Multi-objective CFD-driven development of coupled turbulence closure models

•Introduction of two novel concepts to improve accuracy of CFD-driven turbulence models.•Simultaneous training of multiple closure models captures coupling effects.•Multi-objective optimization enables informed model selection after training.•Trained RANS closures achieve excellent predictions for f...

Full description

Saved in:
Bibliographic Details
Published inJournal of computational physics Vol. 452; p. 110922
Main Authors Waschkowski, Fabian, Zhao, Yaomin, Sandberg, Richard, Klewicki, Joseph
Format Journal Article
LanguageEnglish
Published Cambridge Elsevier Inc 01.03.2022
Elsevier Science Ltd
Subjects
Online AccessGet full text
ISSN0021-9991
1090-2716
DOI10.1016/j.jcp.2021.110922

Cover

Abstract •Introduction of two novel concepts to improve accuracy of CFD-driven turbulence models.•Simultaneous training of multiple closure models captures coupling effects.•Multi-objective optimization enables informed model selection after training.•Trained RANS closures achieve excellent predictions for flow with highly coupled momentum and thermal fields. This paper introduces two novel concepts in data-driven turbulence modeling that enable the simultaneous development of multiple closure models and the training towards multiple objectives. The concepts extend the evolutionary framework by Weatheritt and Sandberg (2016) [1], which derives interpretable and implementation-ready expressions from high-fidelity simulation data. By assigning a shared fitness value to the evolved closure models and utilizing the CFD-driven training approach by Zhao et al. (2020) [2], the multi-expression training concept introduced here is able to account for the coupling between the trained models, i.e. Reynolds stress anisotropy, turbulent heat flux and turbulence production correction models. As a second concept, a multi-objective optimization algorithm is applied to the framework. The extension yields a diverse set of candidate models and allows a trade-off between the training objectives after analyzing the training results. In this study, the novel concepts are applied to a benchmark periodic hills case and a vertical natural convection flow. The predictions of mean flow quantities are improved compared to decoupled training strategies with distinct and robust improvements for strongly coupled momentum and thermal fields. The coupled training of closure models and the balancing of multiple training objectives are considered important capabilities on the path towards generalized data-driven turbulence models.
AbstractList This paper introduces two novel concepts in data-driven turbulence modeling that enable the simultaneous development of multiple closure models and the training towards multiple objectives. The concepts extend the evolutionary framework by Weatheritt and Sandberg (2016) [1], which derives interpretable and implementation-ready expressions from high-fidelity simulation data. By assigning a shared fitness value to the evolved closure models and utilizing the CFD-driven training approach by Zhao et al. (2020) [2], the multi-expression training concept introduced here is able to account for the coupling between the trained models, i.e. Reynolds stress anisotropy, turbulent heat flux and turbulence production correction models. As a second concept, a multi-objective optimization algorithm is applied to the framework. The extension yields a diverse set of candidate models and allows a trade-off between the training objectives after analyzing the training results. In this study, the novel concepts are applied to a benchmark periodic hills case and a vertical natural convection flow. The predictions of mean flow quantities are improved compared to decoupled training strategies with distinct and robust improvements for strongly coupled momentum and thermal fields. The coupled training of closure models and the balancing of multiple training objectives are considered important capabilities on the path towards generalized data-driven turbulence models.
•Introduction of two novel concepts to improve accuracy of CFD-driven turbulence models.•Simultaneous training of multiple closure models captures coupling effects.•Multi-objective optimization enables informed model selection after training.•Trained RANS closures achieve excellent predictions for flow with highly coupled momentum and thermal fields. This paper introduces two novel concepts in data-driven turbulence modeling that enable the simultaneous development of multiple closure models and the training towards multiple objectives. The concepts extend the evolutionary framework by Weatheritt and Sandberg (2016) [1], which derives interpretable and implementation-ready expressions from high-fidelity simulation data. By assigning a shared fitness value to the evolved closure models and utilizing the CFD-driven training approach by Zhao et al. (2020) [2], the multi-expression training concept introduced here is able to account for the coupling between the trained models, i.e. Reynolds stress anisotropy, turbulent heat flux and turbulence production correction models. As a second concept, a multi-objective optimization algorithm is applied to the framework. The extension yields a diverse set of candidate models and allows a trade-off between the training objectives after analyzing the training results. In this study, the novel concepts are applied to a benchmark periodic hills case and a vertical natural convection flow. The predictions of mean flow quantities are improved compared to decoupled training strategies with distinct and robust improvements for strongly coupled momentum and thermal fields. The coupled training of closure models and the balancing of multiple training objectives are considered important capabilities on the path towards generalized data-driven turbulence models.
ArticleNumber 110922
Author Zhao, Yaomin
Sandberg, Richard
Klewicki, Joseph
Waschkowski, Fabian
Author_xml – sequence: 1
  givenname: Fabian
  orcidid: 0000-0001-5427-9551
  surname: Waschkowski
  fullname: Waschkowski, Fabian
  email: fwaschkowski@student.unimelb.edu.au
  organization: Department of Mechanical Engineering, University of Melbourne, VIC 3010, Australia
– sequence: 2
  givenname: Yaomin
  orcidid: 0000-0002-9597-5761
  surname: Zhao
  fullname: Zhao, Yaomin
  organization: Center for Applied Physics and Technology, HEDPS, College of Engineering, Peking University, Beijing 100871, China
– sequence: 3
  givenname: Richard
  surname: Sandberg
  fullname: Sandberg, Richard
  organization: Department of Mechanical Engineering, University of Melbourne, VIC 3010, Australia
– sequence: 4
  givenname: Joseph
  surname: Klewicki
  fullname: Klewicki, Joseph
  organization: Department of Mechanical Engineering, University of Melbourne, VIC 3010, Australia
BookMark eNp9kE1LAzEQhoNUsK3-AG8LnndNsl8JnqRaFSte9Bx2kwlkSTdrki34702pJw-e3oF5nxl4VmgxuhEQuia4IJg0t0MxyKmgmJKCEMwpPUPLlDinLWkWaInTJueckwu0CmHAGLO6Ykv0-jbbaHLXDyCjOUC22T7kyqdpzBQcwLppD2PMnM6kmycLKouz72cLo4RMWhdmD9neKbDhEp3rzga4-s01-tw-fmye893708vmfpfLktYxb7hmGjMFmuOq4y3VtdSUVESC7iQvu56RHlipuSRt3UhW8kZx2rCeVI1ucblGN6e7k3dfM4QoBjf7Mb0UtCl5i9ua8tRqTy3pXQgetJAmdtG4MfrOWEGwOJoTg0jmxNGcOJlLJPlDTt7sO__9L3N3YpIHOBjwIkhzdKSMT2aFcuYf-gef5Ige
CitedBy_id crossref_primary_10_1016_j_scs_2024_105607
crossref_primary_10_1016_j_jcp_2024_113298
crossref_primary_10_1007_s10462_024_10867_3
crossref_primary_10_1016_j_engappai_2024_108945
crossref_primary_10_1080_14685248_2024_2395307
crossref_primary_10_1115_1_4065124
crossref_primary_10_1016_j_ijheatfluidflow_2022_108983
crossref_primary_10_1063_5_0260447
crossref_primary_10_1016_j_partic_2022_10_013
crossref_primary_10_1051_epjam_2023003
crossref_primary_10_1063_5_0174470
crossref_primary_10_1007_s00466_023_02342_7
crossref_primary_10_1007_s10494_024_00579_7
crossref_primary_10_1016_j_ijheatmasstransfer_2022_122557
crossref_primary_10_3390_app13053165
crossref_primary_10_1007_s10494_024_00595_7
crossref_primary_10_1016_j_jcp_2023_112272
crossref_primary_10_1016_j_scs_2023_104881
crossref_primary_10_1007_s10494_022_00346_6
crossref_primary_10_2514_1_J062572
crossref_primary_10_1088_1367_2630_ad6689
crossref_primary_10_3390_en14154680
crossref_primary_10_1017_jfm_2022_744
crossref_primary_10_1063_5_0207256
crossref_primary_10_1063_5_0247759
crossref_primary_10_1017_flo_2021_21
crossref_primary_10_1016_j_ijheatfluidflow_2023_109242
crossref_primary_10_1016_j_oceaneng_2024_116717
Cites_doi 10.1017/jfm.2020.820
10.1016/j.jcp.2015.11.012
10.1016/j.jcp.2014.06.052
10.1017/jfm.2016.615
10.1016/j.jcp.2016.05.003
10.1016/j.compfluid.2020.104497
10.2514/3.12149
10.1115/1.4041753
10.1016/j.compfluid.2008.05.002
10.1146/annurev-fluid-010518-040547
10.1017/S0022112075003382
10.1016/j.jcp.2020.109413
10.1016/j.ress.2005.11.018
10.1016/j.compfluid.2016.01.014
10.1063/1.168744
10.1109/4235.996017
10.1016/j.ress.2010.09.013
10.1115/1.3111066
10.1017/jfm.2017.387
10.1007/s10494-019-00089-x
10.1016/j.jcp.2016.08.015
10.1115/1.4041268
10.1016/S0017-9310(99)00037-X
10.1103/PhysRevFluids.3.074602
10.1017/jfm.2014.712
ContentType Journal Article
Copyright 2021 Elsevier Inc.
Copyright Elsevier Science Ltd. Mar 1, 2022
Copyright_xml – notice: 2021 Elsevier Inc.
– notice: Copyright Elsevier Science Ltd. Mar 1, 2022
DBID AAYXX
CITATION
7SC
7SP
7U5
8FD
JQ2
L7M
L~C
L~D
DOI 10.1016/j.jcp.2021.110922
DatabaseName CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
EISSN 1090-2716
ExternalDocumentID 10_1016_j_jcp_2021_110922
S0021999121008172
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
6OB
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
AAYFN
ABBOA
ABFRF
ABJNI
ABMAC
ABNEU
ABYKQ
ACBEA
ACDAQ
ACFVG
ACGFO
ACGFS
ACNCT
ACRLP
ACZNC
ADBBV
ADEZE
AEBSH
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AIVDX
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
AXJTR
BKOJK
BLXMC
CS3
DM4
DU5
EBS
EFBJH
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HLZ
HVGLF
IHE
J1W
K-O
KOM
LG5
LX9
LZ4
M37
M41
MO0
N9A
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SPD
SSQ
SSV
SSZ
T5K
TN5
UPT
YQT
ZMT
ZU3
~02
~G-
29K
6TJ
8WZ
A6W
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABFNM
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADFGL
ADIYS
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BBWZM
CAG
CITATION
COF
D-I
EFKBS
EJD
FGOYB
G-2
HME
HMV
HZ~
NDZJH
R2-
SBC
SEW
SHN
SPG
T9H
UQL
WUQ
ZY4
~HD
7SC
7SP
7U5
8FD
AFXIZ
AGCQF
AGRNS
BNPGV
JQ2
L7M
L~C
L~D
SSH
ID FETCH-LOGICAL-c325t-69f8f08def904a972f5cf2141cefac93ab81be83f9c1756c8396d9268b146f703
IEDL.DBID .~1
ISSN 0021-9991
IngestDate Mon Jul 14 09:00:36 EDT 2025
Wed Oct 01 02:36:57 EDT 2025
Thu Apr 24 23:03:14 EDT 2025
Fri Feb 23 02:41:06 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Multi-objective optimization
Turbulence modeling
Evolutionary algorithm
Machine learning
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c325t-69f8f08def904a972f5cf2141cefac93ab81be83f9c1756c8396d9268b146f703
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-9597-5761
0000-0001-5427-9551
PQID 2639707529
PQPubID 2047462
ParticipantIDs proquest_journals_2639707529
crossref_citationtrail_10_1016_j_jcp_2021_110922
crossref_primary_10_1016_j_jcp_2021_110922
elsevier_sciencedirect_doi_10_1016_j_jcp_2021_110922
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-03-01
2022-03-00
20220301
PublicationDateYYYYMMDD 2022-03-01
PublicationDate_xml – month: 03
  year: 2022
  text: 2022-03-01
  day: 01
PublicationDecade 2020
PublicationPlace Cambridge
PublicationPlace_xml – name: Cambridge
PublicationTitle Journal of computational physics
PublicationYear 2022
Publisher Elsevier Inc
Elsevier Science Ltd
Publisher_xml – name: Elsevier Inc
– name: Elsevier Science Ltd
References Akolekar, Weatheritt, Hutchins, Sandberg, Laskowski, Michelassi (br0220) 2019; 141
Breuer, Peller, Rapp, Manhart (br0280) 2009; 38
Kaandorp, Dwight (br0150) 2020; 202
Deb, Pratap, Agarwal, Meyarivan (br0260) 2002; 6
Ferreira (br0200) 2001; 13
Ling, Jones, Templeton (br0130) 2016; 318
Parish, Duraisamy (br0110) 2016; 305
Thompson, Sampaio, de Bragança Alves, Thais, Mompean (br0240) 2016; 130
Versteegh, Nieuwstadt (br0330) 1999; 42
Ling, Kurzawski, Templeton (br0160) 2016; 807
Duraisamy, Iaccarino, Xiao (br0060) 2019; 51
Ng, Ooi, Lohse, Chung (br0360) 2017; 825
Schmelzer, Dwight, Cinnella (br0230) 2020; 104
Cheung, Oliver, Prudencio, Prudhomme, Moser (br0070) 2011; 96
Duraisamy, Zhang, Singh (br0100) 2015
Ng, Ooi, Lohse, Chung (br0320) 2015; 764
Vaswani, Shazeer, Parmar, Uszkoreit, Jones, Gomez, Kaiser, Polosukhin (br0050) 2017
Jakirlic, Jester-Zürker, Tropea (br0350) 2001
Tracey, Duraisamy, Alonso (br0090) 2015
X. Xu, F. Waschkowski, A. Ooi, R.D. Sandberg, RANS models for natural convection via CFD-driven machine learning, Manuscript submitted for publication, 2021.
Zheng (br0190) 1994; 47
Sandberg, Tan, Weatheritt, Ooi, Haghiri, Michelassi, Laskowski (br0210) 2018; 140
Zhao, Akolekar, Weatheritt, Michelassi, Sandberg (br0020) 2020; 411
Edeling, Cinnella, Dwight (br0080) 2014; 275
Konak, Coit, Smith (br0250) 2006; 91
Menter, Kuntz, Langtry (br0300) 2003; 4
Weller, Tabor, Jasak, Fureby (br0310) 1998; 12
Weatheritt, Sandberg (br0010) 2016; 325
Pope (br0170) 1975; 72
Krizhevsky, Sutskever, Hinton (br0040) 2012; 25
Milani, Ling, Eaton (br0180) 2021; 906
Menter (br0290) 1994; 32
Wu, Xiao, Paterson (br0140) 2018; 3
Deb (br0270) 2011
Leschziner (br0030) 2015
Holland, Baeder, Duraisamy (br0120) 2019
Pope (10.1016/j.jcp.2021.110922_br0170) 1975; 72
Parish (10.1016/j.jcp.2021.110922_br0110) 2016; 305
Tracey (10.1016/j.jcp.2021.110922_br0090) 2015
Vaswani (10.1016/j.jcp.2021.110922_br0050) 2017
Duraisamy (10.1016/j.jcp.2021.110922_br0060) 2019; 51
Holland (10.1016/j.jcp.2021.110922_br0120) 2019
Thompson (10.1016/j.jcp.2021.110922_br0240) 2016; 130
Zhao (10.1016/j.jcp.2021.110922_br0020) 2020; 411
Konak (10.1016/j.jcp.2021.110922_br0250) 2006; 91
Ling (10.1016/j.jcp.2021.110922_br0130) 2016; 318
Cheung (10.1016/j.jcp.2021.110922_br0070) 2011; 96
Leschziner (10.1016/j.jcp.2021.110922_br0030) 2015
Wu (10.1016/j.jcp.2021.110922_br0140) 2018; 3
Deb (10.1016/j.jcp.2021.110922_br0260) 2002; 6
Deb (10.1016/j.jcp.2021.110922_br0270) 2011
Ferreira (10.1016/j.jcp.2021.110922_br0200) 2001; 13
Edeling (10.1016/j.jcp.2021.110922_br0080) 2014; 275
Krizhevsky (10.1016/j.jcp.2021.110922_br0040) 2012; 25
Ling (10.1016/j.jcp.2021.110922_br0160) 2016; 807
Schmelzer (10.1016/j.jcp.2021.110922_br0230) 2020; 104
Breuer (10.1016/j.jcp.2021.110922_br0280) 2009; 38
Versteegh (10.1016/j.jcp.2021.110922_br0330) 1999; 42
Menter (10.1016/j.jcp.2021.110922_br0290) 1994; 32
Akolekar (10.1016/j.jcp.2021.110922_br0220) 2019; 141
Jakirlic (10.1016/j.jcp.2021.110922_br0350) 2001
Weller (10.1016/j.jcp.2021.110922_br0310) 1998; 12
Menter (10.1016/j.jcp.2021.110922_br0300) 2003; 4
10.1016/j.jcp.2021.110922_br0340
Weatheritt (10.1016/j.jcp.2021.110922_br0010) 2016; 325
Zheng (10.1016/j.jcp.2021.110922_br0190) 1994; 47
Sandberg (10.1016/j.jcp.2021.110922_br0210) 2018; 140
Ng (10.1016/j.jcp.2021.110922_br0360) 2017; 825
Kaandorp (10.1016/j.jcp.2021.110922_br0150) 2020; 202
Ng (10.1016/j.jcp.2021.110922_br0320) 2015; 764
Milani (10.1016/j.jcp.2021.110922_br0180) 2021; 906
Duraisamy (10.1016/j.jcp.2021.110922_br0100) 2015
References_xml – year: 2001
  ident: br0350
  article-title: 9th ERCOFTAC/IAHR/COST Workshop on Refined Flow Modeling
– year: 2017
  ident: br0050
  article-title: Attention is all you need
  publication-title: NIPS
– start-page: 1284
  year: 2015
  ident: br0100
  article-title: New approaches in turbulence and transition modeling using data-driven techniques
  publication-title: 53rd AIAA Aerospace Sciences Meeting
– volume: 12
  start-page: 620
  year: 1998
  end-page: 631
  ident: br0310
  article-title: A tensorial approach to computational continuum mechanics using object-oriented techniques
  publication-title: Comput. Phys.
– volume: 51
  start-page: 357
  year: 2019
  end-page: 377
  ident: br0060
  article-title: Turbulence modeling in the age of data
  publication-title: Annu. Rev. Fluid Mech.
– volume: 42
  start-page: 3673
  year: 1999
  end-page: 3693
  ident: br0330
  article-title: A direct numerical simulation of natural convection between two infinite vertical differentially heated walls scaling laws and wall functions
  publication-title: Int. J. Heat Mass Transf.
– volume: 72
  start-page: 331
  year: 1975
  end-page: 340
  ident: br0170
  article-title: A more general effective-viscosity hypothesis
  publication-title: J. Fluid Mech.
– volume: 764
  start-page: 349
  year: 2015
  end-page: 361
  ident: br0320
  article-title: Vertical natural convection: application of the unifying theory of thermal convection
  publication-title: J. Fluid Mech.
– volume: 32
  start-page: 1598
  year: 1994
  end-page: 1605
  ident: br0290
  article-title: Two-equation eddy-viscosity turbulence models for engineering applications
  publication-title: AIAA J.
– volume: 4
  start-page: 625
  year: 2003
  end-page: 632
  ident: br0300
  article-title: Ten years of industrial experience with the SST turbulence model
  publication-title: Turbul. Heat Mass Transf.
– volume: 825
  start-page: 550
  year: 2017
  end-page: 572
  ident: br0360
  article-title: Changes in the boundary-layer structure at the edge of the ultimate regime in vertical natural convection
  publication-title: J. Fluid Mech.
– volume: 3
  year: 2018
  ident: br0140
  article-title: Physics-informed machine learning approach for augmenting turbulence models: a comprehensive framework
  publication-title: Phys. Rev. Fluids
– volume: 325
  start-page: 22
  year: 2016
  end-page: 37
  ident: br0010
  article-title: A novel evolutionary algorithm applied to algebraic modifications of the RANS stress–strain relationship
  publication-title: J. Comput. Phys.
– volume: 275
  start-page: 65
  year: 2014
  end-page: 91
  ident: br0080
  article-title: Predictive RANS simulations via Bayesian model-scenario averaging
  publication-title: J. Comput. Phys.
– volume: 25
  start-page: 1097
  year: 2012
  end-page: 1105
  ident: br0040
  article-title: Imagenet classification with deep convolutional neural networks
  publication-title: Adv. Neural Inf. Process. Syst.
– start-page: 3
  year: 2011
  end-page: 34
  ident: br0270
  article-title: Multi-objective optimisation using evolutionary algorithms: an introduction
  publication-title: Multi-Objective Evolutionary Optimisation for Product Design and Manufacturing
– volume: 47
  start-page: 545
  year: 1994
  ident: br0190
  article-title: Theory of representations for tensor functions—a unified invariant approach to constitutive equations
  publication-title: Appl. Mech. Rev.
– reference: X. Xu, F. Waschkowski, A. Ooi, R.D. Sandberg, RANS models for natural convection via CFD-driven machine learning, Manuscript submitted for publication, 2021.
– year: 2015
  ident: br0030
  article-title: Statistical Turbulence Modelling for Fluid Dynamics-Demystified: An Introductory Text for Graduate Engineering Students
– volume: 13
  start-page: 87
  year: 2001
  end-page: 129
  ident: br0200
  article-title: Gene expression programming: a new adaptive algorithm for solving problems
  publication-title: Complex Syst.
– volume: 140
  year: 2018
  ident: br0210
  article-title: Applying machine learnt explicit algebraic stress and scalar flux models to a fundamental trailing edge slot
  publication-title: J. Turbomach.
– volume: 38
  start-page: 433
  year: 2009
  end-page: 457
  ident: br0280
  article-title: Flow over periodic hills—numerical and experimental study in a wide range of Reynolds numbers
  publication-title: Comput. Fluids
– volume: 96
  start-page: 1137
  year: 2011
  end-page: 1149
  ident: br0070
  article-title: Bayesian uncertainty analysis with applications to turbulence modeling
  publication-title: Reliab. Eng. Syst. Saf.
– volume: 305
  start-page: 758
  year: 2016
  end-page: 774
  ident: br0110
  article-title: A paradigm for data-driven predictive modeling using field inversion and machine learning
  publication-title: J. Comput. Phys.
– volume: 807
  start-page: 155
  year: 2016
  end-page: 166
  ident: br0160
  article-title: Reynolds averaged turbulence modelling using deep neural networks with embedded invariance
  publication-title: J. Fluid Mech.
– start-page: 1287
  year: 2015
  ident: br0090
  article-title: A machine learning strategy to assist turbulence model development
  publication-title: 53rd AIAA Aerospace Sciences Meeting
– volume: 6
  start-page: 182
  year: 2002
  end-page: 197
  ident: br0260
  article-title: A fast and elitist multiobjective genetic algorithm: NSGA-II
  publication-title: IEEE Trans. Evol. Comput.
– volume: 318
  start-page: 22
  year: 2016
  end-page: 35
  ident: br0130
  article-title: Machine learning strategies for systems with invariance properties
  publication-title: J. Comput. Phys.
– volume: 906
  year: 2021
  ident: br0180
  article-title: Turbulent scalar flux in inclined jets in crossflow: counter gradient transport and deep learning modelling
  publication-title: J. Fluid Mech.
– volume: 104
  start-page: 579
  year: 2020
  end-page: 603
  ident: br0230
  article-title: Discovery of algebraic Reynolds-stress models using sparse symbolic regression
  publication-title: Flow Turbul. Combust.
– start-page: 1884
  year: 2019
  ident: br0120
  article-title: Towards integrated field inversion and machine learning with embedded neural networks for RANS modeling
  publication-title: AIAA Scitech 2019 Forum
– volume: 202
  year: 2020
  ident: br0150
  article-title: Data-driven modelling of the Reynolds stress tensor using random forests with invariance
  publication-title: Comput. Fluids
– volume: 411
  year: 2020
  ident: br0020
  article-title: RANS turbulence model development using CFD-driven machine learning
  publication-title: J. Comput. Phys.
– volume: 141
  year: 2019
  ident: br0220
  article-title: Development and use of machine-learnt algebraic Reynolds stress models for enhanced prediction of wake mixing in low-pressure turbines
  publication-title: J. Turbomach.
– volume: 91
  start-page: 992
  year: 2006
  end-page: 1007
  ident: br0250
  article-title: Multi-objective optimization using genetic algorithms: a tutorial
  publication-title: Reliab. Eng. Syst. Saf.
– volume: 130
  start-page: 1
  year: 2016
  end-page: 7
  ident: br0240
  article-title: A methodology to evaluate statistical errors in DNS data of plane channel flows
  publication-title: Comput. Fluids
– volume: 906
  year: 2021
  ident: 10.1016/j.jcp.2021.110922_br0180
  article-title: Turbulent scalar flux in inclined jets in crossflow: counter gradient transport and deep learning modelling
  publication-title: J. Fluid Mech.
  doi: 10.1017/jfm.2020.820
– year: 2017
  ident: 10.1016/j.jcp.2021.110922_br0050
  article-title: Attention is all you need
– volume: 305
  start-page: 758
  year: 2016
  ident: 10.1016/j.jcp.2021.110922_br0110
  article-title: A paradigm for data-driven predictive modeling using field inversion and machine learning
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2015.11.012
– volume: 13
  start-page: 87
  year: 2001
  ident: 10.1016/j.jcp.2021.110922_br0200
  article-title: Gene expression programming: a new adaptive algorithm for solving problems
  publication-title: Complex Syst.
– volume: 275
  start-page: 65
  year: 2014
  ident: 10.1016/j.jcp.2021.110922_br0080
  article-title: Predictive RANS simulations via Bayesian model-scenario averaging
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2014.06.052
– volume: 807
  start-page: 155
  year: 2016
  ident: 10.1016/j.jcp.2021.110922_br0160
  article-title: Reynolds averaged turbulence modelling using deep neural networks with embedded invariance
  publication-title: J. Fluid Mech.
  doi: 10.1017/jfm.2016.615
– volume: 318
  start-page: 22
  year: 2016
  ident: 10.1016/j.jcp.2021.110922_br0130
  article-title: Machine learning strategies for systems with invariance properties
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2016.05.003
– volume: 202
  year: 2020
  ident: 10.1016/j.jcp.2021.110922_br0150
  article-title: Data-driven modelling of the Reynolds stress tensor using random forests with invariance
  publication-title: Comput. Fluids
  doi: 10.1016/j.compfluid.2020.104497
– volume: 32
  start-page: 1598
  year: 1994
  ident: 10.1016/j.jcp.2021.110922_br0290
  article-title: Two-equation eddy-viscosity turbulence models for engineering applications
  publication-title: AIAA J.
  doi: 10.2514/3.12149
– volume: 141
  year: 2019
  ident: 10.1016/j.jcp.2021.110922_br0220
  article-title: Development and use of machine-learnt algebraic Reynolds stress models for enhanced prediction of wake mixing in low-pressure turbines
  publication-title: J. Turbomach.
  doi: 10.1115/1.4041753
– start-page: 1284
  year: 2015
  ident: 10.1016/j.jcp.2021.110922_br0100
  article-title: New approaches in turbulence and transition modeling using data-driven techniques
– volume: 38
  start-page: 433
  year: 2009
  ident: 10.1016/j.jcp.2021.110922_br0280
  article-title: Flow over periodic hills—numerical and experimental study in a wide range of Reynolds numbers
  publication-title: Comput. Fluids
  doi: 10.1016/j.compfluid.2008.05.002
– volume: 51
  start-page: 357
  year: 2019
  ident: 10.1016/j.jcp.2021.110922_br0060
  article-title: Turbulence modeling in the age of data
  publication-title: Annu. Rev. Fluid Mech.
  doi: 10.1146/annurev-fluid-010518-040547
– year: 2001
  ident: 10.1016/j.jcp.2021.110922_br0350
– volume: 25
  start-page: 1097
  year: 2012
  ident: 10.1016/j.jcp.2021.110922_br0040
  article-title: Imagenet classification with deep convolutional neural networks
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 72
  start-page: 331
  year: 1975
  ident: 10.1016/j.jcp.2021.110922_br0170
  article-title: A more general effective-viscosity hypothesis
  publication-title: J. Fluid Mech.
  doi: 10.1017/S0022112075003382
– volume: 411
  year: 2020
  ident: 10.1016/j.jcp.2021.110922_br0020
  article-title: RANS turbulence model development using CFD-driven machine learning
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2020.109413
– volume: 91
  start-page: 992
  year: 2006
  ident: 10.1016/j.jcp.2021.110922_br0250
  article-title: Multi-objective optimization using genetic algorithms: a tutorial
  publication-title: Reliab. Eng. Syst. Saf.
  doi: 10.1016/j.ress.2005.11.018
– volume: 130
  start-page: 1
  year: 2016
  ident: 10.1016/j.jcp.2021.110922_br0240
  article-title: A methodology to evaluate statistical errors in DNS data of plane channel flows
  publication-title: Comput. Fluids
  doi: 10.1016/j.compfluid.2016.01.014
– volume: 12
  start-page: 620
  year: 1998
  ident: 10.1016/j.jcp.2021.110922_br0310
  article-title: A tensorial approach to computational continuum mechanics using object-oriented techniques
  publication-title: Comput. Phys.
  doi: 10.1063/1.168744
– start-page: 3
  year: 2011
  ident: 10.1016/j.jcp.2021.110922_br0270
  article-title: Multi-objective optimisation using evolutionary algorithms: an introduction
– volume: 6
  start-page: 182
  year: 2002
  ident: 10.1016/j.jcp.2021.110922_br0260
  article-title: A fast and elitist multiobjective genetic algorithm: NSGA-II
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/4235.996017
– volume: 96
  start-page: 1137
  year: 2011
  ident: 10.1016/j.jcp.2021.110922_br0070
  article-title: Bayesian uncertainty analysis with applications to turbulence modeling
  publication-title: Reliab. Eng. Syst. Saf.
  doi: 10.1016/j.ress.2010.09.013
– volume: 47
  start-page: 545
  year: 1994
  ident: 10.1016/j.jcp.2021.110922_br0190
  article-title: Theory of representations for tensor functions—a unified invariant approach to constitutive equations
  publication-title: Appl. Mech. Rev.
  doi: 10.1115/1.3111066
– volume: 825
  start-page: 550
  year: 2017
  ident: 10.1016/j.jcp.2021.110922_br0360
  article-title: Changes in the boundary-layer structure at the edge of the ultimate regime in vertical natural convection
  publication-title: J. Fluid Mech.
  doi: 10.1017/jfm.2017.387
– volume: 104
  start-page: 579
  year: 2020
  ident: 10.1016/j.jcp.2021.110922_br0230
  article-title: Discovery of algebraic Reynolds-stress models using sparse symbolic regression
  publication-title: Flow Turbul. Combust.
  doi: 10.1007/s10494-019-00089-x
– volume: 325
  start-page: 22
  year: 2016
  ident: 10.1016/j.jcp.2021.110922_br0010
  article-title: A novel evolutionary algorithm applied to algebraic modifications of the RANS stress–strain relationship
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2016.08.015
– volume: 4
  start-page: 625
  year: 2003
  ident: 10.1016/j.jcp.2021.110922_br0300
  article-title: Ten years of industrial experience with the SST turbulence model
  publication-title: Turbul. Heat Mass Transf.
– ident: 10.1016/j.jcp.2021.110922_br0340
– start-page: 1884
  year: 2019
  ident: 10.1016/j.jcp.2021.110922_br0120
  article-title: Towards integrated field inversion and machine learning with embedded neural networks for RANS modeling
– volume: 140
  year: 2018
  ident: 10.1016/j.jcp.2021.110922_br0210
  article-title: Applying machine learnt explicit algebraic stress and scalar flux models to a fundamental trailing edge slot
  publication-title: J. Turbomach.
  doi: 10.1115/1.4041268
– volume: 42
  start-page: 3673
  year: 1999
  ident: 10.1016/j.jcp.2021.110922_br0330
  article-title: A direct numerical simulation of natural convection between two infinite vertical differentially heated walls scaling laws and wall functions
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/S0017-9310(99)00037-X
– start-page: 1287
  year: 2015
  ident: 10.1016/j.jcp.2021.110922_br0090
  article-title: A machine learning strategy to assist turbulence model development
– year: 2015
  ident: 10.1016/j.jcp.2021.110922_br0030
– volume: 3
  year: 2018
  ident: 10.1016/j.jcp.2021.110922_br0140
  article-title: Physics-informed machine learning approach for augmenting turbulence models: a comprehensive framework
  publication-title: Phys. Rev. Fluids
  doi: 10.1103/PhysRevFluids.3.074602
– volume: 764
  start-page: 349
  year: 2015
  ident: 10.1016/j.jcp.2021.110922_br0320
  article-title: Vertical natural convection: application of the unifying theory of thermal convection
  publication-title: J. Fluid Mech.
  doi: 10.1017/jfm.2014.712
SSID ssj0008548
Score 2.5352767
Snippet •Introduction of two novel concepts to improve accuracy of CFD-driven turbulence models.•Simultaneous training of multiple closure models captures coupling...
This paper introduces two novel concepts in data-driven turbulence modeling that enable the simultaneous development of multiple closure models and the...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 110922
SubjectTerms Algorithms
Anisotropy
Computational physics
Evolutionary algorithm
Free convection
Heat flux
Machine learning
Multi-objective optimization
Multiple objective analysis
Optimization
Reynolds stress
Training
Turbulence modeling
Turbulence models
Title Multi-objective CFD-driven development of coupled turbulence closure models
URI https://dx.doi.org/10.1016/j.jcp.2021.110922
https://www.proquest.com/docview/2639707529
Volume 452
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1090-2716
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0008548
  issn: 0021-9991
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1090-2716
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0008548
  issn: 0021-9991
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1090-2716
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0008548
  issn: 0021-9991
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Science Direct
  customDbUrl:
  eissn: 1090-2716
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0008548
  issn: 0021-9991
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1090-2716
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0008548
  issn: 0021-9991
  databaseCode: AKRWK
  dateStart: 19660801
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV09b8IwELUQXbr0uyotRR46VUohjhPiEdEiWlSmIrFZsWNLIEQQH2t_e-8cp6iVytAlQ-SLorP97iV-d0fIA9cM69bpIMkEhw8UGwEOZnFgIHqaWCkVCkxwfh8nwwl_m8bTGulXuTAoq_TYX2K6Q2t_p-292V7NZpjjyzCHHitgQVzrIg5z3sUuBk-fe5lHGvMSjVGKAKOrk02n8ZprLFnJQld3k7G_YtMvlHahZ3BGTjxnpL3ytc5JzSwvyKnnj9Tvzs0lGbls2qBQ8xLFaH_wHORrxDOa78VBtLBUF7vVAowh4KidyzuielHg30LqeuNsrshk8PLRHwa-WUKgIxZvg0TY1HbS3FjR4ZnoMhtry0IeamMzLaJMAUE1aWSFBsaQaCBGSS5YkirASgv7_prUl8XS3BAaKWtSxw6U4kalKhUcLjCFQieKxw3Sqdwkta8kjg0tFrKSjM0leFaiZ2Xp2QZ5_DZZlWU0Dg3mle_lj7UgAeYPmTWreZJ-I24kw4NLoEVM3P7vqXfkmGHGg5OdNUl9u96Ze-AhW9VyC61Fjnqvo-H4C3It2yA
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV27TsMwFLWqMsDCG1Eo4IEJKbRxnNQeUaEq9DG1UjcrdmypVdVUfax8O9eOQwUSHVgyRHEUXdvnHsfnXCP0SBWxdetUkKScwgLFRICDaRxoyJ46llKG3BqcB8OkO6Yfk3hSQe3SC2NllR77C0x3aO3vNHw0G8vp1Hp8ifXQ2wpYkNdagMMHNCYtuwJ7_tzpPFhMCzi2WgR4vNzadCKvmbI1K0noCm8S8ldy-gXTLvd0TtGxJ434pfiuM1TRi3N04gkk9tNzfYF6zk4b5HJWwBhud16DbGUBDWc7dRDODVb5djmHxpBx5NYZj7Ca5_Z3IXaH46wv0bjzNmp3A39aQqAiEm-ChBtmmizThjdpylvExMqQkIZKm1TxKJXAUDWLDFdAGRIFzCjJOEmYBLA0MPGvUHWRL_Q1wpE0mjl6ICXVkknGKVygD7lKJI1rqFmGSShfStyeaDEXpWZsJiCywkZWFJGtoafvJsuijsa-h2kZe_FjMAjA-X3N6mU_CT8T14LYnUvgRYTf_O-tD-iwOxr0Rf992LtFR8TaH5wGrY6qm9VW3wEp2ch7N-i-AKXl3LU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-objective+CFD-driven+development+of+coupled+turbulence+closure+models&rft.jtitle=Journal+of+computational+physics&rft.au=Waschkowski%2C+Fabian&rft.au=Zhao%2C+Yaomin&rft.au=Sandberg%2C+Richard&rft.au=Klewicki%2C+Joseph&rft.date=2022-03-01&rft.pub=Elsevier+Science+Ltd&rft.issn=0021-9991&rft.eissn=1090-2716&rft.volume=452&rft.spage=1&rft_id=info:doi/10.1016%2Fj.jcp.2021.110922&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9991&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9991&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9991&client=summon