Multi-objective CFD-driven development of coupled turbulence closure models
•Introduction of two novel concepts to improve accuracy of CFD-driven turbulence models.•Simultaneous training of multiple closure models captures coupling effects.•Multi-objective optimization enables informed model selection after training.•Trained RANS closures achieve excellent predictions for f...
        Saved in:
      
    
          | Published in | Journal of computational physics Vol. 452; p. 110922 | 
|---|---|
| Main Authors | , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        Cambridge
          Elsevier Inc
    
        01.03.2022
     Elsevier Science Ltd  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 0021-9991 1090-2716  | 
| DOI | 10.1016/j.jcp.2021.110922 | 
Cover
| Abstract | •Introduction of two novel concepts to improve accuracy of CFD-driven turbulence models.•Simultaneous training of multiple closure models captures coupling effects.•Multi-objective optimization enables informed model selection after training.•Trained RANS closures achieve excellent predictions for flow with highly coupled momentum and thermal fields.
This paper introduces two novel concepts in data-driven turbulence modeling that enable the simultaneous development of multiple closure models and the training towards multiple objectives. The concepts extend the evolutionary framework by Weatheritt and Sandberg (2016) [1], which derives interpretable and implementation-ready expressions from high-fidelity simulation data. By assigning a shared fitness value to the evolved closure models and utilizing the CFD-driven training approach by Zhao et al. (2020) [2], the multi-expression training concept introduced here is able to account for the coupling between the trained models, i.e. Reynolds stress anisotropy, turbulent heat flux and turbulence production correction models. As a second concept, a multi-objective optimization algorithm is applied to the framework. The extension yields a diverse set of candidate models and allows a trade-off between the training objectives after analyzing the training results. In this study, the novel concepts are applied to a benchmark periodic hills case and a vertical natural convection flow. The predictions of mean flow quantities are improved compared to decoupled training strategies with distinct and robust improvements for strongly coupled momentum and thermal fields. The coupled training of closure models and the balancing of multiple training objectives are considered important capabilities on the path towards generalized data-driven turbulence models. | 
    
|---|---|
| AbstractList | This paper introduces two novel concepts in data-driven turbulence modeling that enable the simultaneous development of multiple closure models and the training towards multiple objectives. The concepts extend the evolutionary framework by Weatheritt and Sandberg (2016) [1], which derives interpretable and implementation-ready expressions from high-fidelity simulation data. By assigning a shared fitness value to the evolved closure models and utilizing the CFD-driven training approach by Zhao et al. (2020) [2], the multi-expression training concept introduced here is able to account for the coupling between the trained models, i.e. Reynolds stress anisotropy, turbulent heat flux and turbulence production correction models. As a second concept, a multi-objective optimization algorithm is applied to the framework. The extension yields a diverse set of candidate models and allows a trade-off between the training objectives after analyzing the training results. In this study, the novel concepts are applied to a benchmark periodic hills case and a vertical natural convection flow. The predictions of mean flow quantities are improved compared to decoupled training strategies with distinct and robust improvements for strongly coupled momentum and thermal fields. The coupled training of closure models and the balancing of multiple training objectives are considered important capabilities on the path towards generalized data-driven turbulence models. •Introduction of two novel concepts to improve accuracy of CFD-driven turbulence models.•Simultaneous training of multiple closure models captures coupling effects.•Multi-objective optimization enables informed model selection after training.•Trained RANS closures achieve excellent predictions for flow with highly coupled momentum and thermal fields. This paper introduces two novel concepts in data-driven turbulence modeling that enable the simultaneous development of multiple closure models and the training towards multiple objectives. The concepts extend the evolutionary framework by Weatheritt and Sandberg (2016) [1], which derives interpretable and implementation-ready expressions from high-fidelity simulation data. By assigning a shared fitness value to the evolved closure models and utilizing the CFD-driven training approach by Zhao et al. (2020) [2], the multi-expression training concept introduced here is able to account for the coupling between the trained models, i.e. Reynolds stress anisotropy, turbulent heat flux and turbulence production correction models. As a second concept, a multi-objective optimization algorithm is applied to the framework. The extension yields a diverse set of candidate models and allows a trade-off between the training objectives after analyzing the training results. In this study, the novel concepts are applied to a benchmark periodic hills case and a vertical natural convection flow. The predictions of mean flow quantities are improved compared to decoupled training strategies with distinct and robust improvements for strongly coupled momentum and thermal fields. The coupled training of closure models and the balancing of multiple training objectives are considered important capabilities on the path towards generalized data-driven turbulence models.  | 
    
| ArticleNumber | 110922 | 
    
| Author | Zhao, Yaomin Sandberg, Richard Klewicki, Joseph Waschkowski, Fabian  | 
    
| Author_xml | – sequence: 1 givenname: Fabian orcidid: 0000-0001-5427-9551 surname: Waschkowski fullname: Waschkowski, Fabian email: fwaschkowski@student.unimelb.edu.au organization: Department of Mechanical Engineering, University of Melbourne, VIC 3010, Australia – sequence: 2 givenname: Yaomin orcidid: 0000-0002-9597-5761 surname: Zhao fullname: Zhao, Yaomin organization: Center for Applied Physics and Technology, HEDPS, College of Engineering, Peking University, Beijing 100871, China – sequence: 3 givenname: Richard surname: Sandberg fullname: Sandberg, Richard organization: Department of Mechanical Engineering, University of Melbourne, VIC 3010, Australia – sequence: 4 givenname: Joseph surname: Klewicki fullname: Klewicki, Joseph organization: Department of Mechanical Engineering, University of Melbourne, VIC 3010, Australia  | 
    
| BookMark | eNp9kE1LAzEQhoNUsK3-AG8LnndNsl8JnqRaFSte9Bx2kwlkSTdrki34702pJw-e3oF5nxl4VmgxuhEQuia4IJg0t0MxyKmgmJKCEMwpPUPLlDinLWkWaInTJueckwu0CmHAGLO6Ykv0-jbbaHLXDyCjOUC22T7kyqdpzBQcwLppD2PMnM6kmycLKouz72cLo4RMWhdmD9neKbDhEp3rzga4-s01-tw-fmye893708vmfpfLktYxb7hmGjMFmuOq4y3VtdSUVESC7iQvu56RHlipuSRt3UhW8kZx2rCeVI1ucblGN6e7k3dfM4QoBjf7Mb0UtCl5i9ua8tRqTy3pXQgetJAmdtG4MfrOWEGwOJoTg0jmxNGcOJlLJPlDTt7sO__9L3N3YpIHOBjwIkhzdKSMT2aFcuYf-gef5Ige | 
    
| CitedBy_id | crossref_primary_10_1016_j_scs_2024_105607 crossref_primary_10_1016_j_jcp_2024_113298 crossref_primary_10_1007_s10462_024_10867_3 crossref_primary_10_1016_j_engappai_2024_108945 crossref_primary_10_1080_14685248_2024_2395307 crossref_primary_10_1115_1_4065124 crossref_primary_10_1016_j_ijheatfluidflow_2022_108983 crossref_primary_10_1063_5_0260447 crossref_primary_10_1016_j_partic_2022_10_013 crossref_primary_10_1051_epjam_2023003 crossref_primary_10_1063_5_0174470 crossref_primary_10_1007_s00466_023_02342_7 crossref_primary_10_1007_s10494_024_00579_7 crossref_primary_10_1016_j_ijheatmasstransfer_2022_122557 crossref_primary_10_3390_app13053165 crossref_primary_10_1007_s10494_024_00595_7 crossref_primary_10_1016_j_jcp_2023_112272 crossref_primary_10_1016_j_scs_2023_104881 crossref_primary_10_1007_s10494_022_00346_6 crossref_primary_10_2514_1_J062572 crossref_primary_10_1088_1367_2630_ad6689 crossref_primary_10_3390_en14154680 crossref_primary_10_1017_jfm_2022_744 crossref_primary_10_1063_5_0207256 crossref_primary_10_1063_5_0247759 crossref_primary_10_1017_flo_2021_21 crossref_primary_10_1016_j_ijheatfluidflow_2023_109242 crossref_primary_10_1016_j_oceaneng_2024_116717  | 
    
| Cites_doi | 10.1017/jfm.2020.820 10.1016/j.jcp.2015.11.012 10.1016/j.jcp.2014.06.052 10.1017/jfm.2016.615 10.1016/j.jcp.2016.05.003 10.1016/j.compfluid.2020.104497 10.2514/3.12149 10.1115/1.4041753 10.1016/j.compfluid.2008.05.002 10.1146/annurev-fluid-010518-040547 10.1017/S0022112075003382 10.1016/j.jcp.2020.109413 10.1016/j.ress.2005.11.018 10.1016/j.compfluid.2016.01.014 10.1063/1.168744 10.1109/4235.996017 10.1016/j.ress.2010.09.013 10.1115/1.3111066 10.1017/jfm.2017.387 10.1007/s10494-019-00089-x 10.1016/j.jcp.2016.08.015 10.1115/1.4041268 10.1016/S0017-9310(99)00037-X 10.1103/PhysRevFluids.3.074602 10.1017/jfm.2014.712  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2021 Elsevier Inc. Copyright Elsevier Science Ltd. Mar 1, 2022  | 
    
| Copyright_xml | – notice: 2021 Elsevier Inc. – notice: Copyright Elsevier Science Ltd. Mar 1, 2022  | 
    
| DBID | AAYXX CITATION 7SC 7SP 7U5 8FD JQ2 L7M L~C L~D  | 
    
| DOI | 10.1016/j.jcp.2021.110922 | 
    
| DatabaseName | CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts  Academic Computer and Information Systems Abstracts Professional  | 
    
| DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional  | 
    
| DatabaseTitleList | Technology Research Database | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Applied Sciences | 
    
| EISSN | 1090-2716 | 
    
| ExternalDocumentID | 10_1016_j_jcp_2021_110922 S0021999121008172  | 
    
| GroupedDBID | --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 6OB 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO AAYFN ABBOA ABFRF ABJNI ABMAC ABNEU ABYKQ ACBEA ACDAQ ACFVG ACGFO ACGFS ACNCT ACRLP ACZNC ADBBV ADEZE AEBSH AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHZHX AIALX AIEXJ AIKHN AITUG AIVDX AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD AXJTR BKOJK BLXMC CS3 DM4 DU5 EBS EFBJH EFLBG EO8 EO9 EP2 EP3 F5P FDB FEDTE FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HLZ HVGLF IHE J1W K-O KOM LG5 LX9 LZ4 M37 M41 MO0 N9A O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SDF SDG SDP SES SPC SPCBC SPD SSQ SSV SSZ T5K TN5 UPT YQT ZMT ZU3 ~02 ~G- 29K 6TJ 8WZ A6W AAQXK AATTM AAXKI AAYWO AAYXX ABFNM ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADFGL ADIYS ADJOM ADMUD ADNMO AEIPS AEUPX AFFNX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BBWZM CAG CITATION COF D-I EFKBS EJD FGOYB G-2 HME HMV HZ~ NDZJH R2- SBC SEW SHN SPG T9H UQL WUQ ZY4 ~HD 7SC 7SP 7U5 8FD AFXIZ AGCQF AGRNS BNPGV JQ2 L7M L~C L~D SSH  | 
    
| ID | FETCH-LOGICAL-c325t-69f8f08def904a972f5cf2141cefac93ab81be83f9c1756c8396d9268b146f703 | 
    
| IEDL.DBID | .~1 | 
    
| ISSN | 0021-9991 | 
    
| IngestDate | Mon Jul 14 09:00:36 EDT 2025 Wed Oct 01 02:36:57 EDT 2025 Thu Apr 24 23:03:14 EDT 2025 Fri Feb 23 02:41:06 EST 2024  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Keywords | Multi-objective optimization Turbulence modeling Evolutionary algorithm Machine learning  | 
    
| Language | English | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c325t-69f8f08def904a972f5cf2141cefac93ab81be83f9c1756c8396d9268b146f703 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14  | 
    
| ORCID | 0000-0002-9597-5761 0000-0001-5427-9551  | 
    
| PQID | 2639707529 | 
    
| PQPubID | 2047462 | 
    
| ParticipantIDs | proquest_journals_2639707529 crossref_citationtrail_10_1016_j_jcp_2021_110922 crossref_primary_10_1016_j_jcp_2021_110922 elsevier_sciencedirect_doi_10_1016_j_jcp_2021_110922  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2022-03-01 2022-03-00 20220301  | 
    
| PublicationDateYYYYMMDD | 2022-03-01 | 
    
| PublicationDate_xml | – month: 03 year: 2022 text: 2022-03-01 day: 01  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | Cambridge | 
    
| PublicationPlace_xml | – name: Cambridge | 
    
| PublicationTitle | Journal of computational physics | 
    
| PublicationYear | 2022 | 
    
| Publisher | Elsevier Inc Elsevier Science Ltd  | 
    
| Publisher_xml | – name: Elsevier Inc – name: Elsevier Science Ltd  | 
    
| References | Akolekar, Weatheritt, Hutchins, Sandberg, Laskowski, Michelassi (br0220) 2019; 141 Breuer, Peller, Rapp, Manhart (br0280) 2009; 38 Kaandorp, Dwight (br0150) 2020; 202 Deb, Pratap, Agarwal, Meyarivan (br0260) 2002; 6 Ferreira (br0200) 2001; 13 Ling, Jones, Templeton (br0130) 2016; 318 Parish, Duraisamy (br0110) 2016; 305 Thompson, Sampaio, de Bragança Alves, Thais, Mompean (br0240) 2016; 130 Versteegh, Nieuwstadt (br0330) 1999; 42 Ling, Kurzawski, Templeton (br0160) 2016; 807 Duraisamy, Iaccarino, Xiao (br0060) 2019; 51 Ng, Ooi, Lohse, Chung (br0360) 2017; 825 Schmelzer, Dwight, Cinnella (br0230) 2020; 104 Cheung, Oliver, Prudencio, Prudhomme, Moser (br0070) 2011; 96 Duraisamy, Zhang, Singh (br0100) 2015 Ng, Ooi, Lohse, Chung (br0320) 2015; 764 Vaswani, Shazeer, Parmar, Uszkoreit, Jones, Gomez, Kaiser, Polosukhin (br0050) 2017 Jakirlic, Jester-Zürker, Tropea (br0350) 2001 Tracey, Duraisamy, Alonso (br0090) 2015 X. Xu, F. Waschkowski, A. Ooi, R.D. Sandberg, RANS models for natural convection via CFD-driven machine learning, Manuscript submitted for publication, 2021. Zheng (br0190) 1994; 47 Sandberg, Tan, Weatheritt, Ooi, Haghiri, Michelassi, Laskowski (br0210) 2018; 140 Zhao, Akolekar, Weatheritt, Michelassi, Sandberg (br0020) 2020; 411 Edeling, Cinnella, Dwight (br0080) 2014; 275 Konak, Coit, Smith (br0250) 2006; 91 Menter, Kuntz, Langtry (br0300) 2003; 4 Weller, Tabor, Jasak, Fureby (br0310) 1998; 12 Weatheritt, Sandberg (br0010) 2016; 325 Pope (br0170) 1975; 72 Krizhevsky, Sutskever, Hinton (br0040) 2012; 25 Milani, Ling, Eaton (br0180) 2021; 906 Menter (br0290) 1994; 32 Wu, Xiao, Paterson (br0140) 2018; 3 Deb (br0270) 2011 Leschziner (br0030) 2015 Holland, Baeder, Duraisamy (br0120) 2019 Pope (10.1016/j.jcp.2021.110922_br0170) 1975; 72 Parish (10.1016/j.jcp.2021.110922_br0110) 2016; 305 Tracey (10.1016/j.jcp.2021.110922_br0090) 2015 Vaswani (10.1016/j.jcp.2021.110922_br0050) 2017 Duraisamy (10.1016/j.jcp.2021.110922_br0060) 2019; 51 Holland (10.1016/j.jcp.2021.110922_br0120) 2019 Thompson (10.1016/j.jcp.2021.110922_br0240) 2016; 130 Zhao (10.1016/j.jcp.2021.110922_br0020) 2020; 411 Konak (10.1016/j.jcp.2021.110922_br0250) 2006; 91 Ling (10.1016/j.jcp.2021.110922_br0130) 2016; 318 Cheung (10.1016/j.jcp.2021.110922_br0070) 2011; 96 Leschziner (10.1016/j.jcp.2021.110922_br0030) 2015 Wu (10.1016/j.jcp.2021.110922_br0140) 2018; 3 Deb (10.1016/j.jcp.2021.110922_br0260) 2002; 6 Deb (10.1016/j.jcp.2021.110922_br0270) 2011 Ferreira (10.1016/j.jcp.2021.110922_br0200) 2001; 13 Edeling (10.1016/j.jcp.2021.110922_br0080) 2014; 275 Krizhevsky (10.1016/j.jcp.2021.110922_br0040) 2012; 25 Ling (10.1016/j.jcp.2021.110922_br0160) 2016; 807 Schmelzer (10.1016/j.jcp.2021.110922_br0230) 2020; 104 Breuer (10.1016/j.jcp.2021.110922_br0280) 2009; 38 Versteegh (10.1016/j.jcp.2021.110922_br0330) 1999; 42 Menter (10.1016/j.jcp.2021.110922_br0290) 1994; 32 Akolekar (10.1016/j.jcp.2021.110922_br0220) 2019; 141 Jakirlic (10.1016/j.jcp.2021.110922_br0350) 2001 Weller (10.1016/j.jcp.2021.110922_br0310) 1998; 12 Menter (10.1016/j.jcp.2021.110922_br0300) 2003; 4 10.1016/j.jcp.2021.110922_br0340 Weatheritt (10.1016/j.jcp.2021.110922_br0010) 2016; 325 Zheng (10.1016/j.jcp.2021.110922_br0190) 1994; 47 Sandberg (10.1016/j.jcp.2021.110922_br0210) 2018; 140 Ng (10.1016/j.jcp.2021.110922_br0360) 2017; 825 Kaandorp (10.1016/j.jcp.2021.110922_br0150) 2020; 202 Ng (10.1016/j.jcp.2021.110922_br0320) 2015; 764 Milani (10.1016/j.jcp.2021.110922_br0180) 2021; 906 Duraisamy (10.1016/j.jcp.2021.110922_br0100) 2015  | 
    
| References_xml | – year: 2001 ident: br0350 article-title: 9th ERCOFTAC/IAHR/COST Workshop on Refined Flow Modeling – year: 2017 ident: br0050 article-title: Attention is all you need publication-title: NIPS – start-page: 1284 year: 2015 ident: br0100 article-title: New approaches in turbulence and transition modeling using data-driven techniques publication-title: 53rd AIAA Aerospace Sciences Meeting – volume: 12 start-page: 620 year: 1998 end-page: 631 ident: br0310 article-title: A tensorial approach to computational continuum mechanics using object-oriented techniques publication-title: Comput. Phys. – volume: 51 start-page: 357 year: 2019 end-page: 377 ident: br0060 article-title: Turbulence modeling in the age of data publication-title: Annu. Rev. Fluid Mech. – volume: 42 start-page: 3673 year: 1999 end-page: 3693 ident: br0330 article-title: A direct numerical simulation of natural convection between two infinite vertical differentially heated walls scaling laws and wall functions publication-title: Int. J. Heat Mass Transf. – volume: 72 start-page: 331 year: 1975 end-page: 340 ident: br0170 article-title: A more general effective-viscosity hypothesis publication-title: J. Fluid Mech. – volume: 764 start-page: 349 year: 2015 end-page: 361 ident: br0320 article-title: Vertical natural convection: application of the unifying theory of thermal convection publication-title: J. Fluid Mech. – volume: 32 start-page: 1598 year: 1994 end-page: 1605 ident: br0290 article-title: Two-equation eddy-viscosity turbulence models for engineering applications publication-title: AIAA J. – volume: 4 start-page: 625 year: 2003 end-page: 632 ident: br0300 article-title: Ten years of industrial experience with the SST turbulence model publication-title: Turbul. Heat Mass Transf. – volume: 825 start-page: 550 year: 2017 end-page: 572 ident: br0360 article-title: Changes in the boundary-layer structure at the edge of the ultimate regime in vertical natural convection publication-title: J. Fluid Mech. – volume: 3 year: 2018 ident: br0140 article-title: Physics-informed machine learning approach for augmenting turbulence models: a comprehensive framework publication-title: Phys. Rev. Fluids – volume: 325 start-page: 22 year: 2016 end-page: 37 ident: br0010 article-title: A novel evolutionary algorithm applied to algebraic modifications of the RANS stress–strain relationship publication-title: J. Comput. Phys. – volume: 275 start-page: 65 year: 2014 end-page: 91 ident: br0080 article-title: Predictive RANS simulations via Bayesian model-scenario averaging publication-title: J. Comput. Phys. – volume: 25 start-page: 1097 year: 2012 end-page: 1105 ident: br0040 article-title: Imagenet classification with deep convolutional neural networks publication-title: Adv. Neural Inf. Process. Syst. – start-page: 3 year: 2011 end-page: 34 ident: br0270 article-title: Multi-objective optimisation using evolutionary algorithms: an introduction publication-title: Multi-Objective Evolutionary Optimisation for Product Design and Manufacturing – volume: 47 start-page: 545 year: 1994 ident: br0190 article-title: Theory of representations for tensor functions—a unified invariant approach to constitutive equations publication-title: Appl. Mech. Rev. – reference: X. Xu, F. Waschkowski, A. Ooi, R.D. Sandberg, RANS models for natural convection via CFD-driven machine learning, Manuscript submitted for publication, 2021. – year: 2015 ident: br0030 article-title: Statistical Turbulence Modelling for Fluid Dynamics-Demystified: An Introductory Text for Graduate Engineering Students – volume: 13 start-page: 87 year: 2001 end-page: 129 ident: br0200 article-title: Gene expression programming: a new adaptive algorithm for solving problems publication-title: Complex Syst. – volume: 140 year: 2018 ident: br0210 article-title: Applying machine learnt explicit algebraic stress and scalar flux models to a fundamental trailing edge slot publication-title: J. Turbomach. – volume: 38 start-page: 433 year: 2009 end-page: 457 ident: br0280 article-title: Flow over periodic hills—numerical and experimental study in a wide range of Reynolds numbers publication-title: Comput. Fluids – volume: 96 start-page: 1137 year: 2011 end-page: 1149 ident: br0070 article-title: Bayesian uncertainty analysis with applications to turbulence modeling publication-title: Reliab. Eng. Syst. Saf. – volume: 305 start-page: 758 year: 2016 end-page: 774 ident: br0110 article-title: A paradigm for data-driven predictive modeling using field inversion and machine learning publication-title: J. Comput. Phys. – volume: 807 start-page: 155 year: 2016 end-page: 166 ident: br0160 article-title: Reynolds averaged turbulence modelling using deep neural networks with embedded invariance publication-title: J. Fluid Mech. – start-page: 1287 year: 2015 ident: br0090 article-title: A machine learning strategy to assist turbulence model development publication-title: 53rd AIAA Aerospace Sciences Meeting – volume: 6 start-page: 182 year: 2002 end-page: 197 ident: br0260 article-title: A fast and elitist multiobjective genetic algorithm: NSGA-II publication-title: IEEE Trans. Evol. Comput. – volume: 318 start-page: 22 year: 2016 end-page: 35 ident: br0130 article-title: Machine learning strategies for systems with invariance properties publication-title: J. Comput. Phys. – volume: 906 year: 2021 ident: br0180 article-title: Turbulent scalar flux in inclined jets in crossflow: counter gradient transport and deep learning modelling publication-title: J. Fluid Mech. – volume: 104 start-page: 579 year: 2020 end-page: 603 ident: br0230 article-title: Discovery of algebraic Reynolds-stress models using sparse symbolic regression publication-title: Flow Turbul. Combust. – start-page: 1884 year: 2019 ident: br0120 article-title: Towards integrated field inversion and machine learning with embedded neural networks for RANS modeling publication-title: AIAA Scitech 2019 Forum – volume: 202 year: 2020 ident: br0150 article-title: Data-driven modelling of the Reynolds stress tensor using random forests with invariance publication-title: Comput. Fluids – volume: 411 year: 2020 ident: br0020 article-title: RANS turbulence model development using CFD-driven machine learning publication-title: J. Comput. Phys. – volume: 141 year: 2019 ident: br0220 article-title: Development and use of machine-learnt algebraic Reynolds stress models for enhanced prediction of wake mixing in low-pressure turbines publication-title: J. Turbomach. – volume: 91 start-page: 992 year: 2006 end-page: 1007 ident: br0250 article-title: Multi-objective optimization using genetic algorithms: a tutorial publication-title: Reliab. Eng. Syst. Saf. – volume: 130 start-page: 1 year: 2016 end-page: 7 ident: br0240 article-title: A methodology to evaluate statistical errors in DNS data of plane channel flows publication-title: Comput. Fluids – volume: 906 year: 2021 ident: 10.1016/j.jcp.2021.110922_br0180 article-title: Turbulent scalar flux in inclined jets in crossflow: counter gradient transport and deep learning modelling publication-title: J. Fluid Mech. doi: 10.1017/jfm.2020.820 – year: 2017 ident: 10.1016/j.jcp.2021.110922_br0050 article-title: Attention is all you need – volume: 305 start-page: 758 year: 2016 ident: 10.1016/j.jcp.2021.110922_br0110 article-title: A paradigm for data-driven predictive modeling using field inversion and machine learning publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2015.11.012 – volume: 13 start-page: 87 year: 2001 ident: 10.1016/j.jcp.2021.110922_br0200 article-title: Gene expression programming: a new adaptive algorithm for solving problems publication-title: Complex Syst. – volume: 275 start-page: 65 year: 2014 ident: 10.1016/j.jcp.2021.110922_br0080 article-title: Predictive RANS simulations via Bayesian model-scenario averaging publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2014.06.052 – volume: 807 start-page: 155 year: 2016 ident: 10.1016/j.jcp.2021.110922_br0160 article-title: Reynolds averaged turbulence modelling using deep neural networks with embedded invariance publication-title: J. Fluid Mech. doi: 10.1017/jfm.2016.615 – volume: 318 start-page: 22 year: 2016 ident: 10.1016/j.jcp.2021.110922_br0130 article-title: Machine learning strategies for systems with invariance properties publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2016.05.003 – volume: 202 year: 2020 ident: 10.1016/j.jcp.2021.110922_br0150 article-title: Data-driven modelling of the Reynolds stress tensor using random forests with invariance publication-title: Comput. Fluids doi: 10.1016/j.compfluid.2020.104497 – volume: 32 start-page: 1598 year: 1994 ident: 10.1016/j.jcp.2021.110922_br0290 article-title: Two-equation eddy-viscosity turbulence models for engineering applications publication-title: AIAA J. doi: 10.2514/3.12149 – volume: 141 year: 2019 ident: 10.1016/j.jcp.2021.110922_br0220 article-title: Development and use of machine-learnt algebraic Reynolds stress models for enhanced prediction of wake mixing in low-pressure turbines publication-title: J. Turbomach. doi: 10.1115/1.4041753 – start-page: 1284 year: 2015 ident: 10.1016/j.jcp.2021.110922_br0100 article-title: New approaches in turbulence and transition modeling using data-driven techniques – volume: 38 start-page: 433 year: 2009 ident: 10.1016/j.jcp.2021.110922_br0280 article-title: Flow over periodic hills—numerical and experimental study in a wide range of Reynolds numbers publication-title: Comput. Fluids doi: 10.1016/j.compfluid.2008.05.002 – volume: 51 start-page: 357 year: 2019 ident: 10.1016/j.jcp.2021.110922_br0060 article-title: Turbulence modeling in the age of data publication-title: Annu. Rev. Fluid Mech. doi: 10.1146/annurev-fluid-010518-040547 – year: 2001 ident: 10.1016/j.jcp.2021.110922_br0350 – volume: 25 start-page: 1097 year: 2012 ident: 10.1016/j.jcp.2021.110922_br0040 article-title: Imagenet classification with deep convolutional neural networks publication-title: Adv. Neural Inf. Process. Syst. – volume: 72 start-page: 331 year: 1975 ident: 10.1016/j.jcp.2021.110922_br0170 article-title: A more general effective-viscosity hypothesis publication-title: J. Fluid Mech. doi: 10.1017/S0022112075003382 – volume: 411 year: 2020 ident: 10.1016/j.jcp.2021.110922_br0020 article-title: RANS turbulence model development using CFD-driven machine learning publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2020.109413 – volume: 91 start-page: 992 year: 2006 ident: 10.1016/j.jcp.2021.110922_br0250 article-title: Multi-objective optimization using genetic algorithms: a tutorial publication-title: Reliab. Eng. Syst. Saf. doi: 10.1016/j.ress.2005.11.018 – volume: 130 start-page: 1 year: 2016 ident: 10.1016/j.jcp.2021.110922_br0240 article-title: A methodology to evaluate statistical errors in DNS data of plane channel flows publication-title: Comput. Fluids doi: 10.1016/j.compfluid.2016.01.014 – volume: 12 start-page: 620 year: 1998 ident: 10.1016/j.jcp.2021.110922_br0310 article-title: A tensorial approach to computational continuum mechanics using object-oriented techniques publication-title: Comput. Phys. doi: 10.1063/1.168744 – start-page: 3 year: 2011 ident: 10.1016/j.jcp.2021.110922_br0270 article-title: Multi-objective optimisation using evolutionary algorithms: an introduction – volume: 6 start-page: 182 year: 2002 ident: 10.1016/j.jcp.2021.110922_br0260 article-title: A fast and elitist multiobjective genetic algorithm: NSGA-II publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/4235.996017 – volume: 96 start-page: 1137 year: 2011 ident: 10.1016/j.jcp.2021.110922_br0070 article-title: Bayesian uncertainty analysis with applications to turbulence modeling publication-title: Reliab. Eng. Syst. Saf. doi: 10.1016/j.ress.2010.09.013 – volume: 47 start-page: 545 year: 1994 ident: 10.1016/j.jcp.2021.110922_br0190 article-title: Theory of representations for tensor functions—a unified invariant approach to constitutive equations publication-title: Appl. Mech. Rev. doi: 10.1115/1.3111066 – volume: 825 start-page: 550 year: 2017 ident: 10.1016/j.jcp.2021.110922_br0360 article-title: Changes in the boundary-layer structure at the edge of the ultimate regime in vertical natural convection publication-title: J. Fluid Mech. doi: 10.1017/jfm.2017.387 – volume: 104 start-page: 579 year: 2020 ident: 10.1016/j.jcp.2021.110922_br0230 article-title: Discovery of algebraic Reynolds-stress models using sparse symbolic regression publication-title: Flow Turbul. Combust. doi: 10.1007/s10494-019-00089-x – volume: 325 start-page: 22 year: 2016 ident: 10.1016/j.jcp.2021.110922_br0010 article-title: A novel evolutionary algorithm applied to algebraic modifications of the RANS stress–strain relationship publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2016.08.015 – volume: 4 start-page: 625 year: 2003 ident: 10.1016/j.jcp.2021.110922_br0300 article-title: Ten years of industrial experience with the SST turbulence model publication-title: Turbul. Heat Mass Transf. – ident: 10.1016/j.jcp.2021.110922_br0340 – start-page: 1884 year: 2019 ident: 10.1016/j.jcp.2021.110922_br0120 article-title: Towards integrated field inversion and machine learning with embedded neural networks for RANS modeling – volume: 140 year: 2018 ident: 10.1016/j.jcp.2021.110922_br0210 article-title: Applying machine learnt explicit algebraic stress and scalar flux models to a fundamental trailing edge slot publication-title: J. Turbomach. doi: 10.1115/1.4041268 – volume: 42 start-page: 3673 year: 1999 ident: 10.1016/j.jcp.2021.110922_br0330 article-title: A direct numerical simulation of natural convection between two infinite vertical differentially heated walls scaling laws and wall functions publication-title: Int. J. Heat Mass Transf. doi: 10.1016/S0017-9310(99)00037-X – start-page: 1287 year: 2015 ident: 10.1016/j.jcp.2021.110922_br0090 article-title: A machine learning strategy to assist turbulence model development – year: 2015 ident: 10.1016/j.jcp.2021.110922_br0030 – volume: 3 year: 2018 ident: 10.1016/j.jcp.2021.110922_br0140 article-title: Physics-informed machine learning approach for augmenting turbulence models: a comprehensive framework publication-title: Phys. Rev. Fluids doi: 10.1103/PhysRevFluids.3.074602 – volume: 764 start-page: 349 year: 2015 ident: 10.1016/j.jcp.2021.110922_br0320 article-title: Vertical natural convection: application of the unifying theory of thermal convection publication-title: J. Fluid Mech. doi: 10.1017/jfm.2014.712  | 
    
| SSID | ssj0008548 | 
    
| Score | 2.5352767 | 
    
| Snippet | •Introduction of two novel concepts to improve accuracy of CFD-driven turbulence models.•Simultaneous training of multiple closure models captures coupling... This paper introduces two novel concepts in data-driven turbulence modeling that enable the simultaneous development of multiple closure models and the...  | 
    
| SourceID | proquest crossref elsevier  | 
    
| SourceType | Aggregation Database Enrichment Source Index Database Publisher  | 
    
| StartPage | 110922 | 
    
| SubjectTerms | Algorithms Anisotropy Computational physics Evolutionary algorithm Free convection Heat flux Machine learning Multi-objective optimization Multiple objective analysis Optimization Reynolds stress Training Turbulence modeling Turbulence models  | 
    
| Title | Multi-objective CFD-driven development of coupled turbulence closure models | 
    
| URI | https://dx.doi.org/10.1016/j.jcp.2021.110922 https://www.proquest.com/docview/2639707529  | 
    
| Volume | 452 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1090-2716 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0008548 issn: 0021-9991 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1090-2716 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0008548 issn: 0021-9991 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1090-2716 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0008548 issn: 0021-9991 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Science Direct customDbUrl: eissn: 1090-2716 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0008548 issn: 0021-9991 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1090-2716 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0008548 issn: 0021-9991 databaseCode: AKRWK dateStart: 19660801 isFulltext: true providerName: Library Specific Holdings  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV09b8IwELUQXbr0uyotRR46VUohjhPiEdEiWlSmIrFZsWNLIEQQH2t_e-8cp6iVytAlQ-SLorP97iV-d0fIA9cM69bpIMkEhw8UGwEOZnFgIHqaWCkVCkxwfh8nwwl_m8bTGulXuTAoq_TYX2K6Q2t_p-292V7NZpjjyzCHHitgQVzrIg5z3sUuBk-fe5lHGvMSjVGKAKOrk02n8ZprLFnJQld3k7G_YtMvlHahZ3BGTjxnpL3ytc5JzSwvyKnnj9Tvzs0lGbls2qBQ8xLFaH_wHORrxDOa78VBtLBUF7vVAowh4KidyzuielHg30LqeuNsrshk8PLRHwa-WUKgIxZvg0TY1HbS3FjR4ZnoMhtry0IeamMzLaJMAUE1aWSFBsaQaCBGSS5YkirASgv7_prUl8XS3BAaKWtSxw6U4kalKhUcLjCFQieKxw3Sqdwkta8kjg0tFrKSjM0leFaiZ2Xp2QZ5_DZZlWU0Dg3mle_lj7UgAeYPmTWreZJ-I24kw4NLoEVM3P7vqXfkmGHGg5OdNUl9u96Ze-AhW9VyC61Fjnqvo-H4C3It2yA | 
    
| linkProvider | Elsevier | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV27TsMwFLWqMsDCG1Eo4IEJKbRxnNQeUaEq9DG1UjcrdmypVdVUfax8O9eOQwUSHVgyRHEUXdvnHsfnXCP0SBWxdetUkKScwgLFRICDaRxoyJ46llKG3BqcB8OkO6Yfk3hSQe3SC2NllR77C0x3aO3vNHw0G8vp1Hp8ifXQ2wpYkNdagMMHNCYtuwJ7_tzpPFhMCzi2WgR4vNzadCKvmbI1K0noCm8S8ldy-gXTLvd0TtGxJ434pfiuM1TRi3N04gkk9tNzfYF6zk4b5HJWwBhud16DbGUBDWc7dRDODVb5djmHxpBx5NYZj7Ca5_Z3IXaH46wv0bjzNmp3A39aQqAiEm-ChBtmmizThjdpylvExMqQkIZKm1TxKJXAUDWLDFdAGRIFzCjJOEmYBLA0MPGvUHWRL_Q1wpE0mjl6ICXVkknGKVygD7lKJI1rqFmGSShfStyeaDEXpWZsJiCywkZWFJGtoafvJsuijsa-h2kZe_FjMAjA-X3N6mU_CT8T14LYnUvgRYTf_O-tD-iwOxr0Rf992LtFR8TaH5wGrY6qm9VW3wEp2ch7N-i-AKXl3LU | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-objective+CFD-driven+development+of+coupled+turbulence+closure+models&rft.jtitle=Journal+of+computational+physics&rft.au=Waschkowski%2C+Fabian&rft.au=Zhao%2C+Yaomin&rft.au=Sandberg%2C+Richard&rft.au=Klewicki%2C+Joseph&rft.date=2022-03-01&rft.pub=Elsevier+Science+Ltd&rft.issn=0021-9991&rft.eissn=1090-2716&rft.volume=452&rft.spage=1&rft_id=info:doi/10.1016%2Fj.jcp.2021.110922&rft.externalDBID=NO_FULL_TEXT | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9991&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9991&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9991&client=summon |