An ICU Admission Predictive Model for COVID-19 Patients in Saudi Arabia

Globally, COVID-19 already emerged in around 170 million confirmed cases of infected people and, as of May 31, 2021, affected more than 3.54 million deaths. This pandemic has given rise to numerous public health and socioeconomic issues, emphasizing the significance of unraveling the epidemic’s hist...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of advanced computer science & applications Vol. 12; no. 7
Main Authors Ghandorh, Hamza, Khan, Muhammad Zubair, Alsufyani, Raed, Khan, Mehshan, Alsofayan, Yousef M., Khan, Anas A., Alahmari, Ahmed A.
Format Journal Article
LanguageEnglish
Published West Yorkshire Science and Information (SAI) Organization Limited 2021
Subjects
Online AccessGet full text
ISSN2158-107X
2156-5570
DOI10.14569/IJACSA.2021.0120764

Cover

Abstract Globally, COVID-19 already emerged in around 170 million confirmed cases of infected people and, as of May 31, 2021, affected more than 3.54 million deaths. This pandemic has given rise to numerous public health and socioeconomic issues, emphasizing the significance of unraveling the epidemic’s history and forecasting the disease’s potential dynamics. A variety of mathematical models have been proposed to obtain a deeper understanding of disease transmission mechanisms. Machine Learning (ML) models have been used in the last decade to identify patterns and enhance prediction efficiency in healthcare applications. This paper proposes a model to predict COVID-19 patients admission to the intensive care unit (ICU). The model is built upon robust known classification algorithms, including classic Machine Learning Classifiers (MLCs), an Artificial Neural Network (ANN) and ensemble learning. This model’s strength in predicting COVID-19 infected patients is shown by performance analysis of various MLCs and error metrics. Among other used ML models, the ANN model resulted in the highest accuracy, 97.9% over other models. Mean Squared Error showed that the ANN method had the lowest error (0.0809). In conclusion, this paper could be beneficial to ICU staff to predict ICU admission based on COVID-19 patients’ clinical characteristics.
AbstractList Globally, COVID-19 already emerged in around 170 million confirmed cases of infected people and, as of May 31, 2021, affected more than 3.54 million deaths. This pandemic has given rise to numerous public health and socioeconomic issues, emphasizing the significance of unraveling the epidemic’s history and forecasting the disease’s potential dynamics. A variety of mathematical models have been proposed to obtain a deeper understanding of disease transmission mechanisms. Machine Learning (ML) models have been used in the last decade to identify patterns and enhance prediction efficiency in healthcare applications. This paper proposes a model to predict COVID-19 patients admission to the intensive care unit (ICU). The model is built upon robust known classification algorithms, including classic Machine Learning Classifiers (MLCs), an Artificial Neural Network (ANN) and ensemble learning. This model’s strength in predicting COVID-19 infected patients is shown by performance analysis of various MLCs and error metrics. Among other used ML models, the ANN model resulted in the highest accuracy, 97.9% over other models. Mean Squared Error showed that the ANN method had the lowest error (0.0809). In conclusion, this paper could be beneficial to ICU staff to predict ICU admission based on COVID-19 patients’ clinical characteristics.
Author Khan, Mehshan
Alahmari, Ahmed A.
Khan, Anas A.
Alsofayan, Yousef M.
Khan, Muhammad Zubair
Ghandorh, Hamza
Alsufyani, Raed
Author_xml – sequence: 1
  givenname: Hamza
  surname: Ghandorh
  fullname: Ghandorh, Hamza
– sequence: 2
  givenname: Muhammad Zubair
  surname: Khan
  fullname: Khan, Muhammad Zubair
– sequence: 3
  givenname: Raed
  surname: Alsufyani
  fullname: Alsufyani, Raed
– sequence: 4
  givenname: Mehshan
  surname: Khan
  fullname: Khan, Mehshan
– sequence: 5
  givenname: Yousef M.
  surname: Alsofayan
  fullname: Alsofayan, Yousef M.
– sequence: 6
  givenname: Anas A.
  surname: Khan
  fullname: Khan, Anas A.
– sequence: 7
  givenname: Ahmed A.
  surname: Alahmari
  fullname: Alahmari, Ahmed A.
BookMark eNp9kM1OwzAQhC1UJErpG3CwxDnFP3Ecc4sCLUFFrVSKuFlO4kiuWrvYLhJvT2h74sBeZg8zu6PvGgyssxqAW4wmOGWZuK9einJVTAgieIIwQTxLL8CQYJYljHE0OO55ghH_uALjEDaoHypIltMhmBUWVuUaFu3OhGCchUuvW9NE86Xhq2v1FnbOw3LxXj0mWMClikbbGKCxcKUOrYGFV7VRN-CyU9ugx2cdgfX06a18TuaLWVUW86ShhMWE65QQwlvKFc5bLVDNNSJCayzSjClWi75awxVTaVMrnipad11HuxrrPM-VoCNwd7q79-7zoEOUG3fwtn8pScYYxpQJ0rseTq7GuxC87mRjYt_c2eiV2UqM5JGdPLGTv-zkmV0fTv-E997slP_-P_YDsApxhg
CitedBy_id crossref_primary_10_1016_j_eswa_2024_123717
ContentType Journal Article
Copyright 2021. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2021. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
3V.
7XB
8FE
8FG
8FK
8G5
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
COVID
DWQXO
GNUQQ
GUQSH
HCIFZ
JQ2
K7-
M2O
MBDVC
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
DOI 10.14569/IJACSA.2021.0120764
DatabaseName CrossRef
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Research Library
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One
Coronavirus Research Database
ProQuest Central
ProQuest Central Student
ProQuest Research Library
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Research Library
Research Library (Corporate)
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
DatabaseTitle CrossRef
Publicly Available Content Database
Research Library Prep
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Research Library
ProQuest Central (New)
Advanced Technologies & Aerospace Collection
ProQuest Central Basic
ProQuest One Academic Eastern Edition
Coronavirus Research Database
ProQuest Technology Collection
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList Publicly Available Content Database
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
Public Health
EISSN 2156-5570
ExternalDocumentID 10_14569_IJACSA_2021_0120764
GroupedDBID .DC
5VS
8G5
AAYXX
ABUWG
ADMLS
AFKRA
ALMA_UNASSIGNED_HOLDINGS
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
CITATION
DWQXO
EBS
EJD
GNUQQ
GUQSH
HCIFZ
K7-
KQ8
M2O
OK1
PHGZM
PHGZT
PIMPY
RNS
3V.
7XB
8FE
8FG
8FK
COVID
JQ2
MBDVC
P62
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c325t-7e42227d37a18de90b7e029ee19465a5b9003c7a5a4cba74a3bfff3fb1e888a93
IEDL.DBID 8FG
ISSN 2158-107X
IngestDate Fri Jul 25 08:16:00 EDT 2025
Tue Jul 01 01:10:04 EDT 2025
Thu Apr 24 23:04:19 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Issue 7
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c325t-7e42227d37a18de90b7e029ee19465a5b9003c7a5a4cba74a3bfff3fb1e888a93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://www.proquest.com/docview/2655113592?pq-origsite=%requestingapplication%
PQID 2655113592
PQPubID 5444811
ParticipantIDs proquest_journals_2655113592
crossref_citationtrail_10_14569_IJACSA_2021_0120764
crossref_primary_10_14569_IJACSA_2021_0120764
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-00-00
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – year: 2021
  text: 2021-00-00
PublicationDecade 2020
PublicationPlace West Yorkshire
PublicationPlace_xml – name: West Yorkshire
PublicationTitle International journal of advanced computer science & applications
PublicationYear 2021
Publisher Science and Information (SAI) Organization Limited
Publisher_xml – name: Science and Information (SAI) Organization Limited
SSID ssj0000392683
Score 2.1904578
Snippet Globally, COVID-19 already emerged in around 170 million confirmed cases of infected people and, as of May 31, 2021, affected more than 3.54 million deaths....
SourceID proquest
crossref
SourceType Aggregation Database
Enrichment Source
Index Database
SubjectTerms Algorithms
Artificial neural networks
Coronaviruses
COVID-19
Disease control
Disease transmission
Error analysis
Machine learning
Mathematical models
Prediction models
Public health
Robustness (mathematics)
Viral diseases
Title An ICU Admission Predictive Model for COVID-19 Patients in Saudi Arabia
URI https://www.proquest.com/docview/2655113592
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3JTsMwELWAXpAQO6IslQ9cDfWSuD6hUOgmARVQ1FtkO45UCYVCy__jSZwiLnBO4khje97Ms-cNQhedjvXAojOi4o4iguWcmLa0JGcAnkZkvKSy7x_iwUSMptE0EG6LcK2y9omlo87eLXDkVyz22E55pNj1_INA1yg4XQ0tNNZRgzKPtVAp3uuvOJa2B_-4VOL0wAYqpnIaqud82KCuhqOk-5z4HJHRS6ghlbH4jU6_nXOJOL1dtB1CRZxUc7uH1lyxj3bqNgw47Mp9tFVRb7iqKDpA_aTAw-4Egy4u3HEt8PgTjmPAsWHoffaGfaSKu4-vw1tCFR5X0qoLPCvws_7KZv6X2sz0IZr07l66AxL6JRDLWbQk0gGfIzMuNe1kTrWNdG2mnKNKxJGODLCWVupIC2u0FJqbPM95bqjzebBW_AhtFO-FO0bYaGcNi6zTxgjIiizPGVPWOCkzYWkT8dpOqQ1i4tDT4i2FpAKsm1bWTcG6abBuE5HVV_NKTOOf98_qKUjD1lqkPwvh5O_Hp2gTBqv4kjO0sfz8cuc-gliaVrlMWqhxc_cwfvoGFiLAEg
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LS8QwEB5EDwriW3ybgx6j2yRt2oPIsrpufYOu7K0maQoLUnUfiH_K32imD8WLnjz3BZPpfDNfMt8A7IWhccCiUhoFYUQFyzjVDWloxhA8tUh5QWVfXQedrjjv-b0J-Kh7YfBYZR0Ti0CdPhvkyA9Z4LDd437Ejl9eKU6Nwt3VeoRG6RYX9v3NlWzDo_jEre8-Y-3T-1aHVlMFqOHMH1FpkfWQKZfKC1MbNbS0DRZZ68r5wFe-Rm7PSOUrYbSSQnGdZRnPtGddtahQfMmF_CnBOccjhGH77IvTabhkIyiUPx2Qomqq7FXdei5NiQ7j82brrulqUuYdYM-qDMRPNPwJBgXCtRdgrkpNSbP0pUWYsPkSzNdjH0gVBZZgtqT6SNnBtAxnzZzErS5BHV48U5uT2wFu_2AgJThr7Ym4zJi0bh7iE-pF5LaUch2Sfk7u1Djtu08q3Vcr0P0XS67CZP6c2zUgWlmjmW-s0lpgFWZ4xlhktJUyFcZbB17bKTGVeDnO0HhKsIhB6yaldRO0blJZdx3o11MvpXjHH_dv1UuQVL_yMPl2vI3fL-_CdOf-6jK5jK8vNmEGX1xyNVswORqM7bbLXkZ6p3AZAo__7aOf1VP74A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+ICU+Admission+Predictive+Model+for+COVID-19+Patients+in+Saudi+Arabia&rft.jtitle=International+journal+of+advanced+computer+science+%26+applications&rft.au=Hamza+Ghandorh&rft.au=Khan%2C+Muhammad+Zubair&rft.au=Alsufyani%2C+Raed&rft.au=Khan%2C+Mehshan&rft.date=2021&rft.pub=Science+and+Information+%28SAI%29+Organization+Limited&rft.issn=2158-107X&rft.eissn=2156-5570&rft.volume=12&rft.issue=7&rft_id=info:doi/10.14569%2FIJACSA.2021.0120764
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2158-107X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2158-107X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2158-107X&client=summon