FrAdadelta-CSA: Fractional Adadelta Chameleon Swarm Algorithm-based feature selection with SpikeGoogle-DenseNet for epileptic seizure detection

In contemporary context, epileptic seizure stands as the most prevalent neurological disorder arising from the sudden atypical release of brain neurons and after effect of stress. The electroencephalogram (EEG) has been widely employed for epilepsy detection. Noteworthy are the Deep Learning methods...

Full description

Saved in:
Bibliographic Details
Published inComputational biology and chemistry Vol. 119; p. 108550
Main Authors Indu Salini, G., Sowmy, Sreeja, T.K.
Format Journal Article
LanguageEnglish
Published England Elsevier Ltd 01.12.2025
Subjects
Online AccessGet full text
ISSN1476-9271
1476-928X
1476-928X
DOI10.1016/j.compbiolchem.2025.108550

Cover

Abstract In contemporary context, epileptic seizure stands as the most prevalent neurological disorder arising from the sudden atypical release of brain neurons and after effect of stress. The electroencephalogram (EEG) has been widely employed for epilepsy detection. Noteworthy are the Deep Learning methods and signal processing techniques utilized for seizures classification and detection. Through advancements in Deep Learning within the biomedical domain, several methodologies have been applied to identify and forecast seizure occurrences based on EEG data collected from individuals with epilepsy, typically confined from temporary in medical screening with standard scalp-EEG or intra-cerebral electrodes. This work aims to generate a mechanism for seizure recognition from EEG signals using a classification technique based on Deep Learning. The initial phase involves pre-processing, where denoising of input EEG signals is performed by employing the Short-Time Fourier Transform (STFT). Consequently, time-domain, spectral, and statistical features were extracted from pre-processed signals. Then, feature selection is performed utilizing Fractional Adadelta Chameleon Swarm Algorithm (FrAdadelta-CSA), a method that integrates the notion of fractional calculus into Adadelta Chameleon Swarm Algorithm (Adadelta-CSA). Finally, seizure prediction is conducted based on the selected features using SpikeGoogle-DenseNet, a hybrid model of SpikeGoogle and DenseNet. Experimental outcomes reveal that the proposed method achieved an accuracy of 96.2 %, sensitivity of 97.3 %, and specificity of 94.5 %. [Display omitted] •To detect epileptic seizure, SpikeGoogle-DenseNetis created by interrelating SpikeGoogle with DenseNet.•To select the features, FrAdadelta-CSA is employed by integrating Fractional Calculus into Adadelta-CSA.•To assess effectiveness of suggested schemes, performance metrics like accuracy, sensitivity, and specificity are utilized.
AbstractList In contemporary context, epileptic seizure stands as the most prevalent neurological disorder arising from the sudden atypical release of brain neurons and after effect of stress. The electroencephalogram (EEG) has been widely employed for epilepsy detection. Noteworthy are the Deep Learning methods and signal processing techniques utilized for seizures classification and detection. Through advancements in Deep Learning within the biomedical domain, several methodologies have been applied to identify and forecast seizure occurrences based on EEG data collected from individuals with epilepsy, typically confined from temporary in medical screening with standard scalp-EEG or intra-cerebral electrodes. This work aims to generate a mechanism for seizure recognition from EEG signals using a classification technique based on Deep Learning. The initial phase involves pre-processing, where denoising of input EEG signals is performed by employing the Short-Time Fourier Transform (STFT). Consequently, time-domain, spectral, and statistical features were extracted from pre-processed signals. Then, feature selection is performed utilizing Fractional Adadelta Chameleon Swarm Algorithm (FrAdadelta-CSA), a method that integrates the notion of fractional calculus into Adadelta Chameleon Swarm Algorithm (Adadelta-CSA). Finally, seizure prediction is conducted based on the selected features using SpikeGoogle-DenseNet, a hybrid model of SpikeGoogle and DenseNet. Experimental outcomes reveal that the proposed method achieved an accuracy of 96.2 %, sensitivity of 97.3 %, and specificity of 94.5 %. [Display omitted] •To detect epileptic seizure, SpikeGoogle-DenseNetis created by interrelating SpikeGoogle with DenseNet.•To select the features, FrAdadelta-CSA is employed by integrating Fractional Calculus into Adadelta-CSA.•To assess effectiveness of suggested schemes, performance metrics like accuracy, sensitivity, and specificity are utilized.
In contemporary context, epileptic seizure stands as the most prevalent neurological disorder arising from the sudden atypical release of brain neurons and after effect of stress. The electroencephalogram (EEG) has been widely employed for epilepsy detection. Noteworthy are the Deep Learning methods and signal processing techniques utilized for seizures classification and detection. Through advancements in Deep Learning within the biomedical domain, several methodologies have been applied to identify and forecast seizure occurrences based on EEG data collected from individuals with epilepsy, typically confined from temporary in medical screening with standard scalp-EEG or intra-cerebral electrodes. This work aims to generate a mechanism for seizure recognition from EEG signals using a classification technique based on Deep Learning. The initial phase involves pre-processing, where denoising of input EEG signals is performed by employing the Short-Time Fourier Transform (STFT). Consequently, time-domain, spectral, and statistical features were extracted from pre-processed signals. Then, feature selection is performed utilizing Fractional Adadelta Chameleon Swarm Algorithm (FrAdadelta-CSA), a method that integrates the notion of fractional calculus into Adadelta Chameleon Swarm Algorithm (Adadelta-CSA). Finally, seizure prediction is conducted based on the selected features using SpikeGoogle-DenseNet, a hybrid model of SpikeGoogle and DenseNet. Experimental outcomes reveal that the proposed method achieved an accuracy of 96.2 %, sensitivity of 97.3 %, and specificity of 94.5 %.
In contemporary context, epileptic seizure stands as the most prevalent neurological disorder arising from the sudden atypical release of brain neurons and after effect of stress. The electroencephalogram (EEG) has been widely employed for epilepsy detection. Noteworthy are the Deep Learning methods and signal processing techniques utilized for seizures classification and detection. Through advancements in Deep Learning within the biomedical domain, several methodologies have been applied to identify and forecast seizure occurrences based on EEG data collected from individuals with epilepsy, typically confined from temporary in medical screening with standard scalp-EEG or intra-cerebral electrodes.BACKGROUNDIn contemporary context, epileptic seizure stands as the most prevalent neurological disorder arising from the sudden atypical release of brain neurons and after effect of stress. The electroencephalogram (EEG) has been widely employed for epilepsy detection. Noteworthy are the Deep Learning methods and signal processing techniques utilized for seizures classification and detection. Through advancements in Deep Learning within the biomedical domain, several methodologies have been applied to identify and forecast seizure occurrences based on EEG data collected from individuals with epilepsy, typically confined from temporary in medical screening with standard scalp-EEG or intra-cerebral electrodes.This work aims to generate a mechanism for seizure recognition from EEG signals using a classification technique based on Deep Learning. The initial phase involves pre-processing, where denoising of input EEG signals is performed by employing the Short-Time Fourier Transform (STFT). Consequently, time-domain, spectral, and statistical features were extracted from pre-processed signals.PURPOSEThis work aims to generate a mechanism for seizure recognition from EEG signals using a classification technique based on Deep Learning. The initial phase involves pre-processing, where denoising of input EEG signals is performed by employing the Short-Time Fourier Transform (STFT). Consequently, time-domain, spectral, and statistical features were extracted from pre-processed signals.Then, feature selection is performed utilizing Fractional Adadelta Chameleon Swarm Algorithm (FrAdadelta-CSA), a method that integrates the notion of fractional calculus into Adadelta Chameleon Swarm Algorithm (Adadelta-CSA). Finally, seizure prediction is conducted based on the selected features using SpikeGoogle-DenseNet, a hybrid model of SpikeGoogle and DenseNet.METHODSThen, feature selection is performed utilizing Fractional Adadelta Chameleon Swarm Algorithm (FrAdadelta-CSA), a method that integrates the notion of fractional calculus into Adadelta Chameleon Swarm Algorithm (Adadelta-CSA). Finally, seizure prediction is conducted based on the selected features using SpikeGoogle-DenseNet, a hybrid model of SpikeGoogle and DenseNet.Experimental outcomes reveal that the proposed method achieved an accuracy of 96.2 %, sensitivity of 97.3 %, and specificity of 94.5 %.RESULTS AND CONCLUSIONExperimental outcomes reveal that the proposed method achieved an accuracy of 96.2 %, sensitivity of 97.3 %, and specificity of 94.5 %.
ArticleNumber 108550
Author Indu Salini, G.
Sowmy
Sreeja, T.K.
Author_xml – sequence: 1
  givenname: G.
  surname: Indu Salini
  fullname: Indu Salini, G.
  email: induanilk@gmail.com
  organization: Department of Electronics and Communication Engineering, Noorul Islam Centre for Higher Education, Kumaracoil, Thuckalay, Kanniyakumari, Tamil Nadu 629 180, India
– sequence: 2
  surname: Sowmy
  fullname: Sowmy
  email: sowmy@niuniv.com
  organization: Department of Bio Medical Engineering, Noorul Islam Centre for Higher Education, Kumaracoil, Thuckalay, Kanniyakumari, Tamil Nadu 629 180, India
– sequence: 3
  givenname: T.K.
  surname: Sreeja
  fullname: Sreeja, T.K.
  email: sreejaeng07@gmail.com
  organization: Department of Nanotechnology, NICHE,Kanyakumari, India
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40554820$$D View this record in MEDLINE/PubMed
BookMark eNqNkc1u1DAURi1URH_gFZDFik0G24kdp7vRlClIFSwGJHaWx77peHDiYHtawUvwynhIW7Fk5St951zJ9ztHJ2MYAaE3lCwooeLdfmHCMG1d8GYHw4IRxksgOSfP0BltWlF1TH47eZpbeorOU9oTwmpC-At02hDOG8nIGfq9jkurLfisq9VmeYnXUZvswqg9fgzwaqcH8BBGvLnXccBLfxuiy7uh2uoEFveg8yECTgX6K-P7kuLN5L7DdQi3HqorGBN8goz7EDFMzsOUnSmG-3U0LeTZfIme99onePXwXqCv6_dfVh-qm8_XH1fLm8rUjOeq46KlHXCrW2ha0ggJmoq-76RuhWakq7eCmEZL0UtqG1sAq7mtZWvrFgSrL9Dbee8Uw48DpKwGlwx4r0cIh6RqxuqOdV0jC_r6AT1sB7Bqim7Q8ad6PGIBLmfAxJBShP4JoUQdG1N79W9j6tiYmhsr8tUsQ_ntnYOoknEwGrAulpMoG9z_rPkDuBunEA
Cites_doi 10.1016/j.egyr.2022.10.070
10.1049/cit2.12082
10.1049/iet-syb.2018.5130
10.1016/j.tox.2025.154065
10.1109/JBHI.2018.2871678
10.1016/j.bspc.2020.102338
10.1016/j.compbiolchem.2024.108134
10.1016/j.compbiomed.2020.103671
10.3390/e19060222
10.5370/JEET.2014.9.3.1060
10.1016/j.compbiolchem.2024.108073
10.1016/j.bspc.2019.101702
10.1109/CVPR.2017.243
10.3390/biology11081220
10.1080/19420889.2022.2153648
10.1016/j.eswa.2021.114685
10.1016/j.artmed.2021.102084
10.3390/s18061720
ContentType Journal Article
Copyright 2025 Elsevier Ltd
Copyright © 2025 Elsevier Ltd. All rights reserved.
Copyright_xml – notice: 2025 Elsevier Ltd
– notice: Copyright © 2025 Elsevier Ltd. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1016/j.compbiolchem.2025.108550
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Biology
EISSN 1476-928X
ExternalDocumentID 40554820
10_1016_j_compbiolchem_2025_108550
S1476927125002105
Genre Journal Article
GroupedDBID ---
--K
--M
.DC
.~1
0R~
1B1
1~.
1~5
29F
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
AAEDT
AAEDW
AAHBH
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARLI
AATTM
AAXKI
AAXUO
AAYFN
AAYWO
ABBOA
ABGSF
ABJNI
ABMAC
ABNUV
ABUDA
ABWVN
ABXDB
ACDAQ
ACGFS
ACLOT
ACNNM
ACRLP
ACRPL
ACVFH
ACZNC
ADBBV
ADCNI
ADECG
ADEWK
ADEZE
ADJOM
ADMUD
ADNMO
ADUVX
AEBSH
AEHWI
AEIPS
AEKER
AENEX
AEUPX
AFJKZ
AFPUW
AFTJW
AFXIZ
AFZHZ
AGHFR
AGRDE
AGUBO
AGYEJ
AHPOS
AHZHX
AIALX
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJSZI
AKBMS
AKRWK
AKURH
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
AOUOD
APXCP
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFKBS
EFLBG
EJD
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FIRID
FLBIZ
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HVGLF
HZ~
IHE
J1W
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SCB
SDF
SDG
SES
SEW
SPC
SPCBC
SSG
SSK
SSU
SSV
SSZ
T5K
UHS
ZMT
~G-
~HD
AAYXX
CITATION
AGCQF
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-c325t-956719e5da7e470468ea16ff98a76a2093b60c4a86f81d4d468da5d387d37e623
IEDL.DBID .~1
ISSN 1476-9271
1476-928X
IngestDate Thu Oct 02 22:32:19 EDT 2025
Tue Sep 09 02:32:30 EDT 2025
Wed Oct 01 05:31:45 EDT 2025
Sat Sep 27 17:12:23 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords NN
CNN
ESAASO
Epileptic seizure recognition
KHA
ELM
FM
DL
GBD
STFT
TTH
BN
Optimization
AUC
CSA
Deep learning
RNN
COA
GA
DM-ELM
feature selection
disease detection
LSTM
EEG
MOH
Adadelta-CSA
PSP
AM
PSO
Conv
DCSAE-ESDC
TL
LE
ReLU
FC
FrAdadelta-CSA
Language English
License Copyright © 2025 Elsevier Ltd. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c325t-956719e5da7e470468ea16ff98a76a2093b60c4a86f81d4d468da5d387d37e623
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 40554820
PQID 3223929948
PQPubID 23479
ParticipantIDs proquest_miscellaneous_3223929948
pubmed_primary_40554820
crossref_primary_10_1016_j_compbiolchem_2025_108550
elsevier_sciencedirect_doi_10_1016_j_compbiolchem_2025_108550
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-12-01
PublicationDateYYYYMMDD 2025-12-01
PublicationDate_xml – month: 12
  year: 2025
  text: 2025-12-01
  day: 01
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Computational biology and chemistry
PublicationTitleAlternate Comput Biol Chem
PublicationYear 2025
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Safi, Safi (bib20) 2021; 65
Gabeff, Teijeiro, Zapater, Cammoun, Rheims, Ryvlin, Atienza (bib10) 2021; 117
EinShokaMohamedM, Hemdan (bib9) 2022
Carvalho, Moraes (bib5) 2020; 62
Sivasankari, Thanushkodi (bib21) 2014; 9
Chagaleti, Kumar, Rajagopal, Alfarhan, Arockiaraj, Kumaradoss, Namasivayam (bib7) 2024
Mohapatra, Patnaik (bib17) 2022; 24
Packiapalavesam, Saravanan, Mahajan, Almutairi, Almutairi, Arockiaraj, Kathiravan, Namasivayam (bib18) 2024; 110
Huang, Gao, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q. Weinberger, "Densely connected convolutional networks", In Proceedings of the IEEE conference on computer vision and pattern recognition, pp: 4700-4708, 2017.
Bhaladhare, Jinwala (bib1) 2014
Wang (bib27) 2022; 8
Krishnakumar, Thanushkodi (bib14) 2014; 9
Wang, Xue, Li, Luo, Huang, Cui, Huang (bib26) 2017; 19
Boroujeni, Rastegari, Khodadadi (bib3) 2019; 13
Boonyakitanont, Lek-Uthai (bib2) 2020; 57
Yuan, Xun, Jia, Zhang (bib30) 2019; 23
Snoek, Hugo Larochelle, Adams (bib22) 2012; 25
Mishra, Satapathy, Mohanty, Pattnaik (bib16) 2023; 16
Braik (bib4) 2021; 174
Hilal, Albraikan, Dhahbi, Nour, Mohamed, Motwakel, Zamani, Rizwanullah (bib11) 2022; 11
Sudhakaran, Karthikeyan, Madesh, Dhaareshwar, Pachaiappan, Rajagopal, Soundharrajan, Karthick Raja Namasivayam, Arockiaraj (bib23) 2025
Yang, Li, Zhang, Duan, Liu, Zhang, Feng, Tan, Huang, Zhou (bib29) 2020; 119
Thanki (bib25) 2023; 3
CHB-MIT Scalp EEG Database
Wang, Zhong, Cheng, Xie, Zhou, Ren, Liu (bib28) 2022; 7
Zeiler, Matthew D., "Adadelta: An Adaptive Learning Rate Method", arXiv preprint arXiv:1212.5701, 2012.
Kadam, Dalai, Chauhan, Guru, Mitra, Raytekar, Kumar, Kadam, GURU (bib13) 2025; 17
Sun, Liu, Li, Wang (bib24) 2022
Mei, Zhao, Chen, Chen (bib15) 2018; 18
Chagaleti, Kumar, Kumar, Rajagopal, Alfarhan, Arockiaraj, Kumaradoss, Namasivayam (bib6) 2024
Packiapalavesam, Saravanan, Mahajan, Almutairi, Almutairi, Arockiaraj, Kathiravan, Namasivayam (bib19) 2024; 110
Accessed on December 2022.
Kadam (10.1016/j.compbiolchem.2025.108550_bib13) 2025; 17
Wang (10.1016/j.compbiolchem.2025.108550_bib26) 2017; 19
Mei (10.1016/j.compbiolchem.2025.108550_bib15) 2018; 18
Carvalho (10.1016/j.compbiolchem.2025.108550_bib5) 2020; 62
Gabeff (10.1016/j.compbiolchem.2025.108550_bib10) 2021; 117
Hilal (10.1016/j.compbiolchem.2025.108550_bib11) 2022; 11
Safi (10.1016/j.compbiolchem.2025.108550_bib20) 2021; 65
Snoek (10.1016/j.compbiolchem.2025.108550_bib22) 2012; 25
Yang (10.1016/j.compbiolchem.2025.108550_bib29) 2020; 119
Wang (10.1016/j.compbiolchem.2025.108550_bib28) 2022; 7
Boroujeni (10.1016/j.compbiolchem.2025.108550_bib3) 2019; 13
Thanki (10.1016/j.compbiolchem.2025.108550_bib25) 2023; 3
Packiapalavesam (10.1016/j.compbiolchem.2025.108550_bib19) 2024; 110
Chagaleti (10.1016/j.compbiolchem.2025.108550_bib7) 2024
Sun (10.1016/j.compbiolchem.2025.108550_bib24) 2022
Boonyakitanont (10.1016/j.compbiolchem.2025.108550_bib2) 2020; 57
Mohapatra (10.1016/j.compbiolchem.2025.108550_bib17) 2022; 24
Braik (10.1016/j.compbiolchem.2025.108550_bib4) 2021; 174
Chagaleti (10.1016/j.compbiolchem.2025.108550_bib6) 2024
Sivasankari (10.1016/j.compbiolchem.2025.108550_bib21) 2014; 9
10.1016/j.compbiolchem.2025.108550_bib12
Packiapalavesam (10.1016/j.compbiolchem.2025.108550_bib18) 2024; 110
Bhaladhare (10.1016/j.compbiolchem.2025.108550_bib1) 2014
10.1016/j.compbiolchem.2025.108550_bib31
Mishra (10.1016/j.compbiolchem.2025.108550_bib16) 2023; 16
Yuan (10.1016/j.compbiolchem.2025.108550_bib30) 2019; 23
Sudhakaran (10.1016/j.compbiolchem.2025.108550_bib23) 2025
EinShokaMohamedM (10.1016/j.compbiolchem.2025.108550_bib9) 2022
Krishnakumar (10.1016/j.compbiolchem.2025.108550_bib14) 2014; 9
10.1016/j.compbiolchem.2025.108550_bib8
Wang (10.1016/j.compbiolchem.2025.108550_bib27) 2022; 8
References_xml – volume: 17
  year: 2025
  ident: bib13
  article-title: "Nanobiotechnology unveils the power of Probiotics: a comprehensive review on the synergistic role of probiotics and advanced nanotechnology in enhancing geriatric health
  publication-title: Cureus
– reference: Zeiler, Matthew D., "Adadelta: An Adaptive Learning Rate Method", arXiv preprint arXiv:1212.5701, 2012.
– volume: 110
  year: 2024
  ident: bib18
  article-title: Identification of novel CA IX inhibitor: pharmacophore modeling, docking, DFT, and dynamic simulation
  publication-title: Comput. Biol. Chem.
– volume: 25
  year: 2012
  ident: bib22
  article-title: "Practical bayesian optimization of machine learning algorithms"
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 9
  start-page: 1060
  year: 2014
  end-page: 1071
  ident: bib21
  article-title: "An improved EEG signal classification using neural network with the consequence of ICA and STFT"
  publication-title: J. Electr. Eng. Technol.
– year: 2024
  ident: bib6
  article-title: "Targeting cyclin-dependent kinase 2 CDK2: insights from molecular docking and dynamics simulation-a systematic computational approach to discover novel cancer therapeutics
  publication-title: Comput. Biol. Chem.
– reference: ”, Accessed on December 2022.
– volume: 24
  year: 2022
  ident: bib17
  article-title: "ESA-ASO: an enhanced search ability based atom search optimization algorithm for epileptic seizure detection"
  publication-title: Meas. Sens.
– volume: 23
  start-page: 83
  year: 2019
  end-page: 94
  ident: bib30
  article-title: "A multi-view deep learning framework for eeg seizure detection
  publication-title: IEEE J. Biomed. Health Inform.
– volume: 11
  start-page: 1220
  year: 2022
  ident: bib11
  article-title: "Intelligent epileptic seizure detection and classification model using optimal deep canonical sparse autoencoder
  publication-title: Biology
– year: 2022
  ident: bib24
  article-title: "Automatic epileptic seizure detection using pso-based feature selection and multilevel spectral analysis for EEG signals"
  publication-title: J. Sens.
– volume: 62
  year: 2020
  ident: bib5
  article-title: & Braga, Antônio & Mendes, eduardo, “evaluating five different adaptive decomposition methods for EEG signal seizure detection and classification”
  publication-title: Biomed. Signal Process. Control
– reference: CHB-MIT Scalp EEG Database, "
– year: 2024
  ident: bib7
  article-title: "Targeting cyclin-dependent kinase 2 CDK2: insights from molecular docking and dynamics simulation-a systematic computational approach to discover novel cancer therapeutics"
  publication-title: Comput. Biol. Chem.
– volume: 119
  year: 2020
  ident: bib29
  article-title: Selection of features for patient-independent detection of seizure events using scalp EEG signals
  publication-title: Comput. Biol. Med.
– volume: 8
  start-page: 43
  year: 2022
  end-page: 53
  ident: bib27
  article-title: "Fault line selection of power distribution system via improved bee colony algorithm based deep neural network"
  publication-title: Energy Rep.
– volume: 13
  start-page: 260
  year: 2019
  end-page: 266
  ident: bib3
  article-title: "Diagnosis of attention deficit hyperactivity disorder using non-linear analysis of the EEG signal"
  publication-title: IET Syst. Biol.
– volume: 16
  start-page: 2153648
  year: 2023
  ident: bib16
  article-title: A DM-ELM based classifier for EEG brain signal classification for epileptic seizure detection
  publication-title: Commun. Integr. Biol.
– volume: 65
  year: 2021
  ident: bib20
  article-title: "Early detection of Alzheimer’s disease from EEG signals using Hjorth parameters"
  publication-title: Biomed. Signal Process. Control
– volume: 3
  year: 2023
  ident: bib25
  article-title: "A deep neural network and machine learning approach for retinal fundus image classification"
  publication-title: Healthc. Anal.
– volume: 117
  year: 2021
  ident: bib10
  article-title: "Interpreting deep learning models for epileptic seizure detection on EEG signals"
  publication-title: Artif. Intell. Med.
– volume: 7
  start-page: 492
  year: 2022
  end-page: 502
  ident: bib28
  article-title: "SpikeGoogle: spiking neural networks with googlenet-like inception module"
  publication-title: CAAI Trans. Intell. Technol.
– volume: 18
  start-page: 1720
  year: 2018
  ident: bib15
  article-title: Bio-signal complexity analysis in epileptic seizure monitoring: a topic review
  publication-title: Sensors
– start-page: 12
  year: 2022
  ident: bib9
  article-title: “An efficient CNN based epileptic seizures detection framework using encrypted EEG signals for secure telemedicine applications”
  publication-title: Alex. Eng. J.
– reference: Huang, Gao, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q. Weinberger, "Densely connected convolutional networks", In Proceedings of the IEEE conference on computer vision and pattern recognition, pp: 4700-4708, 2017.
– volume: 19
  start-page: 222
  year: 2017
  ident: bib26
  article-title: "Automatic epileptic seizure detection in EEG signals using multi-domain feature extraction and nonlinear analysis"
  publication-title: Entropy
– volume: 110
  year: 2024
  ident: bib19
  article-title: "Identification of novel CA IX inhibitor: pharmacophore modeling, docking, DFT, and dynamic simulation"
  publication-title: Comput. Biol. Chem.
– year: 2014
  ident: bib1
  article-title: "A clustering approach for the l-diversity model in privacy preserving data mining using fractional calculus-bacterial foraging optimization algorithm"
  publication-title: Adv. Comput. Eng.
– volume: 174
  start-page: 12
  year: 2021
  ident: bib4
  article-title: "Chameleon Swarm Algorithm: a bio-inspired optimizer for solving engineering design problems"
  publication-title: Expert Syst. Appl.
– volume: 57
  year: 2020
  ident: bib2
  article-title: KrisnachaiChomtho, and JitkomutSongsiri, "a review of feature extraction and performance evaluation in epileptic seizure detection using EEG"
  publication-title: Biomed. Signal Process. Control
– volume: 9
  start-page: 1060
  year: 2014
  end-page: 1071
  ident: bib14
  article-title: An improved EEG signal classification using Neural Network with the consequence of ICA and STFT
  publication-title: J. Electr. Eng. Technol.
– year: 2025
  ident: bib23
  article-title: "Neurotoxic effects and cognitive decline induced by aniline blue dye in an in-vivo zebrafish model
  publication-title: Toxicology
– volume: 8
  start-page: 43
  issue: 12
  year: 2022
  ident: 10.1016/j.compbiolchem.2025.108550_bib27
  article-title: "Fault line selection of power distribution system via improved bee colony algorithm based deep neural network"
  publication-title: Energy Rep.
  doi: 10.1016/j.egyr.2022.10.070
– volume: 7
  start-page: 492
  issue: 3
  year: 2022
  ident: 10.1016/j.compbiolchem.2025.108550_bib28
  article-title: "SpikeGoogle: spiking neural networks with googlenet-like inception module"
  publication-title: CAAI Trans. Intell. Technol.
  doi: 10.1049/cit2.12082
– volume: 13
  start-page: 260
  issue: 5
  year: 2019
  ident: 10.1016/j.compbiolchem.2025.108550_bib3
  article-title: "Diagnosis of attention deficit hyperactivity disorder using non-linear analysis of the EEG signal"
  publication-title: IET Syst. Biol.
  doi: 10.1049/iet-syb.2018.5130
– year: 2025
  ident: 10.1016/j.compbiolchem.2025.108550_bib23
  article-title: "Neurotoxic effects and cognitive decline induced by aniline blue dye in an in-vivo zebrafish model
  publication-title: Toxicology
  doi: 10.1016/j.tox.2025.154065
– volume: 23
  start-page: 83
  issue: 1
  year: 2019
  ident: 10.1016/j.compbiolchem.2025.108550_bib30
  article-title: "A multi-view deep learning framework for eeg seizure detection
  publication-title: IEEE J. Biomed. Health Inform.
  doi: 10.1109/JBHI.2018.2871678
– ident: 10.1016/j.compbiolchem.2025.108550_bib8
– start-page: 12
  year: 2022
  ident: 10.1016/j.compbiolchem.2025.108550_bib9
  article-title: “An efficient CNN based epileptic seizures detection framework using encrypted EEG signals for secure telemedicine applications”
  publication-title: Alex. Eng. J.
– volume: 25
  year: 2012
  ident: 10.1016/j.compbiolchem.2025.108550_bib22
  article-title: "Practical bayesian optimization of machine learning algorithms"
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 65
  year: 2021
  ident: 10.1016/j.compbiolchem.2025.108550_bib20
  article-title: "Early detection of Alzheimer’s disease from EEG signals using Hjorth parameters"
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2020.102338
– issue: 1
  year: 2014
  ident: 10.1016/j.compbiolchem.2025.108550_bib1
  article-title: "A clustering approach for the l-diversity model in privacy preserving data mining using fractional calculus-bacterial foraging optimization algorithm"
  publication-title: Adv. Comput. Eng.
– year: 2024
  ident: 10.1016/j.compbiolchem.2025.108550_bib6
  article-title: "Targeting cyclin-dependent kinase 2 CDK2: insights from molecular docking and dynamics simulation-a systematic computational approach to discover novel cancer therapeutics
  publication-title: Comput. Biol. Chem.
  doi: 10.1016/j.compbiolchem.2024.108134
– volume: 119
  year: 2020
  ident: 10.1016/j.compbiolchem.2025.108550_bib29
  article-title: Selection of features for patient-independent detection of seizure events using scalp EEG signals
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2020.103671
– volume: 19
  start-page: 222
  issue: 6
  year: 2017
  ident: 10.1016/j.compbiolchem.2025.108550_bib26
  article-title: "Automatic epileptic seizure detection in EEG signals using multi-domain feature extraction and nonlinear analysis"
  publication-title: Entropy
  doi: 10.3390/e19060222
– volume: 62
  issue: 102073
  year: 2020
  ident: 10.1016/j.compbiolchem.2025.108550_bib5
  article-title: & Braga, Antônio & Mendes, eduardo, “evaluating five different adaptive decomposition methods for EEG signal seizure detection and classification”
  publication-title: Biomed. Signal Process. Control
– volume: 9
  start-page: 1060
  issue: 3
  year: 2014
  ident: 10.1016/j.compbiolchem.2025.108550_bib21
  article-title: "An improved EEG signal classification using neural network with the consequence of ICA and STFT"
  publication-title: J. Electr. Eng. Technol.
  doi: 10.5370/JEET.2014.9.3.1060
– volume: 110
  year: 2024
  ident: 10.1016/j.compbiolchem.2025.108550_bib18
  article-title: Identification of novel CA IX inhibitor: pharmacophore modeling, docking, DFT, and dynamic simulation
  publication-title: Comput. Biol. Chem.
  doi: 10.1016/j.compbiolchem.2024.108073
– volume: 57
  year: 2020
  ident: 10.1016/j.compbiolchem.2025.108550_bib2
  article-title: KrisnachaiChomtho, and JitkomutSongsiri, "a review of feature extraction and performance evaluation in epileptic seizure detection using EEG"
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2019.101702
– ident: 10.1016/j.compbiolchem.2025.108550_bib12
  doi: 10.1109/CVPR.2017.243
– volume: 17
  issue: 3
  year: 2025
  ident: 10.1016/j.compbiolchem.2025.108550_bib13
  article-title: "Nanobiotechnology unveils the power of Probiotics: a comprehensive review on the synergistic role of probiotics and advanced nanotechnology in enhancing geriatric health
  publication-title: Cureus
– volume: 24
  year: 2022
  ident: 10.1016/j.compbiolchem.2025.108550_bib17
  article-title: "ESA-ASO: an enhanced search ability based atom search optimization algorithm for epileptic seizure detection"
  publication-title: Meas. Sens.
– volume: 11
  start-page: 1220
  issue: 8
  year: 2022
  ident: 10.1016/j.compbiolchem.2025.108550_bib11
  article-title: "Intelligent epileptic seizure detection and classification model using optimal deep canonical sparse autoencoder
  publication-title: Biology
  doi: 10.3390/biology11081220
– volume: 16
  start-page: 2153648
  issue: 1
  year: 2023
  ident: 10.1016/j.compbiolchem.2025.108550_bib16
  article-title: A DM-ELM based classifier for EEG brain signal classification for epileptic seizure detection
  publication-title: Commun. Integr. Biol.
  doi: 10.1080/19420889.2022.2153648
– volume: 174
  start-page: 12
  year: 2021
  ident: 10.1016/j.compbiolchem.2025.108550_bib4
  article-title: "Chameleon Swarm Algorithm: a bio-inspired optimizer for solving engineering design problems"
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2021.114685
– volume: 117
  year: 2021
  ident: 10.1016/j.compbiolchem.2025.108550_bib10
  article-title: "Interpreting deep learning models for epileptic seizure detection on EEG signals"
  publication-title: Artif. Intell. Med.
  doi: 10.1016/j.artmed.2021.102084
– ident: 10.1016/j.compbiolchem.2025.108550_bib31
– year: 2024
  ident: 10.1016/j.compbiolchem.2025.108550_bib7
  article-title: "Targeting cyclin-dependent kinase 2 CDK2: insights from molecular docking and dynamics simulation-a systematic computational approach to discover novel cancer therapeutics"
  publication-title: Comput. Biol. Chem.
  doi: 10.1016/j.compbiolchem.2024.108134
– issue: 1
  year: 2022
  ident: 10.1016/j.compbiolchem.2025.108550_bib24
  article-title: "Automatic epileptic seizure detection using pso-based feature selection and multilevel spectral analysis for EEG signals"
  publication-title: J. Sens.
– volume: 110
  year: 2024
  ident: 10.1016/j.compbiolchem.2025.108550_bib19
  article-title: "Identification of novel CA IX inhibitor: pharmacophore modeling, docking, DFT, and dynamic simulation"
  publication-title: Comput. Biol. Chem.
  doi: 10.1016/j.compbiolchem.2024.108073
– volume: 18
  start-page: 1720
  issue: 6
  year: 2018
  ident: 10.1016/j.compbiolchem.2025.108550_bib15
  article-title: Bio-signal complexity analysis in epileptic seizure monitoring: a topic review
  publication-title: Sensors
  doi: 10.3390/s18061720
– volume: 9
  start-page: 1060
  issue: 3
  year: 2014
  ident: 10.1016/j.compbiolchem.2025.108550_bib14
  article-title: An improved EEG signal classification using Neural Network with the consequence of ICA and STFT
  publication-title: J. Electr. Eng. Technol.
  doi: 10.5370/JEET.2014.9.3.1060
– volume: 3
  year: 2023
  ident: 10.1016/j.compbiolchem.2025.108550_bib25
  article-title: "A deep neural network and machine learning approach for retinal fundus image classification"
  publication-title: Healthc. Anal.
SSID ssj0023005
Score 2.4109693
Snippet In contemporary context, epileptic seizure stands as the most prevalent neurological disorder arising from the sudden atypical release of brain neurons and...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Publisher
StartPage 108550
SubjectTerms Algorithms
Convolutional Neural Networks
Deep Learning
disease detection
Electroencephalography
Epilepsy - diagnosis
Epileptic seizure recognition
feature selection
Humans
Optimization
Seizures - diagnosis
Signal Processing, Computer-Assisted
Title FrAdadelta-CSA: Fractional Adadelta Chameleon Swarm Algorithm-based feature selection with SpikeGoogle-DenseNet for epileptic seizure detection
URI https://dx.doi.org/10.1016/j.compbiolchem.2025.108550
https://www.ncbi.nlm.nih.gov/pubmed/40554820
https://www.proquest.com/docview/3223929948
Volume 119
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1476-928X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023005
  issn: 1476-9271
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect
  customDbUrl:
  eissn: 1476-928X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023005
  issn: 1476-9271
  databaseCode: .~1
  dateStart: 20030201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1476-928X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023005
  issn: 1476-9271
  databaseCode: AIKHN
  dateStart: 20030201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect (Elsevier)
  customDbUrl:
  eissn: 1476-928X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023005
  issn: 1476-9271
  databaseCode: ACRLP
  dateStart: 20030201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1476-928X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023005
  issn: 1476-9271
  databaseCode: AKRWK
  dateStart: 20030201
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Li9RAEG6WFdGL6PpaH0sLXtuZJP1IBA8hOo6vQRwX9hYqSWc3upMM2SyiB_-Cf9mq7mRRUBA8hSRdpOlqqr7qVH3F2OPEFqVJEhDETi7Q41cCZAACFOhYFxBaR5L0bqWXh_L1kTraYdlUC0NplaPt9zbdWevxyWxczdm2aWbrQBqdhAY9tAtcqNBcSkNdDJ58v0jzCImO3VUYGS1o9EQ86nK8KG2byI5wfagqPVSUcqeoBv_PTupvINQ5o8V1dm1EkTz1E73Bdmy7xy77vpJf99iVbGrjdpP9WPRpRVyQA4hsnT7li97XMpD8-IJnJ7BB_9O1fP0F-g1PT4-7vhlONoK8XMVr6_g_-ZnrmoPCnM5v-XrbfLYvu-741IrnGA_blR04omBut2hs0BiVKNF8I8nKDl7yFjtcvPiYLcXYhUGUUagGgQGUCRKrKjBWGgynYwuBruskBqMhnCdRoeelhFjXiH1lhQMqUFUUmyoyFtHVbbbbdq29y3hSBzBXYMisSChwiC6LEmqtorAsIN5n0bTs-daTbeRTFtqn_Fdl5aSs3Ctrnz2bNJT_tnVy9Ar_JP9oUmuOuqEfJtDa7vwsR2NH8DGROLM7Xt8X80Kgi8FeOL_3n1-_z67Snc-QecB2h_7cPkScMxQHbiMfsEtp9uHte7q-erNc_QSAPgDr
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZKESoXBAVKeRqJq9nNw3aCxGEVWBZo97Kt1Js1SZw20E1WaSoEB_4Cf5kZO6lAAgmJa-xRRh5r5ptk5hvGXqQ2L3SagiB2coERvxQQByBAgkpUDqF1JEmHS7U4jj-cyJMtlo29MFRWOfh-79Odtx6eTIbTnGzqerIKYq3SUGOEdomLvMauxzLUlIG9_H5V5xESH7trMdJK0PaRedQVeVHdNrEd4QFRW3ooqeZOUhP-n6PU31Coi0bz2-zWACP5zGt6h23ZZpfd8IMlv-6ynWyc43aX_Zh3s5LIIHsQ2Wr2is8738xA8sMCz85gjQGobfjqC3RrPjs_bbu6P1sLCnMlr6wjAOUXbmwOCnP6gMtXm_qzfde2p-dWvMGE2C5tzxEGc7tBb4PeqECJ-htJlrb3kvfY8fztUbYQwxgGUUSh7AVmUDpIrSxB21hjPp1YCFRVpQloBeE0jXI1LWJIVIXgNy5xQwmyjBJdRtoivLrPtpu2sQ8YT6sAphI0-ZUYctyiiryASskoLHJI9lk0HrvZeLYNM5ahfTK_GsuQsYw31j57PVrI_HZ3DIaFf5J_PprVoG3ojwk0tr28MOjtCD-mMWq25-19pRciXcz2wunD_3z7M7azODo8MAfvlx8fsZu04stlHrPtvru0TxD09PlTd6l_AlnxAOs
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=FrAdadelta-CSA%3A+Fractional+Adadelta+Chameleon+Swarm+Algorithm-based+feature+selection+with+SpikeGoogle-DenseNet+for+epileptic+seizure+detection&rft.jtitle=Computational+biology+and+chemistry&rft.au=Indu+Salini%2C+G.&rft.au=Sowmy&rft.au=Sreeja%2C+T.K.&rft.date=2025-12-01&rft.issn=1476-9271&rft.volume=119&rft.spage=108550&rft_id=info:doi/10.1016%2Fj.compbiolchem.2025.108550&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_compbiolchem_2025_108550
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1476-9271&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1476-9271&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1476-9271&client=summon