Relative Merits of Data Mining Algorithms of Chronic Kidney Diseases

Early prediction of Chronic Kidney Disease in human subjects is considered to be a critical factor for diagnosis and treatment. The use of data mining algorithms to reveal the hidden information from clinical and laboratory samples helps physician in early diagnosis, thus contributing towards increa...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of advanced computer science & applications Vol. 12; no. 6
Main Authors Herle, Harsha, V, Padmaja K
Format Journal Article
LanguageEnglish
Published West Yorkshire Science and Information (SAI) Organization Limited 2021
Subjects
Online AccessGet full text
ISSN2158-107X
2156-5570
2156-5570
DOI10.14569/IJACSA.2021.0120667

Cover

Abstract Early prediction of Chronic Kidney Disease in human subjects is considered to be a critical factor for diagnosis and treatment. The use of data mining algorithms to reveal the hidden information from clinical and laboratory samples helps physician in early diagnosis, thus contributing towards increase in accuracy, prediction and detection of Chronic Kidney Disease. The experimental results obtained from this work, with subjected to optimal data mining algorithms for better classification and prediction, of Chronic Kidney Disease. The result of applying relevant algorithms, like K-Nearest Neighbors, Support Vector Machine, Multi Layer Perceptron, Random Forest, are studied for both clinical and laboratory samples. Our findings show that K - Nearest Neighbour algorithm provides the best classification for clinical data and, similarly, Random Forest for laboratory samples, when compared with the performance parameters like, precision, accuracy, recall and F1 Score of other data mining analysis techniques.
AbstractList Early prediction of Chronic Kidney Disease in human subjects is considered to be a critical factor for diagnosis and treatment. The use of data mining algorithms to reveal the hidden information from clinical and laboratory samples helps physician in early diagnosis, thus contributing towards increase in accuracy, prediction and detection of Chronic Kidney Disease. The experimental results obtained from this work, with subjected to optimal data mining algorithms for better classification and prediction, of Chronic Kidney Disease. The result of applying relevant algorithms, like K-Nearest Neighbors, Support Vector Machine, Multi Layer Perceptron, Random Forest, are studied for both clinical and laboratory samples. Our findings show that K - Nearest Neighbour algorithm provides the best classification for clinical data and, similarly, Random Forest for laboratory samples, when compared with the performance parameters like, precision, accuracy, recall and F1 Score of other data mining analysis techniques.
Author V, Padmaja K
Herle, Harsha
Author_xml – sequence: 1
  givenname: Harsha
  surname: Herle
  fullname: Herle, Harsha
– sequence: 2
  givenname: Padmaja K
  surname: V
  fullname: V, Padmaja K
BookMark eNp9kE1PwzAMhiM0JMbYP-BQiXNHPpq05VZtfAw2IfEhcYvS1t0ydclIOtD-PWXdaUj4YFu231fWc456xhpA6JLgEYm4SK-nj9n4NRtRTMkIE4qFiE9QnxIuQs5j3Nv3SUhw_HGGht6vcBsspSJhfTR5gVo1-guCOTjd-MBWwUQ1Kphro80iyOqFbefL9X4zXjprdBE86dLALphoD8qDv0Cnlao9DA91gN7vbt_GD-Hs-X46zmZhwShvQsEosBioiCEtU0XKFIuySDDOOUSMRRUlOIc4L6mAnOdJTqoUaE5ZLniFOWMDxDvfrdmo3beqa7lxeq3cThIs9zSkXqnCK_lLQx5otLqrTrdx9nMLvpEru3WmfVVSwTkhbeLtVdRdFc5676D6a96hPja_OZIVummRWtM4pev_xT_cCILx
CitedBy_id crossref_primary_10_56294_dm2024_363
ContentType Journal Article
Copyright 2021. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2021. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
3V.
7XB
8FE
8FG
8FK
8G5
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
GUQSH
HCIFZ
JQ2
K7-
M2O
MBDVC
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
ADTOC
UNPAY
DOI 10.14569/IJACSA.2021.0120667
DatabaseName CrossRef
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Research Library
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection (via ProQuest SciTech Premium Collection)
ProQuest One Community College
ProQuest Central
ProQuest Central Student
ProQuest Research Library
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Research Library (Proquest)
Research Library (Corporate)
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest One Academic
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
Publicly Available Content Database
Research Library Prep
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Research Library
ProQuest Central (New)
Advanced Technologies & Aerospace Collection
ProQuest Central Basic
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList Publicly Available Content Database
Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2156-5570
ExternalDocumentID 10.14569/ijacsa.2021.0120667
10_14569_IJACSA_2021_0120667
GroupedDBID .DC
5VS
8G5
AAYXX
ABUWG
ADMLS
AFKRA
ALMA_UNASSIGNED_HOLDINGS
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
CITATION
DWQXO
EBS
EJD
GNUQQ
GUQSH
HCIFZ
K7-
KQ8
M2O
OK1
PHGZM
PHGZT
PIMPY
PQGLB
PUEGO
RNS
3V.
7XB
8FE
8FG
8FK
JQ2
MBDVC
P62
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
Q9U
ADTOC
UNPAY
ID FETCH-LOGICAL-c325t-632e37e267e9d9a1d906dc800b5e4334f210be7bd26eb5b8b1f9e2b23b65f0533
IEDL.DBID UNPAY
ISSN 2158-107X
2156-5570
IngestDate Tue Aug 19 18:21:37 EDT 2025
Fri Jul 25 03:24:54 EDT 2025
Wed Oct 01 01:54:25 EDT 2025
Thu Apr 24 23:03:27 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Issue 6
Language English
License cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c325t-632e37e267e9d9a1d906dc800b5e4334f210be7bd26eb5b8b1f9e2b23b65f0533
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://proxy.k.utb.cz/login?url=http://thesai.org/Downloads/Volume12No6/Paper_67-Relative_Merits_of_Data_Mining_Algorithms.pdf
PQID 2655116555
PQPubID 5444811
ParticipantIDs unpaywall_primary_10_14569_ijacsa_2021_0120667
proquest_journals_2655116555
crossref_primary_10_14569_IJACSA_2021_0120667
crossref_citationtrail_10_14569_IJACSA_2021_0120667
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-00-00
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – year: 2021
  text: 2021-00-00
PublicationDecade 2020
PublicationPlace West Yorkshire
PublicationPlace_xml – name: West Yorkshire
PublicationTitle International journal of advanced computer science & applications
PublicationYear 2021
Publisher Science and Information (SAI) Organization Limited
Publisher_xml – name: Science and Information (SAI) Organization Limited
SSID ssj0000392683
Score 2.1399987
Snippet Early prediction of Chronic Kidney Disease in human subjects is considered to be a critical factor for diagnosis and treatment. The use of data mining...
SourceID unpaywall
proquest
crossref
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
SubjectTerms Algorithms
Classification
Data mining
Diagnosis
Kidney diseases
Laboratories
Multilayer perceptrons
Support vector machines
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3JTsMwFHyCcoALO6Js8oGrIXESOzkgVCiIRa0Qi9Rb5C1QVNJCA4i_x06cAkKCSy5OLGW8vPHyZgB2TYwgSSg11qEX4pAFAsdxIjEjMY-YRzlRNt-506Vnd-FFL-pNQbfOhbHXKus5sZyo1VDaPfJ9Qk1s980jOhw9Y-saZU9XawsN7qwV1EEpMTYNM8QqYzVg5uike3U92XXxDB2gpTanCXVW15T1XD6dIRLJ_vlF6_imZVaNxN-zWaW0tJ__Fq--SOjsaz7iH-98MPgWj04XYd4RSdSqWn4JpnS-DAu1SQNyY3YF2tV1tzeNOqazFWM0zFCbFxx1SmsI1Brcm98sHp7KEqeViy77KtcfqF0d34xX4e705Pb4DDvrBCwDEhWYBkQHTBPKdKIS7qvEo0oacigiHQZBmBlwhGZCEapFJGLhZ4kmggSCRplNz12DRj7M9TogW-Bpn7HErCU5zTj3pIy14X3KsBGRNSGoAUql0xW39haD1K4vLKxpBWtqYU0drE3Ak69Gla7GP-9v1dinbpSN068-0YS9SXv8rq__yOWY_6hv4-_6NmHOvl3ttWxBo3h51duGfRRix3WpTy9Q0vs
  priority: 102
  providerName: ProQuest
Title Relative Merits of Data Mining Algorithms of Chronic Kidney Diseases
URI https://www.proquest.com/docview/2655116555
http://thesai.org/Downloads/Volume12No6/Paper_67-Relative_Merits_of_Data_Mining_Algorithms.pdf
UnpaywallVersion publishedVersion
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2156-5570
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000392683
  issn: 2158-107X
  databaseCode: KQ8
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 2156-5570
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000392683
  issn: 2158-107X
  databaseCode: BENPR
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Pb9MwFH5i7QEujJ-iMCofuLpNnMROjmFdGUOtKqConCz_yhiUpCIpaFz417HrZB3aAXHgEiVx_EnRe46_F_t9D-CFnSNIFiuDTRzEOGaRxGmaKcxIKhIWUEG0y3eezenpMj5bJat9qVJLemrhV_AnTiy-Eroef9iN05DMKzpeiI2N3e3g9nvFvhs-s5Zqal4VfCIawWe7ugo8X59X9v6nrzba1MUB9GliuXoP-sv5Iv_oKs7ZwAU7_Sl_7jRO2arNrbOkIhtffBaqdspEJBy5DFO6K0V_be7aE9Lb23IjLn-I9fra3DQ9hF9dho_fkvJltG3kSP28Kfj4n177HtxtaS3KvR_eh1umfACHXckI1H5BHsKkQ0YeGVUFcsjII6M9smtplXvRmwtdmks08YtJ9SNYTk_eH5_itpADVhFJGkwjYiJmCGUm05kIdRZQrSxVlYmJoygubNwpDZOaUCMTmcqwyAyRJJI0KVyy8GPolVVpngByDYEJGctsZCtoIUSgVGosC9WWG8liAFFnIq5alXNXbGPNXbTjDMtfn-XH73LuDMtbww4AX_XaeJWPvzx_1Fmft2O-5oRa9hnaQzKA0ZVH3MTzjvUH3tN_7fAM7rhL_y_oCHrNt615btlRI4dwkE5fDaH_8mS-eDtsHf43n8cSBQ
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwELVKeygXvlEXCvgAR7eJndjxoUJLt9Vut7tC0Ep7C_4KFC3ZhaRU--f4bYwTZ1uEBKdecnE8h5eJ543tmYfQa4gRVCbGEZdECUkE0yTLpCGCZioVEVfU-nrnyZQPz5OTWTrbQL-6Whh_rbJbE5uF2i6M3yPfpxxiewyP9O3yO_GqUf50tZPQUEFawR40LcZCYcfYra4ghasORgP43m8oPT46OxySoDJADKNpTTijjglHuXDSShVbGXFrgEfp1CWMJQUkRdoJbSl3OtWZjgvpqKZM87Twlaxg9w7aSlgiIfnbenc0ff9hvcsTAf3gTS9QCK2-j6qYhfo9IC5yf3TSP_zYhyyVxnu-ipU3cvc34uM16d2-LJdqdaXm8xvx7_gBuheIK-63nvYQbbjyEbrfiULgsEY8RoP2et1Phyfg3HWFFwUeqFrhSSNFgfvzzwBr_eVbMxJ68-LxhS3dCg_a46LqCTq_FRCfos1yUbodhP1A5GIhJOSuihdKRcZkDnimBfajix5iHUC5CX3MvZzGPPf5jIc1b2HNPax5gLWHyHrWsu3j8Z_3dzvs8_BXV_m1D_bQ3vp7_G3v4qsylfrD3rN_23uFtodnk9P8dDQdP0d3_cx2n2cXbdY_Lt0LYD61fhncC6NPt-3RvwH8gw-0
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Pb9MwFLagO8BlG79EYZt84Oo2cRI7OUYr0zbUahIUlZPlX2GDklRLChoX_nWea2cd2gFx4BIlcfxJ0XuOvxf7fQ-hNzBH0CLVltg0SknKE0XyvNCE01xmPGKSGpfvPJ2x03l6vsgW21KlQHpa6VfwJ04svpGmHX_cjNOYzho2vpAriN1hcPu9Yt-tmIKlulY0lZjITorppq6CKJefG7h_-Q2iTVM9RDssA64-QDvz2UX5yVWcg8CFOP0pf-40Tvki5NYBqSjGV1-kbp0yEY1HLsOUbUrR35m7toT00bpeyZsfcrm8Mzed7KFffYaP35LydbTu1Ej_vC_4-J9eex_tBlqLS--HT9ADWz9Fe33JCBy-IM_QpEfGHhk3FXbI2CPjLbJrCcq9-N2Vqe0NnvjFpPY5mp-8_XB8SkIhB6ITmnWEJdQm3FLGbWEKGZsiYkYDVVWZTZMkrSDuVJYrQ5lVmcpVXBWWKpoollUuWfgFGtRNbV8i7BoiG3NeQGQrWSVlpHVugYUa4EaqGqKkN5HQQeXcFdtYChftOMOKs_Py-H0pnGFFMOwQkdteK6_y8ZfnD3rrizDmW0EZsM8YDtkQjW494j6ed6w_8F79a4fX6LG79P-CDtCgu17bQ2BHnToKLv4bu18PhQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Relative+Merits+of+Data+Mining+Algorithms+of+Chronic+Kidney+Diseases&rft.jtitle=International+journal+of+advanced+computer+science+%26+applications&rft.au=Herle%2C+Harsha&rft.au=V%2C+Padmaja+K&rft.date=2021&rft.issn=2158-107X&rft.eissn=2156-5570&rft.volume=12&rft.issue=6&rft_id=info:doi/10.14569%2FIJACSA.2021.0120667&rft.externalDBID=n%2Fa&rft.externalDocID=10_14569_IJACSA_2021_0120667
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2158-107X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2158-107X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2158-107X&client=summon