FrAdadelta-CSA: Fractional Adadelta Chameleon Swarm Algorithm-based feature selection with SpikeGoogle-DenseNet for epileptic seizure detection
In contemporary context, epileptic seizure stands as the most prevalent neurological disorder arising from the sudden atypical release of brain neurons and after effect of stress. The electroencephalogram (EEG) has been widely employed for epilepsy detection. Noteworthy are the Deep Learning methods...
        Saved in:
      
    
          | Published in | Computational biology and chemistry Vol. 119; p. 108550 | 
|---|---|
| Main Authors | , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        England
          Elsevier Ltd
    
        01.12.2025
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 1476-9271 1476-928X 1476-928X  | 
| DOI | 10.1016/j.compbiolchem.2025.108550 | 
Cover
| Abstract | In contemporary context, epileptic seizure stands as the most prevalent neurological disorder arising from the sudden atypical release of brain neurons and after effect of stress. The electroencephalogram (EEG) has been widely employed for epilepsy detection. Noteworthy are the Deep Learning methods and signal processing techniques utilized for seizures classification and detection. Through advancements in Deep Learning within the biomedical domain, several methodologies have been applied to identify and forecast seizure occurrences based on EEG data collected from individuals with epilepsy, typically confined from temporary in medical screening with standard scalp-EEG or intra-cerebral electrodes.
This work aims to generate a mechanism for seizure recognition from EEG signals using a classification technique based on Deep Learning. The initial phase involves pre-processing, where denoising of input EEG signals is performed by employing the Short-Time Fourier Transform (STFT). Consequently, time-domain, spectral, and statistical features were extracted from pre-processed signals.
Then, feature selection is performed utilizing Fractional Adadelta Chameleon Swarm Algorithm (FrAdadelta-CSA), a method that integrates the notion of fractional calculus into Adadelta Chameleon Swarm Algorithm (Adadelta-CSA). Finally, seizure prediction is conducted based on the selected features using SpikeGoogle-DenseNet, a hybrid model of SpikeGoogle and DenseNet.
Experimental outcomes reveal that the proposed method achieved an accuracy of 96.2 %, sensitivity of 97.3 %, and specificity of 94.5 %.
[Display omitted]
•To detect epileptic seizure, SpikeGoogle-DenseNetis created by interrelating SpikeGoogle with DenseNet.•To select the features, FrAdadelta-CSA is employed by integrating Fractional Calculus into Adadelta-CSA.•To assess effectiveness of suggested schemes, performance metrics like accuracy, sensitivity, and specificity are utilized. | 
    
|---|---|
| AbstractList | In contemporary context, epileptic seizure stands as the most prevalent neurological disorder arising from the sudden atypical release of brain neurons and after effect of stress. The electroencephalogram (EEG) has been widely employed for epilepsy detection. Noteworthy are the Deep Learning methods and signal processing techniques utilized for seizures classification and detection. Through advancements in Deep Learning within the biomedical domain, several methodologies have been applied to identify and forecast seizure occurrences based on EEG data collected from individuals with epilepsy, typically confined from temporary in medical screening with standard scalp-EEG or intra-cerebral electrodes.
This work aims to generate a mechanism for seizure recognition from EEG signals using a classification technique based on Deep Learning. The initial phase involves pre-processing, where denoising of input EEG signals is performed by employing the Short-Time Fourier Transform (STFT). Consequently, time-domain, spectral, and statistical features were extracted from pre-processed signals.
Then, feature selection is performed utilizing Fractional Adadelta Chameleon Swarm Algorithm (FrAdadelta-CSA), a method that integrates the notion of fractional calculus into Adadelta Chameleon Swarm Algorithm (Adadelta-CSA). Finally, seizure prediction is conducted based on the selected features using SpikeGoogle-DenseNet, a hybrid model of SpikeGoogle and DenseNet.
Experimental outcomes reveal that the proposed method achieved an accuracy of 96.2 %, sensitivity of 97.3 %, and specificity of 94.5 %.
[Display omitted]
•To detect epileptic seizure, SpikeGoogle-DenseNetis created by interrelating SpikeGoogle with DenseNet.•To select the features, FrAdadelta-CSA is employed by integrating Fractional Calculus into Adadelta-CSA.•To assess effectiveness of suggested schemes, performance metrics like accuracy, sensitivity, and specificity are utilized. In contemporary context, epileptic seizure stands as the most prevalent neurological disorder arising from the sudden atypical release of brain neurons and after effect of stress. The electroencephalogram (EEG) has been widely employed for epilepsy detection. Noteworthy are the Deep Learning methods and signal processing techniques utilized for seizures classification and detection. Through advancements in Deep Learning within the biomedical domain, several methodologies have been applied to identify and forecast seizure occurrences based on EEG data collected from individuals with epilepsy, typically confined from temporary in medical screening with standard scalp-EEG or intra-cerebral electrodes. This work aims to generate a mechanism for seizure recognition from EEG signals using a classification technique based on Deep Learning. The initial phase involves pre-processing, where denoising of input EEG signals is performed by employing the Short-Time Fourier Transform (STFT). Consequently, time-domain, spectral, and statistical features were extracted from pre-processed signals. Then, feature selection is performed utilizing Fractional Adadelta Chameleon Swarm Algorithm (FrAdadelta-CSA), a method that integrates the notion of fractional calculus into Adadelta Chameleon Swarm Algorithm (Adadelta-CSA). Finally, seizure prediction is conducted based on the selected features using SpikeGoogle-DenseNet, a hybrid model of SpikeGoogle and DenseNet. Experimental outcomes reveal that the proposed method achieved an accuracy of 96.2 %, sensitivity of 97.3 %, and specificity of 94.5 %. In contemporary context, epileptic seizure stands as the most prevalent neurological disorder arising from the sudden atypical release of brain neurons and after effect of stress. The electroencephalogram (EEG) has been widely employed for epilepsy detection. Noteworthy are the Deep Learning methods and signal processing techniques utilized for seizures classification and detection. Through advancements in Deep Learning within the biomedical domain, several methodologies have been applied to identify and forecast seizure occurrences based on EEG data collected from individuals with epilepsy, typically confined from temporary in medical screening with standard scalp-EEG or intra-cerebral electrodes.BACKGROUNDIn contemporary context, epileptic seizure stands as the most prevalent neurological disorder arising from the sudden atypical release of brain neurons and after effect of stress. The electroencephalogram (EEG) has been widely employed for epilepsy detection. Noteworthy are the Deep Learning methods and signal processing techniques utilized for seizures classification and detection. Through advancements in Deep Learning within the biomedical domain, several methodologies have been applied to identify and forecast seizure occurrences based on EEG data collected from individuals with epilepsy, typically confined from temporary in medical screening with standard scalp-EEG or intra-cerebral electrodes.This work aims to generate a mechanism for seizure recognition from EEG signals using a classification technique based on Deep Learning. The initial phase involves pre-processing, where denoising of input EEG signals is performed by employing the Short-Time Fourier Transform (STFT). Consequently, time-domain, spectral, and statistical features were extracted from pre-processed signals.PURPOSEThis work aims to generate a mechanism for seizure recognition from EEG signals using a classification technique based on Deep Learning. The initial phase involves pre-processing, where denoising of input EEG signals is performed by employing the Short-Time Fourier Transform (STFT). Consequently, time-domain, spectral, and statistical features were extracted from pre-processed signals.Then, feature selection is performed utilizing Fractional Adadelta Chameleon Swarm Algorithm (FrAdadelta-CSA), a method that integrates the notion of fractional calculus into Adadelta Chameleon Swarm Algorithm (Adadelta-CSA). Finally, seizure prediction is conducted based on the selected features using SpikeGoogle-DenseNet, a hybrid model of SpikeGoogle and DenseNet.METHODSThen, feature selection is performed utilizing Fractional Adadelta Chameleon Swarm Algorithm (FrAdadelta-CSA), a method that integrates the notion of fractional calculus into Adadelta Chameleon Swarm Algorithm (Adadelta-CSA). Finally, seizure prediction is conducted based on the selected features using SpikeGoogle-DenseNet, a hybrid model of SpikeGoogle and DenseNet.Experimental outcomes reveal that the proposed method achieved an accuracy of 96.2 %, sensitivity of 97.3 %, and specificity of 94.5 %.RESULTS AND CONCLUSIONExperimental outcomes reveal that the proposed method achieved an accuracy of 96.2 %, sensitivity of 97.3 %, and specificity of 94.5 %.  | 
    
| ArticleNumber | 108550 | 
    
| Author | Indu Salini, G. Sowmy Sreeja, T.K.  | 
    
| Author_xml | – sequence: 1 givenname: G. surname: Indu Salini fullname: Indu Salini, G. email: induanilk@gmail.com organization: Department of Electronics and Communication Engineering, Noorul Islam Centre for Higher Education, Kumaracoil, Thuckalay, Kanniyakumari, Tamil Nadu 629 180, India – sequence: 2 surname: Sowmy fullname: Sowmy email: sowmy@niuniv.com organization: Department of Bio Medical Engineering, Noorul Islam Centre for Higher Education, Kumaracoil, Thuckalay, Kanniyakumari, Tamil Nadu 629 180, India – sequence: 3 givenname: T.K. surname: Sreeja fullname: Sreeja, T.K. email: sreejaeng07@gmail.com organization: Department of Nanotechnology, NICHE,Kanyakumari, India  | 
    
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40554820$$D View this record in MEDLINE/PubMed | 
    
| BookMark | eNqNkc1u1DAURi1URH_gFZDFik0G24kdp7vRlClIFSwGJHaWx77peHDiYHtawUvwynhIW7Fk5St951zJ9ztHJ2MYAaE3lCwooeLdfmHCMG1d8GYHw4IRxksgOSfP0BltWlF1TH47eZpbeorOU9oTwmpC-At02hDOG8nIGfq9jkurLfisq9VmeYnXUZvswqg9fgzwaqcH8BBGvLnXccBLfxuiy7uh2uoEFveg8yECTgX6K-P7kuLN5L7DdQi3HqorGBN8goz7EDFMzsOUnSmG-3U0LeTZfIme99onePXwXqCv6_dfVh-qm8_XH1fLm8rUjOeq46KlHXCrW2ha0ggJmoq-76RuhWakq7eCmEZL0UtqG1sAq7mtZWvrFgSrL9Dbee8Uw48DpKwGlwx4r0cIh6RqxuqOdV0jC_r6AT1sB7Bqim7Q8ad6PGIBLmfAxJBShP4JoUQdG1N79W9j6tiYmhsr8tUsQ_ntnYOoknEwGrAulpMoG9z_rPkDuBunEA | 
    
| Cites_doi | 10.1016/j.egyr.2022.10.070 10.1049/cit2.12082 10.1049/iet-syb.2018.5130 10.1016/j.tox.2025.154065 10.1109/JBHI.2018.2871678 10.1016/j.bspc.2020.102338 10.1016/j.compbiolchem.2024.108134 10.1016/j.compbiomed.2020.103671 10.3390/e19060222 10.5370/JEET.2014.9.3.1060 10.1016/j.compbiolchem.2024.108073 10.1016/j.bspc.2019.101702 10.1109/CVPR.2017.243 10.3390/biology11081220 10.1080/19420889.2022.2153648 10.1016/j.eswa.2021.114685 10.1016/j.artmed.2021.102084 10.3390/s18061720  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2025 Elsevier Ltd Copyright © 2025 Elsevier Ltd. All rights reserved.  | 
    
| Copyright_xml | – notice: 2025 Elsevier Ltd – notice: Copyright © 2025 Elsevier Ltd. All rights reserved.  | 
    
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8  | 
    
| DOI | 10.1016/j.compbiolchem.2025.108550 | 
    
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic  | 
    
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic  | 
    
| DatabaseTitleList | MEDLINE MEDLINE - Academic  | 
    
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Chemistry Biology  | 
    
| EISSN | 1476-928X | 
    
| ExternalDocumentID | 40554820 10_1016_j_compbiolchem_2025_108550 S1476927125002105  | 
    
| Genre | Journal Article | 
    
| GroupedDBID | --- --K --M .DC .~1 0R~ 1B1 1~. 1~5 29F 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ AAEDT AAEDW AAHBH AAIKJ AAKOC AALRI AAOAW AAQFI AARLI AATTM AAXKI AAXUO AAYFN AAYWO ABBOA ABGSF ABJNI ABMAC ABNUV ABUDA ABWVN ABXDB ACDAQ ACGFS ACLOT ACNNM ACRLP ACRPL ACVFH ACZNC ADBBV ADCNI ADECG ADEWK ADEZE ADJOM ADMUD ADNMO ADUVX AEBSH AEHWI AEIPS AEKER AENEX AEUPX AFJKZ AFPUW AFTJW AFXIZ AFZHZ AGHFR AGRDE AGUBO AGYEJ AHPOS AHZHX AIALX AIEXJ AIGII AIIUN AIKHN AITUG AJSZI AKBMS AKRWK AKURH AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU AOUOD APXCP AXJTR BKOJK BLXMC CS3 DU5 EBS EFJIC EFKBS EFLBG EJD ENUVR EO8 EO9 EP2 EP3 F5P FDB FEDTE FIRID FLBIZ FNPLU FYGXN G-Q GBLVA GBOLZ HVGLF HZ~ IHE J1W KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SCB SDF SDG SES SEW SPC SPCBC SSG SSK SSU SSV SSZ T5K UHS ZMT ~G- ~HD AAYXX CITATION AGCQF CGR CUY CVF ECM EIF NPM 7X8  | 
    
| ID | FETCH-LOGICAL-c325t-956719e5da7e470468ea16ff98a76a2093b60c4a86f81d4d468da5d387d37e623 | 
    
| IEDL.DBID | .~1 | 
    
| ISSN | 1476-9271 1476-928X  | 
    
| IngestDate | Thu Oct 02 22:32:19 EDT 2025 Tue Sep 09 02:32:30 EDT 2025 Wed Oct 01 05:31:45 EDT 2025 Sat Sep 27 17:12:23 EDT 2025  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Keywords | NN CNN ESAASO Epileptic seizure recognition KHA ELM FM DL GBD STFT TTH BN Optimization AUC CSA Deep learning RNN COA GA DM-ELM feature selection disease detection LSTM EEG MOH Adadelta-CSA PSP AM PSO Conv DCSAE-ESDC TL LE ReLU FC FrAdadelta-CSA  | 
    
| Language | English | 
    
| License | Copyright © 2025 Elsevier Ltd. All rights reserved. | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c325t-956719e5da7e470468ea16ff98a76a2093b60c4a86f81d4d468da5d387d37e623 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23  | 
    
| PMID | 40554820 | 
    
| PQID | 3223929948 | 
    
| PQPubID | 23479 | 
    
| ParticipantIDs | proquest_miscellaneous_3223929948 pubmed_primary_40554820 crossref_primary_10_1016_j_compbiolchem_2025_108550 elsevier_sciencedirect_doi_10_1016_j_compbiolchem_2025_108550  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2025-12-01 | 
    
| PublicationDateYYYYMMDD | 2025-12-01 | 
    
| PublicationDate_xml | – month: 12 year: 2025 text: 2025-12-01 day: 01  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | England | 
    
| PublicationPlace_xml | – name: England | 
    
| PublicationTitle | Computational biology and chemistry | 
    
| PublicationTitleAlternate | Comput Biol Chem | 
    
| PublicationYear | 2025 | 
    
| Publisher | Elsevier Ltd | 
    
| Publisher_xml | – name: Elsevier Ltd | 
    
| References | Safi, Safi (bib20) 2021; 65 Gabeff, Teijeiro, Zapater, Cammoun, Rheims, Ryvlin, Atienza (bib10) 2021; 117 EinShokaMohamedM, Hemdan (bib9) 2022 Carvalho, Moraes (bib5) 2020; 62 Sivasankari, Thanushkodi (bib21) 2014; 9 Chagaleti, Kumar, Rajagopal, Alfarhan, Arockiaraj, Kumaradoss, Namasivayam (bib7) 2024 Mohapatra, Patnaik (bib17) 2022; 24 Packiapalavesam, Saravanan, Mahajan, Almutairi, Almutairi, Arockiaraj, Kathiravan, Namasivayam (bib18) 2024; 110 Huang, Gao, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q. Weinberger, "Densely connected convolutional networks", In Proceedings of the IEEE conference on computer vision and pattern recognition, pp: 4700-4708, 2017. Bhaladhare, Jinwala (bib1) 2014 Wang (bib27) 2022; 8 Krishnakumar, Thanushkodi (bib14) 2014; 9 Wang, Xue, Li, Luo, Huang, Cui, Huang (bib26) 2017; 19 Boroujeni, Rastegari, Khodadadi (bib3) 2019; 13 Boonyakitanont, Lek-Uthai (bib2) 2020; 57 Yuan, Xun, Jia, Zhang (bib30) 2019; 23 Snoek, Hugo Larochelle, Adams (bib22) 2012; 25 Mishra, Satapathy, Mohanty, Pattnaik (bib16) 2023; 16 Braik (bib4) 2021; 174 Hilal, Albraikan, Dhahbi, Nour, Mohamed, Motwakel, Zamani, Rizwanullah (bib11) 2022; 11 Sudhakaran, Karthikeyan, Madesh, Dhaareshwar, Pachaiappan, Rajagopal, Soundharrajan, Karthick Raja Namasivayam, Arockiaraj (bib23) 2025 Yang, Li, Zhang, Duan, Liu, Zhang, Feng, Tan, Huang, Zhou (bib29) 2020; 119 Thanki (bib25) 2023; 3 CHB-MIT Scalp EEG Database Wang, Zhong, Cheng, Xie, Zhou, Ren, Liu (bib28) 2022; 7 Zeiler, Matthew D., "Adadelta: An Adaptive Learning Rate Method", arXiv preprint arXiv:1212.5701, 2012. Kadam, Dalai, Chauhan, Guru, Mitra, Raytekar, Kumar, Kadam, GURU (bib13) 2025; 17 Sun, Liu, Li, Wang (bib24) 2022 Mei, Zhao, Chen, Chen (bib15) 2018; 18 Chagaleti, Kumar, Kumar, Rajagopal, Alfarhan, Arockiaraj, Kumaradoss, Namasivayam (bib6) 2024 Packiapalavesam, Saravanan, Mahajan, Almutairi, Almutairi, Arockiaraj, Kathiravan, Namasivayam (bib19) 2024; 110 Accessed on December 2022. Kadam (10.1016/j.compbiolchem.2025.108550_bib13) 2025; 17 Wang (10.1016/j.compbiolchem.2025.108550_bib26) 2017; 19 Mei (10.1016/j.compbiolchem.2025.108550_bib15) 2018; 18 Carvalho (10.1016/j.compbiolchem.2025.108550_bib5) 2020; 62 Gabeff (10.1016/j.compbiolchem.2025.108550_bib10) 2021; 117 Hilal (10.1016/j.compbiolchem.2025.108550_bib11) 2022; 11 Safi (10.1016/j.compbiolchem.2025.108550_bib20) 2021; 65 Snoek (10.1016/j.compbiolchem.2025.108550_bib22) 2012; 25 Yang (10.1016/j.compbiolchem.2025.108550_bib29) 2020; 119 Wang (10.1016/j.compbiolchem.2025.108550_bib28) 2022; 7 Boroujeni (10.1016/j.compbiolchem.2025.108550_bib3) 2019; 13 Thanki (10.1016/j.compbiolchem.2025.108550_bib25) 2023; 3 Packiapalavesam (10.1016/j.compbiolchem.2025.108550_bib19) 2024; 110 Chagaleti (10.1016/j.compbiolchem.2025.108550_bib7) 2024 Sun (10.1016/j.compbiolchem.2025.108550_bib24) 2022 Boonyakitanont (10.1016/j.compbiolchem.2025.108550_bib2) 2020; 57 Mohapatra (10.1016/j.compbiolchem.2025.108550_bib17) 2022; 24 Braik (10.1016/j.compbiolchem.2025.108550_bib4) 2021; 174 Chagaleti (10.1016/j.compbiolchem.2025.108550_bib6) 2024 Sivasankari (10.1016/j.compbiolchem.2025.108550_bib21) 2014; 9 10.1016/j.compbiolchem.2025.108550_bib12 Packiapalavesam (10.1016/j.compbiolchem.2025.108550_bib18) 2024; 110 Bhaladhare (10.1016/j.compbiolchem.2025.108550_bib1) 2014 10.1016/j.compbiolchem.2025.108550_bib31 Mishra (10.1016/j.compbiolchem.2025.108550_bib16) 2023; 16 Yuan (10.1016/j.compbiolchem.2025.108550_bib30) 2019; 23 Sudhakaran (10.1016/j.compbiolchem.2025.108550_bib23) 2025 EinShokaMohamedM (10.1016/j.compbiolchem.2025.108550_bib9) 2022 Krishnakumar (10.1016/j.compbiolchem.2025.108550_bib14) 2014; 9 10.1016/j.compbiolchem.2025.108550_bib8 Wang (10.1016/j.compbiolchem.2025.108550_bib27) 2022; 8  | 
    
| References_xml | – volume: 17 year: 2025 ident: bib13 article-title: "Nanobiotechnology unveils the power of Probiotics: a comprehensive review on the synergistic role of probiotics and advanced nanotechnology in enhancing geriatric health publication-title: Cureus – reference: Zeiler, Matthew D., "Adadelta: An Adaptive Learning Rate Method", arXiv preprint arXiv:1212.5701, 2012. – volume: 110 year: 2024 ident: bib18 article-title: Identification of novel CA IX inhibitor: pharmacophore modeling, docking, DFT, and dynamic simulation publication-title: Comput. Biol. Chem. – volume: 25 year: 2012 ident: bib22 article-title: "Practical bayesian optimization of machine learning algorithms" publication-title: Adv. Neural Inf. Process. Syst. – volume: 9 start-page: 1060 year: 2014 end-page: 1071 ident: bib21 article-title: "An improved EEG signal classification using neural network with the consequence of ICA and STFT" publication-title: J. Electr. Eng. Technol. – year: 2024 ident: bib6 article-title: "Targeting cyclin-dependent kinase 2 CDK2: insights from molecular docking and dynamics simulation-a systematic computational approach to discover novel cancer therapeutics publication-title: Comput. Biol. Chem. – reference: ”, Accessed on December 2022. – volume: 24 year: 2022 ident: bib17 article-title: "ESA-ASO: an enhanced search ability based atom search optimization algorithm for epileptic seizure detection" publication-title: Meas. Sens. – volume: 23 start-page: 83 year: 2019 end-page: 94 ident: bib30 article-title: "A multi-view deep learning framework for eeg seizure detection publication-title: IEEE J. Biomed. Health Inform. – volume: 11 start-page: 1220 year: 2022 ident: bib11 article-title: "Intelligent epileptic seizure detection and classification model using optimal deep canonical sparse autoencoder publication-title: Biology – year: 2022 ident: bib24 article-title: "Automatic epileptic seizure detection using pso-based feature selection and multilevel spectral analysis for EEG signals" publication-title: J. Sens. – volume: 62 year: 2020 ident: bib5 article-title: & Braga, Antônio & Mendes, eduardo, “evaluating five different adaptive decomposition methods for EEG signal seizure detection and classification” publication-title: Biomed. Signal Process. Control – reference: CHB-MIT Scalp EEG Database, " – year: 2024 ident: bib7 article-title: "Targeting cyclin-dependent kinase 2 CDK2: insights from molecular docking and dynamics simulation-a systematic computational approach to discover novel cancer therapeutics" publication-title: Comput. Biol. Chem. – volume: 119 year: 2020 ident: bib29 article-title: Selection of features for patient-independent detection of seizure events using scalp EEG signals publication-title: Comput. Biol. Med. – volume: 8 start-page: 43 year: 2022 end-page: 53 ident: bib27 article-title: "Fault line selection of power distribution system via improved bee colony algorithm based deep neural network" publication-title: Energy Rep. – volume: 13 start-page: 260 year: 2019 end-page: 266 ident: bib3 article-title: "Diagnosis of attention deficit hyperactivity disorder using non-linear analysis of the EEG signal" publication-title: IET Syst. Biol. – volume: 16 start-page: 2153648 year: 2023 ident: bib16 article-title: A DM-ELM based classifier for EEG brain signal classification for epileptic seizure detection publication-title: Commun. Integr. Biol. – volume: 65 year: 2021 ident: bib20 article-title: "Early detection of Alzheimer’s disease from EEG signals using Hjorth parameters" publication-title: Biomed. Signal Process. Control – volume: 3 year: 2023 ident: bib25 article-title: "A deep neural network and machine learning approach for retinal fundus image classification" publication-title: Healthc. Anal. – volume: 117 year: 2021 ident: bib10 article-title: "Interpreting deep learning models for epileptic seizure detection on EEG signals" publication-title: Artif. Intell. Med. – volume: 7 start-page: 492 year: 2022 end-page: 502 ident: bib28 article-title: "SpikeGoogle: spiking neural networks with googlenet-like inception module" publication-title: CAAI Trans. Intell. Technol. – volume: 18 start-page: 1720 year: 2018 ident: bib15 article-title: Bio-signal complexity analysis in epileptic seizure monitoring: a topic review publication-title: Sensors – start-page: 12 year: 2022 ident: bib9 article-title: “An efficient CNN based epileptic seizures detection framework using encrypted EEG signals for secure telemedicine applications” publication-title: Alex. Eng. J. – reference: Huang, Gao, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q. Weinberger, "Densely connected convolutional networks", In Proceedings of the IEEE conference on computer vision and pattern recognition, pp: 4700-4708, 2017. – volume: 19 start-page: 222 year: 2017 ident: bib26 article-title: "Automatic epileptic seizure detection in EEG signals using multi-domain feature extraction and nonlinear analysis" publication-title: Entropy – volume: 110 year: 2024 ident: bib19 article-title: "Identification of novel CA IX inhibitor: pharmacophore modeling, docking, DFT, and dynamic simulation" publication-title: Comput. Biol. Chem. – year: 2014 ident: bib1 article-title: "A clustering approach for the l-diversity model in privacy preserving data mining using fractional calculus-bacterial foraging optimization algorithm" publication-title: Adv. Comput. Eng. – volume: 174 start-page: 12 year: 2021 ident: bib4 article-title: "Chameleon Swarm Algorithm: a bio-inspired optimizer for solving engineering design problems" publication-title: Expert Syst. Appl. – volume: 57 year: 2020 ident: bib2 article-title: KrisnachaiChomtho, and JitkomutSongsiri, "a review of feature extraction and performance evaluation in epileptic seizure detection using EEG" publication-title: Biomed. Signal Process. Control – volume: 9 start-page: 1060 year: 2014 end-page: 1071 ident: bib14 article-title: An improved EEG signal classification using Neural Network with the consequence of ICA and STFT publication-title: J. Electr. Eng. Technol. – year: 2025 ident: bib23 article-title: "Neurotoxic effects and cognitive decline induced by aniline blue dye in an in-vivo zebrafish model publication-title: Toxicology – volume: 8 start-page: 43 issue: 12 year: 2022 ident: 10.1016/j.compbiolchem.2025.108550_bib27 article-title: "Fault line selection of power distribution system via improved bee colony algorithm based deep neural network" publication-title: Energy Rep. doi: 10.1016/j.egyr.2022.10.070 – volume: 7 start-page: 492 issue: 3 year: 2022 ident: 10.1016/j.compbiolchem.2025.108550_bib28 article-title: "SpikeGoogle: spiking neural networks with googlenet-like inception module" publication-title: CAAI Trans. Intell. Technol. doi: 10.1049/cit2.12082 – volume: 13 start-page: 260 issue: 5 year: 2019 ident: 10.1016/j.compbiolchem.2025.108550_bib3 article-title: "Diagnosis of attention deficit hyperactivity disorder using non-linear analysis of the EEG signal" publication-title: IET Syst. Biol. doi: 10.1049/iet-syb.2018.5130 – year: 2025 ident: 10.1016/j.compbiolchem.2025.108550_bib23 article-title: "Neurotoxic effects and cognitive decline induced by aniline blue dye in an in-vivo zebrafish model publication-title: Toxicology doi: 10.1016/j.tox.2025.154065 – volume: 23 start-page: 83 issue: 1 year: 2019 ident: 10.1016/j.compbiolchem.2025.108550_bib30 article-title: "A multi-view deep learning framework for eeg seizure detection publication-title: IEEE J. Biomed. Health Inform. doi: 10.1109/JBHI.2018.2871678 – ident: 10.1016/j.compbiolchem.2025.108550_bib8 – start-page: 12 year: 2022 ident: 10.1016/j.compbiolchem.2025.108550_bib9 article-title: “An efficient CNN based epileptic seizures detection framework using encrypted EEG signals for secure telemedicine applications” publication-title: Alex. Eng. J. – volume: 25 year: 2012 ident: 10.1016/j.compbiolchem.2025.108550_bib22 article-title: "Practical bayesian optimization of machine learning algorithms" publication-title: Adv. Neural Inf. Process. Syst. – volume: 65 year: 2021 ident: 10.1016/j.compbiolchem.2025.108550_bib20 article-title: "Early detection of Alzheimer’s disease from EEG signals using Hjorth parameters" publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2020.102338 – issue: 1 year: 2014 ident: 10.1016/j.compbiolchem.2025.108550_bib1 article-title: "A clustering approach for the l-diversity model in privacy preserving data mining using fractional calculus-bacterial foraging optimization algorithm" publication-title: Adv. Comput. Eng. – year: 2024 ident: 10.1016/j.compbiolchem.2025.108550_bib6 article-title: "Targeting cyclin-dependent kinase 2 CDK2: insights from molecular docking and dynamics simulation-a systematic computational approach to discover novel cancer therapeutics publication-title: Comput. Biol. Chem. doi: 10.1016/j.compbiolchem.2024.108134 – volume: 119 year: 2020 ident: 10.1016/j.compbiolchem.2025.108550_bib29 article-title: Selection of features for patient-independent detection of seizure events using scalp EEG signals publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2020.103671 – volume: 19 start-page: 222 issue: 6 year: 2017 ident: 10.1016/j.compbiolchem.2025.108550_bib26 article-title: "Automatic epileptic seizure detection in EEG signals using multi-domain feature extraction and nonlinear analysis" publication-title: Entropy doi: 10.3390/e19060222 – volume: 62 issue: 102073 year: 2020 ident: 10.1016/j.compbiolchem.2025.108550_bib5 article-title: & Braga, Antônio & Mendes, eduardo, “evaluating five different adaptive decomposition methods for EEG signal seizure detection and classification” publication-title: Biomed. Signal Process. Control – volume: 9 start-page: 1060 issue: 3 year: 2014 ident: 10.1016/j.compbiolchem.2025.108550_bib21 article-title: "An improved EEG signal classification using neural network with the consequence of ICA and STFT" publication-title: J. Electr. Eng. Technol. doi: 10.5370/JEET.2014.9.3.1060 – volume: 110 year: 2024 ident: 10.1016/j.compbiolchem.2025.108550_bib18 article-title: Identification of novel CA IX inhibitor: pharmacophore modeling, docking, DFT, and dynamic simulation publication-title: Comput. Biol. Chem. doi: 10.1016/j.compbiolchem.2024.108073 – volume: 57 year: 2020 ident: 10.1016/j.compbiolchem.2025.108550_bib2 article-title: KrisnachaiChomtho, and JitkomutSongsiri, "a review of feature extraction and performance evaluation in epileptic seizure detection using EEG" publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2019.101702 – ident: 10.1016/j.compbiolchem.2025.108550_bib12 doi: 10.1109/CVPR.2017.243 – volume: 17 issue: 3 year: 2025 ident: 10.1016/j.compbiolchem.2025.108550_bib13 article-title: "Nanobiotechnology unveils the power of Probiotics: a comprehensive review on the synergistic role of probiotics and advanced nanotechnology in enhancing geriatric health publication-title: Cureus – volume: 24 year: 2022 ident: 10.1016/j.compbiolchem.2025.108550_bib17 article-title: "ESA-ASO: an enhanced search ability based atom search optimization algorithm for epileptic seizure detection" publication-title: Meas. Sens. – volume: 11 start-page: 1220 issue: 8 year: 2022 ident: 10.1016/j.compbiolchem.2025.108550_bib11 article-title: "Intelligent epileptic seizure detection and classification model using optimal deep canonical sparse autoencoder publication-title: Biology doi: 10.3390/biology11081220 – volume: 16 start-page: 2153648 issue: 1 year: 2023 ident: 10.1016/j.compbiolchem.2025.108550_bib16 article-title: A DM-ELM based classifier for EEG brain signal classification for epileptic seizure detection publication-title: Commun. Integr. Biol. doi: 10.1080/19420889.2022.2153648 – volume: 174 start-page: 12 year: 2021 ident: 10.1016/j.compbiolchem.2025.108550_bib4 article-title: "Chameleon Swarm Algorithm: a bio-inspired optimizer for solving engineering design problems" publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2021.114685 – volume: 117 year: 2021 ident: 10.1016/j.compbiolchem.2025.108550_bib10 article-title: "Interpreting deep learning models for epileptic seizure detection on EEG signals" publication-title: Artif. Intell. Med. doi: 10.1016/j.artmed.2021.102084 – ident: 10.1016/j.compbiolchem.2025.108550_bib31 – year: 2024 ident: 10.1016/j.compbiolchem.2025.108550_bib7 article-title: "Targeting cyclin-dependent kinase 2 CDK2: insights from molecular docking and dynamics simulation-a systematic computational approach to discover novel cancer therapeutics" publication-title: Comput. Biol. Chem. doi: 10.1016/j.compbiolchem.2024.108134 – issue: 1 year: 2022 ident: 10.1016/j.compbiolchem.2025.108550_bib24 article-title: "Automatic epileptic seizure detection using pso-based feature selection and multilevel spectral analysis for EEG signals" publication-title: J. Sens. – volume: 110 year: 2024 ident: 10.1016/j.compbiolchem.2025.108550_bib19 article-title: "Identification of novel CA IX inhibitor: pharmacophore modeling, docking, DFT, and dynamic simulation" publication-title: Comput. Biol. Chem. doi: 10.1016/j.compbiolchem.2024.108073 – volume: 18 start-page: 1720 issue: 6 year: 2018 ident: 10.1016/j.compbiolchem.2025.108550_bib15 article-title: Bio-signal complexity analysis in epileptic seizure monitoring: a topic review publication-title: Sensors doi: 10.3390/s18061720 – volume: 9 start-page: 1060 issue: 3 year: 2014 ident: 10.1016/j.compbiolchem.2025.108550_bib14 article-title: An improved EEG signal classification using Neural Network with the consequence of ICA and STFT publication-title: J. Electr. Eng. Technol. doi: 10.5370/JEET.2014.9.3.1060 – volume: 3 year: 2023 ident: 10.1016/j.compbiolchem.2025.108550_bib25 article-title: "A deep neural network and machine learning approach for retinal fundus image classification" publication-title: Healthc. Anal.  | 
    
| SSID | ssj0023005 | 
    
| Score | 2.4109693 | 
    
| Snippet | In contemporary context, epileptic seizure stands as the most prevalent neurological disorder arising from the sudden atypical release of brain neurons and... | 
    
| SourceID | proquest pubmed crossref elsevier  | 
    
| SourceType | Aggregation Database Index Database Publisher  | 
    
| StartPage | 108550 | 
    
| SubjectTerms | Algorithms Convolutional Neural Networks Deep Learning disease detection Electroencephalography Epilepsy - diagnosis Epileptic seizure recognition feature selection Humans Optimization Seizures - diagnosis Signal Processing, Computer-Assisted  | 
    
| Title | FrAdadelta-CSA: Fractional Adadelta Chameleon Swarm Algorithm-based feature selection with SpikeGoogle-DenseNet for epileptic seizure detection | 
    
| URI | https://dx.doi.org/10.1016/j.compbiolchem.2025.108550 https://www.ncbi.nlm.nih.gov/pubmed/40554820 https://www.proquest.com/docview/3223929948  | 
    
| Volume | 119 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1476-928X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023005 issn: 1476-9271 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect customDbUrl: eissn: 1476-928X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023005 issn: 1476-9271 databaseCode: .~1 dateStart: 20030201 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1476-928X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023005 issn: 1476-9271 databaseCode: AIKHN dateStart: 20030201 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect (Elsevier) customDbUrl: eissn: 1476-928X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023005 issn: 1476-9271 databaseCode: ACRLP dateStart: 20030201 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1476-928X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023005 issn: 1476-9271 databaseCode: AKRWK dateStart: 20030201 isFulltext: true providerName: Library Specific Holdings  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Li9RAEG6WFdGL6PpaH0sLXtuZJP1IBA8hOo6vQRwX9hYqSWc3upMM2SyiB_-Cf9mq7mRRUBA8hSRdpOlqqr7qVH3F2OPEFqVJEhDETi7Q41cCZAACFOhYFxBaR5L0bqWXh_L1kTraYdlUC0NplaPt9zbdWevxyWxczdm2aWbrQBqdhAY9tAtcqNBcSkNdDJ58v0jzCImO3VUYGS1o9EQ86nK8KG2byI5wfagqPVSUcqeoBv_PTupvINQ5o8V1dm1EkTz1E73Bdmy7xy77vpJf99iVbGrjdpP9WPRpRVyQA4hsnT7li97XMpD8-IJnJ7BB_9O1fP0F-g1PT4-7vhlONoK8XMVr6_g_-ZnrmoPCnM5v-XrbfLYvu-741IrnGA_blR04omBut2hs0BiVKNF8I8nKDl7yFjtcvPiYLcXYhUGUUagGgQGUCRKrKjBWGgynYwuBruskBqMhnCdRoeelhFjXiH1lhQMqUFUUmyoyFtHVbbbbdq29y3hSBzBXYMisSChwiC6LEmqtorAsIN5n0bTs-daTbeRTFtqn_Fdl5aSs3Ctrnz2bNJT_tnVy9Ar_JP9oUmuOuqEfJtDa7vwsR2NH8DGROLM7Xt8X80Kgi8FeOL_3n1-_z67Snc-QecB2h_7cPkScMxQHbiMfsEtp9uHte7q-erNc_QSAPgDr | 
    
| linkProvider | Elsevier | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZKESoXBAVKeRqJq9nNw3aCxGEVWBZo97Kt1Js1SZw20E1WaSoEB_4Cf5kZO6lAAgmJa-xRRh5r5ptk5hvGXqQ2L3SagiB2coERvxQQByBAgkpUDqF1JEmHS7U4jj-cyJMtlo29MFRWOfh-79Odtx6eTIbTnGzqerIKYq3SUGOEdomLvMauxzLUlIG9_H5V5xESH7trMdJK0PaRedQVeVHdNrEd4QFRW3ooqeZOUhP-n6PU31Coi0bz2-zWACP5zGt6h23ZZpfd8IMlv-6ynWyc43aX_Zh3s5LIIHsQ2Wr2is8738xA8sMCz85gjQGobfjqC3RrPjs_bbu6P1sLCnMlr6wjAOUXbmwOCnP6gMtXm_qzfde2p-dWvMGE2C5tzxEGc7tBb4PeqECJ-htJlrb3kvfY8fztUbYQwxgGUUSh7AVmUDpIrSxB21hjPp1YCFRVpQloBeE0jXI1LWJIVIXgNy5xQwmyjBJdRtoivLrPtpu2sQ8YT6sAphI0-ZUYctyiiryASskoLHJI9lk0HrvZeLYNM5ahfTK_GsuQsYw31j57PVrI_HZ3DIaFf5J_PprVoG3ojwk0tr28MOjtCD-mMWq25-19pRciXcz2wunD_3z7M7azODo8MAfvlx8fsZu04stlHrPtvru0TxD09PlTd6l_AlnxAOs | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=FrAdadelta-CSA%3A+Fractional+Adadelta+Chameleon+Swarm+Algorithm-based+feature+selection+with+SpikeGoogle-DenseNet+for+epileptic+seizure+detection&rft.jtitle=Computational+biology+and+chemistry&rft.au=Indu+Salini%2C+G.&rft.au=Sowmy&rft.au=Sreeja%2C+T.K.&rft.date=2025-12-01&rft.issn=1476-9271&rft.volume=119&rft.spage=108550&rft_id=info:doi/10.1016%2Fj.compbiolchem.2025.108550&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_compbiolchem_2025_108550 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1476-9271&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1476-9271&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1476-9271&client=summon |