Optimal Design of PID Controller for the analysis of Two TANK System Using Metaheuristic Optimization Algorithm

Two surge interactive and non-interactive tank systems are taken as examples of multi-level tank system. Due to the dynamic level changes of the two-tank system, various control techniques are intended to regulate the level by controlling the liquid inflow quantity. In addition to that, disturbance...

Full description

Saved in:
Bibliographic Details
Published inJournal of electrical engineering & technology Vol. 17; no. 1; pp. 627 - 640
Main Authors Amuthambigaiyin Sundari, K., Maruthupandi, P.
Format Journal Article
LanguageEnglish
Published Singapore Springer Singapore 01.01.2022
대한전기학회
Subjects
Online AccessGet full text
ISSN1975-0102
2093-7423
DOI10.1007/s42835-021-00891-6

Cover

Abstract Two surge interactive and non-interactive tank systems are taken as examples of multi-level tank system. Due to the dynamic level changes of the two-tank system, various control techniques are intended to regulate the level by controlling the liquid inflow quantity. In addition to that, disturbance effect is considered to get better step response for the tuning of Proportional Integral Derivative (PID) controller by using meta-heuristic algorithm. In this paper, Proportional Integral Derivative (PID) controller design analysis is carried out by using Feed Forward (FF) control, Genetic Algorithm (GA), Particle Swarm Optimization (PSO) and Bubble Net Whale Optimization Algorithms (BNWOA). BNWOA is used to tune the PID controller to reduce constrains of two tank system and obtain the optimal control is proposed. The transfer function of the two-tank system with step input for various control algorithms such as GA, PSO and BNWOA are observed using MATLAB Simulink and M-script. From the analysis, better performance such as reduced constrains and optimal control can be obtained from BNWOA. Then steady state analysis is made and the simulation results are presented at the end.
AbstractList Two surge interactive and non-interactive tank systems are taken as examples of multi-level tank system. Due to the dynamic level changes of the two-tank system, various control techniques are intended to regulate the level by controlling the liquid inflow quantity. In addition to that, disturbance effect is considered to get better step response for the tuning of Proportional Integral Derivative (PID) controller by using meta-heuristic algorithm. In this paper, Proportional Integral Derivative (PID) controller design analysis is carried out by using Feed Forward (FF) control, Genetic Algorithm (GA), Particle Swarm Optimization (PSO) and Bubble Net Whale Optimization Algorithms (BNWOA). BNWOA is used to tune the PID controller to reduce constrains of two tank system and obtain the optimal control is proposed. The transfer function of the two-tank system with step input for various control algorithms such as GA, PSO and BNWOA are observed using MATLAB Simulink and M-script. From the analysis, better performance such as reduced constrains and optimal control can be obtained from BNWOA. Then steady state analysis is made and the simulation results are presented at the end.
Two surge interactive and non-interactive tank systems are taken as examples of multi-level tank system. Due to the dynamic level changes of the two-tank system, various control techniques are intended to regulate the level by controlling the liquid infl ow quantity. In addition to that, disturbance eff ect is considered to get better step response for the tuning of Proportional Integral Derivative (PID) controller by using meta-heuristic algorithm. In this paper, Proportional Integral Derivative (PID) controller design analysis is carried out by using Feed Forward (FF) control, Genetic Algorithm (GA), Particle Swarm Optimization (PSO) and Bubble Net Whale Optimization Algorithms (BNWOA). BNWOA is used to tune the PID controller to reduce constrains of two tank system and obtain the optimal control is proposed. The transfer function of the two-tank system with step input for various control algorithms such as GA, PSO and BNWOA are observed using MATLAB Simulink and M-script. From the analysis, better performance such as reduced constrains and optimal control can be obtained from BNWOA. Then steady state analysis is made and the simulation results are presented at the end. KCI Citation Count: 0
Author Amuthambigaiyin Sundari, K.
Maruthupandi, P.
Author_xml – sequence: 1
  givenname: K.
  orcidid: 0000-0002-4892-5809
  surname: Amuthambigaiyin Sundari
  fullname: Amuthambigaiyin Sundari, K.
  email: sundarikphd2014@gmail.com
  organization: RVS Technical Campus
– sequence: 2
  givenname: P.
  surname: Maruthupandi
  fullname: Maruthupandi, P.
  organization: Government College of Technology
BackLink https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002798545$$DAccess content in National Research Foundation of Korea (NRF)
BookMark eNp9kMtOAjEUhhujiXh5AVfduhjtaZlLlwS8EC8YxXXTqe1QGFrSlhh8egdw5YLVWZz_-0_Od4aOnXcaoSsgN0BIeRv7tGJ5RihkhFQcsuII9SjhLCv7lB2jHvCyWwOhp-gsxjkhBZCc9ZCfrJJdyhaPdLSNw97gt_EID71LwbetDtj4gNNMY-lku4k2biPTb4-ng9cn_LGJSS_xZ7SuwS86yZleBxuTVXhXbH9kst7hQdv4YNNseYFOjGyjvvyb5-jz_m46fMyeJw_j4eA5U4zmKauhqGuAkiugXyDrWhHNGeOgcqMNV7IuqTJ9xhjAV1XS2tR9SqXUueEFAGXn6Hrf64IRC2WFl3Y3Gy8WQQzep2PBOSkrvs3SfVYFH2PQRqxC5yRsBBCx1Sv2ekWnV-z0iqKDqn-Qsmn3bArStodRtkdjd8c1Ooi5X4dObzxE_QJDipH7
CitedBy_id crossref_primary_10_1007_s00202_023_01867_7
crossref_primary_10_3390_s22239165
crossref_primary_10_1038_s41598_025_85273_y
crossref_primary_10_32604_iasc_2023_028011
crossref_primary_10_3390_a17070306
crossref_primary_10_1080_02286203_2024_2377894
crossref_primary_10_1109_ACCESS_2023_3294109
crossref_primary_10_1002_jnm_3228
Cites_doi 10.1109/AQTR.2016.7501360
10.1109/PC.2013.6581410
10.1016/j.asej.2019.07.004
10.1109/ICCCEEE46830.2019.9070896
10.1109/ICACCCT.2012.6320799
10.1049/iet-smt.2017.0015
10.31254/jsir.2016.5207
10.1109/IHMSC.2012.180
10.1051/matecconf/201713900157
10.1109/I4Tech48345.2020.9102644
10.1109/ICSCC.2019.8843624
10.1109/IPACT.2017.8244929
10.1109/ICIIECS.2015.7193213
10.1109/ICCRE.2016.7476135
10.1109/ICACCCT.2014.7019439
ContentType Journal Article
Copyright The Korean Institute of Electrical Engineers 2021
Copyright_xml – notice: The Korean Institute of Electrical Engineers 2021
DBID AAYXX
CITATION
ACYCR
DOI 10.1007/s42835-021-00891-6
DatabaseName CrossRef
Korean Citation Index
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2093-7423
EndPage 640
ExternalDocumentID oai_kci_go_kr_ARTI_9907892
10_1007_s42835_021_00891_6
GroupedDBID -~X
.UV
0R~
2WC
406
9ZL
AACDK
AAHNG
AAJBT
AASML
AATNV
AAUYE
AAYYP
ABAKF
ABECU
ABFTV
ABJNI
ABKCH
ABMQK
ABTEG
ABTKH
ABTMW
ACAOD
ACDTI
ACHSB
ACOKC
ACPIV
ACZOJ
ADKNI
ADTPH
ADURQ
ADYFF
AEFQL
AEMSY
AENEX
AESKC
AFBBN
AFQWF
AGDGC
AGMZJ
AGQEE
AIGIU
AILAN
AITGF
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMXSW
AMYLF
AXYYD
BGNMA
CSCUP
DBRKI
DPUIP
EBLON
EBS
EJD
FIGPU
FNLPD
FRJ
GGCAI
GW5
IKXTQ
IWAJR
JDI
JZLTJ
KOV
KVFHK
LLZTM
M4Y
NPVJJ
NQJWS
NU0
OK1
PT4
ROL
RSV
SJYHP
SNE
SNPRN
SOHCF
SOJ
SRMVM
SSLCW
TDB
UOJIU
UTJUX
VEKWB
VFIZW
ZMTXR
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
AAFGU
AAYFA
ABFGW
ABKAS
ACBMV
ACBRV
ACBYP
ACIGE
ACIPQ
ACTTH
ACVWB
ACWMK
ACYCR
ADMDM
ADOXG
AEFTE
AESTI
AEVTX
AFNRJ
AGGBP
AIMYW
AJDOV
AKQUC
Z7R
Z7S
Z7X
Z88
ID FETCH-LOGICAL-c325t-b16bb1179c12d1abbc0e93391c5fef9cab72cf433311d872bfb422aae5f961123
ISSN 1975-0102
IngestDate Tue Nov 21 21:47:40 EST 2023
Wed Oct 01 01:13:11 EDT 2025
Thu Apr 24 22:52:10 EDT 2025
Fri Feb 21 02:46:36 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords PID controller
Interactive and non-interactive tank
Meta-heuristic algorithm
Bubble net whale optimisation algorithm (BNWOA)
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c325t-b16bb1179c12d1abbc0e93391c5fef9cab72cf433311d872bfb422aae5f961123
ORCID 0000-0002-4892-5809
PageCount 14
ParticipantIDs nrf_kci_oai_kci_go_kr_ARTI_9907892
crossref_primary_10_1007_s42835_021_00891_6
crossref_citationtrail_10_1007_s42835_021_00891_6
springer_journals_10_1007_s42835_021_00891_6
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20220100
2022-01-00
2022-01
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – month: 1
  year: 2022
  text: 20220100
PublicationDecade 2020
PublicationPlace Singapore
PublicationPlace_xml – name: Singapore
PublicationTitle Journal of electrical engineering & technology
PublicationTitleAbbrev J. Electr. Eng. Technol
PublicationYear 2022
Publisher Springer Singapore
대한전기학회
Publisher_xml – name: Springer Singapore
– name: 대한전기학회
References Zhong1 M, Long W (2017) Whale optimization algorithm with nonlinear control parameter. In:MATEC web of conference
Srinivasan K, Sindhiya D (2016) Design of fuzzy based model predictive controller for conical tank system. In: IEEE International conference on control and robotics engineering (ICCRE). https://doi.org/10.1109/ICCRE.2016.7476135
DavisIJishnuCPWilliamRLevel control of two conical tank non-interacting system using PID and fuzzy logicInt J Innov Res Electr Electron, Instrum Control Eng2017543542
UvaisMSarkarPRThree tank interacting system level control using modern AI techniquesInt J Res Dev Appl Sci Eng20169115
NagammaiSLathaSDesign of optimal controllers for a three tank processJ Sci Innov Res2016526570
Singh AK, Kumar S (2014) Comparing the performance analysis of three tank level control system using feedback and feedforward -feedback configuration. In: IEEE International conference on advanced communication control and computing technologies. https://doi.org/10.1109/ICACCCT.2014.7019439
RaniLTDeepaNArulselviSModeling and intelligent control of two-tank interacting level processInt J Recent Technol Eng (IJRTE)2014313036
Ravi R, Thyagarajan T, Puviyarasi B (2012) Centralised neuro controller for two conical tank interacting level system. In: IEEE International conference on advanced communication control and computing technologies. https://doi.org/10.1109/ICACCCT.2012.6320799
MosaadaAMAttiaaMAAbdelazizAYWhale optimization algorithm to tune PID and PIDA controllers on AVR systemAin Shams Eng J201910475576710.1016/j.asej.2019.07.004
Mukherjee A, Chakraborty N, Das BK (2017) Whale optimization algorithm: an implementation to design low-pass FIR Filter. In: Innovations in power and advanced computing technologies (i-PACT). https://doi.org/10.1109/IPACT.2017.8244929
MedewarPGSonawaneRRMunjeRKTwo tank non-interacting liquid level control comparison using fuzzy and PSO controllerIOSR J Electri Electron Eng201712431
Abdalla SA, Mohamed AIM, Ali EA, Nawari MO (2019) Level control of horizontal cylindrical tank. In: IEEE International conference on computer, control, electrical, and electronics engineering, international conference on computer, control. https://doi.org/10.1109/ICCCEEE46830.2019.9070896
Maxim A, Ionescu C, De Keyser R (2016) Modelling and identification of a coupled sextuple water tank system. In: IEEE International conference on automation, quality and testing, robotics (AQTR). https://doi.org/10.1109/AQTR.2016.7501360
Lakshmanaprabu SK, Banu US, Karthik D (2015) Real-time implementation of multi-loop internal model controller for two interacting conical tank process. In: IEEE International conference on innovations in information, embedded and communication systems. https://doi.org/10.1109/ICIIECS.2015.7193213
Zhou K, Yan B, Jiang Y, Huang J (2012) Double-tank liquid level control based on genetic algorithm. In: International conference on intelligent human-machine systems and cybernetics, 4th IEEE International conference on intelligent human-machine systems and cybernetics, pp. 354–357.https://doi.org/10.1109/IHMSC.2012.180
PrasadDMukherjeeAShankarGMukherjeeVApplication of chaotic whale optimisation algorithm for transient stability constrained optimal power flowIET Sci Meas Technol20171181002101310.1049/iet-smt.2017.0015
Vasičkaninová A, Bakošová M, Karšaiová M, Kmeťová J (2013) Methods for controller tuning for unstable systems. In: IEEE International conference on process control (PC), pp. 208–213. https://doi.org/10.1109/PC.2013.6581410
LeBlancSECoughanowrDRProcess systems analysis and control20093New YorkMcGraw Hill publishers
Wong WK, Ming CI (2019) A review on metaheuristic algorithms: recent trends, benchmarking and applications. In: 7th International conference on smart computing & communications (ICSCC).https://doi.org/10.1109/ICSCC.2019.8843624
Shah P, Hanwate S (2020) Modelling and simulation of quadruple tank system using SBL-PI controller. In: International conference on industry 4.0 technology.https://doi.org/10.1109/I4Tech48345.2020.9102644
Kumar AA, Kumar SG (2018) Application of whale optimization algorithm for tuning of a PID controller for a drilling machine. In: Second international conference on advancements in automation, robotics and sensing (ICAARS).https://hal.archives-ouvertes.fr/hal-02314429/document
891_CR20
AM Mosaada (891_CR21) 2019; 10
891_CR11
891_CR8
S Nagammai (891_CR10) 2016; 5
891_CR7
891_CR6
891_CR5
891_CR1
M Uvais (891_CR9) 2016; 9
SE LeBlanc (891_CR12) 2009
D Prasad (891_CR19) 2017; 11
LT Rani (891_CR2) 2014; 3
I Davis (891_CR4) 2017; 5
891_CR17
891_CR18
PG Medewar (891_CR3) 2017; 1
891_CR13
891_CR14
891_CR15
891_CR16
References_xml – reference: MosaadaAMAttiaaMAAbdelazizAYWhale optimization algorithm to tune PID and PIDA controllers on AVR systemAin Shams Eng J201910475576710.1016/j.asej.2019.07.004
– reference: DavisIJishnuCPWilliamRLevel control of two conical tank non-interacting system using PID and fuzzy logicInt J Innov Res Electr Electron, Instrum Control Eng2017543542
– reference: Zhong1 M, Long W (2017) Whale optimization algorithm with nonlinear control parameter. In:MATEC web of conference
– reference: Kumar AA, Kumar SG (2018) Application of whale optimization algorithm for tuning of a PID controller for a drilling machine. In: Second international conference on advancements in automation, robotics and sensing (ICAARS).https://hal.archives-ouvertes.fr/hal-02314429/document
– reference: Wong WK, Ming CI (2019) A review on metaheuristic algorithms: recent trends, benchmarking and applications. In: 7th International conference on smart computing & communications (ICSCC).https://doi.org/10.1109/ICSCC.2019.8843624
– reference: PrasadDMukherjeeAShankarGMukherjeeVApplication of chaotic whale optimisation algorithm for transient stability constrained optimal power flowIET Sci Meas Technol20171181002101310.1049/iet-smt.2017.0015
– reference: Lakshmanaprabu SK, Banu US, Karthik D (2015) Real-time implementation of multi-loop internal model controller for two interacting conical tank process. In: IEEE International conference on innovations in information, embedded and communication systems. https://doi.org/10.1109/ICIIECS.2015.7193213
– reference: Vasičkaninová A, Bakošová M, Karšaiová M, Kmeťová J (2013) Methods for controller tuning for unstable systems. In: IEEE International conference on process control (PC), pp. 208–213. https://doi.org/10.1109/PC.2013.6581410
– reference: UvaisMSarkarPRThree tank interacting system level control using modern AI techniquesInt J Res Dev Appl Sci Eng20169115
– reference: MedewarPGSonawaneRRMunjeRKTwo tank non-interacting liquid level control comparison using fuzzy and PSO controllerIOSR J Electri Electron Eng201712431
– reference: Maxim A, Ionescu C, De Keyser R (2016) Modelling and identification of a coupled sextuple water tank system. In: IEEE International conference on automation, quality and testing, robotics (AQTR). https://doi.org/10.1109/AQTR.2016.7501360
– reference: Srinivasan K, Sindhiya D (2016) Design of fuzzy based model predictive controller for conical tank system. In: IEEE International conference on control and robotics engineering (ICCRE). https://doi.org/10.1109/ICCRE.2016.7476135
– reference: RaniLTDeepaNArulselviSModeling and intelligent control of two-tank interacting level processInt J Recent Technol Eng (IJRTE)2014313036
– reference: NagammaiSLathaSDesign of optimal controllers for a three tank processJ Sci Innov Res2016526570
– reference: Shah P, Hanwate S (2020) Modelling and simulation of quadruple tank system using SBL-PI controller. In: International conference on industry 4.0 technology.https://doi.org/10.1109/I4Tech48345.2020.9102644
– reference: Zhou K, Yan B, Jiang Y, Huang J (2012) Double-tank liquid level control based on genetic algorithm. In: International conference on intelligent human-machine systems and cybernetics, 4th IEEE International conference on intelligent human-machine systems and cybernetics, pp. 354–357.https://doi.org/10.1109/IHMSC.2012.180
– reference: Mukherjee A, Chakraborty N, Das BK (2017) Whale optimization algorithm: an implementation to design low-pass FIR Filter. In: Innovations in power and advanced computing technologies (i-PACT). https://doi.org/10.1109/IPACT.2017.8244929
– reference: LeBlancSECoughanowrDRProcess systems analysis and control20093New YorkMcGraw Hill publishers
– reference: Abdalla SA, Mohamed AIM, Ali EA, Nawari MO (2019) Level control of horizontal cylindrical tank. In: IEEE International conference on computer, control, electrical, and electronics engineering, international conference on computer, control. https://doi.org/10.1109/ICCCEEE46830.2019.9070896
– reference: Singh AK, Kumar S (2014) Comparing the performance analysis of three tank level control system using feedback and feedforward -feedback configuration. In: IEEE International conference on advanced communication control and computing technologies. https://doi.org/10.1109/ICACCCT.2014.7019439
– reference: Ravi R, Thyagarajan T, Puviyarasi B (2012) Centralised neuro controller for two conical tank interacting level system. In: IEEE International conference on advanced communication control and computing technologies. https://doi.org/10.1109/ICACCCT.2012.6320799
– volume: 9
  start-page: 1
  issue: 1
  year: 2016
  ident: 891_CR9
  publication-title: Int J Res Dev Appl Sci Eng
– ident: 891_CR14
  doi: 10.1109/AQTR.2016.7501360
– volume: 5
  start-page: 35
  issue: 4
  year: 2017
  ident: 891_CR4
  publication-title: Int J Innov Res Electr Electron, Instrum Control Eng
– ident: 891_CR1
  doi: 10.1109/PC.2013.6581410
– ident: 891_CR17
– volume: 10
  start-page: 755
  issue: 4
  year: 2019
  ident: 891_CR21
  publication-title: Ain Shams Eng J
  doi: 10.1016/j.asej.2019.07.004
– ident: 891_CR6
  doi: 10.1109/ICCCEEE46830.2019.9070896
– ident: 891_CR7
  doi: 10.1109/ICACCCT.2012.6320799
– volume-title: Process systems analysis and control
  year: 2009
  ident: 891_CR12
– volume: 11
  start-page: 1002
  issue: 8
  year: 2017
  ident: 891_CR19
  publication-title: IET Sci Meas Technol
  doi: 10.1049/iet-smt.2017.0015
– volume: 5
  start-page: 65
  issue: 2
  year: 2016
  ident: 891_CR10
  publication-title: J Sci Innov Res
  doi: 10.31254/jsir.2016.5207
– ident: 891_CR16
  doi: 10.1109/IHMSC.2012.180
– volume: 3
  start-page: 30
  issue: 1
  year: 2014
  ident: 891_CR2
  publication-title: Int J Recent Technol Eng (IJRTE)
– ident: 891_CR20
  doi: 10.1051/matecconf/201713900157
– volume: 1
  start-page: 24
  year: 2017
  ident: 891_CR3
  publication-title: IOSR J Electri Electron Eng
– ident: 891_CR13
  doi: 10.1109/I4Tech48345.2020.9102644
– ident: 891_CR15
  doi: 10.1109/ICSCC.2019.8843624
– ident: 891_CR18
  doi: 10.1109/IPACT.2017.8244929
– ident: 891_CR8
  doi: 10.1109/ICIIECS.2015.7193213
– ident: 891_CR5
  doi: 10.1109/ICCRE.2016.7476135
– ident: 891_CR11
  doi: 10.1109/ICACCCT.2014.7019439
SSID ssj0061053
Score 2.2784956
Snippet Two surge interactive and non-interactive tank systems are taken as examples of multi-level tank system. Due to the dynamic level changes of the two-tank...
SourceID nrf
crossref
springer
SourceType Open Website
Enrichment Source
Index Database
Publisher
StartPage 627
SubjectTerms Electrical Engineering
Electrical Machines and Networks
Electronics and Microelectronics
Engineering
Instrumentation
Original Article
Power Electronics
전기공학
Title Optimal Design of PID Controller for the analysis of Two TANK System Using Metaheuristic Optimization Algorithm
URI https://link.springer.com/article/10.1007/s42835-021-00891-6
https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002798545
Volume 17
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX Journal of Electrical Engineering & Technology, 2022, 17(1), , pp.627-640
journalDatabaseRights – providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 2093-7423
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0061053
  issn: 1975-0102
  databaseCode: AFBBN
  dateStart: 20190101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9owFLYofdkepl01dpM17S0LInZufqTbqnZV2cOo1DfLDg6gAqnSRFP7Z_ZXd3whhLJW614Csg6OyPl8_Nk55zNCn4TMGEzDzI9oRv2Q5hAHEyl8KWk6IYGCwanrnU9H8dFZ-P08Ou90freylupK9rObv9aV_I9XoQ38qqtkH-DZplNogO_gX7iCh-H6Tz7-AeN9qeOWScMw6WzHX3URn84-X6iyySEULemR8a_CGw9HJ06s3LNJA6eqEjNVW91mz3TsKjS94WJalPNqtryDyNqTdIyz1Ubd0GCq2tm4Hy7raiaWcj4V8-s5xBZdiWKr3U_6m-3xEqzqS11yY2huv705QcitzYn15qT3U5_vDQsK1Qq1LNFpgwMbi5VpIwNGff3ueCs-Jzs4tME2tqoCbt6OrezTzpRgs0CujLCcrxNSgPWwwL-lv90siIyEszHmYMyNMY_30D6BaWPQRfvDw4OD0XqyB_JphE6bP-Pqskx15s4tt7jP3qrMd16_G1YzfoqeOC_iocXWM9RRq-focUuk8gUqHMqwRRkucgwowxuUYUAZBpThNcq0CaAMa5RhizJsUIa3UIbbKMMNyl6is8Nv4y9Hvjumw88oiSpfBrGUWlkwC8gkEFJmA8UoZYFOZMxZJmRCsjyklAbBJE2IzGVIiBAqylkMdJ--Qt1VsVKvEQYyDg8qDiORinAgQiaJTKNIApMTIVDjHgrWD5BnTsNeH6Wy4He7roe85jeXVsHlXuuP4Bd-kc25Fl7Xn9OCX5QclpfHHKhbkjLSQ5_XbuMuHFzd0-ebh5m_RY82Q-kd6lZlrd4D863kB4e-Py6sqqo
linkProvider Library Specific Holdings
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimal+Design+of+PID+Controller+for+the+analysis+of+Two+TANK+System+Using+Metaheuristic+Optimization+Algorithm&rft.jtitle=Journal+of+electrical+engineering+%26+technology&rft.au=Amuthambigaiyin+Sundari%2C+K.&rft.au=Maruthupandi%2C+P.&rft.date=2022-01-01&rft.pub=Springer+Singapore&rft.issn=1975-0102&rft.eissn=2093-7423&rft.volume=17&rft.issue=1&rft.spage=627&rft.epage=640&rft_id=info:doi/10.1007%2Fs42835-021-00891-6&rft.externalDocID=10_1007_s42835_021_00891_6
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1975-0102&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1975-0102&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1975-0102&client=summon