start-page: 228
  year: 2015
  ident: 10.1016/j.apm.2020.04.019_bib0006
  article-title: Moth-flame optimization algorithm: A novel nature-inspired heuristic paradigm
  publication-title: Knowledge-Based Systems
  doi: 10.1016/j.knosys.2015.07.006
– year: 2018
  ident: 10.1016/j.apm.2020.04.019_bib0017
  article-title: Opposition-based moth flame optimization with Cauchy mutation and evolutionary boundary constraint handling for global optimization
  publication-title: Soft Computing,
– volume: 69
  start-page: 46
  year: 2014
  ident: 10.1016/j.apm.2020.04.019_bib0031
  article-title: Grey Wolf Optimizer
  publication-title: Advances in Engineering Software
  doi: 10.1016/j.advengsoft.2013.12.007
– volume: 157
  start-page: 1063
  year: 2018
  ident: 10.1016/j.apm.2020.04.019_bib0012
  article-title: An enhanced moth-flame optimizer for solving non-smooth economic dispatch problems with emissions
  publication-title: Energy
  doi: 10.1016/j.energy.2018.06.088
– volume: 74
  start-page: 491
  year: 2005
  ident: 10.1016/j.apm.2020.04.019_bib0036
  article-title: GEMS: A system for automated cancer diagnosis and biomarker discovery from microarray gene expression data
  publication-title: International Journal of Medical Informatics
  doi: 10.1016/j.ijmedinf.2005.05.002
SSID ssj0005904
ssj0012860
Score 2.526831
Snippet This study develops an improved moth-flame optimization algorithm, which is a recently proposed optimizer based on moth behavior in nature. It has achieved...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Algorithms
Blood vessels
Computer simulation
Exploitation
Exploration
Global optimization
Medical science
Moth-flame optimizer
Optimization
Optimization algorithms
Pressure vessel design
Pressure vessels
Quantum rotation gate
Simulated annealing
Simulation annealing
Title A quantum-behaved simulated annealing algorithm-based moth-flame optimization method
URI https://dx.doi.org/10.1016/j.apm.2020.04.019
https://www.proquest.com/docview/2447301946
Volume 87
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 0307-904X
  dateEnd: 20241103
  omitProxy: true
  ssIdentifier: ssj0012860
  issn: 0307-904X
  databaseCode: ABDBF
  dateStart: 19970301
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 0307-904X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0005904
  issn: 0307-904X
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier Free Content
  customDbUrl:
  eissn: 0307-904X
  dateEnd: 20211103
  omitProxy: true
  ssIdentifier: ssj0005904
  issn: 0307-904X
  databaseCode: IXB
  dateStart: 19760601
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect
  customDbUrl:
  eissn: 0307-904X
  dateEnd: 20211103
  omitProxy: true
  ssIdentifier: ssj0005904
  issn: 0307-904X
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 0307-904X
  dateEnd: 20211031
  omitProxy: true
  ssIdentifier: ssj0005904
  issn: 0307-904X
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Science Direct
  customDbUrl:
  eissn: 0307-904X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0005904
  issn: 0307-904X
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: aylor and Francis Online
  customDbUrl:
  mediaType: online
  eissn: 0307-904X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0012860
  issn: 0307-904X
  databaseCode: AHDZW
  dateStart: 19970301
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 0307-904X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0005904
  issn: 0307-904X
  databaseCode: AKRWK
  dateStart: 19760601
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVAWR
  databaseName: Taylor & Francis Social Science and Humanities Library - DRAA
  customDbUrl:
  eissn: 0307-904X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0012860
  issn: 0307-904X
  databaseCode: TRJHH
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.tandfonline.com/
  providerName: Taylor & Francis
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELaqssCAeIpCqTIwIYU6sdMkY1uoCqhdaKVulp3YENQXbbry27nLowKEOjDFsewoOp-_Oyd33xFyE4bGqAD2dxwYZYOFcmzpKWlrqbzAkYrH2XfIwbDVH_OniTepkG6ZC4NhlQX255ieoXXR0yyk2VwmSfMF1TOkfOJCAwAYcZhzH6sY3H1-C_MIKS_JEHF0-Wczi_GSS0xGd2nGdopkO3_bpl8onZme3hE5LHxGq52_1jGp6PkJORhsCVfXp2TUtj42IKTNzM4S73VsrZMZluaClgQslZh2bsnp62KVpG8wCqxXbOE62QaUQlsLwI5ZkZRp5XWlz8i49zDq9u2iYIIdMddLbYX1pZyYGTc7hhjpSM-lEWMyiN041NqRUeBp7hhPhYxrz5GtlmExDQ0LfO2yc1KdL-b6glhcMsP8SHMKHpfiNEAeM2kicB-17xtVI7QUlYgKNnEsajEVZdjYuwDpCpSuoFyAdGvkdjtlmVNp7BrMS_mLH_ogAOp3TauXayWKzbgW4MEgjoW8dfm_p16RfbzLUxDrpJquNvoafJFUNTJla5C9due-08Pr43N_CL2Pk84XpUrggg
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELaqMgAD4ikKBTIwIZk6sZ3HWFVUBdoutFI3y05sKOqLNl357ZzzqAChDmxWco6i8_m7c3L3HUK3UWSMCmF_J6FRGDyUiyVXEmupeOhKxZLsO2Sv73eG7GnERxXUKmthbFplgf05pmdoXVxpFNpsLMbjxos1z4iwkQcDAGDA4R3GvcCewO4_v-V5RISVbIhWvPy1mSV5yYWtRvdIRndq2Xb-dk6_YDrzPe1DdFAEjU4zf68jVNGzY7Tf2zCurk7QoOl8rEFL6ynOKu914qzGU9ubC0YSwFTaunNHTl7ny3H6BlLgvhLHLhQ2YBXamQN4TIuqTCdvLH2Khu2HQauDi44JOKYeT7GyDabchBovO4cY6UrukZhSGSZeEmntyjjkmrmGq4gyzV3p-4YmJDI0DLRHz1B1Np_pc-QwSQ0NYs0IhFyKkdASmUkTQ_yog8CoGiKlqkRc0InbrhYTUeaNvQvQrrDaFYQJ0G4N3W2mLHIujW3CrNS_-GEQArB-27R6uVai2I0rASGMBbKI-Rf_e-oN2u0Mel3Rfew_X6I9eyevR6yjarpc6ysITFJ1nRneF7Hn36E
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+quantum-behaved+simulated+annealing+algorithm-based+moth-flame+optimization+method&rft.jtitle=Applied+mathematical+modelling&rft.au=Yu%2C+Caiyang&rft.au=Heidari%2C+Ali+Asghar&rft.au=Chen%2C+Huiling&rft.date=2020-11-01&rft.issn=0307-904X&rft.volume=87&rft.spage=1&rft.epage=19&rft_id=info:doi/10.1016%2Fj.apm.2020.04.019&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_apm_2020_04_019
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0307-904X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0307-904X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0307-904X&client=summon